linux/crypto/asymmetric_keys/restrict.c
<<
>>
Prefs
   1/* Instantiate a public key crypto key from an X.509 Certificate
   2 *
   3 * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public Licence
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the Licence, or (at your option) any later version.
  10 */
  11
  12#define pr_fmt(fmt) "ASYM: "fmt
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/err.h>
  16#include <crypto/public_key.h>
  17#include "asymmetric_keys.h"
  18
  19static bool use_builtin_keys;
  20static struct asymmetric_key_id *ca_keyid;
  21
  22#ifndef MODULE
  23static struct {
  24        struct asymmetric_key_id id;
  25        unsigned char data[10];
  26} cakey;
  27
  28static int __init ca_keys_setup(char *str)
  29{
  30        if (!str)               /* default system keyring */
  31                return 1;
  32
  33        if (strncmp(str, "id:", 3) == 0) {
  34                struct asymmetric_key_id *p = &cakey.id;
  35                size_t hexlen = (strlen(str) - 3) / 2;
  36                int ret;
  37
  38                if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
  39                        pr_err("Missing or invalid ca_keys id\n");
  40                        return 1;
  41                }
  42
  43                ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
  44                if (ret < 0)
  45                        pr_err("Unparsable ca_keys id hex string\n");
  46                else
  47                        ca_keyid = p;   /* owner key 'id:xxxxxx' */
  48        } else if (strcmp(str, "builtin") == 0) {
  49                use_builtin_keys = true;
  50        }
  51
  52        return 1;
  53}
  54__setup("ca_keys=", ca_keys_setup);
  55#endif
  56
  57/**
  58 * restrict_link_by_signature - Restrict additions to a ring of public keys
  59 * @dest_keyring: Keyring being linked to.
  60 * @type: The type of key being added.
  61 * @payload: The payload of the new key.
  62 * @trust_keyring: A ring of keys that can be used to vouch for the new cert.
  63 *
  64 * Check the new certificate against the ones in the trust keyring.  If one of
  65 * those is the signing key and validates the new certificate, then mark the
  66 * new certificate as being trusted.
  67 *
  68 * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a
  69 * matching parent certificate in the trusted list, -EKEYREJECTED if the
  70 * signature check fails or the key is blacklisted, -ENOPKG if the signature
  71 * uses unsupported crypto, or some other error if there is a matching
  72 * certificate but the signature check cannot be performed.
  73 */
  74int restrict_link_by_signature(struct key *dest_keyring,
  75                               const struct key_type *type,
  76                               const union key_payload *payload,
  77                               struct key *trust_keyring)
  78{
  79        const struct public_key_signature *sig;
  80        struct key *key;
  81        int ret;
  82
  83        pr_devel("==>%s()\n", __func__);
  84
  85        if (!trust_keyring)
  86                return -ENOKEY;
  87
  88        if (type != &key_type_asymmetric)
  89                return -EOPNOTSUPP;
  90
  91        sig = payload->data[asym_auth];
  92        if (!sig)
  93                return -ENOPKG;
  94        if (!sig->auth_ids[0] && !sig->auth_ids[1])
  95                return -ENOKEY;
  96
  97        if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
  98                return -EPERM;
  99
 100        /* See if we have a key that signed this one. */
 101        key = find_asymmetric_key(trust_keyring,
 102                                  sig->auth_ids[0], sig->auth_ids[1],
 103                                  false);
 104        if (IS_ERR(key))
 105                return -ENOKEY;
 106
 107        if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags))
 108                ret = -ENOKEY;
 109        else
 110                ret = verify_signature(key, sig);
 111        key_put(key);
 112        return ret;
 113}
 114
 115static bool match_either_id(const struct asymmetric_key_ids *pair,
 116                            const struct asymmetric_key_id *single)
 117{
 118        return (asymmetric_key_id_same(pair->id[0], single) ||
 119                asymmetric_key_id_same(pair->id[1], single));
 120}
 121
 122static int key_or_keyring_common(struct key *dest_keyring,
 123                                 const struct key_type *type,
 124                                 const union key_payload *payload,
 125                                 struct key *trusted, bool check_dest)
 126{
 127        const struct public_key_signature *sig;
 128        struct key *key = NULL;
 129        int ret;
 130
 131        pr_devel("==>%s()\n", __func__);
 132
 133        if (!dest_keyring)
 134                return -ENOKEY;
 135        else if (dest_keyring->type != &key_type_keyring)
 136                return -EOPNOTSUPP;
 137
 138        if (!trusted && !check_dest)
 139                return -ENOKEY;
 140
 141        if (type != &key_type_asymmetric)
 142                return -EOPNOTSUPP;
 143
 144        sig = payload->data[asym_auth];
 145        if (!sig)
 146                return -ENOPKG;
 147        if (!sig->auth_ids[0] && !sig->auth_ids[1])
 148                return -ENOKEY;
 149
 150        if (trusted) {
 151                if (trusted->type == &key_type_keyring) {
 152                        /* See if we have a key that signed this one. */
 153                        key = find_asymmetric_key(trusted, sig->auth_ids[0],
 154                                                  sig->auth_ids[1], false);
 155                        if (IS_ERR(key))
 156                                key = NULL;
 157                } else if (trusted->type == &key_type_asymmetric) {
 158                        const struct asymmetric_key_ids *signer_ids;
 159
 160                        signer_ids = asymmetric_key_ids(trusted);
 161
 162                        /*
 163                         * The auth_ids come from the candidate key (the
 164                         * one that is being considered for addition to
 165                         * dest_keyring) and identify the key that was
 166                         * used to sign.
 167                         *
 168                         * The signer_ids are identifiers for the
 169                         * signing key specified for dest_keyring.
 170                         *
 171                         * The first auth_id is the preferred id, and
 172                         * the second is the fallback. If only one
 173                         * auth_id is present, it may match against
 174                         * either signer_id. If two auth_ids are
 175                         * present, the first auth_id must match one
 176                         * signer_id and the second auth_id must match
 177                         * the second signer_id.
 178                         */
 179                        if (!sig->auth_ids[0] || !sig->auth_ids[1]) {
 180                                const struct asymmetric_key_id *auth_id;
 181
 182                                auth_id = sig->auth_ids[0] ?: sig->auth_ids[1];
 183                                if (match_either_id(signer_ids, auth_id))
 184                                        key = __key_get(trusted);
 185
 186                        } else if (asymmetric_key_id_same(signer_ids->id[1],
 187                                                          sig->auth_ids[1]) &&
 188                                   match_either_id(signer_ids,
 189                                                   sig->auth_ids[0])) {
 190                                key = __key_get(trusted);
 191                        }
 192                } else {
 193                        return -EOPNOTSUPP;
 194                }
 195        }
 196
 197        if (check_dest && !key) {
 198                /* See if the destination has a key that signed this one. */
 199                key = find_asymmetric_key(dest_keyring, sig->auth_ids[0],
 200                                          sig->auth_ids[1], false);
 201                if (IS_ERR(key))
 202                        key = NULL;
 203        }
 204
 205        if (!key)
 206                return -ENOKEY;
 207
 208        ret = key_validate(key);
 209        if (ret == 0)
 210                ret = verify_signature(key, sig);
 211
 212        key_put(key);
 213        return ret;
 214}
 215
 216/**
 217 * restrict_link_by_key_or_keyring - Restrict additions to a ring of public
 218 * keys using the restrict_key information stored in the ring.
 219 * @dest_keyring: Keyring being linked to.
 220 * @type: The type of key being added.
 221 * @payload: The payload of the new key.
 222 * @trusted: A key or ring of keys that can be used to vouch for the new cert.
 223 *
 224 * Check the new certificate only against the key or keys passed in the data
 225 * parameter. If one of those is the signing key and validates the new
 226 * certificate, then mark the new certificate as being ok to link.
 227 *
 228 * Returns 0 if the new certificate was accepted, -ENOKEY if we
 229 * couldn't find a matching parent certificate in the trusted list,
 230 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
 231 * unsupported crypto, or some other error if there is a matching certificate
 232 * but the signature check cannot be performed.
 233 */
 234int restrict_link_by_key_or_keyring(struct key *dest_keyring,
 235                                    const struct key_type *type,
 236                                    const union key_payload *payload,
 237                                    struct key *trusted)
 238{
 239        return key_or_keyring_common(dest_keyring, type, payload, trusted,
 240                                     false);
 241}
 242
 243/**
 244 * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of
 245 * public keys using the restrict_key information stored in the ring.
 246 * @dest_keyring: Keyring being linked to.
 247 * @type: The type of key being added.
 248 * @payload: The payload of the new key.
 249 * @trusted: A key or ring of keys that can be used to vouch for the new cert.
 250 *
 251 * Check the new certificate only against the key or keys passed in the data
 252 * parameter. If one of those is the signing key and validates the new
 253 * certificate, then mark the new certificate as being ok to link.
 254 *
 255 * Returns 0 if the new certificate was accepted, -ENOKEY if we
 256 * couldn't find a matching parent certificate in the trusted list,
 257 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
 258 * unsupported crypto, or some other error if there is a matching certificate
 259 * but the signature check cannot be performed.
 260 */
 261int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring,
 262                                          const struct key_type *type,
 263                                          const union key_payload *payload,
 264                                          struct key *trusted)
 265{
 266        return key_or_keyring_common(dest_keyring, type, payload, trusted,
 267                                     true);
 268}
 269