linux/drivers/base/property.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
  18#include <linux/etherdevice.h>
  19#include <linux/phy.h>
  20
  21struct property_set {
  22        struct device *dev;
  23        struct fwnode_handle fwnode;
  24        const struct property_entry *properties;
  25};
  26
  27static const struct fwnode_operations pset_fwnode_ops;
  28
  29static inline bool is_pset_node(const struct fwnode_handle *fwnode)
  30{
  31        return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
  32}
  33
  34#define to_pset_node(__fwnode)                                          \
  35        ({                                                              \
  36                typeof(__fwnode) __to_pset_node_fwnode = __fwnode;      \
  37                                                                        \
  38                is_pset_node(__to_pset_node_fwnode) ?                   \
  39                        container_of(__to_pset_node_fwnode,             \
  40                                     struct property_set, fwnode) :     \
  41                        NULL;                                           \
  42        })
  43
  44static const struct property_entry *
  45pset_prop_get(const struct property_set *pset, const char *name)
  46{
  47        const struct property_entry *prop;
  48
  49        if (!pset || !pset->properties)
  50                return NULL;
  51
  52        for (prop = pset->properties; prop->name; prop++)
  53                if (!strcmp(name, prop->name))
  54                        return prop;
  55
  56        return NULL;
  57}
  58
  59static const void *property_get_pointer(const struct property_entry *prop)
  60{
  61        switch (prop->type) {
  62        case DEV_PROP_U8:
  63                if (prop->is_array)
  64                        return prop->pointer.u8_data;
  65                return &prop->value.u8_data;
  66        case DEV_PROP_U16:
  67                if (prop->is_array)
  68                        return prop->pointer.u16_data;
  69                return &prop->value.u16_data;
  70        case DEV_PROP_U32:
  71                if (prop->is_array)
  72                        return prop->pointer.u32_data;
  73                return &prop->value.u32_data;
  74        case DEV_PROP_U64:
  75                if (prop->is_array)
  76                        return prop->pointer.u64_data;
  77                return &prop->value.u64_data;
  78        case DEV_PROP_STRING:
  79                if (prop->is_array)
  80                        return prop->pointer.str;
  81                return &prop->value.str;
  82        default:
  83                return NULL;
  84        }
  85}
  86
  87static void property_set_pointer(struct property_entry *prop, const void *pointer)
  88{
  89        switch (prop->type) {
  90        case DEV_PROP_U8:
  91                if (prop->is_array)
  92                        prop->pointer.u8_data = pointer;
  93                else
  94                        prop->value.u8_data = *((u8 *)pointer);
  95                break;
  96        case DEV_PROP_U16:
  97                if (prop->is_array)
  98                        prop->pointer.u16_data = pointer;
  99                else
 100                        prop->value.u16_data = *((u16 *)pointer);
 101                break;
 102        case DEV_PROP_U32:
 103                if (prop->is_array)
 104                        prop->pointer.u32_data = pointer;
 105                else
 106                        prop->value.u32_data = *((u32 *)pointer);
 107                break;
 108        case DEV_PROP_U64:
 109                if (prop->is_array)
 110                        prop->pointer.u64_data = pointer;
 111                else
 112                        prop->value.u64_data = *((u64 *)pointer);
 113                break;
 114        case DEV_PROP_STRING:
 115                if (prop->is_array)
 116                        prop->pointer.str = pointer;
 117                else
 118                        prop->value.str = pointer;
 119                break;
 120        default:
 121                break;
 122        }
 123}
 124
 125static const void *pset_prop_find(const struct property_set *pset,
 126                                  const char *propname, size_t length)
 127{
 128        const struct property_entry *prop;
 129        const void *pointer;
 130
 131        prop = pset_prop_get(pset, propname);
 132        if (!prop)
 133                return ERR_PTR(-EINVAL);
 134        pointer = property_get_pointer(prop);
 135        if (!pointer)
 136                return ERR_PTR(-ENODATA);
 137        if (length > prop->length)
 138                return ERR_PTR(-EOVERFLOW);
 139        return pointer;
 140}
 141
 142static int pset_prop_read_u8_array(const struct property_set *pset,
 143                                   const char *propname,
 144                                   u8 *values, size_t nval)
 145{
 146        const void *pointer;
 147        size_t length = nval * sizeof(*values);
 148
 149        pointer = pset_prop_find(pset, propname, length);
 150        if (IS_ERR(pointer))
 151                return PTR_ERR(pointer);
 152
 153        memcpy(values, pointer, length);
 154        return 0;
 155}
 156
 157static int pset_prop_read_u16_array(const struct property_set *pset,
 158                                    const char *propname,
 159                                    u16 *values, size_t nval)
 160{
 161        const void *pointer;
 162        size_t length = nval * sizeof(*values);
 163
 164        pointer = pset_prop_find(pset, propname, length);
 165        if (IS_ERR(pointer))
 166                return PTR_ERR(pointer);
 167
 168        memcpy(values, pointer, length);
 169        return 0;
 170}
 171
 172static int pset_prop_read_u32_array(const struct property_set *pset,
 173                                    const char *propname,
 174                                    u32 *values, size_t nval)
 175{
 176        const void *pointer;
 177        size_t length = nval * sizeof(*values);
 178
 179        pointer = pset_prop_find(pset, propname, length);
 180        if (IS_ERR(pointer))
 181                return PTR_ERR(pointer);
 182
 183        memcpy(values, pointer, length);
 184        return 0;
 185}
 186
 187static int pset_prop_read_u64_array(const struct property_set *pset,
 188                                    const char *propname,
 189                                    u64 *values, size_t nval)
 190{
 191        const void *pointer;
 192        size_t length = nval * sizeof(*values);
 193
 194        pointer = pset_prop_find(pset, propname, length);
 195        if (IS_ERR(pointer))
 196                return PTR_ERR(pointer);
 197
 198        memcpy(values, pointer, length);
 199        return 0;
 200}
 201
 202static int pset_prop_count_elems_of_size(const struct property_set *pset,
 203                                         const char *propname, size_t length)
 204{
 205        const struct property_entry *prop;
 206
 207        prop = pset_prop_get(pset, propname);
 208        if (!prop)
 209                return -EINVAL;
 210
 211        return prop->length / length;
 212}
 213
 214static int pset_prop_read_string_array(const struct property_set *pset,
 215                                       const char *propname,
 216                                       const char **strings, size_t nval)
 217{
 218        const struct property_entry *prop;
 219        const void *pointer;
 220        size_t array_len, length;
 221
 222        /* Find out the array length. */
 223        prop = pset_prop_get(pset, propname);
 224        if (!prop)
 225                return -EINVAL;
 226
 227        if (!prop->is_array)
 228                /* The array length for a non-array string property is 1. */
 229                array_len = 1;
 230        else
 231                /* Find the length of an array. */
 232                array_len = pset_prop_count_elems_of_size(pset, propname,
 233                                                          sizeof(const char *));
 234
 235        /* Return how many there are if strings is NULL. */
 236        if (!strings)
 237                return array_len;
 238
 239        array_len = min(nval, array_len);
 240        length = array_len * sizeof(*strings);
 241
 242        pointer = pset_prop_find(pset, propname, length);
 243        if (IS_ERR(pointer))
 244                return PTR_ERR(pointer);
 245
 246        memcpy(strings, pointer, length);
 247
 248        return array_len;
 249}
 250
 251struct fwnode_handle *dev_fwnode(struct device *dev)
 252{
 253        return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 254                &dev->of_node->fwnode : dev->fwnode;
 255}
 256EXPORT_SYMBOL_GPL(dev_fwnode);
 257
 258static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
 259                                         const char *propname)
 260{
 261        return !!pset_prop_get(to_pset_node(fwnode), propname);
 262}
 263
 264static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
 265                                      const char *propname,
 266                                      unsigned int elem_size, void *val,
 267                                      size_t nval)
 268{
 269        const struct property_set *node = to_pset_node(fwnode);
 270
 271        if (!val)
 272                return pset_prop_count_elems_of_size(node, propname, elem_size);
 273
 274        switch (elem_size) {
 275        case sizeof(u8):
 276                return pset_prop_read_u8_array(node, propname, val, nval);
 277        case sizeof(u16):
 278                return pset_prop_read_u16_array(node, propname, val, nval);
 279        case sizeof(u32):
 280                return pset_prop_read_u32_array(node, propname, val, nval);
 281        case sizeof(u64):
 282                return pset_prop_read_u64_array(node, propname, val, nval);
 283        }
 284
 285        return -ENXIO;
 286}
 287
 288static int
 289pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 290                                       const char *propname,
 291                                       const char **val, size_t nval)
 292{
 293        return pset_prop_read_string_array(to_pset_node(fwnode), propname,
 294                                           val, nval);
 295}
 296
 297static const struct fwnode_operations pset_fwnode_ops = {
 298        .property_present = pset_fwnode_property_present,
 299        .property_read_int_array = pset_fwnode_read_int_array,
 300        .property_read_string_array = pset_fwnode_property_read_string_array,
 301};
 302
 303/**
 304 * device_property_present - check if a property of a device is present
 305 * @dev: Device whose property is being checked
 306 * @propname: Name of the property
 307 *
 308 * Check if property @propname is present in the device firmware description.
 309 */
 310bool device_property_present(struct device *dev, const char *propname)
 311{
 312        return fwnode_property_present(dev_fwnode(dev), propname);
 313}
 314EXPORT_SYMBOL_GPL(device_property_present);
 315
 316/**
 317 * fwnode_property_present - check if a property of a firmware node is present
 318 * @fwnode: Firmware node whose property to check
 319 * @propname: Name of the property
 320 */
 321bool fwnode_property_present(const struct fwnode_handle *fwnode,
 322                             const char *propname)
 323{
 324        bool ret;
 325
 326        ret = fwnode_call_bool_op(fwnode, property_present, propname);
 327        if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 328            !IS_ERR_OR_NULL(fwnode->secondary))
 329                ret = fwnode_call_bool_op(fwnode->secondary, property_present,
 330                                         propname);
 331        return ret;
 332}
 333EXPORT_SYMBOL_GPL(fwnode_property_present);
 334
 335/**
 336 * device_property_read_u8_array - return a u8 array property of a device
 337 * @dev: Device to get the property of
 338 * @propname: Name of the property
 339 * @val: The values are stored here or %NULL to return the number of values
 340 * @nval: Size of the @val array
 341 *
 342 * Function reads an array of u8 properties with @propname from the device
 343 * firmware description and stores them to @val if found.
 344 *
 345 * Return: number of values if @val was %NULL,
 346 *         %0 if the property was found (success),
 347 *         %-EINVAL if given arguments are not valid,
 348 *         %-ENODATA if the property does not have a value,
 349 *         %-EPROTO if the property is not an array of numbers,
 350 *         %-EOVERFLOW if the size of the property is not as expected.
 351 *         %-ENXIO if no suitable firmware interface is present.
 352 */
 353int device_property_read_u8_array(struct device *dev, const char *propname,
 354                                  u8 *val, size_t nval)
 355{
 356        return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 357}
 358EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 359
 360/**
 361 * device_property_read_u16_array - return a u16 array property of a device
 362 * @dev: Device to get the property of
 363 * @propname: Name of the property
 364 * @val: The values are stored here or %NULL to return the number of values
 365 * @nval: Size of the @val array
 366 *
 367 * Function reads an array of u16 properties with @propname from the device
 368 * firmware description and stores them to @val if found.
 369 *
 370 * Return: number of values if @val was %NULL,
 371 *         %0 if the property was found (success),
 372 *         %-EINVAL if given arguments are not valid,
 373 *         %-ENODATA if the property does not have a value,
 374 *         %-EPROTO if the property is not an array of numbers,
 375 *         %-EOVERFLOW if the size of the property is not as expected.
 376 *         %-ENXIO if no suitable firmware interface is present.
 377 */
 378int device_property_read_u16_array(struct device *dev, const char *propname,
 379                                   u16 *val, size_t nval)
 380{
 381        return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 382}
 383EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 384
 385/**
 386 * device_property_read_u32_array - return a u32 array property of a device
 387 * @dev: Device to get the property of
 388 * @propname: Name of the property
 389 * @val: The values are stored here or %NULL to return the number of values
 390 * @nval: Size of the @val array
 391 *
 392 * Function reads an array of u32 properties with @propname from the device
 393 * firmware description and stores them to @val if found.
 394 *
 395 * Return: number of values if @val was %NULL,
 396 *         %0 if the property was found (success),
 397 *         %-EINVAL if given arguments are not valid,
 398 *         %-ENODATA if the property does not have a value,
 399 *         %-EPROTO if the property is not an array of numbers,
 400 *         %-EOVERFLOW if the size of the property is not as expected.
 401 *         %-ENXIO if no suitable firmware interface is present.
 402 */
 403int device_property_read_u32_array(struct device *dev, const char *propname,
 404                                   u32 *val, size_t nval)
 405{
 406        return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 407}
 408EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 409
 410/**
 411 * device_property_read_u64_array - return a u64 array property of a device
 412 * @dev: Device to get the property of
 413 * @propname: Name of the property
 414 * @val: The values are stored here or %NULL to return the number of values
 415 * @nval: Size of the @val array
 416 *
 417 * Function reads an array of u64 properties with @propname from the device
 418 * firmware description and stores them to @val if found.
 419 *
 420 * Return: number of values if @val was %NULL,
 421 *         %0 if the property was found (success),
 422 *         %-EINVAL if given arguments are not valid,
 423 *         %-ENODATA if the property does not have a value,
 424 *         %-EPROTO if the property is not an array of numbers,
 425 *         %-EOVERFLOW if the size of the property is not as expected.
 426 *         %-ENXIO if no suitable firmware interface is present.
 427 */
 428int device_property_read_u64_array(struct device *dev, const char *propname,
 429                                   u64 *val, size_t nval)
 430{
 431        return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 432}
 433EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 434
 435/**
 436 * device_property_read_string_array - return a string array property of device
 437 * @dev: Device to get the property of
 438 * @propname: Name of the property
 439 * @val: The values are stored here or %NULL to return the number of values
 440 * @nval: Size of the @val array
 441 *
 442 * Function reads an array of string properties with @propname from the device
 443 * firmware description and stores them to @val if found.
 444 *
 445 * Return: number of values read on success if @val is non-NULL,
 446 *         number of values available on success if @val is NULL,
 447 *         %-EINVAL if given arguments are not valid,
 448 *         %-ENODATA if the property does not have a value,
 449 *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
 450 *         %-EOVERFLOW if the size of the property is not as expected.
 451 *         %-ENXIO if no suitable firmware interface is present.
 452 */
 453int device_property_read_string_array(struct device *dev, const char *propname,
 454                                      const char **val, size_t nval)
 455{
 456        return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 457}
 458EXPORT_SYMBOL_GPL(device_property_read_string_array);
 459
 460/**
 461 * device_property_read_string - return a string property of a device
 462 * @dev: Device to get the property of
 463 * @propname: Name of the property
 464 * @val: The value is stored here
 465 *
 466 * Function reads property @propname from the device firmware description and
 467 * stores the value into @val if found. The value is checked to be a string.
 468 *
 469 * Return: %0 if the property was found (success),
 470 *         %-EINVAL if given arguments are not valid,
 471 *         %-ENODATA if the property does not have a value,
 472 *         %-EPROTO or %-EILSEQ if the property type is not a string.
 473 *         %-ENXIO if no suitable firmware interface is present.
 474 */
 475int device_property_read_string(struct device *dev, const char *propname,
 476                                const char **val)
 477{
 478        return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 479}
 480EXPORT_SYMBOL_GPL(device_property_read_string);
 481
 482/**
 483 * device_property_match_string - find a string in an array and return index
 484 * @dev: Device to get the property of
 485 * @propname: Name of the property holding the array
 486 * @string: String to look for
 487 *
 488 * Find a given string in a string array and if it is found return the
 489 * index back.
 490 *
 491 * Return: %0 if the property was found (success),
 492 *         %-EINVAL if given arguments are not valid,
 493 *         %-ENODATA if the property does not have a value,
 494 *         %-EPROTO if the property is not an array of strings,
 495 *         %-ENXIO if no suitable firmware interface is present.
 496 */
 497int device_property_match_string(struct device *dev, const char *propname,
 498                                 const char *string)
 499{
 500        return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 501}
 502EXPORT_SYMBOL_GPL(device_property_match_string);
 503
 504static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 505                                          const char *propname,
 506                                          unsigned int elem_size, void *val,
 507                                          size_t nval)
 508{
 509        int ret;
 510
 511        ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 512                                 elem_size, val, nval);
 513        if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 514            !IS_ERR_OR_NULL(fwnode->secondary))
 515                ret = fwnode_call_int_op(
 516                        fwnode->secondary, property_read_int_array, propname,
 517                        elem_size, val, nval);
 518
 519        return ret;
 520}
 521
 522/**
 523 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 524 * @fwnode: Firmware node to get the property of
 525 * @propname: Name of the property
 526 * @val: The values are stored here or %NULL to return the number of values
 527 * @nval: Size of the @val array
 528 *
 529 * Read an array of u8 properties with @propname from @fwnode and stores them to
 530 * @val if found.
 531 *
 532 * Return: number of values if @val was %NULL,
 533 *         %0 if the property was found (success),
 534 *         %-EINVAL if given arguments are not valid,
 535 *         %-ENODATA if the property does not have a value,
 536 *         %-EPROTO if the property is not an array of numbers,
 537 *         %-EOVERFLOW if the size of the property is not as expected,
 538 *         %-ENXIO if no suitable firmware interface is present.
 539 */
 540int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 541                                  const char *propname, u8 *val, size_t nval)
 542{
 543        return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 544                                              val, nval);
 545}
 546EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 547
 548/**
 549 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 550 * @fwnode: Firmware node to get the property of
 551 * @propname: Name of the property
 552 * @val: The values are stored here or %NULL to return the number of values
 553 * @nval: Size of the @val array
 554 *
 555 * Read an array of u16 properties with @propname from @fwnode and store them to
 556 * @val if found.
 557 *
 558 * Return: number of values if @val was %NULL,
 559 *         %0 if the property was found (success),
 560 *         %-EINVAL if given arguments are not valid,
 561 *         %-ENODATA if the property does not have a value,
 562 *         %-EPROTO if the property is not an array of numbers,
 563 *         %-EOVERFLOW if the size of the property is not as expected,
 564 *         %-ENXIO if no suitable firmware interface is present.
 565 */
 566int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 567                                   const char *propname, u16 *val, size_t nval)
 568{
 569        return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 570                                              val, nval);
 571}
 572EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 573
 574/**
 575 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 576 * @fwnode: Firmware node to get the property of
 577 * @propname: Name of the property
 578 * @val: The values are stored here or %NULL to return the number of values
 579 * @nval: Size of the @val array
 580 *
 581 * Read an array of u32 properties with @propname from @fwnode store them to
 582 * @val if found.
 583 *
 584 * Return: number of values if @val was %NULL,
 585 *         %0 if the property was found (success),
 586 *         %-EINVAL if given arguments are not valid,
 587 *         %-ENODATA if the property does not have a value,
 588 *         %-EPROTO if the property is not an array of numbers,
 589 *         %-EOVERFLOW if the size of the property is not as expected,
 590 *         %-ENXIO if no suitable firmware interface is present.
 591 */
 592int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 593                                   const char *propname, u32 *val, size_t nval)
 594{
 595        return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 596                                              val, nval);
 597}
 598EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 599
 600/**
 601 * fwnode_property_read_u64_array - return a u64 array property firmware node
 602 * @fwnode: Firmware node to get the property of
 603 * @propname: Name of the property
 604 * @val: The values are stored here or %NULL to return the number of values
 605 * @nval: Size of the @val array
 606 *
 607 * Read an array of u64 properties with @propname from @fwnode and store them to
 608 * @val if found.
 609 *
 610 * Return: number of values if @val was %NULL,
 611 *         %0 if the property was found (success),
 612 *         %-EINVAL if given arguments are not valid,
 613 *         %-ENODATA if the property does not have a value,
 614 *         %-EPROTO if the property is not an array of numbers,
 615 *         %-EOVERFLOW if the size of the property is not as expected,
 616 *         %-ENXIO if no suitable firmware interface is present.
 617 */
 618int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 619                                   const char *propname, u64 *val, size_t nval)
 620{
 621        return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 622                                              val, nval);
 623}
 624EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 625
 626/**
 627 * fwnode_property_read_string_array - return string array property of a node
 628 * @fwnode: Firmware node to get the property of
 629 * @propname: Name of the property
 630 * @val: The values are stored here or %NULL to return the number of values
 631 * @nval: Size of the @val array
 632 *
 633 * Read an string list property @propname from the given firmware node and store
 634 * them to @val if found.
 635 *
 636 * Return: number of values read on success if @val is non-NULL,
 637 *         number of values available on success if @val is NULL,
 638 *         %-EINVAL if given arguments are not valid,
 639 *         %-ENODATA if the property does not have a value,
 640 *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
 641 *         %-EOVERFLOW if the size of the property is not as expected,
 642 *         %-ENXIO if no suitable firmware interface is present.
 643 */
 644int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 645                                      const char *propname, const char **val,
 646                                      size_t nval)
 647{
 648        int ret;
 649
 650        ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 651                                 val, nval);
 652        if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 653            !IS_ERR_OR_NULL(fwnode->secondary))
 654                ret = fwnode_call_int_op(fwnode->secondary,
 655                                         property_read_string_array, propname,
 656                                         val, nval);
 657        return ret;
 658}
 659EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 660
 661/**
 662 * fwnode_property_read_string - return a string property of a firmware node
 663 * @fwnode: Firmware node to get the property of
 664 * @propname: Name of the property
 665 * @val: The value is stored here
 666 *
 667 * Read property @propname from the given firmware node and store the value into
 668 * @val if found.  The value is checked to be a string.
 669 *
 670 * Return: %0 if the property was found (success),
 671 *         %-EINVAL if given arguments are not valid,
 672 *         %-ENODATA if the property does not have a value,
 673 *         %-EPROTO or %-EILSEQ if the property is not a string,
 674 *         %-ENXIO if no suitable firmware interface is present.
 675 */
 676int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 677                                const char *propname, const char **val)
 678{
 679        int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 680
 681        return ret < 0 ? ret : 0;
 682}
 683EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 684
 685/**
 686 * fwnode_property_match_string - find a string in an array and return index
 687 * @fwnode: Firmware node to get the property of
 688 * @propname: Name of the property holding the array
 689 * @string: String to look for
 690 *
 691 * Find a given string in a string array and if it is found return the
 692 * index back.
 693 *
 694 * Return: %0 if the property was found (success),
 695 *         %-EINVAL if given arguments are not valid,
 696 *         %-ENODATA if the property does not have a value,
 697 *         %-EPROTO if the property is not an array of strings,
 698 *         %-ENXIO if no suitable firmware interface is present.
 699 */
 700int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 701        const char *propname, const char *string)
 702{
 703        const char **values;
 704        int nval, ret;
 705
 706        nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 707        if (nval < 0)
 708                return nval;
 709
 710        if (nval == 0)
 711                return -ENODATA;
 712
 713        values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 714        if (!values)
 715                return -ENOMEM;
 716
 717        ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 718        if (ret < 0)
 719                goto out;
 720
 721        ret = match_string(values, nval, string);
 722        if (ret < 0)
 723                ret = -ENODATA;
 724out:
 725        kfree(values);
 726        return ret;
 727}
 728EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 729
 730/**
 731 * fwnode_property_get_reference_args() - Find a reference with arguments
 732 * @fwnode:     Firmware node where to look for the reference
 733 * @prop:       The name of the property
 734 * @nargs_prop: The name of the property telling the number of
 735 *              arguments in the referred node. NULL if @nargs is known,
 736 *              otherwise @nargs is ignored. Only relevant on OF.
 737 * @nargs:      Number of arguments. Ignored if @nargs_prop is non-NULL.
 738 * @index:      Index of the reference, from zero onwards.
 739 * @args:       Result structure with reference and integer arguments.
 740 *
 741 * Obtain a reference based on a named property in an fwnode, with
 742 * integer arguments.
 743 *
 744 * Caller is responsible to call fwnode_handle_put() on the returned
 745 * args->fwnode pointer.
 746 *
 747 * Returns: %0 on success
 748 *          %-ENOENT when the index is out of bounds, the index has an empty
 749 *                   reference or the property was not found
 750 *          %-EINVAL on parse error
 751 */
 752int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 753                                       const char *prop, const char *nargs_prop,
 754                                       unsigned int nargs, unsigned int index,
 755                                       struct fwnode_reference_args *args)
 756{
 757        return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 758                                  nargs, index, args);
 759}
 760EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 761
 762static void property_entry_free_data(const struct property_entry *p)
 763{
 764        const void *pointer = property_get_pointer(p);
 765        size_t i, nval;
 766
 767        if (p->is_array) {
 768                if (p->type == DEV_PROP_STRING && p->pointer.str) {
 769                        nval = p->length / sizeof(const char *);
 770                        for (i = 0; i < nval; i++)
 771                                kfree(p->pointer.str[i]);
 772                }
 773                kfree(pointer);
 774        } else if (p->type == DEV_PROP_STRING) {
 775                kfree(p->value.str);
 776        }
 777        kfree(p->name);
 778}
 779
 780static int property_copy_string_array(struct property_entry *dst,
 781                                      const struct property_entry *src)
 782{
 783        const char **d;
 784        size_t nval = src->length / sizeof(*d);
 785        int i;
 786
 787        d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
 788        if (!d)
 789                return -ENOMEM;
 790
 791        for (i = 0; i < nval; i++) {
 792                d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
 793                if (!d[i] && src->pointer.str[i]) {
 794                        while (--i >= 0)
 795                                kfree(d[i]);
 796                        kfree(d);
 797                        return -ENOMEM;
 798                }
 799        }
 800
 801        dst->pointer.str = d;
 802        return 0;
 803}
 804
 805static int property_entry_copy_data(struct property_entry *dst,
 806                                    const struct property_entry *src)
 807{
 808        const void *pointer = property_get_pointer(src);
 809        const void *new;
 810        int error;
 811
 812        if (src->is_array) {
 813                if (!src->length)
 814                        return -ENODATA;
 815
 816                if (src->type == DEV_PROP_STRING) {
 817                        error = property_copy_string_array(dst, src);
 818                        if (error)
 819                                return error;
 820                        new = dst->pointer.str;
 821                } else {
 822                        new = kmemdup(pointer, src->length, GFP_KERNEL);
 823                        if (!new)
 824                                return -ENOMEM;
 825                }
 826        } else if (src->type == DEV_PROP_STRING) {
 827                new = kstrdup(src->value.str, GFP_KERNEL);
 828                if (!new && src->value.str)
 829                        return -ENOMEM;
 830        } else {
 831                new = pointer;
 832        }
 833
 834        dst->length = src->length;
 835        dst->is_array = src->is_array;
 836        dst->type = src->type;
 837
 838        property_set_pointer(dst, new);
 839
 840        dst->name = kstrdup(src->name, GFP_KERNEL);
 841        if (!dst->name)
 842                goto out_free_data;
 843
 844        return 0;
 845
 846out_free_data:
 847        property_entry_free_data(dst);
 848        return -ENOMEM;
 849}
 850
 851/**
 852 * property_entries_dup - duplicate array of properties
 853 * @properties: array of properties to copy
 854 *
 855 * This function creates a deep copy of the given NULL-terminated array
 856 * of property entries.
 857 */
 858struct property_entry *
 859property_entries_dup(const struct property_entry *properties)
 860{
 861        struct property_entry *p;
 862        int i, n = 0;
 863
 864        while (properties[n].name)
 865                n++;
 866
 867        p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
 868        if (!p)
 869                return ERR_PTR(-ENOMEM);
 870
 871        for (i = 0; i < n; i++) {
 872                int ret = property_entry_copy_data(&p[i], &properties[i]);
 873                if (ret) {
 874                        while (--i >= 0)
 875                                property_entry_free_data(&p[i]);
 876                        kfree(p);
 877                        return ERR_PTR(ret);
 878                }
 879        }
 880
 881        return p;
 882}
 883EXPORT_SYMBOL_GPL(property_entries_dup);
 884
 885/**
 886 * property_entries_free - free previously allocated array of properties
 887 * @properties: array of properties to destroy
 888 *
 889 * This function frees given NULL-terminated array of property entries,
 890 * along with their data.
 891 */
 892void property_entries_free(const struct property_entry *properties)
 893{
 894        const struct property_entry *p;
 895
 896        for (p = properties; p->name; p++)
 897                property_entry_free_data(p);
 898
 899        kfree(properties);
 900}
 901EXPORT_SYMBOL_GPL(property_entries_free);
 902
 903/**
 904 * pset_free_set - releases memory allocated for copied property set
 905 * @pset: Property set to release
 906 *
 907 * Function takes previously copied property set and releases all the
 908 * memory allocated to it.
 909 */
 910static void pset_free_set(struct property_set *pset)
 911{
 912        if (!pset)
 913                return;
 914
 915        property_entries_free(pset->properties);
 916        kfree(pset);
 917}
 918
 919/**
 920 * pset_copy_set - copies property set
 921 * @pset: Property set to copy
 922 *
 923 * This function takes a deep copy of the given property set and returns
 924 * pointer to the copy. Call device_free_property_set() to free resources
 925 * allocated in this function.
 926 *
 927 * Return: Pointer to the new property set or error pointer.
 928 */
 929static struct property_set *pset_copy_set(const struct property_set *pset)
 930{
 931        struct property_entry *properties;
 932        struct property_set *p;
 933
 934        p = kzalloc(sizeof(*p), GFP_KERNEL);
 935        if (!p)
 936                return ERR_PTR(-ENOMEM);
 937
 938        properties = property_entries_dup(pset->properties);
 939        if (IS_ERR(properties)) {
 940                kfree(p);
 941                return ERR_CAST(properties);
 942        }
 943
 944        p->properties = properties;
 945        return p;
 946}
 947
 948/**
 949 * device_remove_properties - Remove properties from a device object.
 950 * @dev: Device whose properties to remove.
 951 *
 952 * The function removes properties previously associated to the device
 953 * secondary firmware node with device_add_properties(). Memory allocated
 954 * to the properties will also be released.
 955 */
 956void device_remove_properties(struct device *dev)
 957{
 958        struct fwnode_handle *fwnode;
 959        struct property_set *pset;
 960
 961        fwnode = dev_fwnode(dev);
 962        if (!fwnode)
 963                return;
 964        /*
 965         * Pick either primary or secondary node depending which one holds
 966         * the pset. If there is no real firmware node (ACPI/DT) primary
 967         * will hold the pset.
 968         */
 969        pset = to_pset_node(fwnode);
 970        if (pset) {
 971                set_primary_fwnode(dev, NULL);
 972        } else {
 973                pset = to_pset_node(fwnode->secondary);
 974                if (pset && dev == pset->dev)
 975                        set_secondary_fwnode(dev, NULL);
 976        }
 977        if (pset && dev == pset->dev)
 978                pset_free_set(pset);
 979}
 980EXPORT_SYMBOL_GPL(device_remove_properties);
 981
 982/**
 983 * device_add_properties - Add a collection of properties to a device object.
 984 * @dev: Device to add properties to.
 985 * @properties: Collection of properties to add.
 986 *
 987 * Associate a collection of device properties represented by @properties with
 988 * @dev as its secondary firmware node. The function takes a copy of
 989 * @properties.
 990 */
 991int device_add_properties(struct device *dev,
 992                          const struct property_entry *properties)
 993{
 994        struct property_set *p, pset;
 995
 996        if (!properties)
 997                return -EINVAL;
 998
 999        pset.properties = properties;
1000
1001        p = pset_copy_set(&pset);
1002        if (IS_ERR(p))
1003                return PTR_ERR(p);
1004
1005        p->fwnode.ops = &pset_fwnode_ops;
1006        set_secondary_fwnode(dev, &p->fwnode);
1007        p->dev = dev;
1008        return 0;
1009}
1010EXPORT_SYMBOL_GPL(device_add_properties);
1011
1012/**
1013 * fwnode_get_next_parent - Iterate to the node's parent
1014 * @fwnode: Firmware whose parent is retrieved
1015 *
1016 * This is like fwnode_get_parent() except that it drops the refcount
1017 * on the passed node, making it suitable for iterating through a
1018 * node's parents.
1019 *
1020 * Returns a node pointer with refcount incremented, use
1021 * fwnode_handle_node() on it when done.
1022 */
1023struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
1024{
1025        struct fwnode_handle *parent = fwnode_get_parent(fwnode);
1026
1027        fwnode_handle_put(fwnode);
1028
1029        return parent;
1030}
1031EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
1032
1033/**
1034 * fwnode_get_parent - Return parent firwmare node
1035 * @fwnode: Firmware whose parent is retrieved
1036 *
1037 * Return parent firmware node of the given node if possible or %NULL if no
1038 * parent was available.
1039 */
1040struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
1041{
1042        return fwnode_call_ptr_op(fwnode, get_parent);
1043}
1044EXPORT_SYMBOL_GPL(fwnode_get_parent);
1045
1046/**
1047 * fwnode_get_next_child_node - Return the next child node handle for a node
1048 * @fwnode: Firmware node to find the next child node for.
1049 * @child: Handle to one of the node's child nodes or a %NULL handle.
1050 */
1051struct fwnode_handle *
1052fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
1053                           struct fwnode_handle *child)
1054{
1055        return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
1056}
1057EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
1058
1059/**
1060 * fwnode_get_next_available_child_node - Return the next
1061 * available child node handle for a node
1062 * @fwnode: Firmware node to find the next child node for.
1063 * @child: Handle to one of the node's child nodes or a %NULL handle.
1064 */
1065struct fwnode_handle *
1066fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
1067                                     struct fwnode_handle *child)
1068{
1069        struct fwnode_handle *next_child = child;
1070
1071        if (!fwnode)
1072                return NULL;
1073
1074        do {
1075                next_child = fwnode_get_next_child_node(fwnode, next_child);
1076
1077                if (!next_child || fwnode_device_is_available(next_child))
1078                        break;
1079        } while (next_child);
1080
1081        return next_child;
1082}
1083EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1084
1085/**
1086 * device_get_next_child_node - Return the next child node handle for a device
1087 * @dev: Device to find the next child node for.
1088 * @child: Handle to one of the device's child nodes or a null handle.
1089 */
1090struct fwnode_handle *device_get_next_child_node(struct device *dev,
1091                                                 struct fwnode_handle *child)
1092{
1093        struct acpi_device *adev = ACPI_COMPANION(dev);
1094        struct fwnode_handle *fwnode = NULL;
1095
1096        if (dev->of_node)
1097                fwnode = &dev->of_node->fwnode;
1098        else if (adev)
1099                fwnode = acpi_fwnode_handle(adev);
1100
1101        return fwnode_get_next_child_node(fwnode, child);
1102}
1103EXPORT_SYMBOL_GPL(device_get_next_child_node);
1104
1105/**
1106 * fwnode_get_named_child_node - Return first matching named child node handle
1107 * @fwnode: Firmware node to find the named child node for.
1108 * @childname: String to match child node name against.
1109 */
1110struct fwnode_handle *
1111fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1112                            const char *childname)
1113{
1114        return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1115}
1116EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1117
1118/**
1119 * device_get_named_child_node - Return first matching named child node handle
1120 * @dev: Device to find the named child node for.
1121 * @childname: String to match child node name against.
1122 */
1123struct fwnode_handle *device_get_named_child_node(struct device *dev,
1124                                                  const char *childname)
1125{
1126        return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1127}
1128EXPORT_SYMBOL_GPL(device_get_named_child_node);
1129
1130/**
1131 * fwnode_handle_get - Obtain a reference to a device node
1132 * @fwnode: Pointer to the device node to obtain the reference to.
1133 *
1134 * Returns the fwnode handle.
1135 */
1136struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1137{
1138        if (!fwnode_has_op(fwnode, get))
1139                return fwnode;
1140
1141        return fwnode_call_ptr_op(fwnode, get);
1142}
1143EXPORT_SYMBOL_GPL(fwnode_handle_get);
1144
1145/**
1146 * fwnode_handle_put - Drop reference to a device node
1147 * @fwnode: Pointer to the device node to drop the reference to.
1148 *
1149 * This has to be used when terminating device_for_each_child_node() iteration
1150 * with break or return to prevent stale device node references from being left
1151 * behind.
1152 */
1153void fwnode_handle_put(struct fwnode_handle *fwnode)
1154{
1155        fwnode_call_void_op(fwnode, put);
1156}
1157EXPORT_SYMBOL_GPL(fwnode_handle_put);
1158
1159/**
1160 * fwnode_device_is_available - check if a device is available for use
1161 * @fwnode: Pointer to the fwnode of the device.
1162 */
1163bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1164{
1165        return fwnode_call_bool_op(fwnode, device_is_available);
1166}
1167EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1168
1169/**
1170 * device_get_child_node_count - return the number of child nodes for device
1171 * @dev: Device to cound the child nodes for
1172 */
1173unsigned int device_get_child_node_count(struct device *dev)
1174{
1175        struct fwnode_handle *child;
1176        unsigned int count = 0;
1177
1178        device_for_each_child_node(dev, child)
1179                count++;
1180
1181        return count;
1182}
1183EXPORT_SYMBOL_GPL(device_get_child_node_count);
1184
1185bool device_dma_supported(struct device *dev)
1186{
1187        /* For DT, this is always supported.
1188         * For ACPI, this depends on CCA, which
1189         * is determined by the acpi_dma_supported().
1190         */
1191        if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1192                return true;
1193
1194        return acpi_dma_supported(ACPI_COMPANION(dev));
1195}
1196EXPORT_SYMBOL_GPL(device_dma_supported);
1197
1198enum dev_dma_attr device_get_dma_attr(struct device *dev)
1199{
1200        enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1201
1202        if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1203                if (of_dma_is_coherent(dev->of_node))
1204                        attr = DEV_DMA_COHERENT;
1205                else
1206                        attr = DEV_DMA_NON_COHERENT;
1207        } else
1208                attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1209
1210        return attr;
1211}
1212EXPORT_SYMBOL_GPL(device_get_dma_attr);
1213
1214/**
1215 * fwnode_get_phy_mode - Get phy mode for given firmware node
1216 * @fwnode:     Pointer to the given node
1217 *
1218 * The function gets phy interface string from property 'phy-mode' or
1219 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1220 * error case.
1221 */
1222int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1223{
1224        const char *pm;
1225        int err, i;
1226
1227        err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1228        if (err < 0)
1229                err = fwnode_property_read_string(fwnode,
1230                                                  "phy-connection-type", &pm);
1231        if (err < 0)
1232                return err;
1233
1234        for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1235                if (!strcasecmp(pm, phy_modes(i)))
1236                        return i;
1237
1238        return -ENODEV;
1239}
1240EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1241
1242/**
1243 * device_get_phy_mode - Get phy mode for given device
1244 * @dev:        Pointer to the given device
1245 *
1246 * The function gets phy interface string from property 'phy-mode' or
1247 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1248 * error case.
1249 */
1250int device_get_phy_mode(struct device *dev)
1251{
1252        return fwnode_get_phy_mode(dev_fwnode(dev));
1253}
1254EXPORT_SYMBOL_GPL(device_get_phy_mode);
1255
1256static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1257                                 const char *name, char *addr,
1258                                 int alen)
1259{
1260        int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1261
1262        if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1263                return addr;
1264        return NULL;
1265}
1266
1267/**
1268 * fwnode_get_mac_address - Get the MAC from the firmware node
1269 * @fwnode:     Pointer to the firmware node
1270 * @addr:       Address of buffer to store the MAC in
1271 * @alen:       Length of the buffer pointed to by addr, should be ETH_ALEN
1272 *
1273 * Search the firmware node for the best MAC address to use.  'mac-address' is
1274 * checked first, because that is supposed to contain to "most recent" MAC
1275 * address. If that isn't set, then 'local-mac-address' is checked next,
1276 * because that is the default address.  If that isn't set, then the obsolete
1277 * 'address' is checked, just in case we're using an old device tree.
1278 *
1279 * Note that the 'address' property is supposed to contain a virtual address of
1280 * the register set, but some DTS files have redefined that property to be the
1281 * MAC address.
1282 *
1283 * All-zero MAC addresses are rejected, because those could be properties that
1284 * exist in the firmware tables, but were not updated by the firmware.  For
1285 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1286 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1287 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1288 * exists but is all zeros.
1289*/
1290void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1291{
1292        char *res;
1293
1294        res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1295        if (res)
1296                return res;
1297
1298        res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1299        if (res)
1300                return res;
1301
1302        return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1303}
1304EXPORT_SYMBOL(fwnode_get_mac_address);
1305
1306/**
1307 * device_get_mac_address - Get the MAC for a given device
1308 * @dev:        Pointer to the device
1309 * @addr:       Address of buffer to store the MAC in
1310 * @alen:       Length of the buffer pointed to by addr, should be ETH_ALEN
1311 */
1312void *device_get_mac_address(struct device *dev, char *addr, int alen)
1313{
1314        return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1315}
1316EXPORT_SYMBOL(device_get_mac_address);
1317
1318/**
1319 * fwnode_irq_get - Get IRQ directly from a fwnode
1320 * @fwnode:     Pointer to the firmware node
1321 * @index:      Zero-based index of the IRQ
1322 *
1323 * Returns Linux IRQ number on success. Other values are determined
1324 * accordingly to acpi_/of_ irq_get() operation.
1325 */
1326int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1327{
1328        struct device_node *of_node = to_of_node(fwnode);
1329        struct resource res;
1330        int ret;
1331
1332        if (IS_ENABLED(CONFIG_OF) && of_node)
1333                return of_irq_get(of_node, index);
1334
1335        ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1336        if (ret)
1337                return ret;
1338
1339        return res.start;
1340}
1341EXPORT_SYMBOL(fwnode_irq_get);
1342
1343/**
1344 * device_graph_get_next_endpoint - Get next endpoint firmware node
1345 * @fwnode: Pointer to the parent firmware node
1346 * @prev: Previous endpoint node or %NULL to get the first
1347 *
1348 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1349 * are available.
1350 */
1351struct fwnode_handle *
1352fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1353                               struct fwnode_handle *prev)
1354{
1355        return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1356}
1357EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1358
1359/**
1360 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1361 * @endpoint: Endpoint firmware node of the port
1362 *
1363 * Return: the firmware node of the device the @endpoint belongs to.
1364 */
1365struct fwnode_handle *
1366fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1367{
1368        struct fwnode_handle *port, *parent;
1369
1370        port = fwnode_get_parent(endpoint);
1371        parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1372
1373        fwnode_handle_put(port);
1374
1375        return parent;
1376}
1377EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1378
1379/**
1380 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1381 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1382 *
1383 * Extracts firmware node of a remote device the @fwnode points to.
1384 */
1385struct fwnode_handle *
1386fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1387{
1388        struct fwnode_handle *endpoint, *parent;
1389
1390        endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1391        parent = fwnode_graph_get_port_parent(endpoint);
1392
1393        fwnode_handle_put(endpoint);
1394
1395        return parent;
1396}
1397EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1398
1399/**
1400 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1401 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1402 *
1403 * Extracts firmware node of a remote port the @fwnode points to.
1404 */
1405struct fwnode_handle *
1406fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1407{
1408        return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1409}
1410EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1411
1412/**
1413 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1414 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1415 *
1416 * Extracts firmware node of a remote endpoint the @fwnode points to.
1417 */
1418struct fwnode_handle *
1419fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1420{
1421        return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1422}
1423EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1424
1425/**
1426 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1427 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1428 * @port_id: identifier of the parent port node
1429 * @endpoint_id: identifier of the endpoint node
1430 *
1431 * Return: Remote fwnode handle associated with remote endpoint node linked
1432 *         to @node. Use fwnode_node_put() on it when done.
1433 */
1434struct fwnode_handle *
1435fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1436                             u32 endpoint_id)
1437{
1438        struct fwnode_handle *endpoint = NULL;
1439
1440        while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1441                struct fwnode_endpoint fwnode_ep;
1442                struct fwnode_handle *remote;
1443                int ret;
1444
1445                ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1446                if (ret < 0)
1447                        continue;
1448
1449                if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1450                        continue;
1451
1452                remote = fwnode_graph_get_remote_port_parent(endpoint);
1453                if (!remote)
1454                        return NULL;
1455
1456                return fwnode_device_is_available(remote) ? remote : NULL;
1457        }
1458
1459        return NULL;
1460}
1461EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1462
1463/**
1464 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1465 * @fwnode: pointer to endpoint fwnode_handle
1466 * @endpoint: pointer to the fwnode endpoint data structure
1467 *
1468 * Parse @fwnode representing a graph endpoint node and store the
1469 * information in @endpoint. The caller must hold a reference to
1470 * @fwnode.
1471 */
1472int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1473                                struct fwnode_endpoint *endpoint)
1474{
1475        memset(endpoint, 0, sizeof(*endpoint));
1476
1477        return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1478}
1479EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1480
1481const void *device_get_match_data(struct device *dev)
1482{
1483        return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1484}
1485EXPORT_SYMBOL_GPL(device_get_match_data);
1486