linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/bootmem.h>      /* for max_low_pfn */
   7#include <linux/swapfile.h>
   8#include <linux/swapops.h>
   9
  10#include <asm/set_memory.h>
  11#include <asm/e820/api.h>
  12#include <asm/init.h>
  13#include <asm/page.h>
  14#include <asm/page_types.h>
  15#include <asm/sections.h>
  16#include <asm/setup.h>
  17#include <asm/tlbflush.h>
  18#include <asm/tlb.h>
  19#include <asm/proto.h>
  20#include <asm/dma.h>            /* for MAX_DMA_PFN */
  21#include <asm/microcode.h>
  22#include <asm/kaslr.h>
  23#include <asm/hypervisor.h>
  24#include <asm/cpufeature.h>
  25#include <asm/pti.h>
  26
  27/*
  28 * We need to define the tracepoints somewhere, and tlb.c
  29 * is only compied when SMP=y.
  30 */
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/tlb.h>
  33
  34#include "mm_internal.h"
  35
  36/*
  37 * Tables translating between page_cache_type_t and pte encoding.
  38 *
  39 * The default values are defined statically as minimal supported mode;
  40 * WC and WT fall back to UC-.  pat_init() updates these values to support
  41 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
  42 * for the details.  Note, __early_ioremap() used during early boot-time
  43 * takes pgprot_t (pte encoding) and does not use these tables.
  44 *
  45 *   Index into __cachemode2pte_tbl[] is the cachemode.
  46 *
  47 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  48 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  49 */
  50uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  51        [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
  52        [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
  53        [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
  54        [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
  55        [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
  56        [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
  57};
  58EXPORT_SYMBOL(__cachemode2pte_tbl);
  59
  60uint8_t __pte2cachemode_tbl[8] = {
  61        [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
  62        [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  63        [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  64        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
  65        [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  66        [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  67        [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  68        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  69};
  70EXPORT_SYMBOL(__pte2cachemode_tbl);
  71
  72static unsigned long __initdata pgt_buf_start;
  73static unsigned long __initdata pgt_buf_end;
  74static unsigned long __initdata pgt_buf_top;
  75
  76static unsigned long min_pfn_mapped;
  77
  78static bool __initdata can_use_brk_pgt = true;
  79
  80/*
  81 * Pages returned are already directly mapped.
  82 *
  83 * Changing that is likely to break Xen, see commit:
  84 *
  85 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  86 *
  87 * for detailed information.
  88 */
  89__ref void *alloc_low_pages(unsigned int num)
  90{
  91        unsigned long pfn;
  92        int i;
  93
  94        if (after_bootmem) {
  95                unsigned int order;
  96
  97                order = get_order((unsigned long)num << PAGE_SHIFT);
  98                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
  99        }
 100
 101        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 102                unsigned long ret = 0;
 103
 104                if (min_pfn_mapped < max_pfn_mapped) {
 105                        ret = memblock_find_in_range(
 106                                        min_pfn_mapped << PAGE_SHIFT,
 107                                        max_pfn_mapped << PAGE_SHIFT,
 108                                        PAGE_SIZE * num , PAGE_SIZE);
 109                }
 110                if (ret)
 111                        memblock_reserve(ret, PAGE_SIZE * num);
 112                else if (can_use_brk_pgt)
 113                        ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
 114
 115                if (!ret)
 116                        panic("alloc_low_pages: can not alloc memory");
 117
 118                pfn = ret >> PAGE_SHIFT;
 119        } else {
 120                pfn = pgt_buf_end;
 121                pgt_buf_end += num;
 122                printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 123                        pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 124        }
 125
 126        for (i = 0; i < num; i++) {
 127                void *adr;
 128
 129                adr = __va((pfn + i) << PAGE_SHIFT);
 130                clear_page(adr);
 131        }
 132
 133        return __va(pfn << PAGE_SHIFT);
 134}
 135
 136/*
 137 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
 138 * With KASLR memory randomization, depending on the machine e820 memory
 139 * and the PUD alignment. We may need twice more pages when KASLR memory
 140 * randomization is enabled.
 141 */
 142#ifndef CONFIG_RANDOMIZE_MEMORY
 143#define INIT_PGD_PAGE_COUNT      6
 144#else
 145#define INIT_PGD_PAGE_COUNT      12
 146#endif
 147#define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
 148RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 149void  __init early_alloc_pgt_buf(void)
 150{
 151        unsigned long tables = INIT_PGT_BUF_SIZE;
 152        phys_addr_t base;
 153
 154        base = __pa(extend_brk(tables, PAGE_SIZE));
 155
 156        pgt_buf_start = base >> PAGE_SHIFT;
 157        pgt_buf_end = pgt_buf_start;
 158        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 159}
 160
 161int after_bootmem;
 162
 163early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 164
 165struct map_range {
 166        unsigned long start;
 167        unsigned long end;
 168        unsigned page_size_mask;
 169};
 170
 171static int page_size_mask;
 172
 173static void __init probe_page_size_mask(void)
 174{
 175        /*
 176         * For pagealloc debugging, identity mapping will use small pages.
 177         * This will simplify cpa(), which otherwise needs to support splitting
 178         * large pages into small in interrupt context, etc.
 179         */
 180        if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
 181                page_size_mask |= 1 << PG_LEVEL_2M;
 182        else
 183                direct_gbpages = 0;
 184
 185        /* Enable PSE if available */
 186        if (boot_cpu_has(X86_FEATURE_PSE))
 187                cr4_set_bits_and_update_boot(X86_CR4_PSE);
 188
 189        /* Enable PGE if available */
 190        __supported_pte_mask &= ~_PAGE_GLOBAL;
 191        if (boot_cpu_has(X86_FEATURE_PGE)) {
 192                cr4_set_bits_and_update_boot(X86_CR4_PGE);
 193                __supported_pte_mask |= _PAGE_GLOBAL;
 194        }
 195
 196        /* By the default is everything supported: */
 197        __default_kernel_pte_mask = __supported_pte_mask;
 198        /* Except when with PTI where the kernel is mostly non-Global: */
 199        if (cpu_feature_enabled(X86_FEATURE_PTI))
 200                __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
 201
 202        /* Enable 1 GB linear kernel mappings if available: */
 203        if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
 204                printk(KERN_INFO "Using GB pages for direct mapping\n");
 205                page_size_mask |= 1 << PG_LEVEL_1G;
 206        } else {
 207                direct_gbpages = 0;
 208        }
 209}
 210
 211static void setup_pcid(void)
 212{
 213        if (!IS_ENABLED(CONFIG_X86_64))
 214                return;
 215
 216        if (!boot_cpu_has(X86_FEATURE_PCID))
 217                return;
 218
 219        if (boot_cpu_has(X86_FEATURE_PGE)) {
 220                /*
 221                 * This can't be cr4_set_bits_and_update_boot() -- the
 222                 * trampoline code can't handle CR4.PCIDE and it wouldn't
 223                 * do any good anyway.  Despite the name,
 224                 * cr4_set_bits_and_update_boot() doesn't actually cause
 225                 * the bits in question to remain set all the way through
 226                 * the secondary boot asm.
 227                 *
 228                 * Instead, we brute-force it and set CR4.PCIDE manually in
 229                 * start_secondary().
 230                 */
 231                cr4_set_bits(X86_CR4_PCIDE);
 232
 233                /*
 234                 * INVPCID's single-context modes (2/3) only work if we set
 235                 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
 236                 * on systems that have X86_CR4_PCIDE clear, or that have
 237                 * no INVPCID support at all.
 238                 */
 239                if (boot_cpu_has(X86_FEATURE_INVPCID))
 240                        setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
 241        } else {
 242                /*
 243                 * flush_tlb_all(), as currently implemented, won't work if
 244                 * PCID is on but PGE is not.  Since that combination
 245                 * doesn't exist on real hardware, there's no reason to try
 246                 * to fully support it, but it's polite to avoid corrupting
 247                 * data if we're on an improperly configured VM.
 248                 */
 249                setup_clear_cpu_cap(X86_FEATURE_PCID);
 250        }
 251}
 252
 253#ifdef CONFIG_X86_32
 254#define NR_RANGE_MR 3
 255#else /* CONFIG_X86_64 */
 256#define NR_RANGE_MR 5
 257#endif
 258
 259static int __meminit save_mr(struct map_range *mr, int nr_range,
 260                             unsigned long start_pfn, unsigned long end_pfn,
 261                             unsigned long page_size_mask)
 262{
 263        if (start_pfn < end_pfn) {
 264                if (nr_range >= NR_RANGE_MR)
 265                        panic("run out of range for init_memory_mapping\n");
 266                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 267                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 268                mr[nr_range].page_size_mask = page_size_mask;
 269                nr_range++;
 270        }
 271
 272        return nr_range;
 273}
 274
 275/*
 276 * adjust the page_size_mask for small range to go with
 277 *      big page size instead small one if nearby are ram too.
 278 */
 279static void __ref adjust_range_page_size_mask(struct map_range *mr,
 280                                                         int nr_range)
 281{
 282        int i;
 283
 284        for (i = 0; i < nr_range; i++) {
 285                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 286                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 287                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 288                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 289
 290#ifdef CONFIG_X86_32
 291                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 292                                continue;
 293#endif
 294
 295                        if (memblock_is_region_memory(start, end - start))
 296                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 297                }
 298                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 299                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 300                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 301                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 302
 303                        if (memblock_is_region_memory(start, end - start))
 304                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 305                }
 306        }
 307}
 308
 309static const char *page_size_string(struct map_range *mr)
 310{
 311        static const char str_1g[] = "1G";
 312        static const char str_2m[] = "2M";
 313        static const char str_4m[] = "4M";
 314        static const char str_4k[] = "4k";
 315
 316        if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 317                return str_1g;
 318        /*
 319         * 32-bit without PAE has a 4M large page size.
 320         * PG_LEVEL_2M is misnamed, but we can at least
 321         * print out the right size in the string.
 322         */
 323        if (IS_ENABLED(CONFIG_X86_32) &&
 324            !IS_ENABLED(CONFIG_X86_PAE) &&
 325            mr->page_size_mask & (1<<PG_LEVEL_2M))
 326                return str_4m;
 327
 328        if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 329                return str_2m;
 330
 331        return str_4k;
 332}
 333
 334static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 335                                     unsigned long start,
 336                                     unsigned long end)
 337{
 338        unsigned long start_pfn, end_pfn, limit_pfn;
 339        unsigned long pfn;
 340        int i;
 341
 342        limit_pfn = PFN_DOWN(end);
 343
 344        /* head if not big page alignment ? */
 345        pfn = start_pfn = PFN_DOWN(start);
 346#ifdef CONFIG_X86_32
 347        /*
 348         * Don't use a large page for the first 2/4MB of memory
 349         * because there are often fixed size MTRRs in there
 350         * and overlapping MTRRs into large pages can cause
 351         * slowdowns.
 352         */
 353        if (pfn == 0)
 354                end_pfn = PFN_DOWN(PMD_SIZE);
 355        else
 356                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 357#else /* CONFIG_X86_64 */
 358        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 359#endif
 360        if (end_pfn > limit_pfn)
 361                end_pfn = limit_pfn;
 362        if (start_pfn < end_pfn) {
 363                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 364                pfn = end_pfn;
 365        }
 366
 367        /* big page (2M) range */
 368        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 369#ifdef CONFIG_X86_32
 370        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 371#else /* CONFIG_X86_64 */
 372        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 373        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 374                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 375#endif
 376
 377        if (start_pfn < end_pfn) {
 378                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 379                                page_size_mask & (1<<PG_LEVEL_2M));
 380                pfn = end_pfn;
 381        }
 382
 383#ifdef CONFIG_X86_64
 384        /* big page (1G) range */
 385        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 386        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 387        if (start_pfn < end_pfn) {
 388                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 389                                page_size_mask &
 390                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 391                pfn = end_pfn;
 392        }
 393
 394        /* tail is not big page (1G) alignment */
 395        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 396        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 397        if (start_pfn < end_pfn) {
 398                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 399                                page_size_mask & (1<<PG_LEVEL_2M));
 400                pfn = end_pfn;
 401        }
 402#endif
 403
 404        /* tail is not big page (2M) alignment */
 405        start_pfn = pfn;
 406        end_pfn = limit_pfn;
 407        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 408
 409        if (!after_bootmem)
 410                adjust_range_page_size_mask(mr, nr_range);
 411
 412        /* try to merge same page size and continuous */
 413        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 414                unsigned long old_start;
 415                if (mr[i].end != mr[i+1].start ||
 416                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 417                        continue;
 418                /* move it */
 419                old_start = mr[i].start;
 420                memmove(&mr[i], &mr[i+1],
 421                        (nr_range - 1 - i) * sizeof(struct map_range));
 422                mr[i--].start = old_start;
 423                nr_range--;
 424        }
 425
 426        for (i = 0; i < nr_range; i++)
 427                pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 428                                mr[i].start, mr[i].end - 1,
 429                                page_size_string(&mr[i]));
 430
 431        return nr_range;
 432}
 433
 434struct range pfn_mapped[E820_MAX_ENTRIES];
 435int nr_pfn_mapped;
 436
 437static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 438{
 439        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
 440                                             nr_pfn_mapped, start_pfn, end_pfn);
 441        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
 442
 443        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 444
 445        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 446                max_low_pfn_mapped = max(max_low_pfn_mapped,
 447                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 448}
 449
 450bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 451{
 452        int i;
 453
 454        for (i = 0; i < nr_pfn_mapped; i++)
 455                if ((start_pfn >= pfn_mapped[i].start) &&
 456                    (end_pfn <= pfn_mapped[i].end))
 457                        return true;
 458
 459        return false;
 460}
 461
 462/*
 463 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 464 * This runs before bootmem is initialized and gets pages directly from
 465 * the physical memory. To access them they are temporarily mapped.
 466 */
 467unsigned long __ref init_memory_mapping(unsigned long start,
 468                                               unsigned long end)
 469{
 470        struct map_range mr[NR_RANGE_MR];
 471        unsigned long ret = 0;
 472        int nr_range, i;
 473
 474        pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 475               start, end - 1);
 476
 477        memset(mr, 0, sizeof(mr));
 478        nr_range = split_mem_range(mr, 0, start, end);
 479
 480        for (i = 0; i < nr_range; i++)
 481                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 482                                                   mr[i].page_size_mask);
 483
 484        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 485
 486        return ret >> PAGE_SHIFT;
 487}
 488
 489/*
 490 * We need to iterate through the E820 memory map and create direct mappings
 491 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
 492 * create direct mappings for all pfns from [0 to max_low_pfn) and
 493 * [4GB to max_pfn) because of possible memory holes in high addresses
 494 * that cannot be marked as UC by fixed/variable range MTRRs.
 495 * Depending on the alignment of E820 ranges, this may possibly result
 496 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 497 *
 498 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 499 * That range would have hole in the middle or ends, and only ram parts
 500 * will be mapped in init_range_memory_mapping().
 501 */
 502static unsigned long __init init_range_memory_mapping(
 503                                           unsigned long r_start,
 504                                           unsigned long r_end)
 505{
 506        unsigned long start_pfn, end_pfn;
 507        unsigned long mapped_ram_size = 0;
 508        int i;
 509
 510        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 511                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 512                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 513                if (start >= end)
 514                        continue;
 515
 516                /*
 517                 * if it is overlapping with brk pgt, we need to
 518                 * alloc pgt buf from memblock instead.
 519                 */
 520                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 521                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 522                init_memory_mapping(start, end);
 523                mapped_ram_size += end - start;
 524                can_use_brk_pgt = true;
 525        }
 526
 527        return mapped_ram_size;
 528}
 529
 530static unsigned long __init get_new_step_size(unsigned long step_size)
 531{
 532        /*
 533         * Initial mapped size is PMD_SIZE (2M).
 534         * We can not set step_size to be PUD_SIZE (1G) yet.
 535         * In worse case, when we cross the 1G boundary, and
 536         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 537         * to map 1G range with PTE. Hence we use one less than the
 538         * difference of page table level shifts.
 539         *
 540         * Don't need to worry about overflow in the top-down case, on 32bit,
 541         * when step_size is 0, round_down() returns 0 for start, and that
 542         * turns it into 0x100000000ULL.
 543         * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 544         * needs to be taken into consideration by the code below.
 545         */
 546        return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 547}
 548
 549/**
 550 * memory_map_top_down - Map [map_start, map_end) top down
 551 * @map_start: start address of the target memory range
 552 * @map_end: end address of the target memory range
 553 *
 554 * This function will setup direct mapping for memory range
 555 * [map_start, map_end) in top-down. That said, the page tables
 556 * will be allocated at the end of the memory, and we map the
 557 * memory in top-down.
 558 */
 559static void __init memory_map_top_down(unsigned long map_start,
 560                                       unsigned long map_end)
 561{
 562        unsigned long real_end, start, last_start;
 563        unsigned long step_size;
 564        unsigned long addr;
 565        unsigned long mapped_ram_size = 0;
 566
 567        /* xen has big range in reserved near end of ram, skip it at first.*/
 568        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 569        real_end = addr + PMD_SIZE;
 570
 571        /* step_size need to be small so pgt_buf from BRK could cover it */
 572        step_size = PMD_SIZE;
 573        max_pfn_mapped = 0; /* will get exact value next */
 574        min_pfn_mapped = real_end >> PAGE_SHIFT;
 575        last_start = start = real_end;
 576
 577        /*
 578         * We start from the top (end of memory) and go to the bottom.
 579         * The memblock_find_in_range() gets us a block of RAM from the
 580         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 581         * for page table.
 582         */
 583        while (last_start > map_start) {
 584                if (last_start > step_size) {
 585                        start = round_down(last_start - 1, step_size);
 586                        if (start < map_start)
 587                                start = map_start;
 588                } else
 589                        start = map_start;
 590                mapped_ram_size += init_range_memory_mapping(start,
 591                                                        last_start);
 592                last_start = start;
 593                min_pfn_mapped = last_start >> PAGE_SHIFT;
 594                if (mapped_ram_size >= step_size)
 595                        step_size = get_new_step_size(step_size);
 596        }
 597
 598        if (real_end < map_end)
 599                init_range_memory_mapping(real_end, map_end);
 600}
 601
 602/**
 603 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 604 * @map_start: start address of the target memory range
 605 * @map_end: end address of the target memory range
 606 *
 607 * This function will setup direct mapping for memory range
 608 * [map_start, map_end) in bottom-up. Since we have limited the
 609 * bottom-up allocation above the kernel, the page tables will
 610 * be allocated just above the kernel and we map the memory
 611 * in [map_start, map_end) in bottom-up.
 612 */
 613static void __init memory_map_bottom_up(unsigned long map_start,
 614                                        unsigned long map_end)
 615{
 616        unsigned long next, start;
 617        unsigned long mapped_ram_size = 0;
 618        /* step_size need to be small so pgt_buf from BRK could cover it */
 619        unsigned long step_size = PMD_SIZE;
 620
 621        start = map_start;
 622        min_pfn_mapped = start >> PAGE_SHIFT;
 623
 624        /*
 625         * We start from the bottom (@map_start) and go to the top (@map_end).
 626         * The memblock_find_in_range() gets us a block of RAM from the
 627         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 628         * for page table.
 629         */
 630        while (start < map_end) {
 631                if (step_size && map_end - start > step_size) {
 632                        next = round_up(start + 1, step_size);
 633                        if (next > map_end)
 634                                next = map_end;
 635                } else {
 636                        next = map_end;
 637                }
 638
 639                mapped_ram_size += init_range_memory_mapping(start, next);
 640                start = next;
 641
 642                if (mapped_ram_size >= step_size)
 643                        step_size = get_new_step_size(step_size);
 644        }
 645}
 646
 647void __init init_mem_mapping(void)
 648{
 649        unsigned long end;
 650
 651        pti_check_boottime_disable();
 652        probe_page_size_mask();
 653        setup_pcid();
 654
 655#ifdef CONFIG_X86_64
 656        end = max_pfn << PAGE_SHIFT;
 657#else
 658        end = max_low_pfn << PAGE_SHIFT;
 659#endif
 660
 661        /* the ISA range is always mapped regardless of memory holes */
 662        init_memory_mapping(0, ISA_END_ADDRESS);
 663
 664        /* Init the trampoline, possibly with KASLR memory offset */
 665        init_trampoline();
 666
 667        /*
 668         * If the allocation is in bottom-up direction, we setup direct mapping
 669         * in bottom-up, otherwise we setup direct mapping in top-down.
 670         */
 671        if (memblock_bottom_up()) {
 672                unsigned long kernel_end = __pa_symbol(_end);
 673
 674                /*
 675                 * we need two separate calls here. This is because we want to
 676                 * allocate page tables above the kernel. So we first map
 677                 * [kernel_end, end) to make memory above the kernel be mapped
 678                 * as soon as possible. And then use page tables allocated above
 679                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 680                 */
 681                memory_map_bottom_up(kernel_end, end);
 682                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 683        } else {
 684                memory_map_top_down(ISA_END_ADDRESS, end);
 685        }
 686
 687#ifdef CONFIG_X86_64
 688        if (max_pfn > max_low_pfn) {
 689                /* can we preseve max_low_pfn ?*/
 690                max_low_pfn = max_pfn;
 691        }
 692#else
 693        early_ioremap_page_table_range_init();
 694#endif
 695
 696        load_cr3(swapper_pg_dir);
 697        __flush_tlb_all();
 698
 699        x86_init.hyper.init_mem_mapping();
 700
 701        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 702}
 703
 704/*
 705 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 706 * is valid. The argument is a physical page number.
 707 *
 708 * On x86, access has to be given to the first megabyte of RAM because that
 709 * area traditionally contains BIOS code and data regions used by X, dosemu,
 710 * and similar apps. Since they map the entire memory range, the whole range
 711 * must be allowed (for mapping), but any areas that would otherwise be
 712 * disallowed are flagged as being "zero filled" instead of rejected.
 713 * Access has to be given to non-kernel-ram areas as well, these contain the
 714 * PCI mmio resources as well as potential bios/acpi data regions.
 715 */
 716int devmem_is_allowed(unsigned long pagenr)
 717{
 718        if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
 719                                IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
 720                        != REGION_DISJOINT) {
 721                /*
 722                 * For disallowed memory regions in the low 1MB range,
 723                 * request that the page be shown as all zeros.
 724                 */
 725                if (pagenr < 256)
 726                        return 2;
 727
 728                return 0;
 729        }
 730
 731        /*
 732         * This must follow RAM test, since System RAM is considered a
 733         * restricted resource under CONFIG_STRICT_IOMEM.
 734         */
 735        if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
 736                /* Low 1MB bypasses iomem restrictions. */
 737                if (pagenr < 256)
 738                        return 1;
 739
 740                return 0;
 741        }
 742
 743        return 1;
 744}
 745
 746void free_init_pages(char *what, unsigned long begin, unsigned long end)
 747{
 748        unsigned long begin_aligned, end_aligned;
 749
 750        /* Make sure boundaries are page aligned */
 751        begin_aligned = PAGE_ALIGN(begin);
 752        end_aligned   = end & PAGE_MASK;
 753
 754        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 755                begin = begin_aligned;
 756                end   = end_aligned;
 757        }
 758
 759        if (begin >= end)
 760                return;
 761
 762        /*
 763         * If debugging page accesses then do not free this memory but
 764         * mark them not present - any buggy init-section access will
 765         * create a kernel page fault:
 766         */
 767        if (debug_pagealloc_enabled()) {
 768                pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 769                        begin, end - 1);
 770                set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 771        } else {
 772                /*
 773                 * We just marked the kernel text read only above, now that
 774                 * we are going to free part of that, we need to make that
 775                 * writeable and non-executable first.
 776                 */
 777                set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 778                set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 779
 780                free_reserved_area((void *)begin, (void *)end,
 781                                   POISON_FREE_INITMEM, what);
 782        }
 783}
 784
 785/*
 786 * begin/end can be in the direct map or the "high kernel mapping"
 787 * used for the kernel image only.  free_init_pages() will do the
 788 * right thing for either kind of address.
 789 */
 790void free_kernel_image_pages(void *begin, void *end)
 791{
 792        unsigned long begin_ul = (unsigned long)begin;
 793        unsigned long end_ul = (unsigned long)end;
 794        unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
 795
 796
 797        free_init_pages("unused kernel image", begin_ul, end_ul);
 798
 799        /*
 800         * PTI maps some of the kernel into userspace.  For performance,
 801         * this includes some kernel areas that do not contain secrets.
 802         * Those areas might be adjacent to the parts of the kernel image
 803         * being freed, which may contain secrets.  Remove the "high kernel
 804         * image mapping" for these freed areas, ensuring they are not even
 805         * potentially vulnerable to Meltdown regardless of the specific
 806         * optimizations PTI is currently using.
 807         *
 808         * The "noalias" prevents unmapping the direct map alias which is
 809         * needed to access the freed pages.
 810         *
 811         * This is only valid for 64bit kernels. 32bit has only one mapping
 812         * which can't be treated in this way for obvious reasons.
 813         */
 814        if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
 815                set_memory_np_noalias(begin_ul, len_pages);
 816}
 817
 818void __weak mem_encrypt_free_decrypted_mem(void) { }
 819
 820void __ref free_initmem(void)
 821{
 822        e820__reallocate_tables();
 823
 824        mem_encrypt_free_decrypted_mem();
 825
 826        free_kernel_image_pages(&__init_begin, &__init_end);
 827}
 828
 829#ifdef CONFIG_BLK_DEV_INITRD
 830void __init free_initrd_mem(unsigned long start, unsigned long end)
 831{
 832        /*
 833         * end could be not aligned, and We can not align that,
 834         * decompresser could be confused by aligned initrd_end
 835         * We already reserve the end partial page before in
 836         *   - i386_start_kernel()
 837         *   - x86_64_start_kernel()
 838         *   - relocate_initrd()
 839         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 840         */
 841        free_init_pages("initrd", start, PAGE_ALIGN(end));
 842}
 843#endif
 844
 845/*
 846 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 847 * and pass it to the MM layer - to help it set zone watermarks more
 848 * accurately.
 849 *
 850 * Done on 64-bit systems only for the time being, although 32-bit systems
 851 * might benefit from this as well.
 852 */
 853void __init memblock_find_dma_reserve(void)
 854{
 855#ifdef CONFIG_X86_64
 856        u64 nr_pages = 0, nr_free_pages = 0;
 857        unsigned long start_pfn, end_pfn;
 858        phys_addr_t start_addr, end_addr;
 859        int i;
 860        u64 u;
 861
 862        /*
 863         * Iterate over all memory ranges (free and reserved ones alike),
 864         * to calculate the total number of pages in the first 16 MB of RAM:
 865         */
 866        nr_pages = 0;
 867        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 868                start_pfn = min(start_pfn, MAX_DMA_PFN);
 869                end_pfn   = min(end_pfn,   MAX_DMA_PFN);
 870
 871                nr_pages += end_pfn - start_pfn;
 872        }
 873
 874        /*
 875         * Iterate over free memory ranges to calculate the number of free
 876         * pages in the DMA zone, while not counting potential partial
 877         * pages at the beginning or the end of the range:
 878         */
 879        nr_free_pages = 0;
 880        for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
 881                start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
 882                end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
 883
 884                if (start_pfn < end_pfn)
 885                        nr_free_pages += end_pfn - start_pfn;
 886        }
 887
 888        set_dma_reserve(nr_pages - nr_free_pages);
 889#endif
 890}
 891
 892void __init zone_sizes_init(void)
 893{
 894        unsigned long max_zone_pfns[MAX_NR_ZONES];
 895
 896        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 897
 898#ifdef CONFIG_ZONE_DMA
 899        max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
 900#endif
 901#ifdef CONFIG_ZONE_DMA32
 902        max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
 903#endif
 904        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
 905#ifdef CONFIG_HIGHMEM
 906        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
 907#endif
 908
 909        free_area_init_nodes(max_zone_pfns);
 910}
 911
 912__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
 913        .loaded_mm = &init_mm,
 914        .next_asid = 1,
 915        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
 916};
 917EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
 918
 919void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
 920{
 921        /* entry 0 MUST be WB (hardwired to speed up translations) */
 922        BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
 923
 924        __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
 925        __pte2cachemode_tbl[entry] = cache;
 926}
 927
 928#ifdef CONFIG_SWAP
 929unsigned long max_swapfile_size(void)
 930{
 931        unsigned long pages;
 932
 933        pages = generic_max_swapfile_size();
 934
 935        if (boot_cpu_has_bug(X86_BUG_L1TF)) {
 936                /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
 937                unsigned long long l1tf_limit = l1tf_pfn_limit();
 938                /*
 939                 * We encode swap offsets also with 3 bits below those for pfn
 940                 * which makes the usable limit higher.
 941                 */
 942#if CONFIG_PGTABLE_LEVELS > 2
 943                l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
 944#endif
 945                pages = min_t(unsigned long long, l1tf_limit, pages);
 946        }
 947        return pages;
 948}
 949#endif
 950