linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29#include "cpuid.h"
  30#include "pmu.h"
  31#include "hyperv.h"
  32
  33#include <linux/clocksource.h>
  34#include <linux/interrupt.h>
  35#include <linux/kvm.h>
  36#include <linux/fs.h>
  37#include <linux/vmalloc.h>
  38#include <linux/export.h>
  39#include <linux/moduleparam.h>
  40#include <linux/mman.h>
  41#include <linux/highmem.h>
  42#include <linux/iommu.h>
  43#include <linux/intel-iommu.h>
  44#include <linux/cpufreq.h>
  45#include <linux/user-return-notifier.h>
  46#include <linux/srcu.h>
  47#include <linux/slab.h>
  48#include <linux/perf_event.h>
  49#include <linux/uaccess.h>
  50#include <linux/hash.h>
  51#include <linux/pci.h>
  52#include <linux/timekeeper_internal.h>
  53#include <linux/pvclock_gtod.h>
  54#include <linux/kvm_irqfd.h>
  55#include <linux/irqbypass.h>
  56#include <linux/sched/stat.h>
  57#include <linux/mem_encrypt.h>
  58
  59#include <trace/events/kvm.h>
  60
  61#include <asm/debugreg.h>
  62#include <asm/msr.h>
  63#include <asm/desc.h>
  64#include <asm/mce.h>
  65#include <linux/kernel_stat.h>
  66#include <asm/fpu/internal.h> /* Ugh! */
  67#include <asm/pvclock.h>
  68#include <asm/div64.h>
  69#include <asm/irq_remapping.h>
  70#include <asm/mshyperv.h>
  71#include <asm/hypervisor.h>
  72
  73#define CREATE_TRACE_POINTS
  74#include "trace.h"
  75
  76#define MAX_IO_MSRS 256
  77#define KVM_MAX_MCE_BANKS 32
  78u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  79EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  80
  81#define emul_to_vcpu(ctxt) \
  82        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  83
  84/* EFER defaults:
  85 * - enable syscall per default because its emulated by KVM
  86 * - enable LME and LMA per default on 64 bit KVM
  87 */
  88#ifdef CONFIG_X86_64
  89static
  90u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  91#else
  92static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  93#endif
  94
  95#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  96#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  97
  98#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
  99                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 100
 101static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 102static void process_nmi(struct kvm_vcpu *vcpu);
 103static void enter_smm(struct kvm_vcpu *vcpu);
 104static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 105static void store_regs(struct kvm_vcpu *vcpu);
 106static int sync_regs(struct kvm_vcpu *vcpu);
 107
 108struct kvm_x86_ops *kvm_x86_ops __read_mostly;
 109EXPORT_SYMBOL_GPL(kvm_x86_ops);
 110
 111static bool __read_mostly ignore_msrs = 0;
 112module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 113
 114static bool __read_mostly report_ignored_msrs = true;
 115module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
 116
 117unsigned int min_timer_period_us = 200;
 118module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 119
 120static bool __read_mostly kvmclock_periodic_sync = true;
 121module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 122
 123bool __read_mostly kvm_has_tsc_control;
 124EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 125u32  __read_mostly kvm_max_guest_tsc_khz;
 126EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 127u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 128EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 129u64  __read_mostly kvm_max_tsc_scaling_ratio;
 130EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 131u64 __read_mostly kvm_default_tsc_scaling_ratio;
 132EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 133
 134/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 135static u32 __read_mostly tsc_tolerance_ppm = 250;
 136module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 137
 138/* lapic timer advance (tscdeadline mode only) in nanoseconds */
 139unsigned int __read_mostly lapic_timer_advance_ns = 0;
 140module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
 141EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
 142
 143static bool __read_mostly vector_hashing = true;
 144module_param(vector_hashing, bool, S_IRUGO);
 145
 146bool __read_mostly enable_vmware_backdoor = false;
 147module_param(enable_vmware_backdoor, bool, S_IRUGO);
 148EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
 149
 150static bool __read_mostly force_emulation_prefix = false;
 151module_param(force_emulation_prefix, bool, S_IRUGO);
 152
 153#define KVM_NR_SHARED_MSRS 16
 154
 155struct kvm_shared_msrs_global {
 156        int nr;
 157        u32 msrs[KVM_NR_SHARED_MSRS];
 158};
 159
 160struct kvm_shared_msrs {
 161        struct user_return_notifier urn;
 162        bool registered;
 163        struct kvm_shared_msr_values {
 164                u64 host;
 165                u64 curr;
 166        } values[KVM_NR_SHARED_MSRS];
 167};
 168
 169static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 170static struct kvm_shared_msrs __percpu *shared_msrs;
 171
 172struct kvm_stats_debugfs_item debugfs_entries[] = {
 173        { "pf_fixed", VCPU_STAT(pf_fixed) },
 174        { "pf_guest", VCPU_STAT(pf_guest) },
 175        { "tlb_flush", VCPU_STAT(tlb_flush) },
 176        { "invlpg", VCPU_STAT(invlpg) },
 177        { "exits", VCPU_STAT(exits) },
 178        { "io_exits", VCPU_STAT(io_exits) },
 179        { "mmio_exits", VCPU_STAT(mmio_exits) },
 180        { "signal_exits", VCPU_STAT(signal_exits) },
 181        { "irq_window", VCPU_STAT(irq_window_exits) },
 182        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 183        { "halt_exits", VCPU_STAT(halt_exits) },
 184        { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
 185        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
 186        { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
 187        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 188        { "hypercalls", VCPU_STAT(hypercalls) },
 189        { "request_irq", VCPU_STAT(request_irq_exits) },
 190        { "irq_exits", VCPU_STAT(irq_exits) },
 191        { "host_state_reload", VCPU_STAT(host_state_reload) },
 192        { "fpu_reload", VCPU_STAT(fpu_reload) },
 193        { "insn_emulation", VCPU_STAT(insn_emulation) },
 194        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 195        { "irq_injections", VCPU_STAT(irq_injections) },
 196        { "nmi_injections", VCPU_STAT(nmi_injections) },
 197        { "req_event", VCPU_STAT(req_event) },
 198        { "l1d_flush", VCPU_STAT(l1d_flush) },
 199        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 200        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 201        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 202        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 203        { "mmu_flooded", VM_STAT(mmu_flooded) },
 204        { "mmu_recycled", VM_STAT(mmu_recycled) },
 205        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 206        { "mmu_unsync", VM_STAT(mmu_unsync) },
 207        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 208        { "largepages", VM_STAT(lpages) },
 209        { "max_mmu_page_hash_collisions",
 210                VM_STAT(max_mmu_page_hash_collisions) },
 211        { NULL }
 212};
 213
 214u64 __read_mostly host_xcr0;
 215
 216static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 217
 218static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 219{
 220        int i;
 221        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 222                vcpu->arch.apf.gfns[i] = ~0;
 223}
 224
 225static void kvm_on_user_return(struct user_return_notifier *urn)
 226{
 227        unsigned slot;
 228        struct kvm_shared_msrs *locals
 229                = container_of(urn, struct kvm_shared_msrs, urn);
 230        struct kvm_shared_msr_values *values;
 231        unsigned long flags;
 232
 233        /*
 234         * Disabling irqs at this point since the following code could be
 235         * interrupted and executed through kvm_arch_hardware_disable()
 236         */
 237        local_irq_save(flags);
 238        if (locals->registered) {
 239                locals->registered = false;
 240                user_return_notifier_unregister(urn);
 241        }
 242        local_irq_restore(flags);
 243        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 244                values = &locals->values[slot];
 245                if (values->host != values->curr) {
 246                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 247                        values->curr = values->host;
 248                }
 249        }
 250}
 251
 252static void shared_msr_update(unsigned slot, u32 msr)
 253{
 254        u64 value;
 255        unsigned int cpu = smp_processor_id();
 256        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 257
 258        /* only read, and nobody should modify it at this time,
 259         * so don't need lock */
 260        if (slot >= shared_msrs_global.nr) {
 261                printk(KERN_ERR "kvm: invalid MSR slot!");
 262                return;
 263        }
 264        rdmsrl_safe(msr, &value);
 265        smsr->values[slot].host = value;
 266        smsr->values[slot].curr = value;
 267}
 268
 269void kvm_define_shared_msr(unsigned slot, u32 msr)
 270{
 271        BUG_ON(slot >= KVM_NR_SHARED_MSRS);
 272        shared_msrs_global.msrs[slot] = msr;
 273        if (slot >= shared_msrs_global.nr)
 274                shared_msrs_global.nr = slot + 1;
 275}
 276EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 277
 278static void kvm_shared_msr_cpu_online(void)
 279{
 280        unsigned i;
 281
 282        for (i = 0; i < shared_msrs_global.nr; ++i)
 283                shared_msr_update(i, shared_msrs_global.msrs[i]);
 284}
 285
 286int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 287{
 288        unsigned int cpu = smp_processor_id();
 289        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 290        int err;
 291
 292        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 293                return 0;
 294        smsr->values[slot].curr = value;
 295        err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
 296        if (err)
 297                return 1;
 298
 299        if (!smsr->registered) {
 300                smsr->urn.on_user_return = kvm_on_user_return;
 301                user_return_notifier_register(&smsr->urn);
 302                smsr->registered = true;
 303        }
 304        return 0;
 305}
 306EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 307
 308static void drop_user_return_notifiers(void)
 309{
 310        unsigned int cpu = smp_processor_id();
 311        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 312
 313        if (smsr->registered)
 314                kvm_on_user_return(&smsr->urn);
 315}
 316
 317u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 318{
 319        return vcpu->arch.apic_base;
 320}
 321EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 322
 323enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
 324{
 325        return kvm_apic_mode(kvm_get_apic_base(vcpu));
 326}
 327EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
 328
 329int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 330{
 331        enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
 332        enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
 333        u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
 334                (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 335
 336        if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
 337                return 1;
 338        if (!msr_info->host_initiated) {
 339                if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
 340                        return 1;
 341                if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
 342                        return 1;
 343        }
 344
 345        kvm_lapic_set_base(vcpu, msr_info->data);
 346        return 0;
 347}
 348EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 349
 350asmlinkage __visible void kvm_spurious_fault(void)
 351{
 352        /* Fault while not rebooting.  We want the trace. */
 353        BUG();
 354}
 355EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 356
 357#define EXCPT_BENIGN            0
 358#define EXCPT_CONTRIBUTORY      1
 359#define EXCPT_PF                2
 360
 361static int exception_class(int vector)
 362{
 363        switch (vector) {
 364        case PF_VECTOR:
 365                return EXCPT_PF;
 366        case DE_VECTOR:
 367        case TS_VECTOR:
 368        case NP_VECTOR:
 369        case SS_VECTOR:
 370        case GP_VECTOR:
 371                return EXCPT_CONTRIBUTORY;
 372        default:
 373                break;
 374        }
 375        return EXCPT_BENIGN;
 376}
 377
 378#define EXCPT_FAULT             0
 379#define EXCPT_TRAP              1
 380#define EXCPT_ABORT             2
 381#define EXCPT_INTERRUPT         3
 382
 383static int exception_type(int vector)
 384{
 385        unsigned int mask;
 386
 387        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 388                return EXCPT_INTERRUPT;
 389
 390        mask = 1 << vector;
 391
 392        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 393        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 394                return EXCPT_TRAP;
 395
 396        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 397                return EXCPT_ABORT;
 398
 399        /* Reserved exceptions will result in fault */
 400        return EXCPT_FAULT;
 401}
 402
 403static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 404                unsigned nr, bool has_error, u32 error_code,
 405                bool reinject)
 406{
 407        u32 prev_nr;
 408        int class1, class2;
 409
 410        kvm_make_request(KVM_REQ_EVENT, vcpu);
 411
 412        if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 413        queue:
 414                if (has_error && !is_protmode(vcpu))
 415                        has_error = false;
 416                if (reinject) {
 417                        /*
 418                         * On vmentry, vcpu->arch.exception.pending is only
 419                         * true if an event injection was blocked by
 420                         * nested_run_pending.  In that case, however,
 421                         * vcpu_enter_guest requests an immediate exit,
 422                         * and the guest shouldn't proceed far enough to
 423                         * need reinjection.
 424                         */
 425                        WARN_ON_ONCE(vcpu->arch.exception.pending);
 426                        vcpu->arch.exception.injected = true;
 427                } else {
 428                        vcpu->arch.exception.pending = true;
 429                        vcpu->arch.exception.injected = false;
 430                }
 431                vcpu->arch.exception.has_error_code = has_error;
 432                vcpu->arch.exception.nr = nr;
 433                vcpu->arch.exception.error_code = error_code;
 434                return;
 435        }
 436
 437        /* to check exception */
 438        prev_nr = vcpu->arch.exception.nr;
 439        if (prev_nr == DF_VECTOR) {
 440                /* triple fault -> shutdown */
 441                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 442                return;
 443        }
 444        class1 = exception_class(prev_nr);
 445        class2 = exception_class(nr);
 446        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 447                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 448                /*
 449                 * Generate double fault per SDM Table 5-5.  Set
 450                 * exception.pending = true so that the double fault
 451                 * can trigger a nested vmexit.
 452                 */
 453                vcpu->arch.exception.pending = true;
 454                vcpu->arch.exception.injected = false;
 455                vcpu->arch.exception.has_error_code = true;
 456                vcpu->arch.exception.nr = DF_VECTOR;
 457                vcpu->arch.exception.error_code = 0;
 458        } else
 459                /* replace previous exception with a new one in a hope
 460                   that instruction re-execution will regenerate lost
 461                   exception */
 462                goto queue;
 463}
 464
 465void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 466{
 467        kvm_multiple_exception(vcpu, nr, false, 0, false);
 468}
 469EXPORT_SYMBOL_GPL(kvm_queue_exception);
 470
 471void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 472{
 473        kvm_multiple_exception(vcpu, nr, false, 0, true);
 474}
 475EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 476
 477int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 478{
 479        if (err)
 480                kvm_inject_gp(vcpu, 0);
 481        else
 482                return kvm_skip_emulated_instruction(vcpu);
 483
 484        return 1;
 485}
 486EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 487
 488void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 489{
 490        ++vcpu->stat.pf_guest;
 491        vcpu->arch.exception.nested_apf =
 492                is_guest_mode(vcpu) && fault->async_page_fault;
 493        if (vcpu->arch.exception.nested_apf)
 494                vcpu->arch.apf.nested_apf_token = fault->address;
 495        else
 496                vcpu->arch.cr2 = fault->address;
 497        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 498}
 499EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 500
 501static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 502{
 503        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 504                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 505        else
 506                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 507
 508        return fault->nested_page_fault;
 509}
 510
 511void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 512{
 513        atomic_inc(&vcpu->arch.nmi_queued);
 514        kvm_make_request(KVM_REQ_NMI, vcpu);
 515}
 516EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 517
 518void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 519{
 520        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 521}
 522EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 523
 524void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 525{
 526        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 527}
 528EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 529
 530/*
 531 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 532 * a #GP and return false.
 533 */
 534bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 535{
 536        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 537                return true;
 538        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 539        return false;
 540}
 541EXPORT_SYMBOL_GPL(kvm_require_cpl);
 542
 543bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 544{
 545        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 546                return true;
 547
 548        kvm_queue_exception(vcpu, UD_VECTOR);
 549        return false;
 550}
 551EXPORT_SYMBOL_GPL(kvm_require_dr);
 552
 553/*
 554 * This function will be used to read from the physical memory of the currently
 555 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
 556 * can read from guest physical or from the guest's guest physical memory.
 557 */
 558int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 559                            gfn_t ngfn, void *data, int offset, int len,
 560                            u32 access)
 561{
 562        struct x86_exception exception;
 563        gfn_t real_gfn;
 564        gpa_t ngpa;
 565
 566        ngpa     = gfn_to_gpa(ngfn);
 567        real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
 568        if (real_gfn == UNMAPPED_GVA)
 569                return -EFAULT;
 570
 571        real_gfn = gpa_to_gfn(real_gfn);
 572
 573        return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
 574}
 575EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 576
 577static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 578                               void *data, int offset, int len, u32 access)
 579{
 580        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 581                                       data, offset, len, access);
 582}
 583
 584/*
 585 * Load the pae pdptrs.  Return true is they are all valid.
 586 */
 587int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 588{
 589        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 590        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 591        int i;
 592        int ret;
 593        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 594
 595        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 596                                      offset * sizeof(u64), sizeof(pdpte),
 597                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 598        if (ret < 0) {
 599                ret = 0;
 600                goto out;
 601        }
 602        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 603                if ((pdpte[i] & PT_PRESENT_MASK) &&
 604                    (pdpte[i] &
 605                     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
 606                        ret = 0;
 607                        goto out;
 608                }
 609        }
 610        ret = 1;
 611
 612        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 613        __set_bit(VCPU_EXREG_PDPTR,
 614                  (unsigned long *)&vcpu->arch.regs_avail);
 615        __set_bit(VCPU_EXREG_PDPTR,
 616                  (unsigned long *)&vcpu->arch.regs_dirty);
 617out:
 618
 619        return ret;
 620}
 621EXPORT_SYMBOL_GPL(load_pdptrs);
 622
 623bool pdptrs_changed(struct kvm_vcpu *vcpu)
 624{
 625        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 626        bool changed = true;
 627        int offset;
 628        gfn_t gfn;
 629        int r;
 630
 631        if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
 632                return false;
 633
 634        if (!test_bit(VCPU_EXREG_PDPTR,
 635                      (unsigned long *)&vcpu->arch.regs_avail))
 636                return true;
 637
 638        gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
 639        offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
 640        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 641                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 642        if (r < 0)
 643                goto out;
 644        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 645out:
 646
 647        return changed;
 648}
 649EXPORT_SYMBOL_GPL(pdptrs_changed);
 650
 651int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 652{
 653        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 654        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
 655
 656        cr0 |= X86_CR0_ET;
 657
 658#ifdef CONFIG_X86_64
 659        if (cr0 & 0xffffffff00000000UL)
 660                return 1;
 661#endif
 662
 663        cr0 &= ~CR0_RESERVED_BITS;
 664
 665        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 666                return 1;
 667
 668        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 669                return 1;
 670
 671        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 672#ifdef CONFIG_X86_64
 673                if ((vcpu->arch.efer & EFER_LME)) {
 674                        int cs_db, cs_l;
 675
 676                        if (!is_pae(vcpu))
 677                                return 1;
 678                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 679                        if (cs_l)
 680                                return 1;
 681                } else
 682#endif
 683                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 684                                                 kvm_read_cr3(vcpu)))
 685                        return 1;
 686        }
 687
 688        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 689                return 1;
 690
 691        kvm_x86_ops->set_cr0(vcpu, cr0);
 692
 693        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 694                kvm_clear_async_pf_completion_queue(vcpu);
 695                kvm_async_pf_hash_reset(vcpu);
 696        }
 697
 698        if ((cr0 ^ old_cr0) & update_bits)
 699                kvm_mmu_reset_context(vcpu);
 700
 701        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 702            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 703            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 704                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 705
 706        return 0;
 707}
 708EXPORT_SYMBOL_GPL(kvm_set_cr0);
 709
 710void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 711{
 712        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 713}
 714EXPORT_SYMBOL_GPL(kvm_lmsw);
 715
 716static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
 717{
 718        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
 719                        !vcpu->guest_xcr0_loaded) {
 720                /* kvm_set_xcr() also depends on this */
 721                if (vcpu->arch.xcr0 != host_xcr0)
 722                        xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 723                vcpu->guest_xcr0_loaded = 1;
 724        }
 725}
 726
 727static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
 728{
 729        if (vcpu->guest_xcr0_loaded) {
 730                if (vcpu->arch.xcr0 != host_xcr0)
 731                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 732                vcpu->guest_xcr0_loaded = 0;
 733        }
 734}
 735
 736static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 737{
 738        u64 xcr0 = xcr;
 739        u64 old_xcr0 = vcpu->arch.xcr0;
 740        u64 valid_bits;
 741
 742        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 743        if (index != XCR_XFEATURE_ENABLED_MASK)
 744                return 1;
 745        if (!(xcr0 & XFEATURE_MASK_FP))
 746                return 1;
 747        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 748                return 1;
 749
 750        /*
 751         * Do not allow the guest to set bits that we do not support
 752         * saving.  However, xcr0 bit 0 is always set, even if the
 753         * emulated CPU does not support XSAVE (see fx_init).
 754         */
 755        valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 756        if (xcr0 & ~valid_bits)
 757                return 1;
 758
 759        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
 760            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
 761                return 1;
 762
 763        if (xcr0 & XFEATURE_MASK_AVX512) {
 764                if (!(xcr0 & XFEATURE_MASK_YMM))
 765                        return 1;
 766                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
 767                        return 1;
 768        }
 769        vcpu->arch.xcr0 = xcr0;
 770
 771        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
 772                kvm_update_cpuid(vcpu);
 773        return 0;
 774}
 775
 776int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 777{
 778        if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
 779            __kvm_set_xcr(vcpu, index, xcr)) {
 780                kvm_inject_gp(vcpu, 0);
 781                return 1;
 782        }
 783        return 0;
 784}
 785EXPORT_SYMBOL_GPL(kvm_set_xcr);
 786
 787int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 788{
 789        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 790        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
 791                                   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
 792
 793        if (cr4 & CR4_RESERVED_BITS)
 794                return 1;
 795
 796        if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
 797                return 1;
 798
 799        if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
 800                return 1;
 801
 802        if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
 803                return 1;
 804
 805        if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
 806                return 1;
 807
 808        if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
 809                return 1;
 810
 811        if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
 812                return 1;
 813
 814        if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
 815                return 1;
 816
 817        if (is_long_mode(vcpu)) {
 818                if (!(cr4 & X86_CR4_PAE))
 819                        return 1;
 820        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 821                   && ((cr4 ^ old_cr4) & pdptr_bits)
 822                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 823                                   kvm_read_cr3(vcpu)))
 824                return 1;
 825
 826        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 827                if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
 828                        return 1;
 829
 830                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 831                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 832                        return 1;
 833        }
 834
 835        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 836                return 1;
 837
 838        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 839            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 840                kvm_mmu_reset_context(vcpu);
 841
 842        if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
 843                kvm_update_cpuid(vcpu);
 844
 845        return 0;
 846}
 847EXPORT_SYMBOL_GPL(kvm_set_cr4);
 848
 849int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 850{
 851        bool skip_tlb_flush = false;
 852#ifdef CONFIG_X86_64
 853        bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
 854
 855        if (pcid_enabled) {
 856                skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
 857                cr3 &= ~X86_CR3_PCID_NOFLUSH;
 858        }
 859#endif
 860
 861        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 862                if (!skip_tlb_flush) {
 863                        kvm_mmu_sync_roots(vcpu);
 864                        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 865                }
 866                return 0;
 867        }
 868
 869        if (is_long_mode(vcpu) &&
 870            (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
 871                return 1;
 872        else if (is_pae(vcpu) && is_paging(vcpu) &&
 873                   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 874                return 1;
 875
 876        kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
 877        vcpu->arch.cr3 = cr3;
 878        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 879
 880        return 0;
 881}
 882EXPORT_SYMBOL_GPL(kvm_set_cr3);
 883
 884int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 885{
 886        if (cr8 & CR8_RESERVED_BITS)
 887                return 1;
 888        if (lapic_in_kernel(vcpu))
 889                kvm_lapic_set_tpr(vcpu, cr8);
 890        else
 891                vcpu->arch.cr8 = cr8;
 892        return 0;
 893}
 894EXPORT_SYMBOL_GPL(kvm_set_cr8);
 895
 896unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 897{
 898        if (lapic_in_kernel(vcpu))
 899                return kvm_lapic_get_cr8(vcpu);
 900        else
 901                return vcpu->arch.cr8;
 902}
 903EXPORT_SYMBOL_GPL(kvm_get_cr8);
 904
 905static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
 906{
 907        int i;
 908
 909        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
 910                for (i = 0; i < KVM_NR_DB_REGS; i++)
 911                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
 912                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
 913        }
 914}
 915
 916static void kvm_update_dr6(struct kvm_vcpu *vcpu)
 917{
 918        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 919                kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
 920}
 921
 922static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 923{
 924        unsigned long dr7;
 925
 926        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 927                dr7 = vcpu->arch.guest_debug_dr7;
 928        else
 929                dr7 = vcpu->arch.dr7;
 930        kvm_x86_ops->set_dr7(vcpu, dr7);
 931        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
 932        if (dr7 & DR7_BP_EN_MASK)
 933                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
 934}
 935
 936static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
 937{
 938        u64 fixed = DR6_FIXED_1;
 939
 940        if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
 941                fixed |= DR6_RTM;
 942        return fixed;
 943}
 944
 945static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 946{
 947        switch (dr) {
 948        case 0 ... 3:
 949                vcpu->arch.db[dr] = val;
 950                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 951                        vcpu->arch.eff_db[dr] = val;
 952                break;
 953        case 4:
 954                /* fall through */
 955        case 6:
 956                if (val & 0xffffffff00000000ULL)
 957                        return -1; /* #GP */
 958                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
 959                kvm_update_dr6(vcpu);
 960                break;
 961        case 5:
 962                /* fall through */
 963        default: /* 7 */
 964                if (val & 0xffffffff00000000ULL)
 965                        return -1; /* #GP */
 966                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 967                kvm_update_dr7(vcpu);
 968                break;
 969        }
 970
 971        return 0;
 972}
 973
 974int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 975{
 976        if (__kvm_set_dr(vcpu, dr, val)) {
 977                kvm_inject_gp(vcpu, 0);
 978                return 1;
 979        }
 980        return 0;
 981}
 982EXPORT_SYMBOL_GPL(kvm_set_dr);
 983
 984int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 985{
 986        switch (dr) {
 987        case 0 ... 3:
 988                *val = vcpu->arch.db[dr];
 989                break;
 990        case 4:
 991                /* fall through */
 992        case 6:
 993                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 994                        *val = vcpu->arch.dr6;
 995                else
 996                        *val = kvm_x86_ops->get_dr6(vcpu);
 997                break;
 998        case 5:
 999                /* fall through */
1000        default: /* 7 */
1001                *val = vcpu->arch.dr7;
1002                break;
1003        }
1004        return 0;
1005}
1006EXPORT_SYMBOL_GPL(kvm_get_dr);
1007
1008bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1009{
1010        u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1011        u64 data;
1012        int err;
1013
1014        err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1015        if (err)
1016                return err;
1017        kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1018        kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1019        return err;
1020}
1021EXPORT_SYMBOL_GPL(kvm_rdpmc);
1022
1023/*
1024 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1025 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1026 *
1027 * This list is modified at module load time to reflect the
1028 * capabilities of the host cpu. This capabilities test skips MSRs that are
1029 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1030 * may depend on host virtualization features rather than host cpu features.
1031 */
1032
1033static u32 msrs_to_save[] = {
1034        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1035        MSR_STAR,
1036#ifdef CONFIG_X86_64
1037        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1038#endif
1039        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1040        MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1041        MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1042};
1043
1044static unsigned num_msrs_to_save;
1045
1046static u32 emulated_msrs[] = {
1047        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1048        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1049        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1050        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1051        HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1052        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1053        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1054        HV_X64_MSR_RESET,
1055        HV_X64_MSR_VP_INDEX,
1056        HV_X64_MSR_VP_RUNTIME,
1057        HV_X64_MSR_SCONTROL,
1058        HV_X64_MSR_STIMER0_CONFIG,
1059        HV_X64_MSR_VP_ASSIST_PAGE,
1060        HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1061        HV_X64_MSR_TSC_EMULATION_STATUS,
1062
1063        MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1064        MSR_KVM_PV_EOI_EN,
1065
1066        MSR_IA32_TSC_ADJUST,
1067        MSR_IA32_TSCDEADLINE,
1068        MSR_IA32_MISC_ENABLE,
1069        MSR_IA32_MCG_STATUS,
1070        MSR_IA32_MCG_CTL,
1071        MSR_IA32_MCG_EXT_CTL,
1072        MSR_IA32_SMBASE,
1073        MSR_SMI_COUNT,
1074        MSR_PLATFORM_INFO,
1075        MSR_MISC_FEATURES_ENABLES,
1076        MSR_AMD64_VIRT_SPEC_CTRL,
1077};
1078
1079static unsigned num_emulated_msrs;
1080
1081/*
1082 * List of msr numbers which are used to expose MSR-based features that
1083 * can be used by a hypervisor to validate requested CPU features.
1084 */
1085static u32 msr_based_features[] = {
1086        MSR_IA32_VMX_BASIC,
1087        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1088        MSR_IA32_VMX_PINBASED_CTLS,
1089        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1090        MSR_IA32_VMX_PROCBASED_CTLS,
1091        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1092        MSR_IA32_VMX_EXIT_CTLS,
1093        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1094        MSR_IA32_VMX_ENTRY_CTLS,
1095        MSR_IA32_VMX_MISC,
1096        MSR_IA32_VMX_CR0_FIXED0,
1097        MSR_IA32_VMX_CR0_FIXED1,
1098        MSR_IA32_VMX_CR4_FIXED0,
1099        MSR_IA32_VMX_CR4_FIXED1,
1100        MSR_IA32_VMX_VMCS_ENUM,
1101        MSR_IA32_VMX_PROCBASED_CTLS2,
1102        MSR_IA32_VMX_EPT_VPID_CAP,
1103        MSR_IA32_VMX_VMFUNC,
1104
1105        MSR_F10H_DECFG,
1106        MSR_IA32_UCODE_REV,
1107        MSR_IA32_ARCH_CAPABILITIES,
1108};
1109
1110static unsigned int num_msr_based_features;
1111
1112u64 kvm_get_arch_capabilities(void)
1113{
1114        u64 data;
1115
1116        rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1117
1118        /*
1119         * If we're doing cache flushes (either "always" or "cond")
1120         * we will do one whenever the guest does a vmlaunch/vmresume.
1121         * If an outer hypervisor is doing the cache flush for us
1122         * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1123         * capability to the guest too, and if EPT is disabled we're not
1124         * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1125         * require a nested hypervisor to do a flush of its own.
1126         */
1127        if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1128                data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1129
1130        return data;
1131}
1132EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1133
1134static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1135{
1136        switch (msr->index) {
1137        case MSR_IA32_ARCH_CAPABILITIES:
1138                msr->data = kvm_get_arch_capabilities();
1139                break;
1140        case MSR_IA32_UCODE_REV:
1141                rdmsrl_safe(msr->index, &msr->data);
1142                break;
1143        default:
1144                if (kvm_x86_ops->get_msr_feature(msr))
1145                        return 1;
1146        }
1147        return 0;
1148}
1149
1150static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151{
1152        struct kvm_msr_entry msr;
1153        int r;
1154
1155        msr.index = index;
1156        r = kvm_get_msr_feature(&msr);
1157        if (r)
1158                return r;
1159
1160        *data = msr.data;
1161
1162        return 0;
1163}
1164
1165bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1166{
1167        if (efer & efer_reserved_bits)
1168                return false;
1169
1170        if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1171                        return false;
1172
1173        if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1174                        return false;
1175
1176        return true;
1177}
1178EXPORT_SYMBOL_GPL(kvm_valid_efer);
1179
1180static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1181{
1182        u64 old_efer = vcpu->arch.efer;
1183
1184        if (!kvm_valid_efer(vcpu, efer))
1185                return 1;
1186
1187        if (is_paging(vcpu)
1188            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1189                return 1;
1190
1191        efer &= ~EFER_LMA;
1192        efer |= vcpu->arch.efer & EFER_LMA;
1193
1194        kvm_x86_ops->set_efer(vcpu, efer);
1195
1196        /* Update reserved bits */
1197        if ((efer ^ old_efer) & EFER_NX)
1198                kvm_mmu_reset_context(vcpu);
1199
1200        return 0;
1201}
1202
1203void kvm_enable_efer_bits(u64 mask)
1204{
1205       efer_reserved_bits &= ~mask;
1206}
1207EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1208
1209/*
1210 * Writes msr value into into the appropriate "register".
1211 * Returns 0 on success, non-0 otherwise.
1212 * Assumes vcpu_load() was already called.
1213 */
1214int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1215{
1216        switch (msr->index) {
1217        case MSR_FS_BASE:
1218        case MSR_GS_BASE:
1219        case MSR_KERNEL_GS_BASE:
1220        case MSR_CSTAR:
1221        case MSR_LSTAR:
1222                if (is_noncanonical_address(msr->data, vcpu))
1223                        return 1;
1224                break;
1225        case MSR_IA32_SYSENTER_EIP:
1226        case MSR_IA32_SYSENTER_ESP:
1227                /*
1228                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1229                 * non-canonical address is written on Intel but not on
1230                 * AMD (which ignores the top 32-bits, because it does
1231                 * not implement 64-bit SYSENTER).
1232                 *
1233                 * 64-bit code should hence be able to write a non-canonical
1234                 * value on AMD.  Making the address canonical ensures that
1235                 * vmentry does not fail on Intel after writing a non-canonical
1236                 * value, and that something deterministic happens if the guest
1237                 * invokes 64-bit SYSENTER.
1238                 */
1239                msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1240        }
1241        return kvm_x86_ops->set_msr(vcpu, msr);
1242}
1243EXPORT_SYMBOL_GPL(kvm_set_msr);
1244
1245/*
1246 * Adapt set_msr() to msr_io()'s calling convention
1247 */
1248static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1249{
1250        struct msr_data msr;
1251        int r;
1252
1253        msr.index = index;
1254        msr.host_initiated = true;
1255        r = kvm_get_msr(vcpu, &msr);
1256        if (r)
1257                return r;
1258
1259        *data = msr.data;
1260        return 0;
1261}
1262
1263static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1264{
1265        struct msr_data msr;
1266
1267        msr.data = *data;
1268        msr.index = index;
1269        msr.host_initiated = true;
1270        return kvm_set_msr(vcpu, &msr);
1271}
1272
1273#ifdef CONFIG_X86_64
1274struct pvclock_gtod_data {
1275        seqcount_t      seq;
1276
1277        struct { /* extract of a clocksource struct */
1278                int vclock_mode;
1279                u64     cycle_last;
1280                u64     mask;
1281                u32     mult;
1282                u32     shift;
1283        } clock;
1284
1285        u64             boot_ns;
1286        u64             nsec_base;
1287        u64             wall_time_sec;
1288};
1289
1290static struct pvclock_gtod_data pvclock_gtod_data;
1291
1292static void update_pvclock_gtod(struct timekeeper *tk)
1293{
1294        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1295        u64 boot_ns;
1296
1297        boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1298
1299        write_seqcount_begin(&vdata->seq);
1300
1301        /* copy pvclock gtod data */
1302        vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1303        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1304        vdata->clock.mask               = tk->tkr_mono.mask;
1305        vdata->clock.mult               = tk->tkr_mono.mult;
1306        vdata->clock.shift              = tk->tkr_mono.shift;
1307
1308        vdata->boot_ns                  = boot_ns;
1309        vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1310
1311        vdata->wall_time_sec            = tk->xtime_sec;
1312
1313        write_seqcount_end(&vdata->seq);
1314}
1315#endif
1316
1317void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1318{
1319        /*
1320         * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1321         * vcpu_enter_guest.  This function is only called from
1322         * the physical CPU that is running vcpu.
1323         */
1324        kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1325}
1326
1327static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1328{
1329        int version;
1330        int r;
1331        struct pvclock_wall_clock wc;
1332        struct timespec64 boot;
1333
1334        if (!wall_clock)
1335                return;
1336
1337        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1338        if (r)
1339                return;
1340
1341        if (version & 1)
1342                ++version;  /* first time write, random junk */
1343
1344        ++version;
1345
1346        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1347                return;
1348
1349        /*
1350         * The guest calculates current wall clock time by adding
1351         * system time (updated by kvm_guest_time_update below) to the
1352         * wall clock specified here.  guest system time equals host
1353         * system time for us, thus we must fill in host boot time here.
1354         */
1355        getboottime64(&boot);
1356
1357        if (kvm->arch.kvmclock_offset) {
1358                struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1359                boot = timespec64_sub(boot, ts);
1360        }
1361        wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1362        wc.nsec = boot.tv_nsec;
1363        wc.version = version;
1364
1365        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1366
1367        version++;
1368        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1369}
1370
1371static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1372{
1373        do_shl32_div32(dividend, divisor);
1374        return dividend;
1375}
1376
1377static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1378                               s8 *pshift, u32 *pmultiplier)
1379{
1380        uint64_t scaled64;
1381        int32_t  shift = 0;
1382        uint64_t tps64;
1383        uint32_t tps32;
1384
1385        tps64 = base_hz;
1386        scaled64 = scaled_hz;
1387        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1388                tps64 >>= 1;
1389                shift--;
1390        }
1391
1392        tps32 = (uint32_t)tps64;
1393        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1394                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1395                        scaled64 >>= 1;
1396                else
1397                        tps32 <<= 1;
1398                shift++;
1399        }
1400
1401        *pshift = shift;
1402        *pmultiplier = div_frac(scaled64, tps32);
1403
1404        pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1405                 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1406}
1407
1408#ifdef CONFIG_X86_64
1409static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1410#endif
1411
1412static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1413static unsigned long max_tsc_khz;
1414
1415static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1416{
1417        u64 v = (u64)khz * (1000000 + ppm);
1418        do_div(v, 1000000);
1419        return v;
1420}
1421
1422static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1423{
1424        u64 ratio;
1425
1426        /* Guest TSC same frequency as host TSC? */
1427        if (!scale) {
1428                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1429                return 0;
1430        }
1431
1432        /* TSC scaling supported? */
1433        if (!kvm_has_tsc_control) {
1434                if (user_tsc_khz > tsc_khz) {
1435                        vcpu->arch.tsc_catchup = 1;
1436                        vcpu->arch.tsc_always_catchup = 1;
1437                        return 0;
1438                } else {
1439                        WARN(1, "user requested TSC rate below hardware speed\n");
1440                        return -1;
1441                }
1442        }
1443
1444        /* TSC scaling required  - calculate ratio */
1445        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1446                                user_tsc_khz, tsc_khz);
1447
1448        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1449                WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1450                          user_tsc_khz);
1451                return -1;
1452        }
1453
1454        vcpu->arch.tsc_scaling_ratio = ratio;
1455        return 0;
1456}
1457
1458static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1459{
1460        u32 thresh_lo, thresh_hi;
1461        int use_scaling = 0;
1462
1463        /* tsc_khz can be zero if TSC calibration fails */
1464        if (user_tsc_khz == 0) {
1465                /* set tsc_scaling_ratio to a safe value */
1466                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1467                return -1;
1468        }
1469
1470        /* Compute a scale to convert nanoseconds in TSC cycles */
1471        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1472                           &vcpu->arch.virtual_tsc_shift,
1473                           &vcpu->arch.virtual_tsc_mult);
1474        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1475
1476        /*
1477         * Compute the variation in TSC rate which is acceptable
1478         * within the range of tolerance and decide if the
1479         * rate being applied is within that bounds of the hardware
1480         * rate.  If so, no scaling or compensation need be done.
1481         */
1482        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1483        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1484        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1485                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1486                use_scaling = 1;
1487        }
1488        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1489}
1490
1491static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1492{
1493        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1494                                      vcpu->arch.virtual_tsc_mult,
1495                                      vcpu->arch.virtual_tsc_shift);
1496        tsc += vcpu->arch.this_tsc_write;
1497        return tsc;
1498}
1499
1500static inline int gtod_is_based_on_tsc(int mode)
1501{
1502        return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1503}
1504
1505static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1506{
1507#ifdef CONFIG_X86_64
1508        bool vcpus_matched;
1509        struct kvm_arch *ka = &vcpu->kvm->arch;
1510        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1511
1512        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1513                         atomic_read(&vcpu->kvm->online_vcpus));
1514
1515        /*
1516         * Once the masterclock is enabled, always perform request in
1517         * order to update it.
1518         *
1519         * In order to enable masterclock, the host clocksource must be TSC
1520         * and the vcpus need to have matched TSCs.  When that happens,
1521         * perform request to enable masterclock.
1522         */
1523        if (ka->use_master_clock ||
1524            (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1525                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1526
1527        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1528                            atomic_read(&vcpu->kvm->online_vcpus),
1529                            ka->use_master_clock, gtod->clock.vclock_mode);
1530#endif
1531}
1532
1533static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1534{
1535        u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1536        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1537}
1538
1539/*
1540 * Multiply tsc by a fixed point number represented by ratio.
1541 *
1542 * The most significant 64-N bits (mult) of ratio represent the
1543 * integral part of the fixed point number; the remaining N bits
1544 * (frac) represent the fractional part, ie. ratio represents a fixed
1545 * point number (mult + frac * 2^(-N)).
1546 *
1547 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1548 */
1549static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1550{
1551        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1552}
1553
1554u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1555{
1556        u64 _tsc = tsc;
1557        u64 ratio = vcpu->arch.tsc_scaling_ratio;
1558
1559        if (ratio != kvm_default_tsc_scaling_ratio)
1560                _tsc = __scale_tsc(ratio, tsc);
1561
1562        return _tsc;
1563}
1564EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1565
1566static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1567{
1568        u64 tsc;
1569
1570        tsc = kvm_scale_tsc(vcpu, rdtsc());
1571
1572        return target_tsc - tsc;
1573}
1574
1575u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1576{
1577        u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1578
1579        return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1580}
1581EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1582
1583static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1584{
1585        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1586        vcpu->arch.tsc_offset = offset;
1587}
1588
1589static inline bool kvm_check_tsc_unstable(void)
1590{
1591#ifdef CONFIG_X86_64
1592        /*
1593         * TSC is marked unstable when we're running on Hyper-V,
1594         * 'TSC page' clocksource is good.
1595         */
1596        if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1597                return false;
1598#endif
1599        return check_tsc_unstable();
1600}
1601
1602void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1603{
1604        struct kvm *kvm = vcpu->kvm;
1605        u64 offset, ns, elapsed;
1606        unsigned long flags;
1607        bool matched;
1608        bool already_matched;
1609        u64 data = msr->data;
1610        bool synchronizing = false;
1611
1612        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1613        offset = kvm_compute_tsc_offset(vcpu, data);
1614        ns = ktime_get_boot_ns();
1615        elapsed = ns - kvm->arch.last_tsc_nsec;
1616
1617        if (vcpu->arch.virtual_tsc_khz) {
1618                if (data == 0 && msr->host_initiated) {
1619                        /*
1620                         * detection of vcpu initialization -- need to sync
1621                         * with other vCPUs. This particularly helps to keep
1622                         * kvm_clock stable after CPU hotplug
1623                         */
1624                        synchronizing = true;
1625                } else {
1626                        u64 tsc_exp = kvm->arch.last_tsc_write +
1627                                                nsec_to_cycles(vcpu, elapsed);
1628                        u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1629                        /*
1630                         * Special case: TSC write with a small delta (1 second)
1631                         * of virtual cycle time against real time is
1632                         * interpreted as an attempt to synchronize the CPU.
1633                         */
1634                        synchronizing = data < tsc_exp + tsc_hz &&
1635                                        data + tsc_hz > tsc_exp;
1636                }
1637        }
1638
1639        /*
1640         * For a reliable TSC, we can match TSC offsets, and for an unstable
1641         * TSC, we add elapsed time in this computation.  We could let the
1642         * compensation code attempt to catch up if we fall behind, but
1643         * it's better to try to match offsets from the beginning.
1644         */
1645        if (synchronizing &&
1646            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1647                if (!kvm_check_tsc_unstable()) {
1648                        offset = kvm->arch.cur_tsc_offset;
1649                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1650                } else {
1651                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1652                        data += delta;
1653                        offset = kvm_compute_tsc_offset(vcpu, data);
1654                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1655                }
1656                matched = true;
1657                already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1658        } else {
1659                /*
1660                 * We split periods of matched TSC writes into generations.
1661                 * For each generation, we track the original measured
1662                 * nanosecond time, offset, and write, so if TSCs are in
1663                 * sync, we can match exact offset, and if not, we can match
1664                 * exact software computation in compute_guest_tsc()
1665                 *
1666                 * These values are tracked in kvm->arch.cur_xxx variables.
1667                 */
1668                kvm->arch.cur_tsc_generation++;
1669                kvm->arch.cur_tsc_nsec = ns;
1670                kvm->arch.cur_tsc_write = data;
1671                kvm->arch.cur_tsc_offset = offset;
1672                matched = false;
1673                pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1674                         kvm->arch.cur_tsc_generation, data);
1675        }
1676
1677        /*
1678         * We also track th most recent recorded KHZ, write and time to
1679         * allow the matching interval to be extended at each write.
1680         */
1681        kvm->arch.last_tsc_nsec = ns;
1682        kvm->arch.last_tsc_write = data;
1683        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1684
1685        vcpu->arch.last_guest_tsc = data;
1686
1687        /* Keep track of which generation this VCPU has synchronized to */
1688        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1689        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1690        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1691
1692        if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1693                update_ia32_tsc_adjust_msr(vcpu, offset);
1694
1695        kvm_vcpu_write_tsc_offset(vcpu, offset);
1696        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1697
1698        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1699        if (!matched) {
1700                kvm->arch.nr_vcpus_matched_tsc = 0;
1701        } else if (!already_matched) {
1702                kvm->arch.nr_vcpus_matched_tsc++;
1703        }
1704
1705        kvm_track_tsc_matching(vcpu);
1706        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1707}
1708
1709EXPORT_SYMBOL_GPL(kvm_write_tsc);
1710
1711static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1712                                           s64 adjustment)
1713{
1714        kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1715}
1716
1717static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1718{
1719        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1720                WARN_ON(adjustment < 0);
1721        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1722        adjust_tsc_offset_guest(vcpu, adjustment);
1723}
1724
1725#ifdef CONFIG_X86_64
1726
1727static u64 read_tsc(void)
1728{
1729        u64 ret = (u64)rdtsc_ordered();
1730        u64 last = pvclock_gtod_data.clock.cycle_last;
1731
1732        if (likely(ret >= last))
1733                return ret;
1734
1735        /*
1736         * GCC likes to generate cmov here, but this branch is extremely
1737         * predictable (it's just a function of time and the likely is
1738         * very likely) and there's a data dependence, so force GCC
1739         * to generate a branch instead.  I don't barrier() because
1740         * we don't actually need a barrier, and if this function
1741         * ever gets inlined it will generate worse code.
1742         */
1743        asm volatile ("");
1744        return last;
1745}
1746
1747static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1748{
1749        long v;
1750        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1751        u64 tsc_pg_val;
1752
1753        switch (gtod->clock.vclock_mode) {
1754        case VCLOCK_HVCLOCK:
1755                tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1756                                                  tsc_timestamp);
1757                if (tsc_pg_val != U64_MAX) {
1758                        /* TSC page valid */
1759                        *mode = VCLOCK_HVCLOCK;
1760                        v = (tsc_pg_val - gtod->clock.cycle_last) &
1761                                gtod->clock.mask;
1762                } else {
1763                        /* TSC page invalid */
1764                        *mode = VCLOCK_NONE;
1765                }
1766                break;
1767        case VCLOCK_TSC:
1768                *mode = VCLOCK_TSC;
1769                *tsc_timestamp = read_tsc();
1770                v = (*tsc_timestamp - gtod->clock.cycle_last) &
1771                        gtod->clock.mask;
1772                break;
1773        default:
1774                *mode = VCLOCK_NONE;
1775        }
1776
1777        if (*mode == VCLOCK_NONE)
1778                *tsc_timestamp = v = 0;
1779
1780        return v * gtod->clock.mult;
1781}
1782
1783static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1784{
1785        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1786        unsigned long seq;
1787        int mode;
1788        u64 ns;
1789
1790        do {
1791                seq = read_seqcount_begin(&gtod->seq);
1792                ns = gtod->nsec_base;
1793                ns += vgettsc(tsc_timestamp, &mode);
1794                ns >>= gtod->clock.shift;
1795                ns += gtod->boot_ns;
1796        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1797        *t = ns;
1798
1799        return mode;
1800}
1801
1802static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1803{
1804        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1805        unsigned long seq;
1806        int mode;
1807        u64 ns;
1808
1809        do {
1810                seq = read_seqcount_begin(&gtod->seq);
1811                ts->tv_sec = gtod->wall_time_sec;
1812                ns = gtod->nsec_base;
1813                ns += vgettsc(tsc_timestamp, &mode);
1814                ns >>= gtod->clock.shift;
1815        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1816
1817        ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1818        ts->tv_nsec = ns;
1819
1820        return mode;
1821}
1822
1823/* returns true if host is using TSC based clocksource */
1824static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1825{
1826        /* checked again under seqlock below */
1827        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1828                return false;
1829
1830        return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1831                                                      tsc_timestamp));
1832}
1833
1834/* returns true if host is using TSC based clocksource */
1835static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1836                                           u64 *tsc_timestamp)
1837{
1838        /* checked again under seqlock below */
1839        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1840                return false;
1841
1842        return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1843}
1844#endif
1845
1846/*
1847 *
1848 * Assuming a stable TSC across physical CPUS, and a stable TSC
1849 * across virtual CPUs, the following condition is possible.
1850 * Each numbered line represents an event visible to both
1851 * CPUs at the next numbered event.
1852 *
1853 * "timespecX" represents host monotonic time. "tscX" represents
1854 * RDTSC value.
1855 *
1856 *              VCPU0 on CPU0           |       VCPU1 on CPU1
1857 *
1858 * 1.  read timespec0,tsc0
1859 * 2.                                   | timespec1 = timespec0 + N
1860 *                                      | tsc1 = tsc0 + M
1861 * 3. transition to guest               | transition to guest
1862 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1863 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1864 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1865 *
1866 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1867 *
1868 *      - ret0 < ret1
1869 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1870 *              ...
1871 *      - 0 < N - M => M < N
1872 *
1873 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1874 * always the case (the difference between two distinct xtime instances
1875 * might be smaller then the difference between corresponding TSC reads,
1876 * when updating guest vcpus pvclock areas).
1877 *
1878 * To avoid that problem, do not allow visibility of distinct
1879 * system_timestamp/tsc_timestamp values simultaneously: use a master
1880 * copy of host monotonic time values. Update that master copy
1881 * in lockstep.
1882 *
1883 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1884 *
1885 */
1886
1887static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1888{
1889#ifdef CONFIG_X86_64
1890        struct kvm_arch *ka = &kvm->arch;
1891        int vclock_mode;
1892        bool host_tsc_clocksource, vcpus_matched;
1893
1894        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1895                        atomic_read(&kvm->online_vcpus));
1896
1897        /*
1898         * If the host uses TSC clock, then passthrough TSC as stable
1899         * to the guest.
1900         */
1901        host_tsc_clocksource = kvm_get_time_and_clockread(
1902                                        &ka->master_kernel_ns,
1903                                        &ka->master_cycle_now);
1904
1905        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1906                                && !ka->backwards_tsc_observed
1907                                && !ka->boot_vcpu_runs_old_kvmclock;
1908
1909        if (ka->use_master_clock)
1910                atomic_set(&kvm_guest_has_master_clock, 1);
1911
1912        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1913        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1914                                        vcpus_matched);
1915#endif
1916}
1917
1918void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1919{
1920        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1921}
1922
1923static void kvm_gen_update_masterclock(struct kvm *kvm)
1924{
1925#ifdef CONFIG_X86_64
1926        int i;
1927        struct kvm_vcpu *vcpu;
1928        struct kvm_arch *ka = &kvm->arch;
1929
1930        spin_lock(&ka->pvclock_gtod_sync_lock);
1931        kvm_make_mclock_inprogress_request(kvm);
1932        /* no guest entries from this point */
1933        pvclock_update_vm_gtod_copy(kvm);
1934
1935        kvm_for_each_vcpu(i, vcpu, kvm)
1936                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1937
1938        /* guest entries allowed */
1939        kvm_for_each_vcpu(i, vcpu, kvm)
1940                kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1941
1942        spin_unlock(&ka->pvclock_gtod_sync_lock);
1943#endif
1944}
1945
1946u64 get_kvmclock_ns(struct kvm *kvm)
1947{
1948        struct kvm_arch *ka = &kvm->arch;
1949        struct pvclock_vcpu_time_info hv_clock;
1950        u64 ret;
1951
1952        spin_lock(&ka->pvclock_gtod_sync_lock);
1953        if (!ka->use_master_clock) {
1954                spin_unlock(&ka->pvclock_gtod_sync_lock);
1955                return ktime_get_boot_ns() + ka->kvmclock_offset;
1956        }
1957
1958        hv_clock.tsc_timestamp = ka->master_cycle_now;
1959        hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1960        spin_unlock(&ka->pvclock_gtod_sync_lock);
1961
1962        /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1963        get_cpu();
1964
1965        if (__this_cpu_read(cpu_tsc_khz)) {
1966                kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1967                                   &hv_clock.tsc_shift,
1968                                   &hv_clock.tsc_to_system_mul);
1969                ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1970        } else
1971                ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1972
1973        put_cpu();
1974
1975        return ret;
1976}
1977
1978static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1979{
1980        struct kvm_vcpu_arch *vcpu = &v->arch;
1981        struct pvclock_vcpu_time_info guest_hv_clock;
1982
1983        if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1984                &guest_hv_clock, sizeof(guest_hv_clock))))
1985                return;
1986
1987        /* This VCPU is paused, but it's legal for a guest to read another
1988         * VCPU's kvmclock, so we really have to follow the specification where
1989         * it says that version is odd if data is being modified, and even after
1990         * it is consistent.
1991         *
1992         * Version field updates must be kept separate.  This is because
1993         * kvm_write_guest_cached might use a "rep movs" instruction, and
1994         * writes within a string instruction are weakly ordered.  So there
1995         * are three writes overall.
1996         *
1997         * As a small optimization, only write the version field in the first
1998         * and third write.  The vcpu->pv_time cache is still valid, because the
1999         * version field is the first in the struct.
2000         */
2001        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2002
2003        if (guest_hv_clock.version & 1)
2004                ++guest_hv_clock.version;  /* first time write, random junk */
2005
2006        vcpu->hv_clock.version = guest_hv_clock.version + 1;
2007        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2008                                &vcpu->hv_clock,
2009                                sizeof(vcpu->hv_clock.version));
2010
2011        smp_wmb();
2012
2013        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2014        vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2015
2016        if (vcpu->pvclock_set_guest_stopped_request) {
2017                vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2018                vcpu->pvclock_set_guest_stopped_request = false;
2019        }
2020
2021        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2022
2023        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2024                                &vcpu->hv_clock,
2025                                sizeof(vcpu->hv_clock));
2026
2027        smp_wmb();
2028
2029        vcpu->hv_clock.version++;
2030        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2031                                &vcpu->hv_clock,
2032                                sizeof(vcpu->hv_clock.version));
2033}
2034
2035static int kvm_guest_time_update(struct kvm_vcpu *v)
2036{
2037        unsigned long flags, tgt_tsc_khz;
2038        struct kvm_vcpu_arch *vcpu = &v->arch;
2039        struct kvm_arch *ka = &v->kvm->arch;
2040        s64 kernel_ns;
2041        u64 tsc_timestamp, host_tsc;
2042        u8 pvclock_flags;
2043        bool use_master_clock;
2044
2045        kernel_ns = 0;
2046        host_tsc = 0;
2047
2048        /*
2049         * If the host uses TSC clock, then passthrough TSC as stable
2050         * to the guest.
2051         */
2052        spin_lock(&ka->pvclock_gtod_sync_lock);
2053        use_master_clock = ka->use_master_clock;
2054        if (use_master_clock) {
2055                host_tsc = ka->master_cycle_now;
2056                kernel_ns = ka->master_kernel_ns;
2057        }
2058        spin_unlock(&ka->pvclock_gtod_sync_lock);
2059
2060        /* Keep irq disabled to prevent changes to the clock */
2061        local_irq_save(flags);
2062        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2063        if (unlikely(tgt_tsc_khz == 0)) {
2064                local_irq_restore(flags);
2065                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2066                return 1;
2067        }
2068        if (!use_master_clock) {
2069                host_tsc = rdtsc();
2070                kernel_ns = ktime_get_boot_ns();
2071        }
2072
2073        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2074
2075        /*
2076         * We may have to catch up the TSC to match elapsed wall clock
2077         * time for two reasons, even if kvmclock is used.
2078         *   1) CPU could have been running below the maximum TSC rate
2079         *   2) Broken TSC compensation resets the base at each VCPU
2080         *      entry to avoid unknown leaps of TSC even when running
2081         *      again on the same CPU.  This may cause apparent elapsed
2082         *      time to disappear, and the guest to stand still or run
2083         *      very slowly.
2084         */
2085        if (vcpu->tsc_catchup) {
2086                u64 tsc = compute_guest_tsc(v, kernel_ns);
2087                if (tsc > tsc_timestamp) {
2088                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2089                        tsc_timestamp = tsc;
2090                }
2091        }
2092
2093        local_irq_restore(flags);
2094
2095        /* With all the info we got, fill in the values */
2096
2097        if (kvm_has_tsc_control)
2098                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2099
2100        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2101                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2102                                   &vcpu->hv_clock.tsc_shift,
2103                                   &vcpu->hv_clock.tsc_to_system_mul);
2104                vcpu->hw_tsc_khz = tgt_tsc_khz;
2105        }
2106
2107        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2108        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2109        vcpu->last_guest_tsc = tsc_timestamp;
2110
2111        /* If the host uses TSC clocksource, then it is stable */
2112        pvclock_flags = 0;
2113        if (use_master_clock)
2114                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2115
2116        vcpu->hv_clock.flags = pvclock_flags;
2117
2118        if (vcpu->pv_time_enabled)
2119                kvm_setup_pvclock_page(v);
2120        if (v == kvm_get_vcpu(v->kvm, 0))
2121                kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2122        return 0;
2123}
2124
2125/*
2126 * kvmclock updates which are isolated to a given vcpu, such as
2127 * vcpu->cpu migration, should not allow system_timestamp from
2128 * the rest of the vcpus to remain static. Otherwise ntp frequency
2129 * correction applies to one vcpu's system_timestamp but not
2130 * the others.
2131 *
2132 * So in those cases, request a kvmclock update for all vcpus.
2133 * We need to rate-limit these requests though, as they can
2134 * considerably slow guests that have a large number of vcpus.
2135 * The time for a remote vcpu to update its kvmclock is bound
2136 * by the delay we use to rate-limit the updates.
2137 */
2138
2139#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2140
2141static void kvmclock_update_fn(struct work_struct *work)
2142{
2143        int i;
2144        struct delayed_work *dwork = to_delayed_work(work);
2145        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2146                                           kvmclock_update_work);
2147        struct kvm *kvm = container_of(ka, struct kvm, arch);
2148        struct kvm_vcpu *vcpu;
2149
2150        kvm_for_each_vcpu(i, vcpu, kvm) {
2151                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2152                kvm_vcpu_kick(vcpu);
2153        }
2154}
2155
2156static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2157{
2158        struct kvm *kvm = v->kvm;
2159
2160        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2161        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2162                                        KVMCLOCK_UPDATE_DELAY);
2163}
2164
2165#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2166
2167static void kvmclock_sync_fn(struct work_struct *work)
2168{
2169        struct delayed_work *dwork = to_delayed_work(work);
2170        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2171                                           kvmclock_sync_work);
2172        struct kvm *kvm = container_of(ka, struct kvm, arch);
2173
2174        if (!kvmclock_periodic_sync)
2175                return;
2176
2177        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2178        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2179                                        KVMCLOCK_SYNC_PERIOD);
2180}
2181
2182static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2183{
2184        u64 mcg_cap = vcpu->arch.mcg_cap;
2185        unsigned bank_num = mcg_cap & 0xff;
2186        u32 msr = msr_info->index;
2187        u64 data = msr_info->data;
2188
2189        switch (msr) {
2190        case MSR_IA32_MCG_STATUS:
2191                vcpu->arch.mcg_status = data;
2192                break;
2193        case MSR_IA32_MCG_CTL:
2194                if (!(mcg_cap & MCG_CTL_P) &&
2195                    (data || !msr_info->host_initiated))
2196                        return 1;
2197                if (data != 0 && data != ~(u64)0)
2198                        return 1;
2199                vcpu->arch.mcg_ctl = data;
2200                break;
2201        default:
2202                if (msr >= MSR_IA32_MC0_CTL &&
2203                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2204                        u32 offset = msr - MSR_IA32_MC0_CTL;
2205                        /* only 0 or all 1s can be written to IA32_MCi_CTL
2206                         * some Linux kernels though clear bit 10 in bank 4 to
2207                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2208                         * this to avoid an uncatched #GP in the guest
2209                         */
2210                        if ((offset & 0x3) == 0 &&
2211                            data != 0 && (data | (1 << 10)) != ~(u64)0)
2212                                return -1;
2213                        if (!msr_info->host_initiated &&
2214                                (offset & 0x3) == 1 && data != 0)
2215                                return -1;
2216                        vcpu->arch.mce_banks[offset] = data;
2217                        break;
2218                }
2219                return 1;
2220        }
2221        return 0;
2222}
2223
2224static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2225{
2226        struct kvm *kvm = vcpu->kvm;
2227        int lm = is_long_mode(vcpu);
2228        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2229                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2230        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2231                : kvm->arch.xen_hvm_config.blob_size_32;
2232        u32 page_num = data & ~PAGE_MASK;
2233        u64 page_addr = data & PAGE_MASK;
2234        u8 *page;
2235        int r;
2236
2237        r = -E2BIG;
2238        if (page_num >= blob_size)
2239                goto out;
2240        r = -ENOMEM;
2241        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2242        if (IS_ERR(page)) {
2243                r = PTR_ERR(page);
2244                goto out;
2245        }
2246        if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2247                goto out_free;
2248        r = 0;
2249out_free:
2250        kfree(page);
2251out:
2252        return r;
2253}
2254
2255static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2256{
2257        gpa_t gpa = data & ~0x3f;
2258
2259        /* Bits 3:5 are reserved, Should be zero */
2260        if (data & 0x38)
2261                return 1;
2262
2263        vcpu->arch.apf.msr_val = data;
2264
2265        if (!(data & KVM_ASYNC_PF_ENABLED)) {
2266                kvm_clear_async_pf_completion_queue(vcpu);
2267                kvm_async_pf_hash_reset(vcpu);
2268                return 0;
2269        }
2270
2271        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2272                                        sizeof(u32)))
2273                return 1;
2274
2275        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2276        vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2277        kvm_async_pf_wakeup_all(vcpu);
2278        return 0;
2279}
2280
2281static void kvmclock_reset(struct kvm_vcpu *vcpu)
2282{
2283        vcpu->arch.pv_time_enabled = false;
2284}
2285
2286static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2287{
2288        ++vcpu->stat.tlb_flush;
2289        kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2290}
2291
2292static void record_steal_time(struct kvm_vcpu *vcpu)
2293{
2294        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2295                return;
2296
2297        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2298                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2299                return;
2300
2301        /*
2302         * Doing a TLB flush here, on the guest's behalf, can avoid
2303         * expensive IPIs.
2304         */
2305        if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2306                kvm_vcpu_flush_tlb(vcpu, false);
2307
2308        if (vcpu->arch.st.steal.version & 1)
2309                vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2310
2311        vcpu->arch.st.steal.version += 1;
2312
2313        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2314                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2315
2316        smp_wmb();
2317
2318        vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2319                vcpu->arch.st.last_steal;
2320        vcpu->arch.st.last_steal = current->sched_info.run_delay;
2321
2322        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2323                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2324
2325        smp_wmb();
2326
2327        vcpu->arch.st.steal.version += 1;
2328
2329        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2330                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2331}
2332
2333int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2334{
2335        bool pr = false;
2336        u32 msr = msr_info->index;
2337        u64 data = msr_info->data;
2338
2339        switch (msr) {
2340        case MSR_AMD64_NB_CFG:
2341        case MSR_IA32_UCODE_WRITE:
2342        case MSR_VM_HSAVE_PA:
2343        case MSR_AMD64_PATCH_LOADER:
2344        case MSR_AMD64_BU_CFG2:
2345        case MSR_AMD64_DC_CFG:
2346                break;
2347
2348        case MSR_IA32_UCODE_REV:
2349                if (msr_info->host_initiated)
2350                        vcpu->arch.microcode_version = data;
2351                break;
2352        case MSR_EFER:
2353                return set_efer(vcpu, data);
2354        case MSR_K7_HWCR:
2355                data &= ~(u64)0x40;     /* ignore flush filter disable */
2356                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2357                data &= ~(u64)0x8;      /* ignore TLB cache disable */
2358                data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2359                if (data != 0) {
2360                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2361                                    data);
2362                        return 1;
2363                }
2364                break;
2365        case MSR_FAM10H_MMIO_CONF_BASE:
2366                if (data != 0) {
2367                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2368                                    "0x%llx\n", data);
2369                        return 1;
2370                }
2371                break;
2372        case MSR_IA32_DEBUGCTLMSR:
2373                if (!data) {
2374                        /* We support the non-activated case already */
2375                        break;
2376                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2377                        /* Values other than LBR and BTF are vendor-specific,
2378                           thus reserved and should throw a #GP */
2379                        return 1;
2380                }
2381                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2382                            __func__, data);
2383                break;
2384        case 0x200 ... 0x2ff:
2385                return kvm_mtrr_set_msr(vcpu, msr, data);
2386        case MSR_IA32_APICBASE:
2387                return kvm_set_apic_base(vcpu, msr_info);
2388        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2389                return kvm_x2apic_msr_write(vcpu, msr, data);
2390        case MSR_IA32_TSCDEADLINE:
2391                kvm_set_lapic_tscdeadline_msr(vcpu, data);
2392                break;
2393        case MSR_IA32_TSC_ADJUST:
2394                if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2395                        if (!msr_info->host_initiated) {
2396                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2397                                adjust_tsc_offset_guest(vcpu, adj);
2398                        }
2399                        vcpu->arch.ia32_tsc_adjust_msr = data;
2400                }
2401                break;
2402        case MSR_IA32_MISC_ENABLE:
2403                vcpu->arch.ia32_misc_enable_msr = data;
2404                break;
2405        case MSR_IA32_SMBASE:
2406                if (!msr_info->host_initiated)
2407                        return 1;
2408                vcpu->arch.smbase = data;
2409                break;
2410        case MSR_IA32_TSC:
2411                kvm_write_tsc(vcpu, msr_info);
2412                break;
2413        case MSR_SMI_COUNT:
2414                if (!msr_info->host_initiated)
2415                        return 1;
2416                vcpu->arch.smi_count = data;
2417                break;
2418        case MSR_KVM_WALL_CLOCK_NEW:
2419        case MSR_KVM_WALL_CLOCK:
2420                vcpu->kvm->arch.wall_clock = data;
2421                kvm_write_wall_clock(vcpu->kvm, data);
2422                break;
2423        case MSR_KVM_SYSTEM_TIME_NEW:
2424        case MSR_KVM_SYSTEM_TIME: {
2425                struct kvm_arch *ka = &vcpu->kvm->arch;
2426
2427                kvmclock_reset(vcpu);
2428
2429                if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2430                        bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2431
2432                        if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2433                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2434
2435                        ka->boot_vcpu_runs_old_kvmclock = tmp;
2436                }
2437
2438                vcpu->arch.time = data;
2439                kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2440
2441                /* we verify if the enable bit is set... */
2442                if (!(data & 1))
2443                        break;
2444
2445                if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2446                     &vcpu->arch.pv_time, data & ~1ULL,
2447                     sizeof(struct pvclock_vcpu_time_info)))
2448                        vcpu->arch.pv_time_enabled = false;
2449                else
2450                        vcpu->arch.pv_time_enabled = true;
2451
2452                break;
2453        }
2454        case MSR_KVM_ASYNC_PF_EN:
2455                if (kvm_pv_enable_async_pf(vcpu, data))
2456                        return 1;
2457                break;
2458        case MSR_KVM_STEAL_TIME:
2459
2460                if (unlikely(!sched_info_on()))
2461                        return 1;
2462
2463                if (data & KVM_STEAL_RESERVED_MASK)
2464                        return 1;
2465
2466                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2467                                                data & KVM_STEAL_VALID_BITS,
2468                                                sizeof(struct kvm_steal_time)))
2469                        return 1;
2470
2471                vcpu->arch.st.msr_val = data;
2472
2473                if (!(data & KVM_MSR_ENABLED))
2474                        break;
2475
2476                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2477
2478                break;
2479        case MSR_KVM_PV_EOI_EN:
2480                if (kvm_lapic_enable_pv_eoi(vcpu, data))
2481                        return 1;
2482                break;
2483
2484        case MSR_IA32_MCG_CTL:
2485        case MSR_IA32_MCG_STATUS:
2486        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2487                return set_msr_mce(vcpu, msr_info);
2488
2489        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2490        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2491                pr = true; /* fall through */
2492        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2493        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2494                if (kvm_pmu_is_valid_msr(vcpu, msr))
2495                        return kvm_pmu_set_msr(vcpu, msr_info);
2496
2497                if (pr || data != 0)
2498                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2499                                    "0x%x data 0x%llx\n", msr, data);
2500                break;
2501        case MSR_K7_CLK_CTL:
2502                /*
2503                 * Ignore all writes to this no longer documented MSR.
2504                 * Writes are only relevant for old K7 processors,
2505                 * all pre-dating SVM, but a recommended workaround from
2506                 * AMD for these chips. It is possible to specify the
2507                 * affected processor models on the command line, hence
2508                 * the need to ignore the workaround.
2509                 */
2510                break;
2511        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2512        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2513        case HV_X64_MSR_CRASH_CTL:
2514        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2515        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2516        case HV_X64_MSR_TSC_EMULATION_CONTROL:
2517        case HV_X64_MSR_TSC_EMULATION_STATUS:
2518                return kvm_hv_set_msr_common(vcpu, msr, data,
2519                                             msr_info->host_initiated);
2520        case MSR_IA32_BBL_CR_CTL3:
2521                /* Drop writes to this legacy MSR -- see rdmsr
2522                 * counterpart for further detail.
2523                 */
2524                if (report_ignored_msrs)
2525                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2526                                msr, data);
2527                break;
2528        case MSR_AMD64_OSVW_ID_LENGTH:
2529                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2530                        return 1;
2531                vcpu->arch.osvw.length = data;
2532                break;
2533        case MSR_AMD64_OSVW_STATUS:
2534                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2535                        return 1;
2536                vcpu->arch.osvw.status = data;
2537                break;
2538        case MSR_PLATFORM_INFO:
2539                if (!msr_info->host_initiated ||
2540                    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2541                     cpuid_fault_enabled(vcpu)))
2542                        return 1;
2543                vcpu->arch.msr_platform_info = data;
2544                break;
2545        case MSR_MISC_FEATURES_ENABLES:
2546                if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2547                    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2548                     !supports_cpuid_fault(vcpu)))
2549                        return 1;
2550                vcpu->arch.msr_misc_features_enables = data;
2551                break;
2552        default:
2553                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2554                        return xen_hvm_config(vcpu, data);
2555                if (kvm_pmu_is_valid_msr(vcpu, msr))
2556                        return kvm_pmu_set_msr(vcpu, msr_info);
2557                if (!ignore_msrs) {
2558                        vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2559                                    msr, data);
2560                        return 1;
2561                } else {
2562                        if (report_ignored_msrs)
2563                                vcpu_unimpl(vcpu,
2564                                        "ignored wrmsr: 0x%x data 0x%llx\n",
2565                                        msr, data);
2566                        break;
2567                }
2568        }
2569        return 0;
2570}
2571EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2572
2573
2574/*
2575 * Reads an msr value (of 'msr_index') into 'pdata'.
2576 * Returns 0 on success, non-0 otherwise.
2577 * Assumes vcpu_load() was already called.
2578 */
2579int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2580{
2581        return kvm_x86_ops->get_msr(vcpu, msr);
2582}
2583EXPORT_SYMBOL_GPL(kvm_get_msr);
2584
2585static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2586{
2587        u64 data;
2588        u64 mcg_cap = vcpu->arch.mcg_cap;
2589        unsigned bank_num = mcg_cap & 0xff;
2590
2591        switch (msr) {
2592        case MSR_IA32_P5_MC_ADDR:
2593        case MSR_IA32_P5_MC_TYPE:
2594                data = 0;
2595                break;
2596        case MSR_IA32_MCG_CAP:
2597                data = vcpu->arch.mcg_cap;
2598                break;
2599        case MSR_IA32_MCG_CTL:
2600                if (!(mcg_cap & MCG_CTL_P) && !host)
2601                        return 1;
2602                data = vcpu->arch.mcg_ctl;
2603                break;
2604        case MSR_IA32_MCG_STATUS:
2605                data = vcpu->arch.mcg_status;
2606                break;
2607        default:
2608                if (msr >= MSR_IA32_MC0_CTL &&
2609                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2610                        u32 offset = msr - MSR_IA32_MC0_CTL;
2611                        data = vcpu->arch.mce_banks[offset];
2612                        break;
2613                }
2614                return 1;
2615        }
2616        *pdata = data;
2617        return 0;
2618}
2619
2620int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2621{
2622        switch (msr_info->index) {
2623        case MSR_IA32_PLATFORM_ID:
2624        case MSR_IA32_EBL_CR_POWERON:
2625        case MSR_IA32_DEBUGCTLMSR:
2626        case MSR_IA32_LASTBRANCHFROMIP:
2627        case MSR_IA32_LASTBRANCHTOIP:
2628        case MSR_IA32_LASTINTFROMIP:
2629        case MSR_IA32_LASTINTTOIP:
2630        case MSR_K8_SYSCFG:
2631        case MSR_K8_TSEG_ADDR:
2632        case MSR_K8_TSEG_MASK:
2633        case MSR_K7_HWCR:
2634        case MSR_VM_HSAVE_PA:
2635        case MSR_K8_INT_PENDING_MSG:
2636        case MSR_AMD64_NB_CFG:
2637        case MSR_FAM10H_MMIO_CONF_BASE:
2638        case MSR_AMD64_BU_CFG2:
2639        case MSR_IA32_PERF_CTL:
2640        case MSR_AMD64_DC_CFG:
2641                msr_info->data = 0;
2642                break;
2643        case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2644        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2645        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2646        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2647        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2648                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2649                        return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2650                msr_info->data = 0;
2651                break;
2652        case MSR_IA32_UCODE_REV:
2653                msr_info->data = vcpu->arch.microcode_version;
2654                break;
2655        case MSR_IA32_TSC:
2656                msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2657                break;
2658        case MSR_MTRRcap:
2659        case 0x200 ... 0x2ff:
2660                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2661        case 0xcd: /* fsb frequency */
2662                msr_info->data = 3;
2663                break;
2664                /*
2665                 * MSR_EBC_FREQUENCY_ID
2666                 * Conservative value valid for even the basic CPU models.
2667                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2668                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2669                 * and 266MHz for model 3, or 4. Set Core Clock
2670                 * Frequency to System Bus Frequency Ratio to 1 (bits
2671                 * 31:24) even though these are only valid for CPU
2672                 * models > 2, however guests may end up dividing or
2673                 * multiplying by zero otherwise.
2674                 */
2675        case MSR_EBC_FREQUENCY_ID:
2676                msr_info->data = 1 << 24;
2677                break;
2678        case MSR_IA32_APICBASE:
2679                msr_info->data = kvm_get_apic_base(vcpu);
2680                break;
2681        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2682                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2683                break;
2684        case MSR_IA32_TSCDEADLINE:
2685                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2686                break;
2687        case MSR_IA32_TSC_ADJUST:
2688                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2689                break;
2690        case MSR_IA32_MISC_ENABLE:
2691                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2692                break;
2693        case MSR_IA32_SMBASE:
2694                if (!msr_info->host_initiated)
2695                        return 1;
2696                msr_info->data = vcpu->arch.smbase;
2697                break;
2698        case MSR_SMI_COUNT:
2699                msr_info->data = vcpu->arch.smi_count;
2700                break;
2701        case MSR_IA32_PERF_STATUS:
2702                /* TSC increment by tick */
2703                msr_info->data = 1000ULL;
2704                /* CPU multiplier */
2705                msr_info->data |= (((uint64_t)4ULL) << 40);
2706                break;
2707        case MSR_EFER:
2708                msr_info->data = vcpu->arch.efer;
2709                break;
2710        case MSR_KVM_WALL_CLOCK:
2711        case MSR_KVM_WALL_CLOCK_NEW:
2712                msr_info->data = vcpu->kvm->arch.wall_clock;
2713                break;
2714        case MSR_KVM_SYSTEM_TIME:
2715        case MSR_KVM_SYSTEM_TIME_NEW:
2716                msr_info->data = vcpu->arch.time;
2717                break;
2718        case MSR_KVM_ASYNC_PF_EN:
2719                msr_info->data = vcpu->arch.apf.msr_val;
2720                break;
2721        case MSR_KVM_STEAL_TIME:
2722                msr_info->data = vcpu->arch.st.msr_val;
2723                break;
2724        case MSR_KVM_PV_EOI_EN:
2725                msr_info->data = vcpu->arch.pv_eoi.msr_val;
2726                break;
2727        case MSR_IA32_P5_MC_ADDR:
2728        case MSR_IA32_P5_MC_TYPE:
2729        case MSR_IA32_MCG_CAP:
2730        case MSR_IA32_MCG_CTL:
2731        case MSR_IA32_MCG_STATUS:
2732        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2733                return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2734                                   msr_info->host_initiated);
2735        case MSR_K7_CLK_CTL:
2736                /*
2737                 * Provide expected ramp-up count for K7. All other
2738                 * are set to zero, indicating minimum divisors for
2739                 * every field.
2740                 *
2741                 * This prevents guest kernels on AMD host with CPU
2742                 * type 6, model 8 and higher from exploding due to
2743                 * the rdmsr failing.
2744                 */
2745                msr_info->data = 0x20000000;
2746                break;
2747        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2748        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2749        case HV_X64_MSR_CRASH_CTL:
2750        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2751        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2752        case HV_X64_MSR_TSC_EMULATION_CONTROL:
2753        case HV_X64_MSR_TSC_EMULATION_STATUS:
2754                return kvm_hv_get_msr_common(vcpu,
2755                                             msr_info->index, &msr_info->data,
2756                                             msr_info->host_initiated);
2757                break;
2758        case MSR_IA32_BBL_CR_CTL3:
2759                /* This legacy MSR exists but isn't fully documented in current
2760                 * silicon.  It is however accessed by winxp in very narrow
2761                 * scenarios where it sets bit #19, itself documented as
2762                 * a "reserved" bit.  Best effort attempt to source coherent
2763                 * read data here should the balance of the register be
2764                 * interpreted by the guest:
2765                 *
2766                 * L2 cache control register 3: 64GB range, 256KB size,
2767                 * enabled, latency 0x1, configured
2768                 */
2769                msr_info->data = 0xbe702111;
2770                break;
2771        case MSR_AMD64_OSVW_ID_LENGTH:
2772                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2773                        return 1;
2774                msr_info->data = vcpu->arch.osvw.length;
2775                break;
2776        case MSR_AMD64_OSVW_STATUS:
2777                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2778                        return 1;
2779                msr_info->data = vcpu->arch.osvw.status;
2780                break;
2781        case MSR_PLATFORM_INFO:
2782                if (!msr_info->host_initiated &&
2783                    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2784                        return 1;
2785                msr_info->data = vcpu->arch.msr_platform_info;
2786                break;
2787        case MSR_MISC_FEATURES_ENABLES:
2788                msr_info->data = vcpu->arch.msr_misc_features_enables;
2789                break;
2790        default:
2791                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2792                        return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2793                if (!ignore_msrs) {
2794                        vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2795                                               msr_info->index);
2796                        return 1;
2797                } else {
2798                        if (report_ignored_msrs)
2799                                vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2800                                        msr_info->index);
2801                        msr_info->data = 0;
2802                }
2803                break;
2804        }
2805        return 0;
2806}
2807EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2808
2809/*
2810 * Read or write a bunch of msrs. All parameters are kernel addresses.
2811 *
2812 * @return number of msrs set successfully.
2813 */
2814static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2815                    struct kvm_msr_entry *entries,
2816                    int (*do_msr)(struct kvm_vcpu *vcpu,
2817                                  unsigned index, u64 *data))
2818{
2819        int i;
2820
2821        for (i = 0; i < msrs->nmsrs; ++i)
2822                if (do_msr(vcpu, entries[i].index, &entries[i].data))
2823                        break;
2824
2825        return i;
2826}
2827
2828/*
2829 * Read or write a bunch of msrs. Parameters are user addresses.
2830 *
2831 * @return number of msrs set successfully.
2832 */
2833static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2834                  int (*do_msr)(struct kvm_vcpu *vcpu,
2835                                unsigned index, u64 *data),
2836                  int writeback)
2837{
2838        struct kvm_msrs msrs;
2839        struct kvm_msr_entry *entries;
2840        int r, n;
2841        unsigned size;
2842
2843        r = -EFAULT;
2844        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2845                goto out;
2846
2847        r = -E2BIG;
2848        if (msrs.nmsrs >= MAX_IO_MSRS)
2849                goto out;
2850
2851        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2852        entries = memdup_user(user_msrs->entries, size);
2853        if (IS_ERR(entries)) {
2854                r = PTR_ERR(entries);
2855                goto out;
2856        }
2857
2858        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2859        if (r < 0)
2860                goto out_free;
2861
2862        r = -EFAULT;
2863        if (writeback && copy_to_user(user_msrs->entries, entries, size))
2864                goto out_free;
2865
2866        r = n;
2867
2868out_free:
2869        kfree(entries);
2870out:
2871        return r;
2872}
2873
2874static inline bool kvm_can_mwait_in_guest(void)
2875{
2876        return boot_cpu_has(X86_FEATURE_MWAIT) &&
2877                !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2878                boot_cpu_has(X86_FEATURE_ARAT);
2879}
2880
2881int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2882{
2883        int r = 0;
2884
2885        switch (ext) {
2886        case KVM_CAP_IRQCHIP:
2887        case KVM_CAP_HLT:
2888        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2889        case KVM_CAP_SET_TSS_ADDR:
2890        case KVM_CAP_EXT_CPUID:
2891        case KVM_CAP_EXT_EMUL_CPUID:
2892        case KVM_CAP_CLOCKSOURCE:
2893        case KVM_CAP_PIT:
2894        case KVM_CAP_NOP_IO_DELAY:
2895        case KVM_CAP_MP_STATE:
2896        case KVM_CAP_SYNC_MMU:
2897        case KVM_CAP_USER_NMI:
2898        case KVM_CAP_REINJECT_CONTROL:
2899        case KVM_CAP_IRQ_INJECT_STATUS:
2900        case KVM_CAP_IOEVENTFD:
2901        case KVM_CAP_IOEVENTFD_NO_LENGTH:
2902        case KVM_CAP_PIT2:
2903        case KVM_CAP_PIT_STATE2:
2904        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2905        case KVM_CAP_XEN_HVM:
2906        case KVM_CAP_VCPU_EVENTS:
2907        case KVM_CAP_HYPERV:
2908        case KVM_CAP_HYPERV_VAPIC:
2909        case KVM_CAP_HYPERV_SPIN:
2910        case KVM_CAP_HYPERV_SYNIC:
2911        case KVM_CAP_HYPERV_SYNIC2:
2912        case KVM_CAP_HYPERV_VP_INDEX:
2913        case KVM_CAP_HYPERV_EVENTFD:
2914        case KVM_CAP_HYPERV_TLBFLUSH:
2915        case KVM_CAP_PCI_SEGMENT:
2916        case KVM_CAP_DEBUGREGS:
2917        case KVM_CAP_X86_ROBUST_SINGLESTEP:
2918        case KVM_CAP_XSAVE:
2919        case KVM_CAP_ASYNC_PF:
2920        case KVM_CAP_GET_TSC_KHZ:
2921        case KVM_CAP_KVMCLOCK_CTRL:
2922        case KVM_CAP_READONLY_MEM:
2923        case KVM_CAP_HYPERV_TIME:
2924        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2925        case KVM_CAP_TSC_DEADLINE_TIMER:
2926        case KVM_CAP_ENABLE_CAP_VM:
2927        case KVM_CAP_DISABLE_QUIRKS:
2928        case KVM_CAP_SET_BOOT_CPU_ID:
2929        case KVM_CAP_SPLIT_IRQCHIP:
2930        case KVM_CAP_IMMEDIATE_EXIT:
2931        case KVM_CAP_GET_MSR_FEATURES:
2932        case KVM_CAP_MSR_PLATFORM_INFO:
2933                r = 1;
2934                break;
2935        case KVM_CAP_SYNC_REGS:
2936                r = KVM_SYNC_X86_VALID_FIELDS;
2937                break;
2938        case KVM_CAP_ADJUST_CLOCK:
2939                r = KVM_CLOCK_TSC_STABLE;
2940                break;
2941        case KVM_CAP_X86_DISABLE_EXITS:
2942                r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2943                if(kvm_can_mwait_in_guest())
2944                        r |= KVM_X86_DISABLE_EXITS_MWAIT;
2945                break;
2946        case KVM_CAP_X86_SMM:
2947                /* SMBASE is usually relocated above 1M on modern chipsets,
2948                 * and SMM handlers might indeed rely on 4G segment limits,
2949                 * so do not report SMM to be available if real mode is
2950                 * emulated via vm86 mode.  Still, do not go to great lengths
2951                 * to avoid userspace's usage of the feature, because it is a
2952                 * fringe case that is not enabled except via specific settings
2953                 * of the module parameters.
2954                 */
2955                r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2956                break;
2957        case KVM_CAP_VAPIC:
2958                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2959                break;
2960        case KVM_CAP_NR_VCPUS:
2961                r = KVM_SOFT_MAX_VCPUS;
2962                break;
2963        case KVM_CAP_MAX_VCPUS:
2964                r = KVM_MAX_VCPUS;
2965                break;
2966        case KVM_CAP_NR_MEMSLOTS:
2967                r = KVM_USER_MEM_SLOTS;
2968                break;
2969        case KVM_CAP_PV_MMU:    /* obsolete */
2970                r = 0;
2971                break;
2972        case KVM_CAP_MCE:
2973                r = KVM_MAX_MCE_BANKS;
2974                break;
2975        case KVM_CAP_XCRS:
2976                r = boot_cpu_has(X86_FEATURE_XSAVE);
2977                break;
2978        case KVM_CAP_TSC_CONTROL:
2979                r = kvm_has_tsc_control;
2980                break;
2981        case KVM_CAP_X2APIC_API:
2982                r = KVM_X2APIC_API_VALID_FLAGS;
2983                break;
2984        case KVM_CAP_NESTED_STATE:
2985                r = kvm_x86_ops->get_nested_state ?
2986                        kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
2987                break;
2988        default:
2989                break;
2990        }
2991        return r;
2992
2993}
2994
2995long kvm_arch_dev_ioctl(struct file *filp,
2996                        unsigned int ioctl, unsigned long arg)
2997{
2998        void __user *argp = (void __user *)arg;
2999        long r;
3000
3001        switch (ioctl) {
3002        case KVM_GET_MSR_INDEX_LIST: {
3003                struct kvm_msr_list __user *user_msr_list = argp;
3004                struct kvm_msr_list msr_list;
3005                unsigned n;
3006
3007                r = -EFAULT;
3008                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3009                        goto out;
3010                n = msr_list.nmsrs;
3011                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3012                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3013                        goto out;
3014                r = -E2BIG;
3015                if (n < msr_list.nmsrs)
3016                        goto out;
3017                r = -EFAULT;
3018                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3019                                 num_msrs_to_save * sizeof(u32)))
3020                        goto out;
3021                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3022                                 &emulated_msrs,
3023                                 num_emulated_msrs * sizeof(u32)))
3024                        goto out;
3025                r = 0;
3026                break;
3027        }
3028        case KVM_GET_SUPPORTED_CPUID:
3029        case KVM_GET_EMULATED_CPUID: {
3030                struct kvm_cpuid2 __user *cpuid_arg = argp;
3031                struct kvm_cpuid2 cpuid;
3032
3033                r = -EFAULT;
3034                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3035                        goto out;
3036
3037                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3038                                            ioctl);
3039                if (r)
3040                        goto out;
3041
3042                r = -EFAULT;
3043                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3044                        goto out;
3045                r = 0;
3046                break;
3047        }
3048        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3049                r = -EFAULT;
3050                if (copy_to_user(argp, &kvm_mce_cap_supported,
3051                                 sizeof(kvm_mce_cap_supported)))
3052                        goto out;
3053                r = 0;
3054                break;
3055        case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3056                struct kvm_msr_list __user *user_msr_list = argp;
3057                struct kvm_msr_list msr_list;
3058                unsigned int n;
3059
3060                r = -EFAULT;
3061                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3062                        goto out;
3063                n = msr_list.nmsrs;
3064                msr_list.nmsrs = num_msr_based_features;
3065                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3066                        goto out;
3067                r = -E2BIG;
3068                if (n < msr_list.nmsrs)
3069                        goto out;
3070                r = -EFAULT;
3071                if (copy_to_user(user_msr_list->indices, &msr_based_features,
3072                                 num_msr_based_features * sizeof(u32)))
3073                        goto out;
3074                r = 0;
3075                break;
3076        }
3077        case KVM_GET_MSRS:
3078                r = msr_io(NULL, argp, do_get_msr_feature, 1);
3079                break;
3080        }
3081        default:
3082                r = -EINVAL;
3083        }
3084out:
3085        return r;
3086}
3087
3088static void wbinvd_ipi(void *garbage)
3089{
3090        wbinvd();
3091}
3092
3093static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3094{
3095        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3096}
3097
3098void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3099{
3100        /* Address WBINVD may be executed by guest */
3101        if (need_emulate_wbinvd(vcpu)) {
3102                if (kvm_x86_ops->has_wbinvd_exit())
3103                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3104                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3105                        smp_call_function_single(vcpu->cpu,
3106                                        wbinvd_ipi, NULL, 1);
3107        }
3108
3109        kvm_x86_ops->vcpu_load(vcpu, cpu);
3110
3111        /* Apply any externally detected TSC adjustments (due to suspend) */
3112        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3113                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3114                vcpu->arch.tsc_offset_adjustment = 0;
3115                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3116        }
3117
3118        if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3119                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3120                                rdtsc() - vcpu->arch.last_host_tsc;
3121                if (tsc_delta < 0)
3122                        mark_tsc_unstable("KVM discovered backwards TSC");
3123
3124                if (kvm_check_tsc_unstable()) {
3125                        u64 offset = kvm_compute_tsc_offset(vcpu,
3126                                                vcpu->arch.last_guest_tsc);
3127                        kvm_vcpu_write_tsc_offset(vcpu, offset);
3128                        vcpu->arch.tsc_catchup = 1;
3129                }
3130
3131                if (kvm_lapic_hv_timer_in_use(vcpu))
3132                        kvm_lapic_restart_hv_timer(vcpu);
3133
3134                /*
3135                 * On a host with synchronized TSC, there is no need to update
3136                 * kvmclock on vcpu->cpu migration
3137                 */
3138                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3139                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3140                if (vcpu->cpu != cpu)
3141                        kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3142                vcpu->cpu = cpu;
3143        }
3144
3145        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3146}
3147
3148static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3149{
3150        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3151                return;
3152
3153        vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3154
3155        kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3156                        &vcpu->arch.st.steal.preempted,
3157                        offsetof(struct kvm_steal_time, preempted),
3158                        sizeof(vcpu->arch.st.steal.preempted));
3159}
3160
3161void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3162{
3163        int idx;
3164
3165        if (vcpu->preempted)
3166                vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3167
3168        /*
3169         * Disable page faults because we're in atomic context here.
3170         * kvm_write_guest_offset_cached() would call might_fault()
3171         * that relies on pagefault_disable() to tell if there's a
3172         * bug. NOTE: the write to guest memory may not go through if
3173         * during postcopy live migration or if there's heavy guest
3174         * paging.
3175         */
3176        pagefault_disable();
3177        /*
3178         * kvm_memslots() will be called by
3179         * kvm_write_guest_offset_cached() so take the srcu lock.
3180         */
3181        idx = srcu_read_lock(&vcpu->kvm->srcu);
3182        kvm_steal_time_set_preempted(vcpu);
3183        srcu_read_unlock(&vcpu->kvm->srcu, idx);
3184        pagefault_enable();
3185        kvm_x86_ops->vcpu_put(vcpu);
3186        vcpu->arch.last_host_tsc = rdtsc();
3187        /*
3188         * If userspace has set any breakpoints or watchpoints, dr6 is restored
3189         * on every vmexit, but if not, we might have a stale dr6 from the
3190         * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3191         */
3192        set_debugreg(0, 6);
3193}
3194
3195static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3196                                    struct kvm_lapic_state *s)
3197{
3198        if (vcpu->arch.apicv_active)
3199                kvm_x86_ops->sync_pir_to_irr(vcpu);
3200
3201        return kvm_apic_get_state(vcpu, s);
3202}
3203
3204static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3205                                    struct kvm_lapic_state *s)
3206{
3207        int r;
3208
3209        r = kvm_apic_set_state(vcpu, s);
3210        if (r)
3211                return r;
3212        update_cr8_intercept(vcpu);
3213
3214        return 0;
3215}
3216
3217static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3218{
3219        return (!lapic_in_kernel(vcpu) ||
3220                kvm_apic_accept_pic_intr(vcpu));
3221}
3222
3223/*
3224 * if userspace requested an interrupt window, check that the
3225 * interrupt window is open.
3226 *
3227 * No need to exit to userspace if we already have an interrupt queued.
3228 */
3229static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3230{
3231        return kvm_arch_interrupt_allowed(vcpu) &&
3232                !kvm_cpu_has_interrupt(vcpu) &&
3233                !kvm_event_needs_reinjection(vcpu) &&
3234                kvm_cpu_accept_dm_intr(vcpu);
3235}
3236
3237static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3238                                    struct kvm_interrupt *irq)
3239{
3240        if (irq->irq >= KVM_NR_INTERRUPTS)
3241                return -EINVAL;
3242
3243        if (!irqchip_in_kernel(vcpu->kvm)) {
3244                kvm_queue_interrupt(vcpu, irq->irq, false);
3245                kvm_make_request(KVM_REQ_EVENT, vcpu);
3246                return 0;
3247        }
3248
3249        /*
3250         * With in-kernel LAPIC, we only use this to inject EXTINT, so
3251         * fail for in-kernel 8259.
3252         */
3253        if (pic_in_kernel(vcpu->kvm))
3254                return -ENXIO;
3255
3256        if (vcpu->arch.pending_external_vector != -1)
3257                return -EEXIST;
3258
3259        vcpu->arch.pending_external_vector = irq->irq;
3260        kvm_make_request(KVM_REQ_EVENT, vcpu);
3261        return 0;
3262}
3263
3264static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3265{
3266        kvm_inject_nmi(vcpu);
3267
3268        return 0;
3269}
3270
3271static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3272{
3273        kvm_make_request(KVM_REQ_SMI, vcpu);
3274
3275        return 0;
3276}
3277
3278static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3279                                           struct kvm_tpr_access_ctl *tac)
3280{
3281        if (tac->flags)
3282                return -EINVAL;
3283        vcpu->arch.tpr_access_reporting = !!tac->enabled;
3284        return 0;
3285}
3286
3287static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3288                                        u64 mcg_cap)
3289{
3290        int r;
3291        unsigned bank_num = mcg_cap & 0xff, bank;
3292
3293        r = -EINVAL;
3294        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3295                goto out;
3296        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3297                goto out;
3298        r = 0;
3299        vcpu->arch.mcg_cap = mcg_cap;
3300        /* Init IA32_MCG_CTL to all 1s */
3301        if (mcg_cap & MCG_CTL_P)
3302                vcpu->arch.mcg_ctl = ~(u64)0;
3303        /* Init IA32_MCi_CTL to all 1s */
3304        for (bank = 0; bank < bank_num; bank++)
3305                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3306
3307        if (kvm_x86_ops->setup_mce)
3308                kvm_x86_ops->setup_mce(vcpu);
3309out:
3310        return r;
3311}
3312
3313static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3314                                      struct kvm_x86_mce *mce)
3315{
3316        u64 mcg_cap = vcpu->arch.mcg_cap;
3317        unsigned bank_num = mcg_cap & 0xff;
3318        u64 *banks = vcpu->arch.mce_banks;
3319
3320        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3321                return -EINVAL;
3322        /*
3323         * if IA32_MCG_CTL is not all 1s, the uncorrected error
3324         * reporting is disabled
3325         */
3326        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3327            vcpu->arch.mcg_ctl != ~(u64)0)
3328                return 0;
3329        banks += 4 * mce->bank;
3330        /*
3331         * if IA32_MCi_CTL is not all 1s, the uncorrected error
3332         * reporting is disabled for the bank
3333         */
3334        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3335                return 0;
3336        if (mce->status & MCI_STATUS_UC) {
3337                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3338                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3339                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3340                        return 0;
3341                }
3342                if (banks[1] & MCI_STATUS_VAL)
3343                        mce->status |= MCI_STATUS_OVER;
3344                banks[2] = mce->addr;
3345                banks[3] = mce->misc;
3346                vcpu->arch.mcg_status = mce->mcg_status;
3347                banks[1] = mce->status;
3348                kvm_queue_exception(vcpu, MC_VECTOR);
3349        } else if (!(banks[1] & MCI_STATUS_VAL)
3350                   || !(banks[1] & MCI_STATUS_UC)) {
3351                if (banks[1] & MCI_STATUS_VAL)
3352                        mce->status |= MCI_STATUS_OVER;
3353                banks[2] = mce->addr;
3354                banks[3] = mce->misc;
3355                banks[1] = mce->status;
3356        } else
3357                banks[1] |= MCI_STATUS_OVER;
3358        return 0;
3359}
3360
3361static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3362                                               struct kvm_vcpu_events *events)
3363{
3364        process_nmi(vcpu);
3365        /*
3366         * FIXME: pass injected and pending separately.  This is only
3367         * needed for nested virtualization, whose state cannot be
3368         * migrated yet.  For now we can combine them.
3369         */
3370        events->exception.injected =
3371                (vcpu->arch.exception.pending ||
3372                 vcpu->arch.exception.injected) &&
3373                !kvm_exception_is_soft(vcpu->arch.exception.nr);
3374        events->exception.nr = vcpu->arch.exception.nr;
3375        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3376        events->exception.pad = 0;
3377        events->exception.error_code = vcpu->arch.exception.error_code;
3378
3379        events->interrupt.injected =
3380                vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3381        events->interrupt.nr = vcpu->arch.interrupt.nr;
3382        events->interrupt.soft = 0;
3383        events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3384
3385        events->nmi.injected = vcpu->arch.nmi_injected;
3386        events->nmi.pending = vcpu->arch.nmi_pending != 0;
3387        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3388        events->nmi.pad = 0;
3389
3390        events->sipi_vector = 0; /* never valid when reporting to user space */
3391
3392        events->smi.smm = is_smm(vcpu);
3393        events->smi.pending = vcpu->arch.smi_pending;
3394        events->smi.smm_inside_nmi =
3395                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3396        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3397
3398        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3399                         | KVM_VCPUEVENT_VALID_SHADOW
3400                         | KVM_VCPUEVENT_VALID_SMM);
3401        memset(&events->reserved, 0, sizeof(events->reserved));
3402}
3403
3404static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3405
3406static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3407                                              struct kvm_vcpu_events *events)
3408{
3409        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3410                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3411                              | KVM_VCPUEVENT_VALID_SHADOW
3412                              | KVM_VCPUEVENT_VALID_SMM))
3413                return -EINVAL;
3414
3415        if (events->exception.injected &&
3416            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3417             is_guest_mode(vcpu)))
3418                return -EINVAL;
3419
3420        /* INITs are latched while in SMM */
3421        if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3422            (events->smi.smm || events->smi.pending) &&
3423            vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3424                return -EINVAL;
3425
3426        process_nmi(vcpu);
3427        vcpu->arch.exception.injected = false;
3428        vcpu->arch.exception.pending = events->exception.injected;
3429        vcpu->arch.exception.nr = events->exception.nr;
3430        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3431        vcpu->arch.exception.error_code = events->exception.error_code;
3432
3433        vcpu->arch.interrupt.injected = events->interrupt.injected;
3434        vcpu->arch.interrupt.nr = events->interrupt.nr;
3435        vcpu->arch.interrupt.soft = events->interrupt.soft;
3436        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3437                kvm_x86_ops->set_interrupt_shadow(vcpu,
3438                                                  events->interrupt.shadow);
3439
3440        vcpu->arch.nmi_injected = events->nmi.injected;
3441        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3442                vcpu->arch.nmi_pending = events->nmi.pending;
3443        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3444
3445        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3446            lapic_in_kernel(vcpu))
3447                vcpu->arch.apic->sipi_vector = events->sipi_vector;
3448
3449        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3450                u32 hflags = vcpu->arch.hflags;
3451                if (events->smi.smm)
3452                        hflags |= HF_SMM_MASK;
3453                else
3454                        hflags &= ~HF_SMM_MASK;
3455                kvm_set_hflags(vcpu, hflags);
3456
3457                vcpu->arch.smi_pending = events->smi.pending;
3458
3459                if (events->smi.smm) {
3460                        if (events->smi.smm_inside_nmi)
3461                                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3462                        else
3463                                vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3464                        if (lapic_in_kernel(vcpu)) {
3465                                if (events->smi.latched_init)
3466                                        set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3467                                else
3468                                        clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3469                        }
3470                }
3471        }
3472
3473        kvm_make_request(KVM_REQ_EVENT, vcpu);
3474
3475        return 0;
3476}
3477
3478static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3479                                             struct kvm_debugregs *dbgregs)
3480{
3481        unsigned long val;
3482
3483        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3484        kvm_get_dr(vcpu, 6, &val);
3485        dbgregs->dr6 = val;
3486        dbgregs->dr7 = vcpu->arch.dr7;
3487        dbgregs->flags = 0;
3488        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3489}
3490
3491static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3492                                            struct kvm_debugregs *dbgregs)
3493{
3494        if (dbgregs->flags)
3495                return -EINVAL;
3496
3497        if (dbgregs->dr6 & ~0xffffffffull)
3498                return -EINVAL;
3499        if (dbgregs->dr7 & ~0xffffffffull)
3500                return -EINVAL;
3501
3502        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3503        kvm_update_dr0123(vcpu);
3504        vcpu->arch.dr6 = dbgregs->dr6;
3505        kvm_update_dr6(vcpu);
3506        vcpu->arch.dr7 = dbgregs->dr7;
3507        kvm_update_dr7(vcpu);
3508
3509        return 0;
3510}
3511
3512#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3513
3514static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3515{
3516        struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3517        u64 xstate_bv = xsave->header.xfeatures;
3518        u64 valid;
3519
3520        /*
3521         * Copy legacy XSAVE area, to avoid complications with CPUID
3522         * leaves 0 and 1 in the loop below.
3523         */
3524        memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3525
3526        /* Set XSTATE_BV */
3527        xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3528        *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3529
3530        /*
3531         * Copy each region from the possibly compacted offset to the
3532         * non-compacted offset.
3533         */
3534        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3535        while (valid) {
3536                u64 feature = valid & -valid;
3537                int index = fls64(feature) - 1;
3538                void *src = get_xsave_addr(xsave, feature);
3539
3540                if (src) {
3541                        u32 size, offset, ecx, edx;
3542                        cpuid_count(XSTATE_CPUID, index,
3543                                    &size, &offset, &ecx, &edx);
3544                        if (feature == XFEATURE_MASK_PKRU)
3545                                memcpy(dest + offset, &vcpu->arch.pkru,
3546                                       sizeof(vcpu->arch.pkru));
3547                        else
3548                                memcpy(dest + offset, src, size);
3549
3550                }
3551
3552                valid -= feature;
3553        }
3554}
3555
3556static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3557{
3558        struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3559        u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3560        u64 valid;
3561
3562        /*
3563         * Copy legacy XSAVE area, to avoid complications with CPUID
3564         * leaves 0 and 1 in the loop below.
3565         */
3566        memcpy(xsave, src, XSAVE_HDR_OFFSET);
3567
3568        /* Set XSTATE_BV and possibly XCOMP_BV.  */
3569        xsave->header.xfeatures = xstate_bv;
3570        if (boot_cpu_has(X86_FEATURE_XSAVES))
3571                xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3572
3573        /*
3574         * Copy each region from the non-compacted offset to the
3575         * possibly compacted offset.
3576         */
3577        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3578        while (valid) {
3579                u64 feature = valid & -valid;
3580                int index = fls64(feature) - 1;
3581                void *dest = get_xsave_addr(xsave, feature);
3582
3583                if (dest) {
3584                        u32 size, offset, ecx, edx;
3585                        cpuid_count(XSTATE_CPUID, index,
3586                                    &size, &offset, &ecx, &edx);
3587                        if (feature == XFEATURE_MASK_PKRU)
3588                                memcpy(&vcpu->arch.pkru, src + offset,
3589                                       sizeof(vcpu->arch.pkru));
3590                        else
3591                                memcpy(dest, src + offset, size);
3592                }
3593
3594                valid -= feature;
3595        }
3596}
3597
3598static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3599                                         struct kvm_xsave *guest_xsave)
3600{
3601        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3602                memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3603                fill_xsave((u8 *) guest_xsave->region, vcpu);
3604        } else {
3605                memcpy(guest_xsave->region,
3606                        &vcpu->arch.guest_fpu.state.fxsave,
3607                        sizeof(struct fxregs_state));
3608                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3609                        XFEATURE_MASK_FPSSE;
3610        }
3611}
3612
3613#define XSAVE_MXCSR_OFFSET 24
3614
3615static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3616                                        struct kvm_xsave *guest_xsave)
3617{
3618        u64 xstate_bv =
3619                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3620        u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3621
3622        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3623                /*
3624                 * Here we allow setting states that are not present in
3625                 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3626                 * with old userspace.
3627                 */
3628                if (xstate_bv & ~kvm_supported_xcr0() ||
3629                        mxcsr & ~mxcsr_feature_mask)
3630                        return -EINVAL;
3631                load_xsave(vcpu, (u8 *)guest_xsave->region);
3632        } else {
3633                if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3634                        mxcsr & ~mxcsr_feature_mask)
3635                        return -EINVAL;
3636                memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3637                        guest_xsave->region, sizeof(struct fxregs_state));
3638        }
3639        return 0;
3640}
3641
3642static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3643                                        struct kvm_xcrs *guest_xcrs)
3644{
3645        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3646                guest_xcrs->nr_xcrs = 0;
3647                return;
3648        }
3649
3650        guest_xcrs->nr_xcrs = 1;
3651        guest_xcrs->flags = 0;
3652        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3653        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3654}
3655
3656static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3657                                       struct kvm_xcrs *guest_xcrs)
3658{
3659        int i, r = 0;
3660
3661        if (!boot_cpu_has(X86_FEATURE_XSAVE))
3662                return -EINVAL;
3663
3664        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3665                return -EINVAL;
3666
3667        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3668                /* Only support XCR0 currently */
3669                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3670                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3671                                guest_xcrs->xcrs[i].value);
3672                        break;
3673                }
3674        if (r)
3675                r = -EINVAL;
3676        return r;
3677}
3678
3679/*
3680 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3681 * stopped by the hypervisor.  This function will be called from the host only.
3682 * EINVAL is returned when the host attempts to set the flag for a guest that
3683 * does not support pv clocks.
3684 */
3685static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3686{
3687        if (!vcpu->arch.pv_time_enabled)
3688                return -EINVAL;
3689        vcpu->arch.pvclock_set_guest_stopped_request = true;
3690        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3691        return 0;
3692}
3693
3694static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3695                                     struct kvm_enable_cap *cap)
3696{
3697        if (cap->flags)
3698                return -EINVAL;
3699
3700        switch (cap->cap) {
3701        case KVM_CAP_HYPERV_SYNIC2:
3702                if (cap->args[0])
3703                        return -EINVAL;
3704        case KVM_CAP_HYPERV_SYNIC:
3705                if (!irqchip_in_kernel(vcpu->kvm))
3706                        return -EINVAL;
3707                return kvm_hv_activate_synic(vcpu, cap->cap ==
3708                                             KVM_CAP_HYPERV_SYNIC2);
3709        default:
3710                return -EINVAL;
3711        }
3712}
3713
3714long kvm_arch_vcpu_ioctl(struct file *filp,
3715                         unsigned int ioctl, unsigned long arg)
3716{
3717        struct kvm_vcpu *vcpu = filp->private_data;
3718        void __user *argp = (void __user *)arg;
3719        int r;
3720        union {
3721                struct kvm_lapic_state *lapic;
3722                struct kvm_xsave *xsave;
3723                struct kvm_xcrs *xcrs;
3724                void *buffer;
3725        } u;
3726
3727        vcpu_load(vcpu);
3728
3729        u.buffer = NULL;
3730        switch (ioctl) {
3731        case KVM_GET_LAPIC: {
3732                r = -EINVAL;
3733                if (!lapic_in_kernel(vcpu))
3734                        goto out;
3735                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3736
3737                r = -ENOMEM;
3738                if (!u.lapic)
3739                        goto out;
3740                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3741                if (r)
3742                        goto out;
3743                r = -EFAULT;
3744                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3745                        goto out;
3746                r = 0;
3747                break;
3748        }
3749        case KVM_SET_LAPIC: {
3750                r = -EINVAL;
3751                if (!lapic_in_kernel(vcpu))
3752                        goto out;
3753                u.lapic = memdup_user(argp, sizeof(*u.lapic));
3754                if (IS_ERR(u.lapic)) {
3755                        r = PTR_ERR(u.lapic);
3756                        goto out_nofree;
3757                }
3758
3759                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3760                break;
3761        }
3762        case KVM_INTERRUPT: {
3763                struct kvm_interrupt irq;
3764
3765                r = -EFAULT;
3766                if (copy_from_user(&irq, argp, sizeof irq))
3767                        goto out;
3768                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3769                break;
3770        }
3771        case KVM_NMI: {
3772                r = kvm_vcpu_ioctl_nmi(vcpu);
3773                break;
3774        }
3775        case KVM_SMI: {
3776                r = kvm_vcpu_ioctl_smi(vcpu);
3777                break;
3778        }
3779        case KVM_SET_CPUID: {
3780                struct kvm_cpuid __user *cpuid_arg = argp;
3781                struct kvm_cpuid cpuid;
3782
3783                r = -EFAULT;
3784                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3785                        goto out;
3786                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3787                break;
3788        }
3789        case KVM_SET_CPUID2: {
3790                struct kvm_cpuid2 __user *cpuid_arg = argp;
3791                struct kvm_cpuid2 cpuid;
3792
3793                r = -EFAULT;
3794                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3795                        goto out;
3796                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3797                                              cpuid_arg->entries);
3798                break;
3799        }
3800        case KVM_GET_CPUID2: {
3801                struct kvm_cpuid2 __user *cpuid_arg = argp;
3802                struct kvm_cpuid2 cpuid;
3803
3804                r = -EFAULT;
3805                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3806                        goto out;
3807                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3808                                              cpuid_arg->entries);
3809                if (r)
3810                        goto out;
3811                r = -EFAULT;
3812                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3813                        goto out;
3814                r = 0;
3815                break;
3816        }
3817        case KVM_GET_MSRS: {
3818                int idx = srcu_read_lock(&vcpu->kvm->srcu);
3819                r = msr_io(vcpu, argp, do_get_msr, 1);
3820                srcu_read_unlock(&vcpu->kvm->srcu, idx);
3821                break;
3822        }
3823        case KVM_SET_MSRS: {
3824                int idx = srcu_read_lock(&vcpu->kvm->srcu);
3825                r = msr_io(vcpu, argp, do_set_msr, 0);
3826                srcu_read_unlock(&vcpu->kvm->srcu, idx);
3827                break;
3828        }
3829        case KVM_TPR_ACCESS_REPORTING: {
3830                struct kvm_tpr_access_ctl tac;
3831
3832                r = -EFAULT;
3833                if (copy_from_user(&tac, argp, sizeof tac))
3834                        goto out;
3835                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3836                if (r)
3837                        goto out;
3838                r = -EFAULT;
3839                if (copy_to_user(argp, &tac, sizeof tac))
3840                        goto out;
3841                r = 0;
3842                break;
3843        };
3844        case KVM_SET_VAPIC_ADDR: {
3845                struct kvm_vapic_addr va;
3846                int idx;
3847
3848                r = -EINVAL;
3849                if (!lapic_in_kernel(vcpu))
3850                        goto out;
3851                r = -EFAULT;
3852                if (copy_from_user(&va, argp, sizeof va))
3853                        goto out;
3854                idx = srcu_read_lock(&vcpu->kvm->srcu);
3855                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3856                srcu_read_unlock(&vcpu->kvm->srcu, idx);
3857                break;
3858        }
3859        case KVM_X86_SETUP_MCE: {
3860                u64 mcg_cap;
3861
3862                r = -EFAULT;
3863                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3864                        goto out;
3865                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3866                break;
3867        }
3868        case KVM_X86_SET_MCE: {
3869                struct kvm_x86_mce mce;
3870
3871                r = -EFAULT;
3872                if (copy_from_user(&mce, argp, sizeof mce))
3873                        goto out;
3874                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3875                break;
3876        }
3877        case KVM_GET_VCPU_EVENTS: {
3878                struct kvm_vcpu_events events;
3879
3880                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3881
3882                r = -EFAULT;
3883                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3884                        break;
3885                r = 0;
3886                break;
3887        }
3888        case KVM_SET_VCPU_EVENTS: {
3889                struct kvm_vcpu_events events;
3890
3891                r = -EFAULT;
3892                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3893                        break;
3894
3895                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3896                break;
3897        }
3898        case KVM_GET_DEBUGREGS: {
3899                struct kvm_debugregs dbgregs;
3900
3901                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3902
3903                r = -EFAULT;
3904                if (copy_to_user(argp, &dbgregs,
3905                                 sizeof(struct kvm_debugregs)))
3906                        break;
3907                r = 0;
3908                break;
3909        }
3910        case KVM_SET_DEBUGREGS: {
3911                struct kvm_debugregs dbgregs;
3912
3913                r = -EFAULT;
3914                if (copy_from_user(&dbgregs, argp,
3915                                   sizeof(struct kvm_debugregs)))
3916                        break;
3917
3918                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3919                break;
3920        }
3921        case KVM_GET_XSAVE: {
3922                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3923                r = -ENOMEM;
3924                if (!u.xsave)
3925                        break;
3926
3927                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3928
3929                r = -EFAULT;
3930                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3931                        break;
3932                r = 0;
3933                break;
3934        }
3935        case KVM_SET_XSAVE: {
3936                u.xsave = memdup_user(argp, sizeof(*u.xsave));
3937                if (IS_ERR(u.xsave)) {
3938                        r = PTR_ERR(u.xsave);
3939                        goto out_nofree;
3940                }
3941
3942                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3943                break;
3944        }
3945        case KVM_GET_XCRS: {
3946                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3947                r = -ENOMEM;
3948                if (!u.xcrs)
3949                        break;
3950
3951                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3952
3953                r = -EFAULT;
3954                if (copy_to_user(argp, u.xcrs,
3955                                 sizeof(struct kvm_xcrs)))
3956                        break;
3957                r = 0;
3958                break;
3959        }
3960        case KVM_SET_XCRS: {
3961                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3962                if (IS_ERR(u.xcrs)) {
3963                        r = PTR_ERR(u.xcrs);
3964                        goto out_nofree;
3965                }
3966
3967                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3968                break;
3969        }
3970        case KVM_SET_TSC_KHZ: {
3971                u32 user_tsc_khz;
3972
3973                r = -EINVAL;
3974                user_tsc_khz = (u32)arg;
3975
3976                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3977                        goto out;
3978
3979                if (user_tsc_khz == 0)
3980                        user_tsc_khz = tsc_khz;
3981
3982                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3983                        r = 0;
3984
3985                goto out;
3986        }
3987        case KVM_GET_TSC_KHZ: {
3988                r = vcpu->arch.virtual_tsc_khz;
3989                goto out;
3990        }
3991        case KVM_KVMCLOCK_CTRL: {
3992                r = kvm_set_guest_paused(vcpu);
3993                goto out;
3994        }
3995        case KVM_ENABLE_CAP: {
3996                struct kvm_enable_cap cap;
3997
3998                r = -EFAULT;
3999                if (copy_from_user(&cap, argp, sizeof(cap)))
4000                        goto out;
4001                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4002                break;
4003        }
4004        case KVM_GET_NESTED_STATE: {
4005                struct kvm_nested_state __user *user_kvm_nested_state = argp;
4006                u32 user_data_size;
4007
4008                r = -EINVAL;
4009                if (!kvm_x86_ops->get_nested_state)
4010                        break;
4011
4012                BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4013                r = -EFAULT;
4014                if (get_user(user_data_size, &user_kvm_nested_state->size))
4015                        break;
4016
4017                r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4018                                                  user_data_size);
4019                if (r < 0)
4020                        break;
4021
4022                if (r > user_data_size) {
4023                        if (put_user(r, &user_kvm_nested_state->size))
4024                                r = -EFAULT;
4025                        else
4026                                r = -E2BIG;
4027                        break;
4028                }
4029
4030                r = 0;
4031                break;
4032        }
4033        case KVM_SET_NESTED_STATE: {
4034                struct kvm_nested_state __user *user_kvm_nested_state = argp;
4035                struct kvm_nested_state kvm_state;
4036
4037                r = -EINVAL;
4038                if (!kvm_x86_ops->set_nested_state)
4039                        break;
4040
4041                r = -EFAULT;
4042                if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4043                        break;
4044
4045                r = -EINVAL;
4046                if (kvm_state.size < sizeof(kvm_state))
4047                        break;
4048
4049                if (kvm_state.flags &
4050                    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
4051                        break;
4052
4053                /* nested_run_pending implies guest_mode.  */
4054                if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
4055                        break;
4056
4057                r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4058                break;
4059        }
4060        default:
4061                r = -EINVAL;
4062        }
4063out:
4064        kfree(u.buffer);
4065out_nofree:
4066        vcpu_put(vcpu);
4067        return r;
4068}
4069
4070vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4071{
4072        return VM_FAULT_SIGBUS;
4073}
4074
4075static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4076{
4077        int ret;
4078
4079        if (addr > (unsigned int)(-3 * PAGE_SIZE))
4080                return -EINVAL;
4081        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4082        return ret;
4083}
4084
4085static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4086                                              u64 ident_addr)
4087{
4088        return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4089}
4090
4091static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4092                                          u32 kvm_nr_mmu_pages)
4093{
4094        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4095                return -EINVAL;
4096
4097        mutex_lock(&kvm->slots_lock);
4098
4099        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4100        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4101
4102        mutex_unlock(&kvm->slots_lock);
4103        return 0;
4104}
4105
4106static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4107{
4108        return kvm->arch.n_max_mmu_pages;
4109}
4110
4111static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4112{
4113        struct kvm_pic *pic = kvm->arch.vpic;
4114        int r;
4115
4116        r = 0;
4117        switch (chip->chip_id) {
4118        case KVM_IRQCHIP_PIC_MASTER:
4119                memcpy(&chip->chip.pic, &pic->pics[0],
4120                        sizeof(struct kvm_pic_state));
4121                break;
4122        case KVM_IRQCHIP_PIC_SLAVE:
4123                memcpy(&chip->chip.pic, &pic->pics[1],
4124                        sizeof(struct kvm_pic_state));
4125                break;
4126        case KVM_IRQCHIP_IOAPIC:
4127                kvm_get_ioapic(kvm, &chip->chip.ioapic);
4128                break;
4129        default:
4130                r = -EINVAL;
4131                break;
4132        }
4133        return r;
4134}
4135
4136static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4137{
4138        struct kvm_pic *pic = kvm->arch.vpic;
4139        int r;
4140
4141        r = 0;
4142        switch (chip->chip_id) {
4143        case KVM_IRQCHIP_PIC_MASTER:
4144                spin_lock(&pic->lock);
4145                memcpy(&pic->pics[0], &chip->chip.pic,
4146                        sizeof(struct kvm_pic_state));
4147                spin_unlock(&pic->lock);
4148                break;
4149        case KVM_IRQCHIP_PIC_SLAVE:
4150                spin_lock(&pic->lock);
4151                memcpy(&pic->pics[1], &chip->chip.pic,
4152                        sizeof(struct kvm_pic_state));
4153                spin_unlock(&pic->lock);
4154                break;
4155        case KVM_IRQCHIP_IOAPIC:
4156                kvm_set_ioapic(kvm, &chip->chip.ioapic);
4157                break;
4158        default:
4159                r = -EINVAL;
4160                break;
4161        }
4162        kvm_pic_update_irq(pic);
4163        return r;
4164}
4165
4166static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4167{
4168        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4169
4170        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4171
4172        mutex_lock(&kps->lock);
4173        memcpy(ps, &kps->channels, sizeof(*ps));
4174        mutex_unlock(&kps->lock);
4175        return 0;
4176}
4177
4178static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4179{
4180        int i;
4181        struct kvm_pit *pit = kvm->arch.vpit;
4182
4183        mutex_lock(&pit->pit_state.lock);
4184        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4185        for (i = 0; i < 3; i++)
4186                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4187        mutex_unlock(&pit->pit_state.lock);
4188        return 0;
4189}
4190
4191static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4192{
4193        mutex_lock(&kvm->arch.vpit->pit_state.lock);
4194        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4195                sizeof(ps->channels));
4196        ps->flags = kvm->arch.vpit->pit_state.flags;
4197        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4198        memset(&ps->reserved, 0, sizeof(ps->reserved));
4199        return 0;
4200}
4201
4202static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4203{
4204        int start = 0;
4205        int i;
4206        u32 prev_legacy, cur_legacy;
4207        struct kvm_pit *pit = kvm->arch.vpit;
4208
4209        mutex_lock(&pit->pit_state.lock);
4210        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4211        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4212        if (!prev_legacy && cur_legacy)
4213                start = 1;
4214        memcpy(&pit->pit_state.channels, &ps->channels,
4215               sizeof(pit->pit_state.channels));
4216        pit->pit_state.flags = ps->flags;
4217        for (i = 0; i < 3; i++)
4218                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4219                                   start && i == 0);
4220        mutex_unlock(&pit->pit_state.lock);
4221        return 0;
4222}
4223
4224static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4225                                 struct kvm_reinject_control *control)
4226{
4227        struct kvm_pit *pit = kvm->arch.vpit;
4228
4229        if (!pit)
4230                return -ENXIO;
4231
4232        /* pit->pit_state.lock was overloaded to prevent userspace from getting
4233         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4234         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4235         */
4236        mutex_lock(&pit->pit_state.lock);
4237        kvm_pit_set_reinject(pit, control->pit_reinject);
4238        mutex_unlock(&pit->pit_state.lock);
4239
4240        return 0;
4241}
4242
4243/**
4244 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4245 * @kvm: kvm instance
4246 * @log: slot id and address to which we copy the log
4247 *
4248 * Steps 1-4 below provide general overview of dirty page logging. See
4249 * kvm_get_dirty_log_protect() function description for additional details.
4250 *
4251 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4252 * always flush the TLB (step 4) even if previous step failed  and the dirty
4253 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4254 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4255 * writes will be marked dirty for next log read.
4256 *
4257 *   1. Take a snapshot of the bit and clear it if needed.
4258 *   2. Write protect the corresponding page.
4259 *   3. Copy the snapshot to the userspace.
4260 *   4. Flush TLB's if needed.
4261 */
4262int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4263{
4264        bool is_dirty = false;
4265        int r;
4266
4267        mutex_lock(&kvm->slots_lock);
4268
4269        /*
4270         * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4271         */
4272        if (kvm_x86_ops->flush_log_dirty)
4273                kvm_x86_ops->flush_log_dirty(kvm);
4274
4275        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4276
4277        /*
4278         * All the TLBs can be flushed out of mmu lock, see the comments in
4279         * kvm_mmu_slot_remove_write_access().
4280         */
4281        lockdep_assert_held(&kvm->slots_lock);
4282        if (is_dirty)
4283                kvm_flush_remote_tlbs(kvm);
4284
4285        mutex_unlock(&kvm->slots_lock);
4286        return r;
4287}
4288
4289int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4290                        bool line_status)
4291{
4292        if (!irqchip_in_kernel(kvm))
4293                return -ENXIO;
4294
4295        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4296                                        irq_event->irq, irq_event->level,
4297                                        line_status);
4298        return 0;
4299}
4300
4301static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4302                                   struct kvm_enable_cap *cap)
4303{
4304        int r;
4305
4306        if (cap->flags)
4307                return -EINVAL;
4308
4309        switch (cap->cap) {
4310        case KVM_CAP_DISABLE_QUIRKS:
4311                kvm->arch.disabled_quirks = cap->args[0];
4312                r = 0;
4313                break;
4314        case KVM_CAP_SPLIT_IRQCHIP: {
4315                mutex_lock(&kvm->lock);
4316                r = -EINVAL;
4317                if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4318                        goto split_irqchip_unlock;
4319                r = -EEXIST;
4320                if (irqchip_in_kernel(kvm))
4321                        goto split_irqchip_unlock;
4322                if (kvm->created_vcpus)
4323                        goto split_irqchip_unlock;
4324                r = kvm_setup_empty_irq_routing(kvm);
4325                if (r)
4326                        goto split_irqchip_unlock;
4327                /* Pairs with irqchip_in_kernel. */
4328                smp_wmb();
4329                kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4330                kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4331                r = 0;
4332split_irqchip_unlock:
4333                mutex_unlock(&kvm->lock);
4334                break;
4335        }
4336        case KVM_CAP_X2APIC_API:
4337                r = -EINVAL;
4338                if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4339                        break;
4340
4341                if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4342                        kvm->arch.x2apic_format = true;
4343                if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4344                        kvm->arch.x2apic_broadcast_quirk_disabled = true;
4345
4346                r = 0;
4347                break;
4348        case KVM_CAP_X86_DISABLE_EXITS:
4349                r = -EINVAL;
4350                if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4351                        break;
4352
4353                if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4354                        kvm_can_mwait_in_guest())
4355                        kvm->arch.mwait_in_guest = true;
4356                if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4357                        kvm->arch.hlt_in_guest = true;
4358                if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4359                        kvm->arch.pause_in_guest = true;
4360                r = 0;
4361                break;
4362        case KVM_CAP_MSR_PLATFORM_INFO:
4363                kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4364                r = 0;
4365                break;
4366        default:
4367                r = -EINVAL;
4368                break;
4369        }
4370        return r;
4371}
4372
4373long kvm_arch_vm_ioctl(struct file *filp,
4374                       unsigned int ioctl, unsigned long arg)
4375{
4376        struct kvm *kvm = filp->private_data;
4377        void __user *argp = (void __user *)arg;
4378        int r = -ENOTTY;
4379        /*
4380         * This union makes it completely explicit to gcc-3.x
4381         * that these two variables' stack usage should be
4382         * combined, not added together.
4383         */
4384        union {
4385                struct kvm_pit_state ps;
4386                struct kvm_pit_state2 ps2;
4387                struct kvm_pit_config pit_config;
4388        } u;
4389
4390        switch (ioctl) {
4391        case KVM_SET_TSS_ADDR:
4392                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4393                break;
4394        case KVM_SET_IDENTITY_MAP_ADDR: {
4395                u64 ident_addr;
4396
4397                mutex_lock(&kvm->lock);
4398                r = -EINVAL;
4399                if (kvm->created_vcpus)
4400                        goto set_identity_unlock;
4401                r = -EFAULT;
4402                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4403                        goto set_identity_unlock;
4404                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4405set_identity_unlock:
4406                mutex_unlock(&kvm->lock);
4407                break;
4408        }
4409        case KVM_SET_NR_MMU_PAGES:
4410                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4411                break;
4412        case KVM_GET_NR_MMU_PAGES:
4413                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4414                break;
4415        case KVM_CREATE_IRQCHIP: {
4416                mutex_lock(&kvm->lock);
4417
4418                r = -EEXIST;
4419                if (irqchip_in_kernel(kvm))
4420                        goto create_irqchip_unlock;
4421
4422                r = -EINVAL;
4423                if (kvm->created_vcpus)
4424                        goto create_irqchip_unlock;
4425
4426                r = kvm_pic_init(kvm);
4427                if (r)
4428                        goto create_irqchip_unlock;
4429
4430                r = kvm_ioapic_init(kvm);
4431                if (r) {
4432                        kvm_pic_destroy(kvm);
4433                        goto create_irqchip_unlock;
4434                }
4435
4436                r = kvm_setup_default_irq_routing(kvm);
4437                if (r) {
4438                        kvm_ioapic_destroy(kvm);
4439                        kvm_pic_destroy(kvm);
4440                        goto create_irqchip_unlock;
4441                }
4442                /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4443                smp_wmb();
4444                kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4445        create_irqchip_unlock:
4446                mutex_unlock(&kvm->lock);
4447                break;
4448        }
4449        case KVM_CREATE_PIT:
4450                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4451                goto create_pit;
4452        case KVM_CREATE_PIT2:
4453                r = -EFAULT;
4454                if (copy_from_user(&u.pit_config, argp,
4455                                   sizeof(struct kvm_pit_config)))
4456                        goto out;
4457        create_pit:
4458                mutex_lock(&kvm->lock);
4459                r = -EEXIST;
4460                if (kvm->arch.vpit)
4461                        goto create_pit_unlock;
4462                r = -ENOMEM;
4463                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4464                if (kvm->arch.vpit)
4465                        r = 0;
4466        create_pit_unlock:
4467                mutex_unlock(&kvm->lock);
4468                break;
4469        case KVM_GET_IRQCHIP: {
4470                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4471                struct kvm_irqchip *chip;
4472
4473                chip = memdup_user(argp, sizeof(*chip));
4474                if (IS_ERR(chip)) {
4475                        r = PTR_ERR(chip);
4476                        goto out;
4477                }
4478
4479                r = -ENXIO;
4480                if (!irqchip_kernel(kvm))
4481                        goto get_irqchip_out;
4482                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4483                if (r)
4484                        goto get_irqchip_out;
4485                r = -EFAULT;
4486                if (copy_to_user(argp, chip, sizeof *chip))
4487                        goto get_irqchip_out;
4488                r = 0;
4489        get_irqchip_out:
4490                kfree(chip);
4491                break;
4492        }
4493        case KVM_SET_IRQCHIP: {
4494                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4495                struct kvm_irqchip *chip;
4496
4497                chip = memdup_user(argp, sizeof(*chip));
4498                if (IS_ERR(chip)) {
4499                        r = PTR_ERR(chip);
4500                        goto out;
4501                }
4502
4503                r = -ENXIO;
4504                if (!irqchip_kernel(kvm))
4505                        goto set_irqchip_out;
4506                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4507                if (r)
4508                        goto set_irqchip_out;
4509                r = 0;
4510        set_irqchip_out:
4511                kfree(chip);
4512                break;
4513        }
4514        case KVM_GET_PIT: {
4515                r = -EFAULT;
4516                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4517                        goto out;
4518                r = -ENXIO;
4519                if (!kvm->arch.vpit)
4520                        goto out;
4521                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4522                if (r)
4523                        goto out;
4524                r = -EFAULT;
4525                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4526                        goto out;
4527                r = 0;
4528                break;
4529        }
4530        case KVM_SET_PIT: {
4531                r = -EFAULT;
4532                if (copy_from_user(&u.ps, argp, sizeof u.ps))
4533                        goto out;
4534                r = -ENXIO;
4535                if (!kvm->arch.vpit)
4536                        goto out;
4537                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4538                break;
4539        }
4540        case KVM_GET_PIT2: {
4541                r = -ENXIO;
4542                if (!kvm->arch.vpit)
4543                        goto out;
4544                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4545                if (r)
4546                        goto out;
4547                r = -EFAULT;
4548                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4549                        goto out;
4550                r = 0;
4551                break;
4552        }
4553        case KVM_SET_PIT2: {
4554                r = -EFAULT;
4555                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4556                        goto out;
4557                r = -ENXIO;
4558                if (!kvm->arch.vpit)
4559                        goto out;
4560                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4561                break;
4562        }
4563        case KVM_REINJECT_CONTROL: {
4564                struct kvm_reinject_control control;
4565                r =  -EFAULT;
4566                if (copy_from_user(&control, argp, sizeof(control)))
4567                        goto out;
4568                r = kvm_vm_ioctl_reinject(kvm, &control);
4569                break;
4570        }
4571        case KVM_SET_BOOT_CPU_ID:
4572                r = 0;
4573                mutex_lock(&kvm->lock);
4574                if (kvm->created_vcpus)
4575                        r = -EBUSY;
4576                else
4577                        kvm->arch.bsp_vcpu_id = arg;
4578                mutex_unlock(&kvm->lock);
4579                break;
4580        case KVM_XEN_HVM_CONFIG: {
4581                struct kvm_xen_hvm_config xhc;
4582                r = -EFAULT;
4583                if (copy_from_user(&xhc, argp, sizeof(xhc)))
4584                        goto out;
4585                r = -EINVAL;
4586                if (xhc.flags)
4587                        goto out;
4588                memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4589                r = 0;
4590                break;
4591        }
4592        case KVM_SET_CLOCK: {
4593                struct kvm_clock_data user_ns;
4594                u64 now_ns;
4595
4596                r = -EFAULT;
4597                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4598                        goto out;
4599
4600                r = -EINVAL;
4601                if (user_ns.flags)
4602                        goto out;
4603
4604                r = 0;
4605                /*
4606                 * TODO: userspace has to take care of races with VCPU_RUN, so
4607                 * kvm_gen_update_masterclock() can be cut down to locked
4608                 * pvclock_update_vm_gtod_copy().
4609                 */
4610                kvm_gen_update_masterclock(kvm);
4611                now_ns = get_kvmclock_ns(kvm);
4612                kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4613                kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4614                break;
4615        }
4616        case KVM_GET_CLOCK: {
4617                struct kvm_clock_data user_ns;
4618                u64 now_ns;
4619
4620                now_ns = get_kvmclock_ns(kvm);
4621                user_ns.clock = now_ns;
4622                user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4623                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4624
4625                r = -EFAULT;
4626                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4627                        goto out;
4628                r = 0;
4629                break;
4630        }
4631        case KVM_ENABLE_CAP: {
4632                struct kvm_enable_cap cap;
4633
4634                r = -EFAULT;
4635                if (copy_from_user(&cap, argp, sizeof(cap)))
4636                        goto out;
4637                r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4638                break;
4639        }
4640        case KVM_MEMORY_ENCRYPT_OP: {
4641                r = -ENOTTY;
4642                if (kvm_x86_ops->mem_enc_op)
4643                        r = kvm_x86_ops->mem_enc_op(kvm, argp);
4644                break;
4645        }
4646        case KVM_MEMORY_ENCRYPT_REG_REGION: {
4647                struct kvm_enc_region region;
4648
4649                r = -EFAULT;
4650                if (copy_from_user(&region, argp, sizeof(region)))
4651                        goto out;
4652
4653                r = -ENOTTY;
4654                if (kvm_x86_ops->mem_enc_reg_region)
4655                        r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4656                break;
4657        }
4658        case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4659                struct kvm_enc_region region;
4660
4661                r = -EFAULT;
4662                if (copy_from_user(&region, argp, sizeof(region)))
4663                        goto out;
4664
4665                r = -ENOTTY;
4666                if (kvm_x86_ops->mem_enc_unreg_region)
4667                        r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4668                break;
4669        }
4670        case KVM_HYPERV_EVENTFD: {
4671                struct kvm_hyperv_eventfd hvevfd;
4672
4673                r = -EFAULT;
4674                if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4675                        goto out;
4676                r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4677                break;
4678        }
4679        default:
4680                r = -ENOTTY;
4681        }
4682out:
4683        return r;
4684}
4685
4686static void kvm_init_msr_list(void)
4687{
4688        u32 dummy[2];
4689        unsigned i, j;
4690
4691        for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4692                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4693                        continue;
4694
4695                /*
4696                 * Even MSRs that are valid in the host may not be exposed
4697                 * to the guests in some cases.
4698                 */
4699                switch (msrs_to_save[i]) {
4700                case MSR_IA32_BNDCFGS:
4701                        if (!kvm_mpx_supported())
4702                                continue;
4703                        break;
4704                case MSR_TSC_AUX:
4705                        if (!kvm_x86_ops->rdtscp_supported())
4706                                continue;
4707                        break;
4708                default:
4709                        break;
4710                }
4711
4712                if (j < i)
4713                        msrs_to_save[j] = msrs_to_save[i];
4714                j++;
4715        }
4716        num_msrs_to_save = j;
4717
4718        for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4719                if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4720                        continue;
4721
4722                if (j < i)
4723                        emulated_msrs[j] = emulated_msrs[i];
4724                j++;
4725        }
4726        num_emulated_msrs = j;
4727
4728        for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4729                struct kvm_msr_entry msr;
4730
4731                msr.index = msr_based_features[i];
4732                if (kvm_get_msr_feature(&msr))
4733                        continue;
4734
4735                if (j < i)
4736                        msr_based_features[j] = msr_based_features[i];
4737                j++;
4738        }
4739        num_msr_based_features = j;
4740}
4741
4742static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4743                           const void *v)
4744{
4745        int handled = 0;
4746        int n;
4747
4748        do {
4749                n = min(len, 8);
4750                if (!(lapic_in_kernel(vcpu) &&
4751                      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4752                    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4753                        break;
4754                handled += n;
4755                addr += n;
4756                len -= n;
4757                v += n;
4758        } while (len);
4759
4760        return handled;
4761}
4762
4763static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4764{
4765        int handled = 0;
4766        int n;
4767
4768        do {
4769                n = min(len, 8);
4770                if (!(lapic_in_kernel(vcpu) &&
4771                      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4772                                         addr, n, v))
4773                    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4774                        break;
4775                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4776                handled += n;
4777                addr += n;
4778                len -= n;
4779                v += n;
4780        } while (len);
4781
4782        return handled;
4783}
4784
4785static void kvm_set_segment(struct kvm_vcpu *vcpu,
4786                        struct kvm_segment *var, int seg)
4787{
4788        kvm_x86_ops->set_segment(vcpu, var, seg);
4789}
4790
4791void kvm_get_segment(struct kvm_vcpu *vcpu,
4792                     struct kvm_segment *var, int seg)
4793{
4794        kvm_x86_ops->get_segment(vcpu, var, seg);
4795}
4796
4797gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4798                           struct x86_exception *exception)
4799{
4800        gpa_t t_gpa;
4801
4802        BUG_ON(!mmu_is_nested(vcpu));
4803
4804        /* NPT walks are always user-walks */
4805        access |= PFERR_USER_MASK;
4806        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4807
4808        return t_gpa;
4809}
4810
4811gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4812                              struct x86_exception *exception)
4813{
4814        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4815        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4816}
4817
4818 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4819                                struct x86_exception *exception)
4820{
4821        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4822        access |= PFERR_FETCH_MASK;
4823        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4824}
4825
4826gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4827                               struct x86_exception *exception)
4828{
4829        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4830        access |= PFERR_WRITE_MASK;
4831        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4832}
4833
4834/* uses this to access any guest's mapped memory without checking CPL */
4835gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4836                                struct x86_exception *exception)
4837{
4838        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4839}
4840
4841static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4842                                      struct kvm_vcpu *vcpu, u32 access,
4843                                      struct x86_exception *exception)
4844{
4845        void *data = val;
4846        int r = X86EMUL_CONTINUE;
4847
4848        while (bytes) {
4849                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4850                                                            exception);
4851                unsigned offset = addr & (PAGE_SIZE-1);
4852                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4853                int ret;
4854
4855                if (gpa == UNMAPPED_GVA)
4856                        return X86EMUL_PROPAGATE_FAULT;
4857                ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4858                                               offset, toread);
4859                if (ret < 0) {
4860                        r = X86EMUL_IO_NEEDED;
4861                        goto out;
4862                }
4863
4864                bytes -= toread;
4865                data += toread;
4866                addr += toread;
4867        }
4868out:
4869        return r;
4870}
4871
4872/* used for instruction fetching */
4873static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4874                                gva_t addr, void *val, unsigned int bytes,
4875                                struct x86_exception *exception)
4876{
4877        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4878        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4879        unsigned offset;
4880        int ret;
4881
4882        /* Inline kvm_read_guest_virt_helper for speed.  */
4883        gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4884                                                    exception);
4885        if (unlikely(gpa == UNMAPPED_GVA))
4886                return X86EMUL_PROPAGATE_FAULT;
4887
4888        offset = addr & (PAGE_SIZE-1);
4889        if (WARN_ON(offset + bytes > PAGE_SIZE))
4890                bytes = (unsigned)PAGE_SIZE - offset;
4891        ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4892                                       offset, bytes);
4893        if (unlikely(ret < 0))
4894                return X86EMUL_IO_NEEDED;
4895
4896        return X86EMUL_CONTINUE;
4897}
4898
4899int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4900                               gva_t addr, void *val, unsigned int bytes,
4901                               struct x86_exception *exception)
4902{
4903        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4904
4905        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4906                                          exception);
4907}
4908EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4909
4910static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4911                             gva_t addr, void *val, unsigned int bytes,
4912                             struct x86_exception *exception, bool system)
4913{
4914        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4915        u32 access = 0;
4916
4917        if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4918                access |= PFERR_USER_MASK;
4919
4920        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4921}
4922
4923static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4924                unsigned long addr, void *val, unsigned int bytes)
4925{
4926        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4927        int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4928
4929        return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4930}
4931
4932static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4933                                      struct kvm_vcpu *vcpu, u32 access,
4934                                      struct x86_exception *exception)
4935{
4936        void *data = val;
4937        int r = X86EMUL_CONTINUE;
4938
4939        while (bytes) {
4940                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4941                                                             access,
4942                                                             exception);
4943                unsigned offset = addr & (PAGE_SIZE-1);
4944                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4945                int ret;
4946
4947                if (gpa == UNMAPPED_GVA)
4948                        return X86EMUL_PROPAGATE_FAULT;
4949                ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4950                if (ret < 0) {
4951                        r = X86EMUL_IO_NEEDED;
4952                        goto out;
4953                }
4954
4955                bytes -= towrite;
4956                data += towrite;
4957                addr += towrite;
4958        }
4959out:
4960        return r;
4961}
4962
4963static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4964                              unsigned int bytes, struct x86_exception *exception,
4965                              bool system)
4966{
4967        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4968        u32 access = PFERR_WRITE_MASK;
4969
4970        if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4971                access |= PFERR_USER_MASK;
4972
4973        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4974                                           access, exception);
4975}
4976
4977int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4978                                unsigned int bytes, struct x86_exception *exception)
4979{
4980        /* kvm_write_guest_virt_system can pull in tons of pages. */
4981        vcpu->arch.l1tf_flush_l1d = true;
4982
4983        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4984                                           PFERR_WRITE_MASK, exception);
4985}
4986EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4987
4988int handle_ud(struct kvm_vcpu *vcpu)
4989{
4990        int emul_type = EMULTYPE_TRAP_UD;
4991        enum emulation_result er;
4992        char sig[5]; /* ud2; .ascii "kvm" */
4993        struct x86_exception e;
4994
4995        if (force_emulation_prefix &&
4996            kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4997                                sig, sizeof(sig), &e) == 0 &&
4998            memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4999                kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5000                emul_type = 0;
5001        }
5002
5003        er = kvm_emulate_instruction(vcpu, emul_type);
5004        if (er == EMULATE_USER_EXIT)
5005                return 0;
5006        if (er != EMULATE_DONE)
5007                kvm_queue_exception(vcpu, UD_VECTOR);
5008        return 1;
5009}
5010EXPORT_SYMBOL_GPL(handle_ud);
5011
5012static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5013                            gpa_t gpa, bool write)
5014{
5015        /* For APIC access vmexit */
5016        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5017                return 1;
5018
5019        if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5020                trace_vcpu_match_mmio(gva, gpa, write, true);
5021                return 1;
5022        }
5023
5024        return 0;
5025}
5026
5027static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5028                                gpa_t *gpa, struct x86_exception *exception,
5029                                bool write)
5030{
5031        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5032                | (write ? PFERR_WRITE_MASK : 0);
5033
5034        /*
5035         * currently PKRU is only applied to ept enabled guest so
5036         * there is no pkey in EPT page table for L1 guest or EPT
5037         * shadow page table for L2 guest.
5038         */
5039        if (vcpu_match_mmio_gva(vcpu, gva)
5040            && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5041                                 vcpu->arch.access, 0, access)) {
5042                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5043                                        (gva & (PAGE_SIZE - 1));
5044                trace_vcpu_match_mmio(gva, *gpa, write, false);
5045                return 1;
5046        }
5047
5048        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5049
5050        if (*gpa == UNMAPPED_GVA)
5051                return -1;
5052
5053        return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5054}
5055
5056int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5057                        const void *val, int bytes)
5058{
5059        int ret;
5060
5061        ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5062        if (ret < 0)
5063                return 0;
5064        kvm_page_track_write(vcpu, gpa, val, bytes);
5065        return 1;
5066}
5067
5068struct read_write_emulator_ops {
5069        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5070                                  int bytes);
5071        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5072                                  void *val, int bytes);
5073        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5074                               int bytes, void *val);
5075        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5076                                    void *val, int bytes);
5077        bool write;
5078};
5079
5080static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5081{
5082        if (vcpu->mmio_read_completed) {
5083                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5084                               vcpu->mmio_fragments[0].gpa, val);
5085                vcpu->mmio_read_completed = 0;
5086                return 1;
5087        }
5088
5089        return 0;
5090}
5091
5092static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5093                        void *val, int bytes)
5094{
5095        return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5096}
5097
5098static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5099                         void *val, int bytes)
5100{
5101        return emulator_write_phys(vcpu, gpa, val, bytes);
5102}
5103
5104static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5105{
5106        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5107        return vcpu_mmio_write(vcpu, gpa, bytes, val);
5108}
5109
5110static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5111                          void *val, int bytes)
5112{
5113        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5114        return X86EMUL_IO_NEEDED;
5115}
5116
5117static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5118                           void *val, int bytes)
5119{
5120        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5121
5122        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5123        return X86EMUL_CONTINUE;
5124}
5125
5126static const struct read_write_emulator_ops read_emultor = {
5127        .read_write_prepare = read_prepare,
5128        .read_write_emulate = read_emulate,
5129        .read_write_mmio = vcpu_mmio_read,
5130        .read_write_exit_mmio = read_exit_mmio,
5131};
5132
5133static const struct read_write_emulator_ops write_emultor = {
5134        .read_write_emulate = write_emulate,
5135        .read_write_mmio = write_mmio,
5136        .read_write_exit_mmio = write_exit_mmio,
5137        .write = true,
5138};
5139
5140static int emulator_read_write_onepage(unsigned long addr, void *val,
5141                                       unsigned int bytes,
5142                                       struct x86_exception *exception,
5143                                       struct kvm_vcpu *vcpu,
5144                                       const struct read_write_emulator_ops *ops)
5145{
5146        gpa_t gpa;
5147        int handled, ret;
5148        bool write = ops->write;
5149        struct kvm_mmio_fragment *frag;
5150        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5151
5152        /*
5153         * If the exit was due to a NPF we may already have a GPA.
5154         * If the GPA is present, use it to avoid the GVA to GPA table walk.
5155         * Note, this cannot be used on string operations since string
5156         * operation using rep will only have the initial GPA from the NPF
5157         * occurred.
5158         */
5159        if (vcpu->arch.gpa_available &&
5160            emulator_can_use_gpa(ctxt) &&
5161            (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5162                gpa = vcpu->arch.gpa_val;
5163                ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5164        } else {
5165                ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5166                if (ret < 0)
5167                        return X86EMUL_PROPAGATE_FAULT;
5168        }
5169
5170        if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5171                return X86EMUL_CONTINUE;
5172
5173        /*
5174         * Is this MMIO handled locally?
5175         */
5176        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5177        if (handled == bytes)
5178                return X86EMUL_CONTINUE;
5179
5180        gpa += handled;
5181        bytes -= handled;
5182        val += handled;
5183
5184        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5185        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5186        frag->gpa = gpa;
5187        frag->data = val;
5188        frag->len = bytes;
5189        return X86EMUL_CONTINUE;
5190}
5191
5192static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5193                        unsigned long addr,
5194                        void *val, unsigned int bytes,
5195                        struct x86_exception *exception,
5196                        const struct read_write_emulator_ops *ops)
5197{
5198        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5199        gpa_t gpa;
5200        int rc;
5201
5202        if (ops->read_write_prepare &&
5203                  ops->read_write_prepare(vcpu, val, bytes))
5204                return X86EMUL_CONTINUE;
5205
5206        vcpu->mmio_nr_fragments = 0;
5207
5208        /* Crossing a page boundary? */
5209        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5210                int now;
5211
5212                now = -addr & ~PAGE_MASK;
5213                rc = emulator_read_write_onepage(addr, val, now, exception,
5214                                                 vcpu, ops);
5215
5216                if (rc != X86EMUL_CONTINUE)
5217                        return rc;
5218                addr += now;
5219                if (ctxt->mode != X86EMUL_MODE_PROT64)
5220                        addr = (u32)addr;
5221                val += now;
5222                bytes -= now;
5223        }
5224
5225        rc = emulator_read_write_onepage(addr, val, bytes, exception,
5226                                         vcpu, ops);
5227        if (rc != X86EMUL_CONTINUE)
5228                return rc;
5229
5230        if (!vcpu->mmio_nr_fragments)
5231                return rc;
5232
5233        gpa = vcpu->mmio_fragments[0].gpa;
5234
5235        vcpu->mmio_needed = 1;
5236        vcpu->mmio_cur_fragment = 0;
5237
5238        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5239        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5240        vcpu->run->exit_reason = KVM_EXIT_MMIO;
5241        vcpu->run->mmio.phys_addr = gpa;
5242
5243        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5244}
5245
5246static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5247                                  unsigned long addr,
5248                                  void *val,
5249                                  unsigned int bytes,
5250                                  struct x86_exception *exception)
5251{
5252        return emulator_read_write(ctxt, addr, val, bytes,
5253                                   exception, &read_emultor);
5254}
5255
5256static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5257                            unsigned long addr,
5258                            const void *val,
5259                            unsigned int bytes,
5260                            struct x86_exception *exception)
5261{
5262        return emulator_read_write(ctxt, addr, (void *)val, bytes,
5263                                   exception, &write_emultor);
5264}
5265
5266#define CMPXCHG_TYPE(t, ptr, old, new) \
5267        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5268
5269#ifdef CONFIG_X86_64
5270#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5271#else
5272#  define CMPXCHG64(ptr, old, new) \
5273        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5274#endif
5275
5276static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5277                                     unsigned long addr,
5278                                     const void *old,
5279                                     const void *new,
5280                                     unsigned int bytes,
5281                                     struct x86_exception *exception)
5282{
5283        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5284        gpa_t gpa;
5285        struct page *page;
5286        char *kaddr;
5287        bool exchanged;
5288
5289        /* guests cmpxchg8b have to be emulated atomically */
5290        if (bytes > 8 || (bytes & (bytes - 1)))
5291                goto emul_write;
5292
5293        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5294
5295        if (gpa == UNMAPPED_GVA ||
5296            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5297                goto emul_write;
5298
5299        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5300                goto emul_write;
5301
5302        page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5303        if (is_error_page(page))
5304                goto emul_write;
5305
5306        kaddr = kmap_atomic(page);
5307        kaddr += offset_in_page(gpa);
5308        switch (bytes) {
5309        case 1:
5310                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5311                break;
5312        case 2:
5313                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5314                break;
5315        case 4:
5316                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5317                break;
5318        case 8:
5319                exchanged = CMPXCHG64(kaddr, old, new);
5320                break;
5321        default:
5322                BUG();
5323        }
5324        kunmap_atomic(kaddr);
5325        kvm_release_page_dirty(page);
5326
5327        if (!exchanged)
5328                return X86EMUL_CMPXCHG_FAILED;
5329
5330        kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5331        kvm_page_track_write(vcpu, gpa, new, bytes);
5332
5333        return X86EMUL_CONTINUE;
5334
5335emul_write:
5336        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5337
5338        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5339}
5340
5341static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5342{
5343        int r = 0, i;
5344
5345        for (i = 0; i < vcpu->arch.pio.count; i++) {
5346                if (vcpu->arch.pio.in)
5347                        r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5348                                            vcpu->arch.pio.size, pd);
5349                else
5350                        r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5351                                             vcpu->arch.pio.port, vcpu->arch.pio.size,
5352                                             pd);
5353                if (r)
5354                        break;
5355                pd += vcpu->arch.pio.size;
5356        }
5357        return r;
5358}
5359
5360static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5361                               unsigned short port, void *val,
5362                               unsigned int count, bool in)
5363{
5364        vcpu->arch.pio.port = port;
5365        vcpu->arch.pio.in = in;
5366        vcpu->arch.pio.count  = count;
5367        vcpu->arch.pio.size = size;
5368
5369        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5370                vcpu->arch.pio.count = 0;
5371                return 1;
5372        }
5373
5374        vcpu->run->exit_reason = KVM_EXIT_IO;
5375        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5376        vcpu->run->io.size = size;
5377        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5378        vcpu->run->io.count = count;
5379        vcpu->run->io.port = port;
5380
5381        return 0;
5382}
5383
5384static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5385                                    int size, unsigned short port, void *val,
5386                                    unsigned int count)
5387{
5388        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5389        int ret;
5390
5391        if (vcpu->arch.pio.count)
5392                goto data_avail;
5393
5394        memset(vcpu->arch.pio_data, 0, size * count);
5395
5396        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5397        if (ret) {
5398data_avail:
5399                memcpy(val, vcpu->arch.pio_data, size * count);
5400                trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5401                vcpu->arch.pio.count = 0;
5402                return 1;
5403        }
5404
5405        return 0;
5406}
5407
5408static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5409                                     int size, unsigned short port,
5410                                     const void *val, unsigned int count)
5411{
5412        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5413
5414        memcpy(vcpu->arch.pio_data, val, size * count);
5415        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5416        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5417}
5418
5419static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5420{
5421        return kvm_x86_ops->get_segment_base(vcpu, seg);
5422}
5423
5424static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5425{
5426        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5427}
5428
5429static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5430{
5431        if (!need_emulate_wbinvd(vcpu))
5432                return X86EMUL_CONTINUE;
5433
5434        if (kvm_x86_ops->has_wbinvd_exit()) {
5435                int cpu = get_cpu();
5436
5437                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5438                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5439                                wbinvd_ipi, NULL, 1);
5440                put_cpu();
5441                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5442        } else
5443                wbinvd();
5444        return X86EMUL_CONTINUE;
5445}
5446
5447int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5448{
5449        kvm_emulate_wbinvd_noskip(vcpu);
5450        return kvm_skip_emulated_instruction(vcpu);
5451}
5452EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5453
5454
5455
5456static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5457{
5458        kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5459}
5460
5461static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5462                           unsigned long *dest)
5463{
5464        return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5465}
5466
5467static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5468                           unsigned long value)
5469{
5470
5471        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5472}
5473
5474static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5475{
5476        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5477}
5478
5479static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5480{
5481        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5482        unsigned long value;
5483
5484        switch (cr) {
5485        case 0:
5486                value = kvm_read_cr0(vcpu);
5487                break;
5488        case 2:
5489                value = vcpu->arch.cr2;
5490                break;
5491        case 3:
5492                value = kvm_read_cr3(vcpu);
5493                break;
5494        case 4:
5495                value = kvm_read_cr4(vcpu);
5496                break;
5497        case 8:
5498                value = kvm_get_cr8(vcpu);
5499                break;
5500        default:
5501                kvm_err("%s: unexpected cr %u\n", __func__, cr);
5502                return 0;
5503        }
5504
5505        return value;
5506}
5507
5508static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5509{
5510        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5511        int res = 0;
5512
5513        switch (cr) {
5514        case 0:
5515                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5516                break;
5517        case 2:
5518                vcpu->arch.cr2 = val;
5519                break;
5520        case 3:
5521                res = kvm_set_cr3(vcpu, val);
5522                break;
5523        case 4:
5524                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5525                break;
5526        case 8:
5527                res = kvm_set_cr8(vcpu, val);
5528                break;
5529        default:
5530                kvm_err("%s: unexpected cr %u\n", __func__, cr);
5531                res = -1;
5532        }
5533
5534        return res;
5535}
5536
5537static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5538{
5539        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5540}
5541
5542static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5543{
5544        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5545}
5546
5547static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5548{
5549        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5550}
5551
5552static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5553{
5554        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5555}
5556
5557static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5558{
5559        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5560}
5561
5562static unsigned long emulator_get_cached_segment_base(
5563        struct x86_emulate_ctxt *ctxt, int seg)
5564{
5565        return get_segment_base(emul_to_vcpu(ctxt), seg);
5566}
5567
5568static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5569                                 struct desc_struct *desc, u32 *base3,
5570                                 int seg)
5571{
5572        struct kvm_segment var;
5573
5574        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5575        *selector = var.selector;
5576
5577        if (var.unusable) {
5578                memset(desc, 0, sizeof(*desc));
5579                if (base3)
5580                        *base3 = 0;
5581                return false;
5582        }
5583
5584        if (var.g)
5585                var.limit >>= 12;
5586        set_desc_limit(desc, var.limit);
5587        set_desc_base(desc, (unsigned long)var.base);
5588#ifdef CONFIG_X86_64
5589        if (base3)
5590                *base3 = var.base >> 32;
5591#endif
5592        desc->type = var.type;
5593        desc->s = var.s;
5594        desc->dpl = var.dpl;
5595        desc->p = var.present;
5596        desc->avl = var.avl;
5597        desc->l = var.l;
5598        desc->d = var.db;
5599        desc->g = var.g;
5600
5601        return true;
5602}
5603
5604static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5605                                 struct desc_struct *desc, u32 base3,
5606                                 int seg)
5607{
5608        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5609        struct kvm_segment var;
5610
5611        var.selector = selector;
5612        var.base = get_desc_base(desc);
5613#ifdef CONFIG_X86_64
5614        var.base |= ((u64)base3) << 32;
5615#endif
5616        var.limit = get_desc_limit(desc);
5617        if (desc->g)
5618                var.limit = (var.limit << 12) | 0xfff;
5619        var.type = desc->type;
5620        var.dpl = desc->dpl;
5621        var.db = desc->d;
5622        var.s = desc->s;
5623        var.l = desc->l;
5624        var.g = desc->g;
5625        var.avl = desc->avl;
5626        var.present = desc->p;
5627        var.unusable = !var.present;
5628        var.padding = 0;
5629
5630        kvm_set_segment(vcpu, &var, seg);
5631        return;
5632}
5633
5634static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5635                            u32 msr_index, u64 *pdata)
5636{
5637        struct msr_data msr;
5638        int r;
5639
5640        msr.index = msr_index;
5641        msr.host_initiated = false;
5642        r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5643        if (r)
5644                return r;
5645
5646        *pdata = msr.data;
5647        return 0;
5648}
5649
5650static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5651                            u32 msr_index, u64 data)
5652{
5653        struct msr_data msr;
5654
5655        msr.data = data;
5656        msr.index = msr_index;
5657        msr.host_initiated = false;
5658        return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5659}
5660
5661static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5662{
5663        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5664
5665        return vcpu->arch.smbase;
5666}
5667
5668static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5669{
5670        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5671
5672        vcpu->arch.smbase = smbase;
5673}
5674
5675static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5676                              u32 pmc)
5677{
5678        return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5679}
5680
5681static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5682                             u32 pmc, u64 *pdata)
5683{
5684        return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5685}
5686
5687static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5688{
5689        emul_to_vcpu(ctxt)->arch.halt_request = 1;
5690}
5691
5692static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5693                              struct x86_instruction_info *info,
5694                              enum x86_intercept_stage stage)
5695{
5696        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5697}
5698
5699static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5700                        u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5701{
5702        return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5703}
5704
5705static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5706{
5707        return kvm_register_read(emul_to_vcpu(ctxt), reg);
5708}
5709
5710static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5711{
5712        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5713}
5714
5715static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5716{
5717        kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5718}
5719
5720static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5721{
5722        return emul_to_vcpu(ctxt)->arch.hflags;
5723}
5724
5725static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5726{
5727        kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5728}
5729
5730static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5731{
5732        return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5733}
5734
5735static const struct x86_emulate_ops emulate_ops = {
5736        .read_gpr            = emulator_read_gpr,
5737        .write_gpr           = emulator_write_gpr,
5738        .read_std            = emulator_read_std,
5739        .write_std           = emulator_write_std,
5740        .read_phys           = kvm_read_guest_phys_system,
5741        .fetch               = kvm_fetch_guest_virt,
5742        .read_emulated       = emulator_read_emulated,
5743        .write_emulated      = emulator_write_emulated,
5744        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5745        .invlpg              = emulator_invlpg,
5746        .pio_in_emulated     = emulator_pio_in_emulated,
5747        .pio_out_emulated    = emulator_pio_out_emulated,
5748        .get_segment         = emulator_get_segment,
5749        .set_segment         = emulator_set_segment,
5750        .get_cached_segment_base = emulator_get_cached_segment_base,
5751        .get_gdt             = emulator_get_gdt,
5752        .get_idt             = emulator_get_idt,
5753        .set_gdt             = emulator_set_gdt,
5754        .set_idt             = emulator_set_idt,
5755        .get_cr              = emulator_get_cr,
5756        .set_cr              = emulator_set_cr,
5757        .cpl                 = emulator_get_cpl,
5758        .get_dr              = emulator_get_dr,
5759        .set_dr              = emulator_set_dr,
5760        .get_smbase          = emulator_get_smbase,
5761        .set_smbase          = emulator_set_smbase,
5762        .set_msr             = emulator_set_msr,
5763        .get_msr             = emulator_get_msr,
5764        .check_pmc           = emulator_check_pmc,
5765        .read_pmc            = emulator_read_pmc,
5766        .halt                = emulator_halt,
5767        .wbinvd              = emulator_wbinvd,
5768        .fix_hypercall       = emulator_fix_hypercall,
5769        .intercept           = emulator_intercept,
5770        .get_cpuid           = emulator_get_cpuid,
5771        .set_nmi_mask        = emulator_set_nmi_mask,
5772        .get_hflags          = emulator_get_hflags,
5773        .set_hflags          = emulator_set_hflags,
5774        .pre_leave_smm       = emulator_pre_leave_smm,
5775};
5776
5777static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5778{
5779        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5780        /*
5781         * an sti; sti; sequence only disable interrupts for the first
5782         * instruction. So, if the last instruction, be it emulated or
5783         * not, left the system with the INT_STI flag enabled, it
5784         * means that the last instruction is an sti. We should not
5785         * leave the flag on in this case. The same goes for mov ss
5786         */
5787        if (int_shadow & mask)
5788                mask = 0;
5789        if (unlikely(int_shadow || mask)) {
5790                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5791                if (!mask)
5792                        kvm_make_request(KVM_REQ_EVENT, vcpu);
5793        }
5794}
5795
5796static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5797{
5798        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5799        if (ctxt->exception.vector == PF_VECTOR)
5800                return kvm_propagate_fault(vcpu, &ctxt->exception);
5801
5802        if (ctxt->exception.error_code_valid)
5803                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5804                                      ctxt->exception.error_code);
5805        else
5806                kvm_queue_exception(vcpu, ctxt->exception.vector);
5807        return false;
5808}
5809
5810static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5811{
5812        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5813        int cs_db, cs_l;
5814
5815        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5816
5817        ctxt->eflags = kvm_get_rflags(vcpu);
5818        ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5819
5820        ctxt->eip = kvm_rip_read(vcpu);
5821        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5822                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5823                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5824                     cs_db                              ? X86EMUL_MODE_PROT32 :
5825                                                          X86EMUL_MODE_PROT16;
5826        BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5827        BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5828        BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5829
5830        init_decode_cache(ctxt);
5831        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5832}
5833
5834int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5835{
5836        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5837        int ret;
5838
5839        init_emulate_ctxt(vcpu);
5840
5841        ctxt->op_bytes = 2;
5842        ctxt->ad_bytes = 2;
5843        ctxt->_eip = ctxt->eip + inc_eip;
5844        ret = emulate_int_real(ctxt, irq);
5845
5846        if (ret != X86EMUL_CONTINUE)
5847                return EMULATE_FAIL;
5848
5849        ctxt->eip = ctxt->_eip;
5850        kvm_rip_write(vcpu, ctxt->eip);
5851        kvm_set_rflags(vcpu, ctxt->eflags);
5852
5853        return EMULATE_DONE;
5854}
5855EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5856
5857static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5858{
5859        int r = EMULATE_DONE;
5860
5861        ++vcpu->stat.insn_emulation_fail;
5862        trace_kvm_emulate_insn_failed(vcpu);
5863
5864        if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5865                return EMULATE_FAIL;
5866
5867        if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5868                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5869                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5870                vcpu->run->internal.ndata = 0;
5871                r = EMULATE_USER_EXIT;
5872        }
5873
5874        kvm_queue_exception(vcpu, UD_VECTOR);
5875
5876        return r;
5877}
5878
5879static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5880                                  bool write_fault_to_shadow_pgtable,
5881                                  int emulation_type)
5882{
5883        gpa_t gpa = cr2;
5884        kvm_pfn_t pfn;
5885
5886        if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5887                return false;
5888
5889        if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5890                return false;
5891
5892        if (!vcpu->arch.mmu.direct_map) {
5893                /*
5894                 * Write permission should be allowed since only
5895                 * write access need to be emulated.
5896                 */
5897                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5898
5899                /*
5900                 * If the mapping is invalid in guest, let cpu retry
5901                 * it to generate fault.
5902                 */
5903                if (gpa == UNMAPPED_GVA)
5904                        return true;
5905        }
5906
5907        /*
5908         * Do not retry the unhandleable instruction if it faults on the
5909         * readonly host memory, otherwise it will goto a infinite loop:
5910         * retry instruction -> write #PF -> emulation fail -> retry
5911         * instruction -> ...
5912         */
5913        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5914
5915        /*
5916         * If the instruction failed on the error pfn, it can not be fixed,
5917         * report the error to userspace.
5918         */
5919        if (is_error_noslot_pfn(pfn))
5920                return false;
5921
5922        kvm_release_pfn_clean(pfn);
5923
5924        /* The instructions are well-emulated on direct mmu. */
5925        if (vcpu->arch.mmu.direct_map) {
5926                unsigned int indirect_shadow_pages;
5927
5928                spin_lock(&vcpu->kvm->mmu_lock);
5929                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5930                spin_unlock(&vcpu->kvm->mmu_lock);
5931
5932                if (indirect_shadow_pages)
5933                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5934
5935                return true;
5936        }
5937
5938        /*
5939         * if emulation was due to access to shadowed page table
5940         * and it failed try to unshadow page and re-enter the
5941         * guest to let CPU execute the instruction.
5942         */
5943        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5944
5945        /*
5946         * If the access faults on its page table, it can not
5947         * be fixed by unprotecting shadow page and it should
5948         * be reported to userspace.
5949         */
5950        return !write_fault_to_shadow_pgtable;
5951}
5952
5953static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5954                              unsigned long cr2,  int emulation_type)
5955{
5956        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5957        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5958
5959        last_retry_eip = vcpu->arch.last_retry_eip;
5960        last_retry_addr = vcpu->arch.last_retry_addr;
5961
5962        /*
5963         * If the emulation is caused by #PF and it is non-page_table
5964         * writing instruction, it means the VM-EXIT is caused by shadow
5965         * page protected, we can zap the shadow page and retry this
5966         * instruction directly.
5967         *
5968         * Note: if the guest uses a non-page-table modifying instruction
5969         * on the PDE that points to the instruction, then we will unmap
5970         * the instruction and go to an infinite loop. So, we cache the
5971         * last retried eip and the last fault address, if we meet the eip
5972         * and the address again, we can break out of the potential infinite
5973         * loop.
5974         */
5975        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5976
5977        if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5978                return false;
5979
5980        if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5981                return false;
5982
5983        if (x86_page_table_writing_insn(ctxt))
5984                return false;
5985
5986        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5987                return false;
5988
5989        vcpu->arch.last_retry_eip = ctxt->eip;
5990        vcpu->arch.last_retry_addr = cr2;
5991
5992        if (!vcpu->arch.mmu.direct_map)
5993                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5994
5995        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5996
5997        return true;
5998}
5999
6000static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6001static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6002
6003static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6004{
6005        if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6006                /* This is a good place to trace that we are exiting SMM.  */
6007                trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6008
6009                /* Process a latched INIT or SMI, if any.  */
6010                kvm_make_request(KVM_REQ_EVENT, vcpu);
6011        }
6012
6013        kvm_mmu_reset_context(vcpu);
6014}
6015
6016static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6017{
6018        unsigned changed = vcpu->arch.hflags ^ emul_flags;
6019
6020        vcpu->arch.hflags = emul_flags;
6021
6022        if (changed & HF_SMM_MASK)
6023                kvm_smm_changed(vcpu);
6024}
6025
6026static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6027                                unsigned long *db)
6028{
6029        u32 dr6 = 0;
6030        int i;
6031        u32 enable, rwlen;
6032
6033        enable = dr7;
6034        rwlen = dr7 >> 16;
6035        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6036                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6037                        dr6 |= (1 << i);
6038        return dr6;
6039}
6040
6041static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6042{
6043        struct kvm_run *kvm_run = vcpu->run;
6044
6045        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6046                kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6047                kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6048                kvm_run->debug.arch.exception = DB_VECTOR;
6049                kvm_run->exit_reason = KVM_EXIT_DEBUG;
6050                *r = EMULATE_USER_EXIT;
6051        } else {
6052                /*
6053                 * "Certain debug exceptions may clear bit 0-3.  The
6054                 * remaining contents of the DR6 register are never
6055                 * cleared by the processor".
6056                 */
6057                vcpu->arch.dr6 &= ~15;
6058                vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
6059                kvm_queue_exception(vcpu, DB_VECTOR);
6060        }
6061}
6062
6063int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6064{
6065        unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6066        int r = EMULATE_DONE;
6067
6068        kvm_x86_ops->skip_emulated_instruction(vcpu);
6069
6070        /*
6071         * rflags is the old, "raw" value of the flags.  The new value has
6072         * not been saved yet.
6073         *
6074         * This is correct even for TF set by the guest, because "the
6075         * processor will not generate this exception after the instruction
6076         * that sets the TF flag".
6077         */
6078        if (unlikely(rflags & X86_EFLAGS_TF))
6079                kvm_vcpu_do_singlestep(vcpu, &r);
6080        return r == EMULATE_DONE;
6081}
6082EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6083
6084static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6085{
6086        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6087            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6088                struct kvm_run *kvm_run = vcpu->run;
6089                unsigned long eip = kvm_get_linear_rip(vcpu);
6090                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6091                                           vcpu->arch.guest_debug_dr7,
6092                                           vcpu->arch.eff_db);
6093
6094                if (dr6 != 0) {
6095                        kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6096                        kvm_run->debug.arch.pc = eip;
6097                        kvm_run->debug.arch.exception = DB_VECTOR;
6098                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
6099                        *r = EMULATE_USER_EXIT;
6100                        return true;
6101                }
6102        }
6103
6104        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6105            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6106                unsigned long eip = kvm_get_linear_rip(vcpu);
6107                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6108                                           vcpu->arch.dr7,
6109                                           vcpu->arch.db);
6110
6111                if (dr6 != 0) {
6112                        vcpu->arch.dr6 &= ~15;
6113                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
6114                        kvm_queue_exception(vcpu, DB_VECTOR);
6115                        *r = EMULATE_DONE;
6116                        return true;
6117                }
6118        }
6119
6120        return false;
6121}
6122
6123static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6124{
6125        switch (ctxt->opcode_len) {
6126        case 1:
6127                switch (ctxt->b) {
6128                case 0xe4:      /* IN */
6129                case 0xe5:
6130                case 0xec:
6131                case 0xed:
6132                case 0xe6:      /* OUT */
6133                case 0xe7:
6134                case 0xee:
6135                case 0xef:
6136                case 0x6c:      /* INS */
6137                case 0x6d:
6138                case 0x6e:      /* OUTS */
6139                case 0x6f:
6140                        return true;
6141                }
6142                break;
6143        case 2:
6144                switch (ctxt->b) {
6145                case 0x33:      /* RDPMC */
6146                        return true;
6147                }
6148                break;
6149        }
6150
6151        return false;
6152}
6153
6154int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6155                            unsigned long cr2,
6156                            int emulation_type,
6157                            void *insn,
6158                            int insn_len)
6159{
6160        int r;
6161        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6162        bool writeback = true;
6163        bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6164
6165        vcpu->arch.l1tf_flush_l1d = true;
6166
6167        /*
6168         * Clear write_fault_to_shadow_pgtable here to ensure it is
6169         * never reused.
6170         */
6171        vcpu->arch.write_fault_to_shadow_pgtable = false;
6172        kvm_clear_exception_queue(vcpu);
6173
6174        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6175                init_emulate_ctxt(vcpu);
6176
6177                /*
6178                 * We will reenter on the same instruction since
6179                 * we do not set complete_userspace_io.  This does not
6180                 * handle watchpoints yet, those would be handled in
6181                 * the emulate_ops.
6182                 */
6183                if (!(emulation_type & EMULTYPE_SKIP) &&
6184                    kvm_vcpu_check_breakpoint(vcpu, &r))
6185                        return r;
6186
6187                ctxt->interruptibility = 0;
6188                ctxt->have_exception = false;
6189                ctxt->exception.vector = -1;
6190                ctxt->perm_ok = false;
6191
6192                ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6193
6194                r = x86_decode_insn(ctxt, insn, insn_len);
6195
6196                trace_kvm_emulate_insn_start(vcpu);
6197                ++vcpu->stat.insn_emulation;
6198                if (r != EMULATION_OK)  {
6199                        if (emulation_type & EMULTYPE_TRAP_UD)
6200                                return EMULATE_FAIL;
6201                        if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6202                                                emulation_type))
6203                                return EMULATE_DONE;
6204                        if (ctxt->have_exception && inject_emulated_exception(vcpu))
6205                                return EMULATE_DONE;
6206                        if (emulation_type & EMULTYPE_SKIP)
6207                                return EMULATE_FAIL;
6208                        return handle_emulation_failure(vcpu, emulation_type);
6209                }
6210        }
6211
6212        if ((emulation_type & EMULTYPE_VMWARE) &&
6213            !is_vmware_backdoor_opcode(ctxt))
6214                return EMULATE_FAIL;
6215
6216        if (emulation_type & EMULTYPE_SKIP) {
6217                kvm_rip_write(vcpu, ctxt->_eip);
6218                if (ctxt->eflags & X86_EFLAGS_RF)
6219                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6220                return EMULATE_DONE;
6221        }
6222
6223        if (retry_instruction(ctxt, cr2, emulation_type))
6224                return EMULATE_DONE;
6225
6226        /* this is needed for vmware backdoor interface to work since it
6227           changes registers values  during IO operation */
6228        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6229                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6230                emulator_invalidate_register_cache(ctxt);
6231        }
6232
6233restart:
6234        /* Save the faulting GPA (cr2) in the address field */
6235        ctxt->exception.address = cr2;
6236
6237        r = x86_emulate_insn(ctxt);
6238
6239        if (r == EMULATION_INTERCEPTED)
6240                return EMULATE_DONE;
6241
6242        if (r == EMULATION_FAILED) {
6243                if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6244                                        emulation_type))
6245                        return EMULATE_DONE;
6246
6247                return handle_emulation_failure(vcpu, emulation_type);
6248        }
6249
6250        if (ctxt->have_exception) {
6251                r = EMULATE_DONE;
6252                if (inject_emulated_exception(vcpu))
6253                        return r;
6254        } else if (vcpu->arch.pio.count) {
6255                if (!vcpu->arch.pio.in) {
6256                        /* FIXME: return into emulator if single-stepping.  */
6257                        vcpu->arch.pio.count = 0;
6258                } else {
6259                        writeback = false;
6260                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
6261                }
6262                r = EMULATE_USER_EXIT;
6263        } else if (vcpu->mmio_needed) {
6264                if (!vcpu->mmio_is_write)
6265                        writeback = false;
6266                r = EMULATE_USER_EXIT;
6267                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6268        } else if (r == EMULATION_RESTART)
6269                goto restart;
6270        else
6271                r = EMULATE_DONE;
6272
6273        if (writeback) {
6274                unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6275                toggle_interruptibility(vcpu, ctxt->interruptibility);
6276                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6277                kvm_rip_write(vcpu, ctxt->eip);
6278                if (r == EMULATE_DONE &&
6279                    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6280                        kvm_vcpu_do_singlestep(vcpu, &r);
6281                if (!ctxt->have_exception ||
6282                    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6283                        __kvm_set_rflags(vcpu, ctxt->eflags);
6284
6285                /*
6286                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6287                 * do nothing, and it will be requested again as soon as
6288                 * the shadow expires.  But we still need to check here,
6289                 * because POPF has no interrupt shadow.
6290                 */
6291                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6292                        kvm_make_request(KVM_REQ_EVENT, vcpu);
6293        } else
6294                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6295
6296        return r;
6297}
6298
6299int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6300{
6301        return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6302}
6303EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6304
6305int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6306                                        void *insn, int insn_len)
6307{
6308        return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6309}
6310EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6311
6312static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6313                            unsigned short port)
6314{
6315        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6316        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6317                                            size, port, &val, 1);
6318        /* do not return to emulator after return from userspace */
6319        vcpu->arch.pio.count = 0;
6320        return ret;
6321}
6322
6323static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6324{
6325        unsigned long val;
6326
6327        /* We should only ever be called with arch.pio.count equal to 1 */
6328        BUG_ON(vcpu->arch.pio.count != 1);
6329
6330        /* For size less than 4 we merge, else we zero extend */
6331        val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6332                                        : 0;
6333
6334        /*
6335         * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6336         * the copy and tracing
6337         */
6338        emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6339                                 vcpu->arch.pio.port, &val, 1);
6340        kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6341
6342        return 1;
6343}
6344
6345static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6346                           unsigned short port)
6347{
6348        unsigned long val;
6349        int ret;
6350
6351        /* For size less than 4 we merge, else we zero extend */
6352        val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6353
6354        ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6355                                       &val, 1);
6356        if (ret) {
6357                kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6358                return ret;
6359        }
6360
6361        vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6362
6363        return 0;
6364}
6365
6366int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6367{
6368        int ret = kvm_skip_emulated_instruction(vcpu);
6369
6370        /*
6371         * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6372         * KVM_EXIT_DEBUG here.
6373         */
6374        if (in)
6375                return kvm_fast_pio_in(vcpu, size, port) && ret;
6376        else
6377                return kvm_fast_pio_out(vcpu, size, port) && ret;
6378}
6379EXPORT_SYMBOL_GPL(kvm_fast_pio);
6380
6381static int kvmclock_cpu_down_prep(unsigned int cpu)
6382{
6383        __this_cpu_write(cpu_tsc_khz, 0);
6384        return 0;
6385}
6386
6387static void tsc_khz_changed(void *data)
6388{
6389        struct cpufreq_freqs *freq = data;
6390        unsigned long khz = 0;
6391
6392        if (data)
6393                khz = freq->new;
6394        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6395                khz = cpufreq_quick_get(raw_smp_processor_id());
6396        if (!khz)
6397                khz = tsc_khz;
6398        __this_cpu_write(cpu_tsc_khz, khz);
6399}
6400
6401#ifdef CONFIG_X86_64
6402static void kvm_hyperv_tsc_notifier(void)
6403{
6404        struct kvm *kvm;
6405        struct kvm_vcpu *vcpu;
6406        int cpu;
6407
6408        spin_lock(&kvm_lock);
6409        list_for_each_entry(kvm, &vm_list, vm_list)
6410                kvm_make_mclock_inprogress_request(kvm);
6411
6412        hyperv_stop_tsc_emulation();
6413
6414        /* TSC frequency always matches when on Hyper-V */
6415        for_each_present_cpu(cpu)
6416                per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6417        kvm_max_guest_tsc_khz = tsc_khz;
6418
6419        list_for_each_entry(kvm, &vm_list, vm_list) {
6420                struct kvm_arch *ka = &kvm->arch;
6421
6422                spin_lock(&ka->pvclock_gtod_sync_lock);
6423
6424                pvclock_update_vm_gtod_copy(kvm);
6425
6426                kvm_for_each_vcpu(cpu, vcpu, kvm)
6427                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6428
6429                kvm_for_each_vcpu(cpu, vcpu, kvm)
6430                        kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6431
6432                spin_unlock(&ka->pvclock_gtod_sync_lock);
6433        }
6434        spin_unlock(&kvm_lock);
6435}
6436#endif
6437
6438static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6439                                     void *data)
6440{
6441        struct cpufreq_freqs *freq = data;
6442        struct kvm *kvm;
6443        struct kvm_vcpu *vcpu;
6444        int i, send_ipi = 0;
6445
6446        /*
6447         * We allow guests to temporarily run on slowing clocks,
6448         * provided we notify them after, or to run on accelerating
6449         * clocks, provided we notify them before.  Thus time never
6450         * goes backwards.
6451         *
6452         * However, we have a problem.  We can't atomically update
6453         * the frequency of a given CPU from this function; it is
6454         * merely a notifier, which can be called from any CPU.
6455         * Changing the TSC frequency at arbitrary points in time
6456         * requires a recomputation of local variables related to
6457         * the TSC for each VCPU.  We must flag these local variables
6458         * to be updated and be sure the update takes place with the
6459         * new frequency before any guests proceed.
6460         *
6461         * Unfortunately, the combination of hotplug CPU and frequency
6462         * change creates an intractable locking scenario; the order
6463         * of when these callouts happen is undefined with respect to
6464         * CPU hotplug, and they can race with each other.  As such,
6465         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6466         * undefined; you can actually have a CPU frequency change take
6467         * place in between the computation of X and the setting of the
6468         * variable.  To protect against this problem, all updates of
6469         * the per_cpu tsc_khz variable are done in an interrupt
6470         * protected IPI, and all callers wishing to update the value
6471         * must wait for a synchronous IPI to complete (which is trivial
6472         * if the caller is on the CPU already).  This establishes the
6473         * necessary total order on variable updates.
6474         *
6475         * Note that because a guest time update may take place
6476         * anytime after the setting of the VCPU's request bit, the
6477         * correct TSC value must be set before the request.  However,
6478         * to ensure the update actually makes it to any guest which
6479         * starts running in hardware virtualization between the set
6480         * and the acquisition of the spinlock, we must also ping the
6481         * CPU after setting the request bit.
6482         *
6483         */
6484
6485        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6486                return 0;
6487        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6488                return 0;
6489
6490        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6491
6492        spin_lock(&kvm_lock);
6493        list_for_each_entry(kvm, &vm_list, vm_list) {
6494                kvm_for_each_vcpu(i, vcpu, kvm) {
6495                        if (vcpu->cpu != freq->cpu)
6496                                continue;
6497                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6498                        if (vcpu->cpu != smp_processor_id())
6499                                send_ipi = 1;
6500                }
6501        }
6502        spin_unlock(&kvm_lock);
6503
6504        if (freq->old < freq->new && send_ipi) {
6505                /*
6506                 * We upscale the frequency.  Must make the guest
6507                 * doesn't see old kvmclock values while running with
6508                 * the new frequency, otherwise we risk the guest sees
6509                 * time go backwards.
6510                 *
6511                 * In case we update the frequency for another cpu
6512                 * (which might be in guest context) send an interrupt
6513                 * to kick the cpu out of guest context.  Next time
6514                 * guest context is entered kvmclock will be updated,
6515                 * so the guest will not see stale values.
6516                 */
6517                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6518        }
6519        return 0;
6520}
6521
6522static struct notifier_block kvmclock_cpufreq_notifier_block = {
6523        .notifier_call  = kvmclock_cpufreq_notifier
6524};
6525
6526static int kvmclock_cpu_online(unsigned int cpu)
6527{
6528        tsc_khz_changed(NULL);
6529        return 0;
6530}
6531
6532static void kvm_timer_init(void)
6533{
6534        max_tsc_khz = tsc_khz;
6535
6536        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6537#ifdef CONFIG_CPU_FREQ
6538                struct cpufreq_policy policy;
6539                int cpu;
6540
6541                memset(&policy, 0, sizeof(policy));
6542                cpu = get_cpu();
6543                cpufreq_get_policy(&policy, cpu);
6544                if (policy.cpuinfo.max_freq)
6545                        max_tsc_khz = policy.cpuinfo.max_freq;
6546                put_cpu();
6547#endif
6548                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6549                                          CPUFREQ_TRANSITION_NOTIFIER);
6550        }
6551        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6552
6553        cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6554                          kvmclock_cpu_online, kvmclock_cpu_down_prep);
6555}
6556
6557DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6558EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6559
6560int kvm_is_in_guest(void)
6561{
6562        return __this_cpu_read(current_vcpu) != NULL;
6563}
6564
6565static int kvm_is_user_mode(void)
6566{
6567        int user_mode = 3;
6568
6569        if (__this_cpu_read(current_vcpu))
6570                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6571
6572        return user_mode != 0;
6573}
6574
6575static unsigned long kvm_get_guest_ip(void)
6576{
6577        unsigned long ip = 0;
6578
6579        if (__this_cpu_read(current_vcpu))
6580                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6581
6582        return ip;
6583}
6584
6585static struct perf_guest_info_callbacks kvm_guest_cbs = {
6586        .is_in_guest            = kvm_is_in_guest,
6587        .is_user_mode           = kvm_is_user_mode,
6588        .get_guest_ip           = kvm_get_guest_ip,
6589};
6590
6591static void kvm_set_mmio_spte_mask(void)
6592{
6593        u64 mask;
6594        int maxphyaddr = boot_cpu_data.x86_phys_bits;
6595
6596        /*
6597         * Set the reserved bits and the present bit of an paging-structure
6598         * entry to generate page fault with PFER.RSV = 1.
6599         */
6600
6601        /*
6602         * Mask the uppermost physical address bit, which would be reserved as
6603         * long as the supported physical address width is less than 52.
6604         */
6605        mask = 1ull << 51;
6606
6607        /* Set the present bit. */
6608        mask |= 1ull;
6609
6610        /*
6611         * If reserved bit is not supported, clear the present bit to disable
6612         * mmio page fault.
6613         */
6614        if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6615                mask &= ~1ull;
6616
6617        kvm_mmu_set_mmio_spte_mask(mask, mask);
6618}
6619
6620#ifdef CONFIG_X86_64
6621static void pvclock_gtod_update_fn(struct work_struct *work)
6622{
6623        struct kvm *kvm;
6624
6625        struct kvm_vcpu *vcpu;
6626        int i;
6627
6628        spin_lock(&kvm_lock);
6629        list_for_each_entry(kvm, &vm_list, vm_list)
6630                kvm_for_each_vcpu(i, vcpu, kvm)
6631                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6632        atomic_set(&kvm_guest_has_master_clock, 0);
6633        spin_unlock(&kvm_lock);
6634}
6635
6636static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6637
6638/*
6639 * Notification about pvclock gtod data update.
6640 */
6641static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6642                               void *priv)
6643{
6644        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6645        struct timekeeper *tk = priv;
6646
6647        update_pvclock_gtod(tk);
6648
6649        /* disable master clock if host does not trust, or does not
6650         * use, TSC based clocksource.
6651         */
6652        if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6653            atomic_read(&kvm_guest_has_master_clock) != 0)
6654                queue_work(system_long_wq, &pvclock_gtod_work);
6655
6656        return 0;
6657}
6658
6659static struct notifier_block pvclock_gtod_notifier = {
6660        .notifier_call = pvclock_gtod_notify,
6661};
6662#endif
6663
6664int kvm_arch_init(void *opaque)
6665{
6666        int r;
6667        struct kvm_x86_ops *ops = opaque;
6668
6669        if (kvm_x86_ops) {
6670                printk(KERN_ERR "kvm: already loaded the other module\n");
6671                r = -EEXIST;
6672                goto out;
6673        }
6674
6675        if (!ops->cpu_has_kvm_support()) {
6676                printk(KERN_ERR "kvm: no hardware support\n");
6677                r = -EOPNOTSUPP;
6678                goto out;
6679        }
6680        if (ops->disabled_by_bios()) {
6681                printk(KERN_ERR "kvm: disabled by bios\n");
6682                r = -EOPNOTSUPP;
6683                goto out;
6684        }
6685
6686        r = -ENOMEM;
6687        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6688        if (!shared_msrs) {
6689                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6690                goto out;
6691        }
6692
6693        r = kvm_mmu_module_init();
6694        if (r)
6695                goto out_free_percpu;
6696
6697        kvm_set_mmio_spte_mask();
6698
6699        kvm_x86_ops = ops;
6700
6701        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6702                        PT_DIRTY_MASK, PT64_NX_MASK, 0,
6703                        PT_PRESENT_MASK, 0, sme_me_mask);
6704        kvm_timer_init();
6705
6706        perf_register_guest_info_callbacks(&kvm_guest_cbs);
6707
6708        if (boot_cpu_has(X86_FEATURE_XSAVE))
6709                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6710
6711        kvm_lapic_init();
6712#ifdef CONFIG_X86_64
6713        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6714
6715        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6716                set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6717#endif
6718
6719        return 0;
6720
6721out_free_percpu:
6722        free_percpu(shared_msrs);
6723out:
6724        return r;
6725}
6726
6727void kvm_arch_exit(void)
6728{
6729#ifdef CONFIG_X86_64
6730        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6731                clear_hv_tscchange_cb();
6732#endif
6733        kvm_lapic_exit();
6734        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6735
6736        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6737                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6738                                            CPUFREQ_TRANSITION_NOTIFIER);
6739        cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6740#ifdef CONFIG_X86_64
6741        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6742#endif
6743        kvm_x86_ops = NULL;
6744        kvm_mmu_module_exit();
6745        free_percpu(shared_msrs);
6746}
6747
6748int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6749{
6750        ++vcpu->stat.halt_exits;
6751        if (lapic_in_kernel(vcpu)) {
6752                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6753                return 1;
6754        } else {
6755                vcpu->run->exit_reason = KVM_EXIT_HLT;
6756                return 0;
6757        }
6758}
6759EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6760
6761int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6762{
6763        int ret = kvm_skip_emulated_instruction(vcpu);
6764        /*
6765         * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6766         * KVM_EXIT_DEBUG here.
6767         */
6768        return kvm_vcpu_halt(vcpu) && ret;
6769}
6770EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6771
6772#ifdef CONFIG_X86_64
6773static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6774                                unsigned long clock_type)
6775{
6776        struct kvm_clock_pairing clock_pairing;
6777        struct timespec64 ts;
6778        u64 cycle;
6779        int ret;
6780
6781        if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6782                return -KVM_EOPNOTSUPP;
6783
6784        if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6785                return -KVM_EOPNOTSUPP;
6786
6787        clock_pairing.sec = ts.tv_sec;
6788        clock_pairing.nsec = ts.tv_nsec;
6789        clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6790        clock_pairing.flags = 0;
6791
6792        ret = 0;
6793        if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6794                            sizeof(struct kvm_clock_pairing)))
6795                ret = -KVM_EFAULT;
6796
6797        return ret;
6798}
6799#endif
6800
6801/*
6802 * kvm_pv_kick_cpu_op:  Kick a vcpu.
6803 *
6804 * @apicid - apicid of vcpu to be kicked.
6805 */
6806static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6807{
6808        struct kvm_lapic_irq lapic_irq;
6809
6810        lapic_irq.shorthand = 0;
6811        lapic_irq.dest_mode = 0;
6812        lapic_irq.level = 0;
6813        lapic_irq.dest_id = apicid;
6814        lapic_irq.msi_redir_hint = false;
6815
6816        lapic_irq.delivery_mode = APIC_DM_REMRD;
6817        kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6818}
6819
6820void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6821{
6822        vcpu->arch.apicv_active = false;
6823        kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6824}
6825
6826int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6827{
6828        unsigned long nr, a0, a1, a2, a3, ret;
6829        int op_64_bit;
6830
6831        if (kvm_hv_hypercall_enabled(vcpu->kvm))
6832                return kvm_hv_hypercall(vcpu);
6833
6834        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6835        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6836        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6837        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6838        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6839
6840        trace_kvm_hypercall(nr, a0, a1, a2, a3);
6841
6842        op_64_bit = is_64_bit_mode(vcpu);
6843        if (!op_64_bit) {
6844                nr &= 0xFFFFFFFF;
6845                a0 &= 0xFFFFFFFF;
6846                a1 &= 0xFFFFFFFF;
6847                a2 &= 0xFFFFFFFF;
6848                a3 &= 0xFFFFFFFF;
6849        }
6850
6851        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6852                ret = -KVM_EPERM;
6853                goto out;
6854        }
6855
6856        switch (nr) {
6857        case KVM_HC_VAPIC_POLL_IRQ:
6858                ret = 0;
6859                break;
6860        case KVM_HC_KICK_CPU:
6861                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6862                ret = 0;
6863                break;
6864#ifdef CONFIG_X86_64
6865        case KVM_HC_CLOCK_PAIRING:
6866                ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6867                break;
6868        case KVM_HC_SEND_IPI:
6869                ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
6870                break;
6871#endif
6872        default:
6873                ret = -KVM_ENOSYS;
6874                break;
6875        }
6876out:
6877        if (!op_64_bit)
6878                ret = (u32)ret;
6879        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6880
6881        ++vcpu->stat.hypercalls;
6882        return kvm_skip_emulated_instruction(vcpu);
6883}
6884EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6885
6886static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6887{
6888        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6889        char instruction[3];
6890        unsigned long rip = kvm_rip_read(vcpu);
6891
6892        kvm_x86_ops->patch_hypercall(vcpu, instruction);
6893
6894        return emulator_write_emulated(ctxt, rip, instruction, 3,
6895                &ctxt->exception);
6896}
6897
6898static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6899{
6900        return vcpu->run->request_interrupt_window &&
6901                likely(!pic_in_kernel(vcpu->kvm));
6902}
6903
6904static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6905{
6906        struct kvm_run *kvm_run = vcpu->run;
6907
6908        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6909        kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6910        kvm_run->cr8 = kvm_get_cr8(vcpu);
6911        kvm_run->apic_base = kvm_get_apic_base(vcpu);
6912        kvm_run->ready_for_interrupt_injection =
6913                pic_in_kernel(vcpu->kvm) ||
6914                kvm_vcpu_ready_for_interrupt_injection(vcpu);
6915}
6916
6917static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6918{
6919        int max_irr, tpr;
6920
6921        if (!kvm_x86_ops->update_cr8_intercept)
6922                return;
6923
6924        if (!lapic_in_kernel(vcpu))
6925                return;
6926
6927        if (vcpu->arch.apicv_active)
6928                return;
6929
6930        if (!vcpu->arch.apic->vapic_addr)
6931                max_irr = kvm_lapic_find_highest_irr(vcpu);
6932        else
6933                max_irr = -1;
6934
6935        if (max_irr != -1)
6936                max_irr >>= 4;
6937
6938        tpr = kvm_lapic_get_cr8(vcpu);
6939
6940        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6941}
6942
6943static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6944{
6945        int r;
6946
6947        /* try to reinject previous events if any */
6948
6949        if (vcpu->arch.exception.injected)
6950                kvm_x86_ops->queue_exception(vcpu);
6951        /*
6952         * Do not inject an NMI or interrupt if there is a pending
6953         * exception.  Exceptions and interrupts are recognized at
6954         * instruction boundaries, i.e. the start of an instruction.
6955         * Trap-like exceptions, e.g. #DB, have higher priority than
6956         * NMIs and interrupts, i.e. traps are recognized before an
6957         * NMI/interrupt that's pending on the same instruction.
6958         * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6959         * priority, but are only generated (pended) during instruction
6960         * execution, i.e. a pending fault-like exception means the
6961         * fault occurred on the *previous* instruction and must be
6962         * serviced prior to recognizing any new events in order to
6963         * fully complete the previous instruction.
6964         */
6965        else if (!vcpu->arch.exception.pending) {
6966                if (vcpu->arch.nmi_injected)
6967                        kvm_x86_ops->set_nmi(vcpu);
6968                else if (vcpu->arch.interrupt.injected)
6969                        kvm_x86_ops->set_irq(vcpu);
6970        }
6971
6972        /*
6973         * Call check_nested_events() even if we reinjected a previous event
6974         * in order for caller to determine if it should require immediate-exit
6975         * from L2 to L1 due to pending L1 events which require exit
6976         * from L2 to L1.
6977         */
6978        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6979                r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6980                if (r != 0)
6981                        return r;
6982        }
6983
6984        /* try to inject new event if pending */
6985        if (vcpu->arch.exception.pending) {
6986                trace_kvm_inj_exception(vcpu->arch.exception.nr,
6987                                        vcpu->arch.exception.has_error_code,
6988                                        vcpu->arch.exception.error_code);
6989
6990                WARN_ON_ONCE(vcpu->arch.exception.injected);
6991                vcpu->arch.exception.pending = false;
6992                vcpu->arch.exception.injected = true;
6993
6994                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6995                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6996                                             X86_EFLAGS_RF);
6997
6998                if (vcpu->arch.exception.nr == DB_VECTOR &&
6999                    (vcpu->arch.dr7 & DR7_GD)) {
7000                        vcpu->arch.dr7 &= ~DR7_GD;
7001                        kvm_update_dr7(vcpu);
7002                }
7003
7004                kvm_x86_ops->queue_exception(vcpu);
7005        }
7006
7007        /* Don't consider new event if we re-injected an event */
7008        if (kvm_event_needs_reinjection(vcpu))
7009                return 0;
7010
7011        if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7012            kvm_x86_ops->smi_allowed(vcpu)) {
7013                vcpu->arch.smi_pending = false;
7014                ++vcpu->arch.smi_count;
7015                enter_smm(vcpu);
7016        } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7017                --vcpu->arch.nmi_pending;
7018                vcpu->arch.nmi_injected = true;
7019                kvm_x86_ops->set_nmi(vcpu);
7020        } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7021                /*
7022                 * Because interrupts can be injected asynchronously, we are
7023                 * calling check_nested_events again here to avoid a race condition.
7024                 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7025                 * proposal and current concerns.  Perhaps we should be setting
7026                 * KVM_REQ_EVENT only on certain events and not unconditionally?
7027                 */
7028                if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7029                        r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7030                        if (r != 0)
7031                                return r;
7032                }
7033                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7034                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7035                                            false);
7036                        kvm_x86_ops->set_irq(vcpu);
7037                }
7038        }
7039
7040        return 0;
7041}
7042
7043static void process_nmi(struct kvm_vcpu *vcpu)
7044{
7045        unsigned limit = 2;
7046
7047        /*
7048         * x86 is limited to one NMI running, and one NMI pending after it.
7049         * If an NMI is already in progress, limit further NMIs to just one.
7050         * Otherwise, allow two (and we'll inject the first one immediately).
7051         */
7052        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7053                limit = 1;
7054
7055        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7056        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7057        kvm_make_request(KVM_REQ_EVENT, vcpu);
7058}
7059
7060static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7061{
7062        u32 flags = 0;
7063        flags |= seg->g       << 23;
7064        flags |= seg->db      << 22;
7065        flags |= seg->l       << 21;
7066        flags |= seg->avl     << 20;
7067        flags |= seg->present << 15;
7068        flags |= seg->dpl     << 13;
7069        flags |= seg->s       << 12;
7070        flags |= seg->type    << 8;
7071        return flags;
7072}
7073
7074static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7075{
7076        struct kvm_segment seg;
7077        int offset;
7078
7079        kvm_get_segment(vcpu, &seg, n);
7080        put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7081
7082        if (n < 3)
7083                offset = 0x7f84 + n * 12;
7084        else
7085                offset = 0x7f2c + (n - 3) * 12;
7086
7087        put_smstate(u32, buf, offset + 8, seg.base);
7088        put_smstate(u32, buf, offset + 4, seg.limit);
7089        put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7090}
7091
7092#ifdef CONFIG_X86_64
7093static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7094{
7095        struct kvm_segment seg;
7096        int offset;
7097        u16 flags;
7098
7099        kvm_get_segment(vcpu, &seg, n);
7100        offset = 0x7e00 + n * 16;
7101
7102        flags = enter_smm_get_segment_flags(&seg) >> 8;
7103        put_smstate(u16, buf, offset, seg.selector);
7104        put_smstate(u16, buf, offset + 2, flags);
7105        put_smstate(u32, buf, offset + 4, seg.limit);
7106        put_smstate(u64, buf, offset + 8, seg.base);
7107}
7108#endif
7109
7110static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7111{
7112        struct desc_ptr dt;
7113        struct kvm_segment seg;
7114        unsigned long val;
7115        int i;
7116
7117        put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7118        put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7119        put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7120        put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7121
7122        for (i = 0; i < 8; i++)
7123                put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7124
7125        kvm_get_dr(vcpu, 6, &val);
7126        put_smstate(u32, buf, 0x7fcc, (u32)val);
7127        kvm_get_dr(vcpu, 7, &val);
7128        put_smstate(u32, buf, 0x7fc8, (u32)val);
7129
7130        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7131        put_smstate(u32, buf, 0x7fc4, seg.selector);
7132        put_smstate(u32, buf, 0x7f64, seg.base);
7133        put_smstate(u32, buf, 0x7f60, seg.limit);
7134        put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7135
7136        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7137        put_smstate(u32, buf, 0x7fc0, seg.selector);
7138        put_smstate(u32, buf, 0x7f80, seg.base);
7139        put_smstate(u32, buf, 0x7f7c, seg.limit);
7140        put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7141
7142        kvm_x86_ops->get_gdt(vcpu, &dt);
7143        put_smstate(u32, buf, 0x7f74, dt.address);
7144        put_smstate(u32, buf, 0x7f70, dt.size);
7145
7146        kvm_x86_ops->get_idt(vcpu, &dt);
7147        put_smstate(u32, buf, 0x7f58, dt.address);
7148        put_smstate(u32, buf, 0x7f54, dt.size);
7149
7150        for (i = 0; i < 6; i++)
7151                enter_smm_save_seg_32(vcpu, buf, i);
7152
7153        put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7154
7155        /* revision id */
7156        put_smstate(u32, buf, 0x7efc, 0x00020000);
7157        put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7158}
7159
7160static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7161{
7162#ifdef CONFIG_X86_64
7163        struct desc_ptr dt;
7164        struct kvm_segment seg;
7165        unsigned long val;
7166        int i;
7167
7168        for (i = 0; i < 16; i++)
7169                put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7170
7171        put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7172        put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7173
7174        kvm_get_dr(vcpu, 6, &val);
7175        put_smstate(u64, buf, 0x7f68, val);
7176        kvm_get_dr(vcpu, 7, &val);
7177        put_smstate(u64, buf, 0x7f60, val);
7178
7179        put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7180        put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7181        put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7182
7183        put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7184
7185        /* revision id */
7186        put_smstate(u32, buf, 0x7efc, 0x00020064);
7187
7188        put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7189
7190        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7191        put_smstate(u16, buf, 0x7e90, seg.selector);
7192        put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7193        put_smstate(u32, buf, 0x7e94, seg.limit);
7194        put_smstate(u64, buf, 0x7e98, seg.base);
7195
7196        kvm_x86_ops->get_idt(vcpu, &dt);
7197        put_smstate(u32, buf, 0x7e84, dt.size);
7198        put_smstate(u64, buf, 0x7e88, dt.address);
7199
7200        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7201        put_smstate(u16, buf, 0x7e70, seg.selector);
7202        put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7203        put_smstate(u32, buf, 0x7e74, seg.limit);
7204        put_smstate(u64, buf, 0x7e78, seg.base);
7205
7206        kvm_x86_ops->get_gdt(vcpu, &dt);
7207        put_smstate(u32, buf, 0x7e64, dt.size);
7208        put_smstate(u64, buf, 0x7e68, dt.address);
7209
7210        for (i = 0; i < 6; i++)
7211                enter_smm_save_seg_64(vcpu, buf, i);
7212#else
7213        WARN_ON_ONCE(1);
7214#endif
7215}
7216
7217static void enter_smm(struct kvm_vcpu *vcpu)
7218{
7219        struct kvm_segment cs, ds;
7220        struct desc_ptr dt;
7221        char buf[512];
7222        u32 cr0;
7223
7224        trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7225        memset(buf, 0, 512);
7226        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7227                enter_smm_save_state_64(vcpu, buf);
7228        else
7229                enter_smm_save_state_32(vcpu, buf);
7230
7231        /*
7232         * Give pre_enter_smm() a chance to make ISA-specific changes to the
7233         * vCPU state (e.g. leave guest mode) after we've saved the state into
7234         * the SMM state-save area.
7235         */
7236        kvm_x86_ops->pre_enter_smm(vcpu, buf);
7237
7238        vcpu->arch.hflags |= HF_SMM_MASK;
7239        kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7240
7241        if (kvm_x86_ops->get_nmi_mask(vcpu))
7242                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7243        else
7244                kvm_x86_ops->set_nmi_mask(vcpu, true);
7245
7246        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7247        kvm_rip_write(vcpu, 0x8000);
7248
7249        cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7250        kvm_x86_ops->set_cr0(vcpu, cr0);
7251        vcpu->arch.cr0 = cr0;
7252
7253        kvm_x86_ops->set_cr4(vcpu, 0);
7254
7255        /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7256        dt.address = dt.size = 0;
7257        kvm_x86_ops->set_idt(vcpu, &dt);
7258
7259        __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7260
7261        cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7262        cs.base = vcpu->arch.smbase;
7263
7264        ds.selector = 0;
7265        ds.base = 0;
7266
7267        cs.limit    = ds.limit = 0xffffffff;
7268        cs.type     = ds.type = 0x3;
7269        cs.dpl      = ds.dpl = 0;
7270        cs.db       = ds.db = 0;
7271        cs.s        = ds.s = 1;
7272        cs.l        = ds.l = 0;
7273        cs.g        = ds.g = 1;
7274        cs.avl      = ds.avl = 0;
7275        cs.present  = ds.present = 1;
7276        cs.unusable = ds.unusable = 0;
7277        cs.padding  = ds.padding = 0;
7278
7279        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7280        kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7281        kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7282        kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7283        kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7284        kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7285
7286        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7287                kvm_x86_ops->set_efer(vcpu, 0);
7288
7289        kvm_update_cpuid(vcpu);
7290        kvm_mmu_reset_context(vcpu);
7291}
7292
7293static void process_smi(struct kvm_vcpu *vcpu)
7294{
7295        vcpu->arch.smi_pending = true;
7296        kvm_make_request(KVM_REQ_EVENT, vcpu);
7297}
7298
7299void kvm_make_scan_ioapic_request(struct kvm *kvm)
7300{
7301        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7302}
7303
7304static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7305{
7306        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7307                return;
7308
7309        bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7310
7311        if (irqchip_split(vcpu->kvm))
7312                kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7313        else {
7314                if (vcpu->arch.apicv_active)
7315                        kvm_x86_ops->sync_pir_to_irr(vcpu);
7316                kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7317        }
7318
7319        if (is_guest_mode(vcpu))
7320                vcpu->arch.load_eoi_exitmap_pending = true;
7321        else
7322                kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7323}
7324
7325static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7326{
7327        u64 eoi_exit_bitmap[4];
7328
7329        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7330                return;
7331
7332        bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7333                  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7334        kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7335}
7336
7337int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7338                unsigned long start, unsigned long end,
7339                bool blockable)
7340{
7341        unsigned long apic_address;
7342
7343        /*
7344         * The physical address of apic access page is stored in the VMCS.
7345         * Update it when it becomes invalid.
7346         */
7347        apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7348        if (start <= apic_address && apic_address < end)
7349                kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7350
7351        return 0;
7352}
7353
7354void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7355{
7356        struct page *page = NULL;
7357
7358        if (!lapic_in_kernel(vcpu))
7359                return;
7360
7361        if (!kvm_x86_ops->set_apic_access_page_addr)
7362                return;
7363
7364        page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7365        if (is_error_page(page))
7366                return;
7367        kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7368
7369        /*
7370         * Do not pin apic access page in memory, the MMU notifier
7371         * will call us again if it is migrated or swapped out.
7372         */
7373        put_page(page);
7374}
7375EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7376
7377void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7378{
7379        smp_send_reschedule(vcpu->cpu);
7380}
7381EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7382
7383/*
7384 * Returns 1 to let vcpu_run() continue the guest execution loop without
7385 * exiting to the userspace.  Otherwise, the value will be returned to the
7386 * userspace.
7387 */
7388static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7389{
7390        int r;
7391        bool req_int_win =
7392                dm_request_for_irq_injection(vcpu) &&
7393                kvm_cpu_accept_dm_intr(vcpu);
7394
7395        bool req_immediate_exit = false;
7396
7397        if (kvm_request_pending(vcpu)) {
7398                if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7399                        kvm_x86_ops->get_vmcs12_pages(vcpu);
7400                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7401                        kvm_mmu_unload(vcpu);
7402                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7403                        __kvm_migrate_timers(vcpu);
7404                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7405                        kvm_gen_update_masterclock(vcpu->kvm);
7406                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7407                        kvm_gen_kvmclock_update(vcpu);
7408                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7409                        r = kvm_guest_time_update(vcpu);
7410                        if (unlikely(r))
7411                                goto out;
7412                }
7413                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7414                        kvm_mmu_sync_roots(vcpu);
7415                if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7416                        kvm_mmu_load_cr3(vcpu);
7417                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7418                        kvm_vcpu_flush_tlb(vcpu, true);
7419                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7420                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7421                        r = 0;
7422                        goto out;
7423                }
7424                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7425                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7426                        vcpu->mmio_needed = 0;
7427                        r = 0;
7428                        goto out;
7429                }
7430                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7431                        /* Page is swapped out. Do synthetic halt */
7432                        vcpu->arch.apf.halted = true;
7433                        r = 1;
7434                        goto out;
7435                }
7436                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7437                        record_steal_time(vcpu);
7438                if (kvm_check_request(KVM_REQ_SMI, vcpu))
7439                        process_smi(vcpu);
7440                if (kvm_check_request(KVM_REQ_NMI, vcpu))
7441                        process_nmi(vcpu);
7442                if (kvm_check_request(KVM_REQ_PMU, vcpu))
7443                        kvm_pmu_handle_event(vcpu);
7444                if (kvm_check_request(KVM_REQ_PMI, vcpu))
7445                        kvm_pmu_deliver_pmi(vcpu);
7446                if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7447                        BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7448                        if (test_bit(vcpu->arch.pending_ioapic_eoi,
7449                                     vcpu->arch.ioapic_handled_vectors)) {
7450                                vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7451                                vcpu->run->eoi.vector =
7452                                                vcpu->arch.pending_ioapic_eoi;
7453                                r = 0;
7454                                goto out;
7455                        }
7456                }
7457                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7458                        vcpu_scan_ioapic(vcpu);
7459                if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7460                        vcpu_load_eoi_exitmap(vcpu);
7461                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7462                        kvm_vcpu_reload_apic_access_page(vcpu);
7463                if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7464                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7465                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7466                        r = 0;
7467                        goto out;
7468                }
7469                if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7470                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7471                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7472                        r = 0;
7473                        goto out;
7474                }
7475                if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7476                        vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7477                        vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7478                        r = 0;
7479                        goto out;
7480                }
7481
7482                /*
7483                 * KVM_REQ_HV_STIMER has to be processed after
7484                 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7485                 * depend on the guest clock being up-to-date
7486                 */
7487                if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7488                        kvm_hv_process_stimers(vcpu);
7489        }
7490
7491        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7492                ++vcpu->stat.req_event;
7493                kvm_apic_accept_events(vcpu);
7494                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7495                        r = 1;
7496                        goto out;
7497                }
7498
7499                if (inject_pending_event(vcpu, req_int_win) != 0)
7500                        req_immediate_exit = true;
7501                else {
7502                        /* Enable SMI/NMI/IRQ window open exits if needed.
7503                         *
7504                         * SMIs have three cases:
7505                         * 1) They can be nested, and then there is nothing to
7506                         *    do here because RSM will cause a vmexit anyway.
7507                         * 2) There is an ISA-specific reason why SMI cannot be
7508                         *    injected, and the moment when this changes can be
7509                         *    intercepted.
7510                         * 3) Or the SMI can be pending because
7511                         *    inject_pending_event has completed the injection
7512                         *    of an IRQ or NMI from the previous vmexit, and
7513                         *    then we request an immediate exit to inject the
7514                         *    SMI.
7515                         */
7516                        if (vcpu->arch.smi_pending && !is_smm(vcpu))
7517                                if (!kvm_x86_ops->enable_smi_window(vcpu))
7518                                        req_immediate_exit = true;
7519                        if (vcpu->arch.nmi_pending)
7520                                kvm_x86_ops->enable_nmi_window(vcpu);
7521                        if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7522                                kvm_x86_ops->enable_irq_window(vcpu);
7523                        WARN_ON(vcpu->arch.exception.pending);
7524                }
7525
7526                if (kvm_lapic_enabled(vcpu)) {
7527                        update_cr8_intercept(vcpu);
7528                        kvm_lapic_sync_to_vapic(vcpu);
7529                }
7530        }
7531
7532        r = kvm_mmu_reload(vcpu);
7533        if (unlikely(r)) {
7534                goto cancel_injection;
7535        }
7536
7537        preempt_disable();
7538
7539        kvm_x86_ops->prepare_guest_switch(vcpu);
7540
7541        /*
7542         * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7543         * IPI are then delayed after guest entry, which ensures that they
7544         * result in virtual interrupt delivery.
7545         */
7546        local_irq_disable();
7547        vcpu->mode = IN_GUEST_MODE;
7548
7549        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7550
7551        /*
7552         * 1) We should set ->mode before checking ->requests.  Please see
7553         * the comment in kvm_vcpu_exiting_guest_mode().
7554         *
7555         * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7556         * pairs with the memory barrier implicit in pi_test_and_set_on
7557         * (see vmx_deliver_posted_interrupt).
7558         *
7559         * 3) This also orders the write to mode from any reads to the page
7560         * tables done while the VCPU is running.  Please see the comment
7561         * in kvm_flush_remote_tlbs.
7562         */
7563        smp_mb__after_srcu_read_unlock();
7564
7565        /*
7566         * This handles the case where a posted interrupt was
7567         * notified with kvm_vcpu_kick.
7568         */
7569        if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7570                kvm_x86_ops->sync_pir_to_irr(vcpu);
7571
7572        if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7573            || need_resched() || signal_pending(current)) {
7574                vcpu->mode = OUTSIDE_GUEST_MODE;
7575                smp_wmb();
7576                local_irq_enable();
7577                preempt_enable();
7578                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7579                r = 1;
7580                goto cancel_injection;
7581        }
7582
7583        kvm_load_guest_xcr0(vcpu);
7584
7585        if (req_immediate_exit) {
7586                kvm_make_request(KVM_REQ_EVENT, vcpu);
7587                kvm_x86_ops->request_immediate_exit(vcpu);
7588        }
7589
7590        trace_kvm_entry(vcpu->vcpu_id);
7591        if (lapic_timer_advance_ns)
7592                wait_lapic_expire(vcpu);
7593        guest_enter_irqoff();
7594
7595        if (unlikely(vcpu->arch.switch_db_regs)) {
7596                set_debugreg(0, 7);
7597                set_debugreg(vcpu->arch.eff_db[0], 0);
7598                set_debugreg(vcpu->arch.eff_db[1], 1);
7599                set_debugreg(vcpu->arch.eff_db[2], 2);
7600                set_debugreg(vcpu->arch.eff_db[3], 3);
7601                set_debugreg(vcpu->arch.dr6, 6);
7602                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7603        }
7604
7605        kvm_x86_ops->run(vcpu);
7606
7607        /*
7608         * Do this here before restoring debug registers on the host.  And
7609         * since we do this before handling the vmexit, a DR access vmexit
7610         * can (a) read the correct value of the debug registers, (b) set
7611         * KVM_DEBUGREG_WONT_EXIT again.
7612         */
7613        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7614                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7615                kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7616                kvm_update_dr0123(vcpu);
7617                kvm_update_dr6(vcpu);
7618                kvm_update_dr7(vcpu);
7619                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7620        }
7621
7622        /*
7623         * If the guest has used debug registers, at least dr7
7624         * will be disabled while returning to the host.
7625         * If we don't have active breakpoints in the host, we don't
7626         * care about the messed up debug address registers. But if
7627         * we have some of them active, restore the old state.
7628         */
7629        if (hw_breakpoint_active())
7630                hw_breakpoint_restore();
7631
7632        vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7633
7634        vcpu->mode = OUTSIDE_GUEST_MODE;
7635        smp_wmb();
7636
7637        kvm_put_guest_xcr0(vcpu);
7638
7639        kvm_before_interrupt(vcpu);
7640        kvm_x86_ops->handle_external_intr(vcpu);
7641        kvm_after_interrupt(vcpu);
7642
7643        ++vcpu->stat.exits;
7644
7645        guest_exit_irqoff();
7646
7647        local_irq_enable();
7648        preempt_enable();
7649
7650        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7651
7652        /*
7653         * Profile KVM exit RIPs:
7654         */
7655        if (unlikely(prof_on == KVM_PROFILING)) {
7656                unsigned long rip = kvm_rip_read(vcpu);
7657                profile_hit(KVM_PROFILING, (void *)rip);
7658        }
7659
7660        if (unlikely(vcpu->arch.tsc_always_catchup))
7661                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7662
7663        if (vcpu->arch.apic_attention)
7664                kvm_lapic_sync_from_vapic(vcpu);
7665
7666        vcpu->arch.gpa_available = false;
7667        r = kvm_x86_ops->handle_exit(vcpu);
7668        return r;
7669
7670cancel_injection:
7671        kvm_x86_ops->cancel_injection(vcpu);
7672        if (unlikely(vcpu->arch.apic_attention))
7673                kvm_lapic_sync_from_vapic(vcpu);
7674out:
7675        return r;
7676}
7677
7678static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7679{
7680        if (!kvm_arch_vcpu_runnable(vcpu) &&
7681            (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7682                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7683                kvm_vcpu_block(vcpu);
7684                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7685
7686                if (kvm_x86_ops->post_block)
7687                        kvm_x86_ops->post_block(vcpu);
7688
7689                if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7690                        return 1;
7691        }
7692
7693        kvm_apic_accept_events(vcpu);
7694        switch(vcpu->arch.mp_state) {
7695        case KVM_MP_STATE_HALTED:
7696                vcpu->arch.pv.pv_unhalted = false;
7697                vcpu->arch.mp_state =
7698                        KVM_MP_STATE_RUNNABLE;
7699        case KVM_MP_STATE_RUNNABLE:
7700                vcpu->arch.apf.halted = false;
7701                break;
7702        case KVM_MP_STATE_INIT_RECEIVED:
7703                break;
7704        default:
7705                return -EINTR;
7706                break;
7707        }
7708        return 1;
7709}
7710
7711static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7712{
7713        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7714                kvm_x86_ops->check_nested_events(vcpu, false);
7715
7716        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7717                !vcpu->arch.apf.halted);
7718}
7719
7720static int vcpu_run(struct kvm_vcpu *vcpu)
7721{
7722        int r;
7723        struct kvm *kvm = vcpu->kvm;
7724
7725        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7726        vcpu->arch.l1tf_flush_l1d = true;
7727
7728        for (;;) {
7729                if (kvm_vcpu_running(vcpu)) {
7730                        r = vcpu_enter_guest(vcpu);
7731                } else {
7732                        r = vcpu_block(kvm, vcpu);
7733                }
7734
7735                if (r <= 0)
7736                        break;
7737
7738                kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7739                if (kvm_cpu_has_pending_timer(vcpu))
7740                        kvm_inject_pending_timer_irqs(vcpu);
7741
7742                if (dm_request_for_irq_injection(vcpu) &&
7743                        kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7744                        r = 0;
7745                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7746                        ++vcpu->stat.request_irq_exits;
7747                        break;
7748                }
7749
7750                kvm_check_async_pf_completion(vcpu);
7751
7752                if (signal_pending(current)) {
7753                        r = -EINTR;
7754                        vcpu->run->exit_reason = KVM_EXIT_INTR;
7755                        ++vcpu->stat.signal_exits;
7756                        break;
7757                }
7758                if (need_resched()) {
7759                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7760                        cond_resched();
7761                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7762                }
7763        }
7764
7765        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7766
7767        return r;
7768}
7769
7770static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7771{
7772        int r;
7773        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7774        r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7775        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7776        if (r != EMULATE_DONE)
7777                return 0;
7778        return 1;
7779}
7780
7781static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7782{
7783        BUG_ON(!vcpu->arch.pio.count);
7784
7785        return complete_emulated_io(vcpu);
7786}
7787
7788/*
7789 * Implements the following, as a state machine:
7790 *
7791 * read:
7792 *   for each fragment
7793 *     for each mmio piece in the fragment
7794 *       write gpa, len
7795 *       exit
7796 *       copy data
7797 *   execute insn
7798 *
7799 * write:
7800 *   for each fragment
7801 *     for each mmio piece in the fragment
7802 *       write gpa, len
7803 *       copy data
7804 *       exit
7805 */
7806static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7807{
7808        struct kvm_run *run = vcpu->run;
7809        struct kvm_mmio_fragment *frag;
7810        unsigned len;
7811
7812        BUG_ON(!vcpu->mmio_needed);
7813
7814        /* Complete previous fragment */
7815        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7816        len = min(8u, frag->len);
7817        if (!vcpu->mmio_is_write)
7818                memcpy(frag->data, run->mmio.data, len);
7819
7820        if (frag->len <= 8) {
7821                /* Switch to the next fragment. */
7822                frag++;
7823                vcpu->mmio_cur_fragment++;
7824        } else {
7825                /* Go forward to the next mmio piece. */
7826                frag->data += len;
7827                frag->gpa += len;
7828                frag->len -= len;
7829        }
7830
7831        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7832                vcpu->mmio_needed = 0;
7833
7834                /* FIXME: return into emulator if single-stepping.  */
7835                if (vcpu->mmio_is_write)
7836                        return 1;
7837                vcpu->mmio_read_completed = 1;
7838                return complete_emulated_io(vcpu);
7839        }
7840
7841        run->exit_reason = KVM_EXIT_MMIO;
7842        run->mmio.phys_addr = frag->gpa;
7843        if (vcpu->mmio_is_write)
7844                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7845        run->mmio.len = min(8u, frag->len);
7846        run->mmio.is_write = vcpu->mmio_is_write;
7847        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7848        return 0;
7849}
7850
7851/* Swap (qemu) user FPU context for the guest FPU context. */
7852static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7853{
7854        preempt_disable();
7855        copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7856        /* PKRU is separately restored in kvm_x86_ops->run.  */
7857        __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7858                                ~XFEATURE_MASK_PKRU);
7859        preempt_enable();
7860        trace_kvm_fpu(1);
7861}
7862
7863/* When vcpu_run ends, restore user space FPU context. */
7864static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7865{
7866        preempt_disable();
7867        copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7868        copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7869        preempt_enable();
7870        ++vcpu->stat.fpu_reload;
7871        trace_kvm_fpu(0);
7872}
7873
7874int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7875{
7876        int r;
7877
7878        vcpu_load(vcpu);
7879        kvm_sigset_activate(vcpu);
7880        kvm_load_guest_fpu(vcpu);
7881
7882        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7883                if (kvm_run->immediate_exit) {
7884                        r = -EINTR;
7885                        goto out;
7886                }
7887                kvm_vcpu_block(vcpu);
7888                kvm_apic_accept_events(vcpu);
7889                kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7890                r = -EAGAIN;
7891                if (signal_pending(current)) {
7892                        r = -EINTR;
7893                        vcpu->run->exit_reason = KVM_EXIT_INTR;
7894                        ++vcpu->stat.signal_exits;
7895                }
7896                goto out;
7897        }
7898
7899        if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7900                r = -EINVAL;
7901                goto out;
7902        }
7903
7904        if (vcpu->run->kvm_dirty_regs) {
7905                r = sync_regs(vcpu);
7906                if (r != 0)
7907                        goto out;
7908        }
7909
7910        /* re-sync apic's tpr */
7911        if (!lapic_in_kernel(vcpu)) {
7912                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7913                        r = -EINVAL;
7914                        goto out;
7915                }
7916        }
7917
7918        if (unlikely(vcpu->arch.complete_userspace_io)) {
7919                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7920                vcpu->arch.complete_userspace_io = NULL;
7921                r = cui(vcpu);
7922                if (r <= 0)
7923                        goto out;
7924        } else
7925                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7926
7927        if (kvm_run->immediate_exit)
7928                r = -EINTR;
7929        else
7930                r = vcpu_run(vcpu);
7931
7932out:
7933        kvm_put_guest_fpu(vcpu);
7934        if (vcpu->run->kvm_valid_regs)
7935                store_regs(vcpu);
7936        post_kvm_run_save(vcpu);
7937        kvm_sigset_deactivate(vcpu);
7938
7939        vcpu_put(vcpu);
7940        return r;
7941}
7942
7943static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7944{
7945        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7946                /*
7947                 * We are here if userspace calls get_regs() in the middle of
7948                 * instruction emulation. Registers state needs to be copied
7949                 * back from emulation context to vcpu. Userspace shouldn't do
7950                 * that usually, but some bad designed PV devices (vmware
7951                 * backdoor interface) need this to work
7952                 */
7953                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7954                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7955        }
7956        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7957        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7958        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7959        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7960        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7961        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7962        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7963        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7964#ifdef CONFIG_X86_64
7965        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7966        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7967        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7968        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7969        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7970        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7971        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7972        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7973#endif
7974
7975        regs->rip = kvm_rip_read(vcpu);
7976        regs->rflags = kvm_get_rflags(vcpu);
7977}
7978
7979int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7980{
7981        vcpu_load(vcpu);
7982        __get_regs(vcpu, regs);
7983        vcpu_put(vcpu);
7984        return 0;
7985}
7986
7987static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7988{
7989        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7990        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7991
7992        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7993        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7994        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7995        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7996        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7997        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7998        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7999        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8000#ifdef CONFIG_X86_64
8001        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8002        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8003        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8004        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8005        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8006        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8007        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8008        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8009#endif
8010
8011        kvm_rip_write(vcpu, regs->rip);
8012        kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8013
8014        vcpu->arch.exception.pending = false;
8015
8016        kvm_make_request(KVM_REQ_EVENT, vcpu);
8017}
8018
8019int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8020{
8021        vcpu_load(vcpu);
8022        __set_regs(vcpu, regs);
8023        vcpu_put(vcpu);
8024        return 0;
8025}
8026
8027void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8028{
8029        struct kvm_segment cs;
8030
8031        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8032        *db = cs.db;
8033        *l = cs.l;
8034}
8035EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8036
8037static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8038{
8039        struct desc_ptr dt;
8040
8041        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8042        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8043        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8044        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8045        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8046        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8047
8048        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8049        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8050
8051        kvm_x86_ops->get_idt(vcpu, &dt);
8052        sregs->idt.limit = dt.size;
8053        sregs->idt.base = dt.address;
8054        kvm_x86_ops->get_gdt(vcpu, &dt);
8055        sregs->gdt.limit = dt.size;
8056        sregs->gdt.base = dt.address;
8057
8058        sregs->cr0 = kvm_read_cr0(vcpu);
8059        sregs->cr2 = vcpu->arch.cr2;
8060        sregs->cr3 = kvm_read_cr3(vcpu);
8061        sregs->cr4 = kvm_read_cr4(vcpu);
8062        sregs->cr8 = kvm_get_cr8(vcpu);
8063        sregs->efer = vcpu->arch.efer;
8064        sregs->apic_base = kvm_get_apic_base(vcpu);
8065
8066        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8067
8068        if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8069                set_bit(vcpu->arch.interrupt.nr,
8070                        (unsigned long *)sregs->interrupt_bitmap);
8071}
8072
8073int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8074                                  struct kvm_sregs *sregs)
8075{
8076        vcpu_load(vcpu);
8077        __get_sregs(vcpu, sregs);
8078        vcpu_put(vcpu);
8079        return 0;
8080}
8081
8082int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8083                                    struct kvm_mp_state *mp_state)
8084{
8085        vcpu_load(vcpu);
8086
8087        kvm_apic_accept_events(vcpu);
8088        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8089                                        vcpu->arch.pv.pv_unhalted)
8090                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8091        else
8092                mp_state->mp_state = vcpu->arch.mp_state;
8093
8094        vcpu_put(vcpu);
8095        return 0;
8096}
8097
8098int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8099                                    struct kvm_mp_state *mp_state)
8100{
8101        int ret = -EINVAL;
8102
8103        vcpu_load(vcpu);
8104
8105        if (!lapic_in_kernel(vcpu) &&
8106            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8107                goto out;
8108
8109        /* INITs are latched while in SMM */
8110        if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8111            (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8112             mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8113                goto out;
8114
8115        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8116                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8117                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8118        } else
8119                vcpu->arch.mp_state = mp_state->mp_state;
8120        kvm_make_request(KVM_REQ_EVENT, vcpu);
8121
8122        ret = 0;
8123out:
8124        vcpu_put(vcpu);
8125        return ret;
8126}
8127
8128int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8129                    int reason, bool has_error_code, u32 error_code)
8130{
8131        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8132        int ret;
8133
8134        init_emulate_ctxt(vcpu);
8135
8136        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8137                                   has_error_code, error_code);
8138
8139        if (ret)
8140                return EMULATE_FAIL;
8141
8142        kvm_rip_write(vcpu, ctxt->eip);
8143        kvm_set_rflags(vcpu, ctxt->eflags);
8144        kvm_make_request(KVM_REQ_EVENT, vcpu);
8145        return EMULATE_DONE;
8146}
8147EXPORT_SYMBOL_GPL(kvm_task_switch);
8148
8149static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8150{
8151        if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8152                        (sregs->cr4 & X86_CR4_OSXSAVE))
8153                return  -EINVAL;
8154
8155        if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8156                /*
8157                 * When EFER.LME and CR0.PG are set, the processor is in
8158                 * 64-bit mode (though maybe in a 32-bit code segment).
8159                 * CR4.PAE and EFER.LMA must be set.
8160                 */
8161                if (!(sregs->cr4 & X86_CR4_PAE)
8162                    || !(sregs->efer & EFER_LMA))
8163                        return -EINVAL;
8164        } else {
8165                /*
8166                 * Not in 64-bit mode: EFER.LMA is clear and the code
8167                 * segment cannot be 64-bit.
8168                 */
8169                if (sregs->efer & EFER_LMA || sregs->cs.l)
8170                        return -EINVAL;
8171        }
8172
8173        return 0;
8174}
8175
8176static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8177{
8178        struct msr_data apic_base_msr;
8179        int mmu_reset_needed = 0;
8180        int cpuid_update_needed = 0;
8181        int pending_vec, max_bits, idx;
8182        struct desc_ptr dt;
8183        int ret = -EINVAL;
8184
8185        if (kvm_valid_sregs(vcpu, sregs))
8186                goto out;
8187
8188        apic_base_msr.data = sregs->apic_base;
8189        apic_base_msr.host_initiated = true;
8190        if (kvm_set_apic_base(vcpu, &apic_base_msr))
8191                goto out;
8192
8193        dt.size = sregs->idt.limit;
8194        dt.address = sregs->idt.base;
8195        kvm_x86_ops->set_idt(vcpu, &dt);
8196        dt.size = sregs->gdt.limit;
8197        dt.address = sregs->gdt.base;
8198        kvm_x86_ops->set_gdt(vcpu, &dt);
8199
8200        vcpu->arch.cr2 = sregs->cr2;
8201        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8202        vcpu->arch.cr3 = sregs->cr3;
8203        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8204
8205        kvm_set_cr8(vcpu, sregs->cr8);
8206
8207        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8208        kvm_x86_ops->set_efer(vcpu, sregs->efer);
8209
8210        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8211        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8212        vcpu->arch.cr0 = sregs->cr0;
8213
8214        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8215        cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8216                                (X86_CR4_OSXSAVE | X86_CR4_PKE));
8217        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8218        if (cpuid_update_needed)
8219                kvm_update_cpuid(vcpu);
8220
8221        idx = srcu_read_lock(&vcpu->kvm->srcu);
8222        if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8223                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8224                mmu_reset_needed = 1;
8225        }
8226        srcu_read_unlock(&vcpu->kvm->srcu, idx);
8227
8228        if (mmu_reset_needed)
8229                kvm_mmu_reset_context(vcpu);
8230
8231        max_bits = KVM_NR_INTERRUPTS;
8232        pending_vec = find_first_bit(
8233                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8234        if (pending_vec < max_bits) {
8235                kvm_queue_interrupt(vcpu, pending_vec, false);
8236                pr_debug("Set back pending irq %d\n", pending_vec);
8237        }
8238
8239        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8240        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8241        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8242        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8243        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8244        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8245
8246        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8247        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8248
8249        update_cr8_intercept(vcpu);
8250
8251        /* Older userspace won't unhalt the vcpu on reset. */
8252        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8253            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8254            !is_protmode(vcpu))
8255                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8256
8257        kvm_make_request(KVM_REQ_EVENT, vcpu);
8258
8259        ret = 0;
8260out:
8261        return ret;
8262}
8263
8264int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8265                                  struct kvm_sregs *sregs)
8266{
8267        int ret;
8268
8269        vcpu_load(vcpu);
8270        ret = __set_sregs(vcpu, sregs);
8271        vcpu_put(vcpu);
8272        return ret;
8273}
8274
8275int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8276                                        struct kvm_guest_debug *dbg)
8277{
8278        unsigned long rflags;
8279        int i, r;
8280
8281        vcpu_load(vcpu);
8282
8283        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8284                r = -EBUSY;
8285                if (vcpu->arch.exception.pending)
8286                        goto out;
8287                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8288                        kvm_queue_exception(vcpu, DB_VECTOR);
8289                else
8290                        kvm_queue_exception(vcpu, BP_VECTOR);
8291        }
8292
8293        /*
8294         * Read rflags as long as potentially injected trace flags are still
8295         * filtered out.
8296         */
8297        rflags = kvm_get_rflags(vcpu);
8298
8299        vcpu->guest_debug = dbg->control;
8300        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8301                vcpu->guest_debug = 0;
8302
8303        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8304                for (i = 0; i < KVM_NR_DB_REGS; ++i)
8305                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8306                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8307        } else {
8308                for (i = 0; i < KVM_NR_DB_REGS; i++)
8309                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8310        }
8311        kvm_update_dr7(vcpu);
8312
8313        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8314                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8315                        get_segment_base(vcpu, VCPU_SREG_CS);
8316
8317        /*
8318         * Trigger an rflags update that will inject or remove the trace
8319         * flags.
8320         */
8321        kvm_set_rflags(vcpu, rflags);
8322
8323        kvm_x86_ops->update_bp_intercept(vcpu);
8324
8325        r = 0;
8326
8327out:
8328        vcpu_put(vcpu);
8329        return r;
8330}
8331
8332/*
8333 * Translate a guest virtual address to a guest physical address.
8334 */
8335int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8336                                    struct kvm_translation *tr)
8337{
8338        unsigned long vaddr = tr->linear_address;
8339        gpa_t gpa;
8340        int idx;
8341
8342        vcpu_load(vcpu);
8343
8344        idx = srcu_read_lock(&vcpu->kvm->srcu);
8345        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8346        srcu_read_unlock(&vcpu->kvm->srcu, idx);
8347        tr->physical_address = gpa;
8348        tr->valid = gpa != UNMAPPED_GVA;
8349        tr->writeable = 1;
8350        tr->usermode = 0;
8351
8352        vcpu_put(vcpu);
8353        return 0;
8354}
8355
8356int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8357{
8358        struct fxregs_state *fxsave;
8359
8360        vcpu_load(vcpu);
8361
8362        fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8363        memcpy(fpu->fpr, fxsave->st_space, 128);
8364        fpu->fcw = fxsave->cwd;
8365        fpu->fsw = fxsave->swd;
8366        fpu->ftwx = fxsave->twd;
8367        fpu->last_opcode = fxsave->fop;
8368        fpu->last_ip = fxsave->rip;
8369        fpu->last_dp = fxsave->rdp;
8370        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8371
8372        vcpu_put(vcpu);
8373        return 0;
8374}
8375
8376int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8377{
8378        struct fxregs_state *fxsave;
8379
8380        vcpu_load(vcpu);
8381
8382        fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8383
8384        memcpy(fxsave->st_space, fpu->fpr, 128);
8385        fxsave->cwd = fpu->fcw;
8386        fxsave->swd = fpu->fsw;
8387        fxsave->twd = fpu->ftwx;
8388        fxsave->fop = fpu->last_opcode;
8389        fxsave->rip = fpu->last_ip;
8390        fxsave->rdp = fpu->last_dp;
8391        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8392
8393        vcpu_put(vcpu);
8394        return 0;
8395}
8396
8397static void store_regs(struct kvm_vcpu *vcpu)
8398{
8399        BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8400
8401        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8402                __get_regs(vcpu, &vcpu->run->s.regs.regs);
8403
8404        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8405                __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8406
8407        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8408                kvm_vcpu_ioctl_x86_get_vcpu_events(
8409                                vcpu, &vcpu->run->s.regs.events);
8410}
8411
8412static int sync_regs(struct kvm_vcpu *vcpu)
8413{
8414        if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8415                return -EINVAL;
8416
8417        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8418                __set_regs(vcpu, &vcpu->run->s.regs.regs);
8419                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8420        }
8421        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8422                if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8423                        return -EINVAL;
8424                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8425        }
8426        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8427                if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8428                                vcpu, &vcpu->run->s.regs.events))
8429                        return -EINVAL;
8430                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8431        }
8432
8433        return 0;
8434}
8435
8436static void fx_init(struct kvm_vcpu *vcpu)
8437{
8438        fpstate_init(&vcpu->arch.guest_fpu.state);
8439        if (boot_cpu_has(X86_FEATURE_XSAVES))
8440                vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8441                        host_xcr0 | XSTATE_COMPACTION_ENABLED;
8442
8443        /*
8444         * Ensure guest xcr0 is valid for loading
8445         */
8446        vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8447
8448        vcpu->arch.cr0 |= X86_CR0_ET;
8449}
8450
8451void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8452{
8453        void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8454
8455        kvmclock_reset(vcpu);
8456
8457        kvm_x86_ops->vcpu_free(vcpu);
8458        free_cpumask_var(wbinvd_dirty_mask);
8459}
8460
8461struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8462                                                unsigned int id)
8463{
8464        struct kvm_vcpu *vcpu;
8465
8466        if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8467                printk_once(KERN_WARNING
8468                "kvm: SMP vm created on host with unstable TSC; "
8469                "guest TSC will not be reliable\n");
8470
8471        vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8472
8473        return vcpu;
8474}
8475
8476int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8477{
8478        kvm_vcpu_mtrr_init(vcpu);
8479        vcpu_load(vcpu);
8480        kvm_vcpu_reset(vcpu, false);
8481        kvm_mmu_setup(vcpu);
8482        vcpu_put(vcpu);
8483        return 0;
8484}
8485
8486void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8487{
8488        struct msr_data msr;
8489        struct kvm *kvm = vcpu->kvm;
8490
8491        kvm_hv_vcpu_postcreate(vcpu);
8492
8493        if (mutex_lock_killable(&vcpu->mutex))
8494                return;
8495        vcpu_load(vcpu);
8496        msr.data = 0x0;
8497        msr.index = MSR_IA32_TSC;
8498        msr.host_initiated = true;
8499        kvm_write_tsc(vcpu, &msr);
8500        vcpu_put(vcpu);
8501        mutex_unlock(&vcpu->mutex);
8502
8503        if (!kvmclock_periodic_sync)
8504                return;
8505
8506        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8507                                        KVMCLOCK_SYNC_PERIOD);
8508}
8509
8510void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8511{
8512        vcpu->arch.apf.msr_val = 0;
8513
8514        vcpu_load(vcpu);
8515        kvm_mmu_unload(vcpu);
8516        vcpu_put(vcpu);
8517
8518        kvm_x86_ops->vcpu_free(vcpu);
8519}
8520
8521void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8522{
8523        kvm_lapic_reset(vcpu, init_event);
8524
8525        vcpu->arch.hflags = 0;
8526
8527        vcpu->arch.smi_pending = 0;
8528        vcpu->arch.smi_count = 0;
8529        atomic_set(&vcpu->arch.nmi_queued, 0);
8530        vcpu->arch.nmi_pending = 0;
8531        vcpu->arch.nmi_injected = false;
8532        kvm_clear_interrupt_queue(vcpu);
8533        kvm_clear_exception_queue(vcpu);
8534        vcpu->arch.exception.pending = false;
8535
8536        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8537        kvm_update_dr0123(vcpu);
8538        vcpu->arch.dr6 = DR6_INIT;
8539        kvm_update_dr6(vcpu);
8540        vcpu->arch.dr7 = DR7_FIXED_1;
8541        kvm_update_dr7(vcpu);
8542
8543        vcpu->arch.cr2 = 0;
8544
8545        kvm_make_request(KVM_REQ_EVENT, vcpu);
8546        vcpu->arch.apf.msr_val = 0;
8547        vcpu->arch.st.msr_val = 0;
8548
8549        kvmclock_reset(vcpu);
8550
8551        kvm_clear_async_pf_completion_queue(vcpu);
8552        kvm_async_pf_hash_reset(vcpu);
8553        vcpu->arch.apf.halted = false;
8554
8555        if (kvm_mpx_supported()) {
8556                void *mpx_state_buffer;
8557
8558                /*
8559                 * To avoid have the INIT path from kvm_apic_has_events() that be
8560                 * called with loaded FPU and does not let userspace fix the state.
8561                 */
8562                if (init_event)
8563                        kvm_put_guest_fpu(vcpu);
8564                mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8565                                        XFEATURE_MASK_BNDREGS);
8566                if (mpx_state_buffer)
8567                        memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8568                mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8569                                        XFEATURE_MASK_BNDCSR);
8570                if (mpx_state_buffer)
8571                        memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8572                if (init_event)
8573                        kvm_load_guest_fpu(vcpu);
8574        }
8575
8576        if (!init_event) {
8577                kvm_pmu_reset(vcpu);
8578                vcpu->arch.smbase = 0x30000;
8579
8580                vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8581                vcpu->arch.msr_misc_features_enables = 0;
8582
8583                vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8584        }
8585
8586        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8587        vcpu->arch.regs_avail = ~0;
8588        vcpu->arch.regs_dirty = ~0;
8589
8590        vcpu->arch.ia32_xss = 0;
8591
8592        kvm_x86_ops->vcpu_reset(vcpu, init_event);
8593}
8594
8595void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8596{
8597        struct kvm_segment cs;
8598
8599        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8600        cs.selector = vector << 8;
8601        cs.base = vector << 12;
8602        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8603        kvm_rip_write(vcpu, 0);
8604}
8605
8606int kvm_arch_hardware_enable(void)
8607{
8608        struct kvm *kvm;
8609        struct kvm_vcpu *vcpu;
8610        int i;
8611        int ret;
8612        u64 local_tsc;
8613        u64 max_tsc = 0;
8614        bool stable, backwards_tsc = false;
8615
8616        kvm_shared_msr_cpu_online();
8617        ret = kvm_x86_ops->hardware_enable();
8618        if (ret != 0)
8619                return ret;
8620
8621        local_tsc = rdtsc();
8622        stable = !kvm_check_tsc_unstable();
8623        list_for_each_entry(kvm, &vm_list, vm_list) {
8624                kvm_for_each_vcpu(i, vcpu, kvm) {
8625                        if (!stable && vcpu->cpu == smp_processor_id())
8626                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8627                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8628                                backwards_tsc = true;
8629                                if (vcpu->arch.last_host_tsc > max_tsc)
8630                                        max_tsc = vcpu->arch.last_host_tsc;
8631                        }
8632                }
8633        }
8634
8635        /*
8636         * Sometimes, even reliable TSCs go backwards.  This happens on
8637         * platforms that reset TSC during suspend or hibernate actions, but
8638         * maintain synchronization.  We must compensate.  Fortunately, we can
8639         * detect that condition here, which happens early in CPU bringup,
8640         * before any KVM threads can be running.  Unfortunately, we can't
8641         * bring the TSCs fully up to date with real time, as we aren't yet far
8642         * enough into CPU bringup that we know how much real time has actually
8643         * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8644         * variables that haven't been updated yet.
8645         *
8646         * So we simply find the maximum observed TSC above, then record the
8647         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8648         * the adjustment will be applied.  Note that we accumulate
8649         * adjustments, in case multiple suspend cycles happen before some VCPU
8650         * gets a chance to run again.  In the event that no KVM threads get a
8651         * chance to run, we will miss the entire elapsed period, as we'll have
8652         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8653         * loose cycle time.  This isn't too big a deal, since the loss will be
8654         * uniform across all VCPUs (not to mention the scenario is extremely
8655         * unlikely). It is possible that a second hibernate recovery happens
8656         * much faster than a first, causing the observed TSC here to be
8657         * smaller; this would require additional padding adjustment, which is
8658         * why we set last_host_tsc to the local tsc observed here.
8659         *
8660         * N.B. - this code below runs only on platforms with reliable TSC,
8661         * as that is the only way backwards_tsc is set above.  Also note
8662         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8663         * have the same delta_cyc adjustment applied if backwards_tsc
8664         * is detected.  Note further, this adjustment is only done once,
8665         * as we reset last_host_tsc on all VCPUs to stop this from being
8666         * called multiple times (one for each physical CPU bringup).
8667         *
8668         * Platforms with unreliable TSCs don't have to deal with this, they
8669         * will be compensated by the logic in vcpu_load, which sets the TSC to
8670         * catchup mode.  This will catchup all VCPUs to real time, but cannot
8671         * guarantee that they stay in perfect synchronization.
8672         */
8673        if (backwards_tsc) {
8674                u64 delta_cyc = max_tsc - local_tsc;
8675                list_for_each_entry(kvm, &vm_list, vm_list) {
8676                        kvm->arch.backwards_tsc_observed = true;
8677                        kvm_for_each_vcpu(i, vcpu, kvm) {
8678                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
8679                                vcpu->arch.last_host_tsc = local_tsc;
8680                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8681                        }
8682
8683                        /*
8684                         * We have to disable TSC offset matching.. if you were
8685                         * booting a VM while issuing an S4 host suspend....
8686                         * you may have some problem.  Solving this issue is
8687                         * left as an exercise to the reader.
8688                         */
8689                        kvm->arch.last_tsc_nsec = 0;
8690                        kvm->arch.last_tsc_write = 0;
8691                }
8692
8693        }
8694        return 0;
8695}
8696
8697void kvm_arch_hardware_disable(void)
8698{
8699        kvm_x86_ops->hardware_disable();
8700        drop_user_return_notifiers();
8701}
8702
8703int kvm_arch_hardware_setup(void)
8704{
8705        int r;
8706
8707        r = kvm_x86_ops->hardware_setup();
8708        if (r != 0)
8709                return r;
8710
8711        if (kvm_has_tsc_control) {
8712                /*
8713                 * Make sure the user can only configure tsc_khz values that
8714                 * fit into a signed integer.
8715                 * A min value is not calculated because it will always
8716                 * be 1 on all machines.
8717                 */
8718                u64 max = min(0x7fffffffULL,
8719                              __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8720                kvm_max_guest_tsc_khz = max;
8721
8722                kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8723        }
8724
8725        kvm_init_msr_list();
8726        return 0;
8727}
8728
8729void kvm_arch_hardware_unsetup(void)
8730{
8731        kvm_x86_ops->hardware_unsetup();
8732}
8733
8734void kvm_arch_check_processor_compat(void *rtn)
8735{
8736        kvm_x86_ops->check_processor_compatibility(rtn);
8737}
8738
8739bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8740{
8741        return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8742}
8743EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8744
8745bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8746{
8747        return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8748}
8749
8750struct static_key kvm_no_apic_vcpu __read_mostly;
8751EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8752
8753int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8754{
8755        struct page *page;
8756        int r;
8757
8758        vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8759        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8760        if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8761                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8762        else
8763                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8764
8765        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8766        if (!page) {
8767                r = -ENOMEM;
8768                goto fail;
8769        }
8770        vcpu->arch.pio_data = page_address(page);
8771
8772        kvm_set_tsc_khz(vcpu, max_tsc_khz);
8773
8774        r = kvm_mmu_create(vcpu);
8775        if (r < 0)
8776                goto fail_free_pio_data;
8777
8778        if (irqchip_in_kernel(vcpu->kvm)) {
8779                r = kvm_create_lapic(vcpu);
8780                if (r < 0)
8781                        goto fail_mmu_destroy;
8782        } else
8783                static_key_slow_inc(&kvm_no_apic_vcpu);
8784
8785        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8786                                       GFP_KERNEL);
8787        if (!vcpu->arch.mce_banks) {
8788                r = -ENOMEM;
8789                goto fail_free_lapic;
8790        }
8791        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8792
8793        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8794                r = -ENOMEM;
8795                goto fail_free_mce_banks;
8796        }
8797
8798        fx_init(vcpu);
8799
8800        vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8801
8802        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8803
8804        vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8805
8806        kvm_async_pf_hash_reset(vcpu);
8807        kvm_pmu_init(vcpu);
8808
8809        vcpu->arch.pending_external_vector = -1;
8810        vcpu->arch.preempted_in_kernel = false;
8811
8812        kvm_hv_vcpu_init(vcpu);
8813
8814        return 0;
8815
8816fail_free_mce_banks:
8817        kfree(vcpu->arch.mce_banks);
8818fail_free_lapic:
8819        kvm_free_lapic(vcpu);
8820fail_mmu_destroy:
8821        kvm_mmu_destroy(vcpu);
8822fail_free_pio_data:
8823        free_page((unsigned long)vcpu->arch.pio_data);
8824fail:
8825        return r;
8826}
8827
8828void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8829{
8830        int idx;
8831
8832        kvm_hv_vcpu_uninit(vcpu);
8833        kvm_pmu_destroy(vcpu);
8834        kfree(vcpu->arch.mce_banks);
8835        kvm_free_lapic(vcpu);
8836        idx = srcu_read_lock(&vcpu->kvm->srcu);
8837        kvm_mmu_destroy(vcpu);
8838        srcu_read_unlock(&vcpu->kvm->srcu, idx);
8839        free_page((unsigned long)vcpu->arch.pio_data);
8840        if (!lapic_in_kernel(vcpu))
8841                static_key_slow_dec(&kvm_no_apic_vcpu);
8842}
8843
8844void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8845{
8846        vcpu->arch.l1tf_flush_l1d = true;
8847        kvm_x86_ops->sched_in(vcpu, cpu);
8848}
8849
8850int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8851{
8852        if (type)
8853                return -EINVAL;
8854
8855        INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8856        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8857        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8858        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8859        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8860
8861        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8862        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8863        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8864        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8865                &kvm->arch.irq_sources_bitmap);
8866
8867        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8868        mutex_init(&kvm->arch.apic_map_lock);
8869        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8870
8871        kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8872        pvclock_update_vm_gtod_copy(kvm);
8873
8874        kvm->arch.guest_can_read_msr_platform_info = true;
8875
8876        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8877        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8878
8879        kvm_hv_init_vm(kvm);
8880        kvm_page_track_init(kvm);
8881        kvm_mmu_init_vm(kvm);
8882
8883        if (kvm_x86_ops->vm_init)
8884                return kvm_x86_ops->vm_init(kvm);
8885
8886        return 0;
8887}
8888
8889static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8890{
8891        vcpu_load(vcpu);
8892        kvm_mmu_unload(vcpu);
8893        vcpu_put(vcpu);
8894}
8895
8896static void kvm_free_vcpus(struct kvm *kvm)
8897{
8898        unsigned int i;
8899        struct kvm_vcpu *vcpu;
8900
8901        /*
8902         * Unpin any mmu pages first.
8903         */
8904        kvm_for_each_vcpu(i, vcpu, kvm) {
8905                kvm_clear_async_pf_completion_queue(vcpu);
8906                kvm_unload_vcpu_mmu(vcpu);
8907        }
8908        kvm_for_each_vcpu(i, vcpu, kvm)
8909                kvm_arch_vcpu_free(vcpu);
8910
8911        mutex_lock(&kvm->lock);
8912        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8913                kvm->vcpus[i] = NULL;
8914
8915        atomic_set(&kvm->online_vcpus, 0);
8916        mutex_unlock(&kvm->lock);
8917}
8918
8919void kvm_arch_sync_events(struct kvm *kvm)
8920{
8921        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8922        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8923        kvm_free_pit(kvm);
8924}
8925
8926int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8927{
8928        int i, r;
8929        unsigned long hva;
8930        struct kvm_memslots *slots = kvm_memslots(kvm);
8931        struct kvm_memory_slot *slot, old;
8932
8933        /* Called with kvm->slots_lock held.  */
8934        if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8935                return -EINVAL;
8936
8937        slot = id_to_memslot(slots, id);
8938        if (size) {
8939                if (slot->npages)
8940                        return -EEXIST;
8941
8942                /*
8943                 * MAP_SHARED to prevent internal slot pages from being moved
8944                 * by fork()/COW.
8945                 */
8946                hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8947                              MAP_SHARED | MAP_ANONYMOUS, 0);
8948                if (IS_ERR((void *)hva))
8949                        return PTR_ERR((void *)hva);
8950        } else {
8951                if (!slot->npages)
8952                        return 0;
8953
8954                hva = 0;
8955        }
8956
8957        old = *slot;
8958        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8959                struct kvm_userspace_memory_region m;
8960
8961                m.slot = id | (i << 16);
8962                m.flags = 0;
8963                m.guest_phys_addr = gpa;
8964                m.userspace_addr = hva;
8965                m.memory_size = size;
8966                r = __kvm_set_memory_region(kvm, &m);
8967                if (r < 0)
8968                        return r;
8969        }
8970
8971        if (!size)
8972                vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8973
8974        return 0;
8975}
8976EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8977
8978int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8979{
8980        int r;
8981
8982        mutex_lock(&kvm->slots_lock);
8983        r = __x86_set_memory_region(kvm, id, gpa, size);
8984        mutex_unlock(&kvm->slots_lock);
8985
8986        return r;
8987}
8988EXPORT_SYMBOL_GPL(x86_set_memory_region);
8989
8990void kvm_arch_destroy_vm(struct kvm *kvm)
8991{
8992        if (current->mm == kvm->mm) {
8993                /*
8994                 * Free memory regions allocated on behalf of userspace,
8995                 * unless the the memory map has changed due to process exit
8996                 * or fd copying.
8997                 */
8998                x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8999                x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9000                x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9001        }
9002        if (kvm_x86_ops->vm_destroy)
9003                kvm_x86_ops->vm_destroy(kvm);
9004        kvm_pic_destroy(kvm);
9005        kvm_ioapic_destroy(kvm);
9006        kvm_free_vcpus(kvm);
9007        kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9008        kvm_mmu_uninit_vm(kvm);
9009        kvm_page_track_cleanup(kvm);
9010        kvm_hv_destroy_vm(kvm);
9011}
9012
9013void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9014                           struct kvm_memory_slot *dont)
9015{
9016        int i;
9017
9018        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9019                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9020                        kvfree(free->arch.rmap[i]);
9021                        free->arch.rmap[i] = NULL;
9022                }
9023                if (i == 0)
9024                        continue;
9025
9026                if (!dont || free->arch.lpage_info[i - 1] !=
9027                             dont->arch.lpage_info[i - 1]) {
9028                        kvfree(free->arch.lpage_info[i - 1]);
9029                        free->arch.lpage_info[i - 1] = NULL;
9030                }
9031        }
9032
9033        kvm_page_track_free_memslot(free, dont);
9034}
9035
9036int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9037                            unsigned long npages)
9038{
9039        int i;
9040
9041        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9042                struct kvm_lpage_info *linfo;
9043                unsigned long ugfn;
9044                int lpages;
9045                int level = i + 1;
9046
9047                lpages = gfn_to_index(slot->base_gfn + npages - 1,
9048                                      slot->base_gfn, level) + 1;
9049
9050                slot->arch.rmap[i] =
9051                        kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9052                                 GFP_KERNEL);
9053                if (!slot->arch.rmap[i])
9054                        goto out_free;
9055                if (i == 0)
9056                        continue;
9057
9058                linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9059                if (!linfo)
9060                        goto out_free;
9061
9062                slot->arch.lpage_info[i - 1] = linfo;
9063
9064                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9065                        linfo[0].disallow_lpage = 1;
9066                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9067                        linfo[lpages - 1].disallow_lpage = 1;
9068                ugfn = slot->userspace_addr >> PAGE_SHIFT;
9069                /*
9070                 * If the gfn and userspace address are not aligned wrt each
9071                 * other, or if explicitly asked to, disable large page
9072                 * support for this slot
9073                 */
9074                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9075                    !kvm_largepages_enabled()) {
9076                        unsigned long j;
9077
9078                        for (j = 0; j < lpages; ++j)
9079                                linfo[j].disallow_lpage = 1;
9080                }
9081        }
9082
9083        if (kvm_page_track_create_memslot(slot, npages))
9084                goto out_free;
9085
9086        return 0;
9087
9088out_free:
9089        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9090                kvfree(slot->arch.rmap[i]);
9091                slot->arch.rmap[i] = NULL;
9092                if (i == 0)
9093                        continue;
9094
9095                kvfree(slot->arch.lpage_info[i - 1]);
9096                slot->arch.lpage_info[i - 1] = NULL;
9097        }
9098        return -ENOMEM;
9099}
9100
9101void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9102{
9103        /*
9104         * memslots->generation has been incremented.
9105         * mmio generation may have reached its maximum value.
9106         */
9107        kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9108}
9109
9110int kvm_arch_prepare_memory_region(struct kvm *kvm,
9111                                struct kvm_memory_slot *memslot,
9112                                const struct kvm_userspace_memory_region *mem,
9113                                enum kvm_mr_change change)
9114{
9115        return 0;
9116}
9117
9118static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9119                                     struct kvm_memory_slot *new)
9120{
9121        /* Still write protect RO slot */
9122        if (new->flags & KVM_MEM_READONLY) {
9123                kvm_mmu_slot_remove_write_access(kvm, new);
9124                return;
9125        }
9126
9127        /*
9128         * Call kvm_x86_ops dirty logging hooks when they are valid.
9129         *
9130         * kvm_x86_ops->slot_disable_log_dirty is called when:
9131         *
9132         *  - KVM_MR_CREATE with dirty logging is disabled
9133         *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9134         *
9135         * The reason is, in case of PML, we need to set D-bit for any slots
9136         * with dirty logging disabled in order to eliminate unnecessary GPA
9137         * logging in PML buffer (and potential PML buffer full VMEXT). This
9138         * guarantees leaving PML enabled during guest's lifetime won't have
9139         * any additonal overhead from PML when guest is running with dirty
9140         * logging disabled for memory slots.
9141         *
9142         * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9143         * to dirty logging mode.
9144         *
9145         * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9146         *
9147         * In case of write protect:
9148         *
9149         * Write protect all pages for dirty logging.
9150         *
9151         * All the sptes including the large sptes which point to this
9152         * slot are set to readonly. We can not create any new large
9153         * spte on this slot until the end of the logging.
9154         *
9155         * See the comments in fast_page_fault().
9156         */
9157        if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9158                if (kvm_x86_ops->slot_enable_log_dirty)
9159                        kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9160                else
9161                        kvm_mmu_slot_remove_write_access(kvm, new);
9162        } else {
9163                if (kvm_x86_ops->slot_disable_log_dirty)
9164                        kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9165        }
9166}
9167
9168void kvm_arch_commit_memory_region(struct kvm *kvm,
9169                                const struct kvm_userspace_memory_region *mem,
9170                                const struct kvm_memory_slot *old,
9171                                const struct kvm_memory_slot *new,
9172                                enum kvm_mr_change change)
9173{
9174        int nr_mmu_pages = 0;
9175
9176        if (!kvm->arch.n_requested_mmu_pages)
9177                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9178
9179        if (nr_mmu_pages)
9180                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9181
9182        /*
9183         * Dirty logging tracks sptes in 4k granularity, meaning that large
9184         * sptes have to be split.  If live migration is successful, the guest
9185         * in the source machine will be destroyed and large sptes will be
9186         * created in the destination. However, if the guest continues to run
9187         * in the source machine (for example if live migration fails), small
9188         * sptes will remain around and cause bad performance.
9189         *
9190         * Scan sptes if dirty logging has been stopped, dropping those
9191         * which can be collapsed into a single large-page spte.  Later
9192         * page faults will create the large-page sptes.
9193         */
9194        if ((change != KVM_MR_DELETE) &&
9195                (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9196                !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9197                kvm_mmu_zap_collapsible_sptes(kvm, new);
9198
9199        /*
9200         * Set up write protection and/or dirty logging for the new slot.
9201         *
9202         * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9203         * been zapped so no dirty logging staff is needed for old slot. For
9204         * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9205         * new and it's also covered when dealing with the new slot.
9206         *
9207         * FIXME: const-ify all uses of struct kvm_memory_slot.
9208         */
9209        if (change != KVM_MR_DELETE)
9210                kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9211}
9212
9213void kvm_arch_flush_shadow_all(struct kvm *kvm)
9214{
9215        kvm_mmu_invalidate_zap_all_pages(kvm);
9216}
9217
9218void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9219                                   struct kvm_memory_slot *slot)
9220{
9221        kvm_page_track_flush_slot(kvm, slot);
9222}
9223
9224static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9225{
9226        return (is_guest_mode(vcpu) &&
9227                        kvm_x86_ops->guest_apic_has_interrupt &&
9228                        kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9229}
9230
9231static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9232{
9233        if (!list_empty_careful(&vcpu->async_pf.done))
9234                return true;
9235
9236        if (kvm_apic_has_events(vcpu))
9237                return true;
9238
9239        if (vcpu->arch.pv.pv_unhalted)
9240                return true;
9241
9242        if (vcpu->arch.exception.pending)
9243                return true;
9244
9245        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9246            (vcpu->arch.nmi_pending &&
9247             kvm_x86_ops->nmi_allowed(vcpu)))
9248                return true;
9249
9250        if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9251            (vcpu->arch.smi_pending && !is_smm(vcpu)))
9252                return true;
9253
9254        if (kvm_arch_interrupt_allowed(vcpu) &&
9255            (kvm_cpu_has_interrupt(vcpu) ||
9256            kvm_guest_apic_has_interrupt(vcpu)))
9257                return true;
9258
9259        if (kvm_hv_has_stimer_pending(vcpu))
9260                return true;
9261
9262        return false;
9263}
9264
9265int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9266{
9267        return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9268}
9269
9270bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9271{
9272        return vcpu->arch.preempted_in_kernel;
9273}
9274
9275int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9276{
9277        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9278}
9279
9280int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9281{
9282        return kvm_x86_ops->interrupt_allowed(vcpu);
9283}
9284
9285unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9286{
9287        if (is_64_bit_mode(vcpu))
9288                return kvm_rip_read(vcpu);
9289        return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9290                     kvm_rip_read(vcpu));
9291}
9292EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9293
9294bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9295{
9296        return kvm_get_linear_rip(vcpu) == linear_rip;
9297}
9298EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9299
9300unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9301{
9302        unsigned long rflags;
9303
9304        rflags = kvm_x86_ops->get_rflags(vcpu);
9305        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9306                rflags &= ~X86_EFLAGS_TF;
9307        return rflags;
9308}
9309EXPORT_SYMBOL_GPL(kvm_get_rflags);
9310
9311static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9312{
9313        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9314            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9315                rflags |= X86_EFLAGS_TF;
9316        kvm_x86_ops->set_rflags(vcpu, rflags);
9317}
9318
9319void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9320{
9321        __kvm_set_rflags(vcpu, rflags);
9322        kvm_make_request(KVM_REQ_EVENT, vcpu);
9323}
9324EXPORT_SYMBOL_GPL(kvm_set_rflags);
9325
9326void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9327{
9328        int r;
9329
9330        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9331              work->wakeup_all)
9332                return;
9333
9334        r = kvm_mmu_reload(vcpu);
9335        if (unlikely(r))
9336                return;
9337
9338        if (!vcpu->arch.mmu.direct_map &&
9339              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9340                return;
9341
9342        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9343}
9344
9345static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9346{
9347        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9348}
9349
9350static inline u32 kvm_async_pf_next_probe(u32 key)
9351{
9352        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9353}
9354
9355static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9356{
9357        u32 key = kvm_async_pf_hash_fn(gfn);
9358
9359        while (vcpu->arch.apf.gfns[key] != ~0)
9360                key = kvm_async_pf_next_probe(key);
9361
9362        vcpu->arch.apf.gfns[key] = gfn;
9363}
9364
9365static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9366{
9367        int i;
9368        u32 key = kvm_async_pf_hash_fn(gfn);
9369
9370        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9371                     (vcpu->arch.apf.gfns[key] != gfn &&
9372                      vcpu->arch.apf.gfns[key] != ~0); i++)
9373                key = kvm_async_pf_next_probe(key);
9374
9375        return key;
9376}
9377
9378bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9379{
9380        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9381}
9382
9383static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9384{
9385        u32 i, j, k;
9386
9387        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9388        while (true) {
9389                vcpu->arch.apf.gfns[i] = ~0;
9390                do {
9391                        j = kvm_async_pf_next_probe(j);
9392                        if (vcpu->arch.apf.gfns[j] == ~0)
9393                                return;
9394                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9395                        /*
9396                         * k lies cyclically in ]i,j]
9397                         * |    i.k.j |
9398                         * |....j i.k.| or  |.k..j i...|
9399                         */
9400                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9401                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9402                i = j;
9403        }
9404}
9405
9406static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9407{
9408
9409        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9410                                      sizeof(val));
9411}
9412
9413static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9414{
9415
9416        return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9417                                      sizeof(u32));
9418}
9419
9420void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9421                                     struct kvm_async_pf *work)
9422{
9423        struct x86_exception fault;
9424
9425        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9426        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9427
9428        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9429            (vcpu->arch.apf.send_user_only &&
9430             kvm_x86_ops->get_cpl(vcpu) == 0))
9431                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9432        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9433                fault.vector = PF_VECTOR;
9434                fault.error_code_valid = true;
9435                fault.error_code = 0;
9436                fault.nested_page_fault = false;
9437                fault.address = work->arch.token;
9438                fault.async_page_fault = true;
9439                kvm_inject_page_fault(vcpu, &fault);
9440        }
9441}
9442
9443void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9444                                 struct kvm_async_pf *work)
9445{
9446        struct x86_exception fault;
9447        u32 val;
9448
9449        if (work->wakeup_all)
9450                work->arch.token = ~0; /* broadcast wakeup */
9451        else
9452                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9453        trace_kvm_async_pf_ready(work->arch.token, work->gva);
9454
9455        if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9456            !apf_get_user(vcpu, &val)) {
9457                if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9458                    vcpu->arch.exception.pending &&
9459                    vcpu->arch.exception.nr == PF_VECTOR &&
9460                    !apf_put_user(vcpu, 0)) {
9461                        vcpu->arch.exception.injected = false;
9462                        vcpu->arch.exception.pending = false;
9463                        vcpu->arch.exception.nr = 0;
9464                        vcpu->arch.exception.has_error_code = false;
9465                        vcpu->arch.exception.error_code = 0;
9466                } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9467                        fault.vector = PF_VECTOR;
9468                        fault.error_code_valid = true;
9469                        fault.error_code = 0;
9470                        fault.nested_page_fault = false;
9471                        fault.address = work->arch.token;
9472                        fault.async_page_fault = true;
9473                        kvm_inject_page_fault(vcpu, &fault);
9474                }
9475        }
9476        vcpu->arch.apf.halted = false;
9477        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9478}
9479
9480bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9481{
9482        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9483                return true;
9484        else
9485                return kvm_can_do_async_pf(vcpu);
9486}
9487
9488void kvm_arch_start_assignment(struct kvm *kvm)
9489{
9490        atomic_inc(&kvm->arch.assigned_device_count);
9491}
9492EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9493
9494void kvm_arch_end_assignment(struct kvm *kvm)
9495{
9496        atomic_dec(&kvm->arch.assigned_device_count);
9497}
9498EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9499
9500bool kvm_arch_has_assigned_device(struct kvm *kvm)
9501{
9502        return atomic_read(&kvm->arch.assigned_device_count);
9503}
9504EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9505
9506void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9507{
9508        atomic_inc(&kvm->arch.noncoherent_dma_count);
9509}
9510EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9511
9512void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9513{
9514        atomic_dec(&kvm->arch.noncoherent_dma_count);
9515}
9516EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9517
9518bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9519{
9520        return atomic_read(&kvm->arch.noncoherent_dma_count);
9521}
9522EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9523
9524bool kvm_arch_has_irq_bypass(void)
9525{
9526        return kvm_x86_ops->update_pi_irte != NULL;
9527}
9528
9529int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9530                                      struct irq_bypass_producer *prod)
9531{
9532        struct kvm_kernel_irqfd *irqfd =
9533                container_of(cons, struct kvm_kernel_irqfd, consumer);
9534
9535        irqfd->producer = prod;
9536
9537        return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9538                                           prod->irq, irqfd->gsi, 1);
9539}
9540
9541void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9542                                      struct irq_bypass_producer *prod)
9543{
9544        int ret;
9545        struct kvm_kernel_irqfd *irqfd =
9546                container_of(cons, struct kvm_kernel_irqfd, consumer);
9547
9548        WARN_ON(irqfd->producer != prod);
9549        irqfd->producer = NULL;
9550
9551        /*
9552         * When producer of consumer is unregistered, we change back to
9553         * remapped mode, so we can re-use the current implementation
9554         * when the irq is masked/disabled or the consumer side (KVM
9555         * int this case doesn't want to receive the interrupts.
9556        */
9557        ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9558        if (ret)
9559                printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9560                       " fails: %d\n", irqfd->consumer.token, ret);
9561}
9562
9563int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9564                                   uint32_t guest_irq, bool set)
9565{
9566        if (!kvm_x86_ops->update_pi_irte)
9567                return -EINVAL;
9568
9569        return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9570}
9571
9572bool kvm_vector_hashing_enabled(void)
9573{
9574        return vector_hashing;
9575}
9576EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9577
9578EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9579EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9580EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9581EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9582EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9583EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9584EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9585EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9586EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9587EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9588EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9589EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9590EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9591EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9592EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9593EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9594EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9595EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9596EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9597