linux/arch/x86/kernel/espfix_64.c
<<
>>
Prefs
   1/* ----------------------------------------------------------------------- *
   2 *
   3 *   Copyright 2014 Intel Corporation; author: H. Peter Anvin
   4 *
   5 *   This program is free software; you can redistribute it and/or modify it
   6 *   under the terms and conditions of the GNU General Public License,
   7 *   version 2, as published by the Free Software Foundation.
   8 *
   9 *   This program is distributed in the hope it will be useful, but WITHOUT
  10 *   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 *   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 *   more details.
  13 *
  14 * ----------------------------------------------------------------------- */
  15
  16/*
  17 * The IRET instruction, when returning to a 16-bit segment, only
  18 * restores the bottom 16 bits of the user space stack pointer.  This
  19 * causes some 16-bit software to break, but it also leaks kernel state
  20 * to user space.
  21 *
  22 * This works around this by creating percpu "ministacks", each of which
  23 * is mapped 2^16 times 64K apart.  When we detect that the return SS is
  24 * on the LDT, we copy the IRET frame to the ministack and use the
  25 * relevant alias to return to userspace.  The ministacks are mapped
  26 * readonly, so if the IRET fault we promote #GP to #DF which is an IST
  27 * vector and thus has its own stack; we then do the fixup in the #DF
  28 * handler.
  29 *
  30 * This file sets up the ministacks and the related page tables.  The
  31 * actual ministack invocation is in entry_64.S.
  32 */
  33
  34#include <linux/init.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/percpu.h>
  38#include <linux/gfp.h>
  39#include <linux/random.h>
  40#include <asm/pgtable.h>
  41#include <asm/pgalloc.h>
  42#include <asm/setup.h>
  43#include <asm/espfix.h>
  44
  45/*
  46 * Note: we only need 6*8 = 48 bytes for the espfix stack, but round
  47 * it up to a cache line to avoid unnecessary sharing.
  48 */
  49#define ESPFIX_STACK_SIZE       (8*8UL)
  50#define ESPFIX_STACKS_PER_PAGE  (PAGE_SIZE/ESPFIX_STACK_SIZE)
  51
  52/* There is address space for how many espfix pages? */
  53#define ESPFIX_PAGE_SPACE       (1UL << (P4D_SHIFT-PAGE_SHIFT-16))
  54
  55#define ESPFIX_MAX_CPUS         (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
  56#if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
  57# error "Need more virtual address space for the ESPFIX hack"
  58#endif
  59
  60#define PGALLOC_GFP (GFP_KERNEL | __GFP_ZERO)
  61
  62/* This contains the *bottom* address of the espfix stack */
  63DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
  64DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr);
  65
  66/* Initialization mutex - should this be a spinlock? */
  67static DEFINE_MUTEX(espfix_init_mutex);
  68
  69/* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */
  70#define ESPFIX_MAX_PAGES  DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)
  71static void *espfix_pages[ESPFIX_MAX_PAGES];
  72
  73static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD]
  74        __aligned(PAGE_SIZE);
  75
  76static unsigned int page_random, slot_random;
  77
  78/*
  79 * This returns the bottom address of the espfix stack for a specific CPU.
  80 * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
  81 * we have to account for some amount of padding at the end of each page.
  82 */
  83static inline unsigned long espfix_base_addr(unsigned int cpu)
  84{
  85        unsigned long page, slot;
  86        unsigned long addr;
  87
  88        page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random;
  89        slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE;
  90        addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE);
  91        addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16);
  92        addr += ESPFIX_BASE_ADDR;
  93        return addr;
  94}
  95
  96#define PTE_STRIDE        (65536/PAGE_SIZE)
  97#define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE)
  98#define ESPFIX_PMD_CLONES PTRS_PER_PMD
  99#define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES))
 100
 101#define PGTABLE_PROT      ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
 102
 103static void init_espfix_random(void)
 104{
 105        unsigned long rand;
 106
 107        /*
 108         * This is run before the entropy pools are initialized,
 109         * but this is hopefully better than nothing.
 110         */
 111        if (!arch_get_random_long(&rand)) {
 112                /* The constant is an arbitrary large prime */
 113                rand = rdtsc();
 114                rand *= 0xc345c6b72fd16123UL;
 115        }
 116
 117        slot_random = rand % ESPFIX_STACKS_PER_PAGE;
 118        page_random = (rand / ESPFIX_STACKS_PER_PAGE)
 119                & (ESPFIX_PAGE_SPACE - 1);
 120}
 121
 122void __init init_espfix_bsp(void)
 123{
 124        pgd_t *pgd;
 125        p4d_t *p4d;
 126
 127        /* Install the espfix pud into the kernel page directory */
 128        pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)];
 129        p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR);
 130        p4d_populate(&init_mm, p4d, espfix_pud_page);
 131
 132        /* Randomize the locations */
 133        init_espfix_random();
 134
 135        /* The rest is the same as for any other processor */
 136        init_espfix_ap(0);
 137}
 138
 139void init_espfix_ap(int cpu)
 140{
 141        unsigned int page;
 142        unsigned long addr;
 143        pud_t pud, *pud_p;
 144        pmd_t pmd, *pmd_p;
 145        pte_t pte, *pte_p;
 146        int n, node;
 147        void *stack_page;
 148        pteval_t ptemask;
 149
 150        /* We only have to do this once... */
 151        if (likely(per_cpu(espfix_stack, cpu)))
 152                return;         /* Already initialized */
 153
 154        addr = espfix_base_addr(cpu);
 155        page = cpu/ESPFIX_STACKS_PER_PAGE;
 156
 157        /* Did another CPU already set this up? */
 158        stack_page = READ_ONCE(espfix_pages[page]);
 159        if (likely(stack_page))
 160                goto done;
 161
 162        mutex_lock(&espfix_init_mutex);
 163
 164        /* Did we race on the lock? */
 165        stack_page = READ_ONCE(espfix_pages[page]);
 166        if (stack_page)
 167                goto unlock_done;
 168
 169        node = cpu_to_node(cpu);
 170        ptemask = __supported_pte_mask;
 171
 172        pud_p = &espfix_pud_page[pud_index(addr)];
 173        pud = *pud_p;
 174        if (!pud_present(pud)) {
 175                struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
 176
 177                pmd_p = (pmd_t *)page_address(page);
 178                pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask));
 179                paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT);
 180                for (n = 0; n < ESPFIX_PUD_CLONES; n++)
 181                        set_pud(&pud_p[n], pud);
 182        }
 183
 184        pmd_p = pmd_offset(&pud, addr);
 185        pmd = *pmd_p;
 186        if (!pmd_present(pmd)) {
 187                struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
 188
 189                pte_p = (pte_t *)page_address(page);
 190                pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask));
 191                paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT);
 192                for (n = 0; n < ESPFIX_PMD_CLONES; n++)
 193                        set_pmd(&pmd_p[n], pmd);
 194        }
 195
 196        pte_p = pte_offset_kernel(&pmd, addr);
 197        stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0));
 198        /*
 199         * __PAGE_KERNEL_* includes _PAGE_GLOBAL, which we want since
 200         * this is mapped to userspace.
 201         */
 202        pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask));
 203        for (n = 0; n < ESPFIX_PTE_CLONES; n++)
 204                set_pte(&pte_p[n*PTE_STRIDE], pte);
 205
 206        /* Job is done for this CPU and any CPU which shares this page */
 207        WRITE_ONCE(espfix_pages[page], stack_page);
 208
 209unlock_done:
 210        mutex_unlock(&espfix_init_mutex);
 211done:
 212        per_cpu(espfix_stack, cpu) = addr;
 213        per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page
 214                                      + (addr & ~PAGE_MASK);
 215}
 216