linux/drivers/crypto/mxs-dcp.c
<<
>>
Prefs
   1/*
   2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
   3 *
   4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
   5 *
   6 * The code contained herein is licensed under the GNU General Public
   7 * License. You may obtain a copy of the GNU General Public License
   8 * Version 2 or later at the following locations:
   9 *
  10 * http://www.opensource.org/licenses/gpl-license.html
  11 * http://www.gnu.org/copyleft/gpl.html
  12 */
  13
  14#include <linux/dma-mapping.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/kernel.h>
  18#include <linux/kthread.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/platform_device.h>
  22#include <linux/stmp_device.h>
  23
  24#include <crypto/aes.h>
  25#include <crypto/sha.h>
  26#include <crypto/internal/hash.h>
  27#include <crypto/internal/skcipher.h>
  28
  29#define DCP_MAX_CHANS   4
  30#define DCP_BUF_SZ      PAGE_SIZE
  31
  32#define DCP_ALIGNMENT   64
  33
  34/* DCP DMA descriptor. */
  35struct dcp_dma_desc {
  36        uint32_t        next_cmd_addr;
  37        uint32_t        control0;
  38        uint32_t        control1;
  39        uint32_t        source;
  40        uint32_t        destination;
  41        uint32_t        size;
  42        uint32_t        payload;
  43        uint32_t        status;
  44};
  45
  46/* Coherent aligned block for bounce buffering. */
  47struct dcp_coherent_block {
  48        uint8_t                 aes_in_buf[DCP_BUF_SZ];
  49        uint8_t                 aes_out_buf[DCP_BUF_SZ];
  50        uint8_t                 sha_in_buf[DCP_BUF_SZ];
  51
  52        uint8_t                 aes_key[2 * AES_KEYSIZE_128];
  53
  54        struct dcp_dma_desc     desc[DCP_MAX_CHANS];
  55};
  56
  57struct dcp {
  58        struct device                   *dev;
  59        void __iomem                    *base;
  60
  61        uint32_t                        caps;
  62
  63        struct dcp_coherent_block       *coh;
  64
  65        struct completion               completion[DCP_MAX_CHANS];
  66        spinlock_t                      lock[DCP_MAX_CHANS];
  67        struct task_struct              *thread[DCP_MAX_CHANS];
  68        struct crypto_queue             queue[DCP_MAX_CHANS];
  69};
  70
  71enum dcp_chan {
  72        DCP_CHAN_HASH_SHA       = 0,
  73        DCP_CHAN_CRYPTO         = 2,
  74};
  75
  76struct dcp_async_ctx {
  77        /* Common context */
  78        enum dcp_chan   chan;
  79        uint32_t        fill;
  80
  81        /* SHA Hash-specific context */
  82        struct mutex                    mutex;
  83        uint32_t                        alg;
  84        unsigned int                    hot:1;
  85
  86        /* Crypto-specific context */
  87        struct crypto_skcipher          *fallback;
  88        unsigned int                    key_len;
  89        uint8_t                         key[AES_KEYSIZE_128];
  90};
  91
  92struct dcp_aes_req_ctx {
  93        unsigned int    enc:1;
  94        unsigned int    ecb:1;
  95};
  96
  97struct dcp_sha_req_ctx {
  98        unsigned int    init:1;
  99        unsigned int    fini:1;
 100};
 101
 102/*
 103 * There can even be only one instance of the MXS DCP due to the
 104 * design of Linux Crypto API.
 105 */
 106static struct dcp *global_sdcp;
 107
 108/* DCP register layout. */
 109#define MXS_DCP_CTRL                            0x00
 110#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES     (1 << 23)
 111#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING     (1 << 22)
 112
 113#define MXS_DCP_STAT                            0x10
 114#define MXS_DCP_STAT_CLR                        0x18
 115#define MXS_DCP_STAT_IRQ_MASK                   0xf
 116
 117#define MXS_DCP_CHANNELCTRL                     0x20
 118#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
 119
 120#define MXS_DCP_CAPABILITY1                     0x40
 121#define MXS_DCP_CAPABILITY1_SHA256              (4 << 16)
 122#define MXS_DCP_CAPABILITY1_SHA1                (1 << 16)
 123#define MXS_DCP_CAPABILITY1_AES128              (1 << 0)
 124
 125#define MXS_DCP_CONTEXT                         0x50
 126
 127#define MXS_DCP_CH_N_CMDPTR(n)                  (0x100 + ((n) * 0x40))
 128
 129#define MXS_DCP_CH_N_SEMA(n)                    (0x110 + ((n) * 0x40))
 130
 131#define MXS_DCP_CH_N_STAT(n)                    (0x120 + ((n) * 0x40))
 132#define MXS_DCP_CH_N_STAT_CLR(n)                (0x128 + ((n) * 0x40))
 133
 134/* DMA descriptor bits. */
 135#define MXS_DCP_CONTROL0_HASH_TERM              (1 << 13)
 136#define MXS_DCP_CONTROL0_HASH_INIT              (1 << 12)
 137#define MXS_DCP_CONTROL0_PAYLOAD_KEY            (1 << 11)
 138#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT         (1 << 8)
 139#define MXS_DCP_CONTROL0_CIPHER_INIT            (1 << 9)
 140#define MXS_DCP_CONTROL0_ENABLE_HASH            (1 << 6)
 141#define MXS_DCP_CONTROL0_ENABLE_CIPHER          (1 << 5)
 142#define MXS_DCP_CONTROL0_DECR_SEMAPHORE         (1 << 1)
 143#define MXS_DCP_CONTROL0_INTERRUPT              (1 << 0)
 144
 145#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256     (2 << 16)
 146#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1       (0 << 16)
 147#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC        (1 << 4)
 148#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB        (0 << 4)
 149#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128   (0 << 0)
 150
 151static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
 152{
 153        struct dcp *sdcp = global_sdcp;
 154        const int chan = actx->chan;
 155        uint32_t stat;
 156        unsigned long ret;
 157        struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 158
 159        dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
 160                                              DMA_TO_DEVICE);
 161
 162        reinit_completion(&sdcp->completion[chan]);
 163
 164        /* Clear status register. */
 165        writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
 166
 167        /* Load the DMA descriptor. */
 168        writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
 169
 170        /* Increment the semaphore to start the DMA transfer. */
 171        writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
 172
 173        ret = wait_for_completion_timeout(&sdcp->completion[chan],
 174                                          msecs_to_jiffies(1000));
 175        if (!ret) {
 176                dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
 177                        chan, readl(sdcp->base + MXS_DCP_STAT));
 178                return -ETIMEDOUT;
 179        }
 180
 181        stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
 182        if (stat & 0xff) {
 183                dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
 184                        chan, stat);
 185                return -EINVAL;
 186        }
 187
 188        dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
 189
 190        return 0;
 191}
 192
 193/*
 194 * Encryption (AES128)
 195 */
 196static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
 197                           struct ablkcipher_request *req, int init)
 198{
 199        struct dcp *sdcp = global_sdcp;
 200        struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 201        struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 202        int ret;
 203
 204        dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
 205                                             2 * AES_KEYSIZE_128,
 206                                             DMA_TO_DEVICE);
 207        dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
 208                                             DCP_BUF_SZ, DMA_TO_DEVICE);
 209        dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
 210                                             DCP_BUF_SZ, DMA_FROM_DEVICE);
 211
 212        /* Fill in the DMA descriptor. */
 213        desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
 214                    MXS_DCP_CONTROL0_INTERRUPT |
 215                    MXS_DCP_CONTROL0_ENABLE_CIPHER;
 216
 217        /* Payload contains the key. */
 218        desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
 219
 220        if (rctx->enc)
 221                desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
 222        if (init)
 223                desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
 224
 225        desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
 226
 227        if (rctx->ecb)
 228                desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
 229        else
 230                desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
 231
 232        desc->next_cmd_addr = 0;
 233        desc->source = src_phys;
 234        desc->destination = dst_phys;
 235        desc->size = actx->fill;
 236        desc->payload = key_phys;
 237        desc->status = 0;
 238
 239        ret = mxs_dcp_start_dma(actx);
 240
 241        dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
 242                         DMA_TO_DEVICE);
 243        dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
 244        dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
 245
 246        return ret;
 247}
 248
 249static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
 250{
 251        struct dcp *sdcp = global_sdcp;
 252
 253        struct ablkcipher_request *req = ablkcipher_request_cast(arq);
 254        struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
 255        struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 256
 257        struct scatterlist *dst = req->dst;
 258        struct scatterlist *src = req->src;
 259        const int nents = sg_nents(req->src);
 260
 261        const int out_off = DCP_BUF_SZ;
 262        uint8_t *in_buf = sdcp->coh->aes_in_buf;
 263        uint8_t *out_buf = sdcp->coh->aes_out_buf;
 264
 265        uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
 266        uint32_t dst_off = 0;
 267
 268        uint8_t *key = sdcp->coh->aes_key;
 269
 270        int ret = 0;
 271        int split = 0;
 272        unsigned int i, len, clen, rem = 0;
 273        int init = 0;
 274
 275        actx->fill = 0;
 276
 277        /* Copy the key from the temporary location. */
 278        memcpy(key, actx->key, actx->key_len);
 279
 280        if (!rctx->ecb) {
 281                /* Copy the CBC IV just past the key. */
 282                memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
 283                /* CBC needs the INIT set. */
 284                init = 1;
 285        } else {
 286                memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
 287        }
 288
 289        for_each_sg(req->src, src, nents, i) {
 290                src_buf = sg_virt(src);
 291                len = sg_dma_len(src);
 292
 293                do {
 294                        if (actx->fill + len > out_off)
 295                                clen = out_off - actx->fill;
 296                        else
 297                                clen = len;
 298
 299                        memcpy(in_buf + actx->fill, src_buf, clen);
 300                        len -= clen;
 301                        src_buf += clen;
 302                        actx->fill += clen;
 303
 304                        /*
 305                         * If we filled the buffer or this is the last SG,
 306                         * submit the buffer.
 307                         */
 308                        if (actx->fill == out_off || sg_is_last(src)) {
 309                                ret = mxs_dcp_run_aes(actx, req, init);
 310                                if (ret)
 311                                        return ret;
 312                                init = 0;
 313
 314                                out_tmp = out_buf;
 315                                while (dst && actx->fill) {
 316                                        if (!split) {
 317                                                dst_buf = sg_virt(dst);
 318                                                dst_off = 0;
 319                                        }
 320                                        rem = min(sg_dma_len(dst) - dst_off,
 321                                                  actx->fill);
 322
 323                                        memcpy(dst_buf + dst_off, out_tmp, rem);
 324                                        out_tmp += rem;
 325                                        dst_off += rem;
 326                                        actx->fill -= rem;
 327
 328                                        if (dst_off == sg_dma_len(dst)) {
 329                                                dst = sg_next(dst);
 330                                                split = 0;
 331                                        } else {
 332                                                split = 1;
 333                                        }
 334                                }
 335                        }
 336                } while (len);
 337        }
 338
 339        return ret;
 340}
 341
 342static int dcp_chan_thread_aes(void *data)
 343{
 344        struct dcp *sdcp = global_sdcp;
 345        const int chan = DCP_CHAN_CRYPTO;
 346
 347        struct crypto_async_request *backlog;
 348        struct crypto_async_request *arq;
 349
 350        int ret;
 351
 352        while (!kthread_should_stop()) {
 353                set_current_state(TASK_INTERRUPTIBLE);
 354
 355                spin_lock(&sdcp->lock[chan]);
 356                backlog = crypto_get_backlog(&sdcp->queue[chan]);
 357                arq = crypto_dequeue_request(&sdcp->queue[chan]);
 358                spin_unlock(&sdcp->lock[chan]);
 359
 360                if (!backlog && !arq) {
 361                        schedule();
 362                        continue;
 363                }
 364
 365                set_current_state(TASK_RUNNING);
 366
 367                if (backlog)
 368                        backlog->complete(backlog, -EINPROGRESS);
 369
 370                if (arq) {
 371                        ret = mxs_dcp_aes_block_crypt(arq);
 372                        arq->complete(arq, ret);
 373                }
 374        }
 375
 376        return 0;
 377}
 378
 379static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
 380{
 381        struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
 382        struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
 383        SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
 384        int ret;
 385
 386        skcipher_request_set_tfm(subreq, ctx->fallback);
 387        skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
 388        skcipher_request_set_crypt(subreq, req->src, req->dst,
 389                                   req->nbytes, req->info);
 390
 391        if (enc)
 392                ret = crypto_skcipher_encrypt(subreq);
 393        else
 394                ret = crypto_skcipher_decrypt(subreq);
 395
 396        skcipher_request_zero(subreq);
 397
 398        return ret;
 399}
 400
 401static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
 402{
 403        struct dcp *sdcp = global_sdcp;
 404        struct crypto_async_request *arq = &req->base;
 405        struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
 406        struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 407        int ret;
 408
 409        if (unlikely(actx->key_len != AES_KEYSIZE_128))
 410                return mxs_dcp_block_fallback(req, enc);
 411
 412        rctx->enc = enc;
 413        rctx->ecb = ecb;
 414        actx->chan = DCP_CHAN_CRYPTO;
 415
 416        spin_lock(&sdcp->lock[actx->chan]);
 417        ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
 418        spin_unlock(&sdcp->lock[actx->chan]);
 419
 420        wake_up_process(sdcp->thread[actx->chan]);
 421
 422        return -EINPROGRESS;
 423}
 424
 425static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
 426{
 427        return mxs_dcp_aes_enqueue(req, 0, 1);
 428}
 429
 430static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
 431{
 432        return mxs_dcp_aes_enqueue(req, 1, 1);
 433}
 434
 435static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
 436{
 437        return mxs_dcp_aes_enqueue(req, 0, 0);
 438}
 439
 440static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
 441{
 442        return mxs_dcp_aes_enqueue(req, 1, 0);
 443}
 444
 445static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 446                              unsigned int len)
 447{
 448        struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
 449        unsigned int ret;
 450
 451        /*
 452         * AES 128 is supposed by the hardware, store key into temporary
 453         * buffer and exit. We must use the temporary buffer here, since
 454         * there can still be an operation in progress.
 455         */
 456        actx->key_len = len;
 457        if (len == AES_KEYSIZE_128) {
 458                memcpy(actx->key, key, len);
 459                return 0;
 460        }
 461
 462        /*
 463         * If the requested AES key size is not supported by the hardware,
 464         * but is supported by in-kernel software implementation, we use
 465         * software fallback.
 466         */
 467        crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
 468        crypto_skcipher_set_flags(actx->fallback,
 469                                  tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
 470
 471        ret = crypto_skcipher_setkey(actx->fallback, key, len);
 472        if (!ret)
 473                return 0;
 474
 475        tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
 476        tfm->base.crt_flags |= crypto_skcipher_get_flags(actx->fallback) &
 477                               CRYPTO_TFM_RES_MASK;
 478
 479        return ret;
 480}
 481
 482static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
 483{
 484        const char *name = crypto_tfm_alg_name(tfm);
 485        const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
 486        struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
 487        struct crypto_skcipher *blk;
 488
 489        blk = crypto_alloc_skcipher(name, 0, flags);
 490        if (IS_ERR(blk))
 491                return PTR_ERR(blk);
 492
 493        actx->fallback = blk;
 494        tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
 495        return 0;
 496}
 497
 498static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
 499{
 500        struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
 501
 502        crypto_free_skcipher(actx->fallback);
 503}
 504
 505/*
 506 * Hashing (SHA1/SHA256)
 507 */
 508static int mxs_dcp_run_sha(struct ahash_request *req)
 509{
 510        struct dcp *sdcp = global_sdcp;
 511        int ret;
 512
 513        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 514        struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 515        struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 516        struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 517
 518        struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 519
 520        dma_addr_t digest_phys = 0;
 521        dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
 522                                             DCP_BUF_SZ, DMA_TO_DEVICE);
 523
 524        /* Fill in the DMA descriptor. */
 525        desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
 526                    MXS_DCP_CONTROL0_INTERRUPT |
 527                    MXS_DCP_CONTROL0_ENABLE_HASH;
 528        if (rctx->init)
 529                desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
 530
 531        desc->control1 = actx->alg;
 532        desc->next_cmd_addr = 0;
 533        desc->source = buf_phys;
 534        desc->destination = 0;
 535        desc->size = actx->fill;
 536        desc->payload = 0;
 537        desc->status = 0;
 538
 539        /* Set HASH_TERM bit for last transfer block. */
 540        if (rctx->fini) {
 541                digest_phys = dma_map_single(sdcp->dev, req->result,
 542                                             halg->digestsize, DMA_FROM_DEVICE);
 543                desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
 544                desc->payload = digest_phys;
 545        }
 546
 547        ret = mxs_dcp_start_dma(actx);
 548
 549        if (rctx->fini)
 550                dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
 551                                 DMA_FROM_DEVICE);
 552
 553        dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
 554
 555        return ret;
 556}
 557
 558static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
 559{
 560        struct dcp *sdcp = global_sdcp;
 561
 562        struct ahash_request *req = ahash_request_cast(arq);
 563        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 564        struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 565        struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 566        struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 567        const int nents = sg_nents(req->src);
 568
 569        uint8_t *in_buf = sdcp->coh->sha_in_buf;
 570
 571        uint8_t *src_buf;
 572
 573        struct scatterlist *src;
 574
 575        unsigned int i, len, clen;
 576        int ret;
 577
 578        int fin = rctx->fini;
 579        if (fin)
 580                rctx->fini = 0;
 581
 582        for_each_sg(req->src, src, nents, i) {
 583                src_buf = sg_virt(src);
 584                len = sg_dma_len(src);
 585
 586                do {
 587                        if (actx->fill + len > DCP_BUF_SZ)
 588                                clen = DCP_BUF_SZ - actx->fill;
 589                        else
 590                                clen = len;
 591
 592                        memcpy(in_buf + actx->fill, src_buf, clen);
 593                        len -= clen;
 594                        src_buf += clen;
 595                        actx->fill += clen;
 596
 597                        /*
 598                         * If we filled the buffer and still have some
 599                         * more data, submit the buffer.
 600                         */
 601                        if (len && actx->fill == DCP_BUF_SZ) {
 602                                ret = mxs_dcp_run_sha(req);
 603                                if (ret)
 604                                        return ret;
 605                                actx->fill = 0;
 606                                rctx->init = 0;
 607                        }
 608                } while (len);
 609        }
 610
 611        if (fin) {
 612                rctx->fini = 1;
 613
 614                /* Submit whatever is left. */
 615                if (!req->result)
 616                        return -EINVAL;
 617
 618                ret = mxs_dcp_run_sha(req);
 619                if (ret)
 620                        return ret;
 621
 622                actx->fill = 0;
 623
 624                /* For some reason, the result is flipped. */
 625                for (i = 0; i < halg->digestsize / 2; i++) {
 626                        swap(req->result[i],
 627                             req->result[halg->digestsize - i - 1]);
 628                }
 629        }
 630
 631        return 0;
 632}
 633
 634static int dcp_chan_thread_sha(void *data)
 635{
 636        struct dcp *sdcp = global_sdcp;
 637        const int chan = DCP_CHAN_HASH_SHA;
 638
 639        struct crypto_async_request *backlog;
 640        struct crypto_async_request *arq;
 641
 642        struct dcp_sha_req_ctx *rctx;
 643
 644        struct ahash_request *req;
 645        int ret, fini;
 646
 647        while (!kthread_should_stop()) {
 648                set_current_state(TASK_INTERRUPTIBLE);
 649
 650                spin_lock(&sdcp->lock[chan]);
 651                backlog = crypto_get_backlog(&sdcp->queue[chan]);
 652                arq = crypto_dequeue_request(&sdcp->queue[chan]);
 653                spin_unlock(&sdcp->lock[chan]);
 654
 655                if (!backlog && !arq) {
 656                        schedule();
 657                        continue;
 658                }
 659
 660                set_current_state(TASK_RUNNING);
 661
 662                if (backlog)
 663                        backlog->complete(backlog, -EINPROGRESS);
 664
 665                if (arq) {
 666                        req = ahash_request_cast(arq);
 667                        rctx = ahash_request_ctx(req);
 668
 669                        ret = dcp_sha_req_to_buf(arq);
 670                        fini = rctx->fini;
 671                        arq->complete(arq, ret);
 672                }
 673        }
 674
 675        return 0;
 676}
 677
 678static int dcp_sha_init(struct ahash_request *req)
 679{
 680        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 681        struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 682
 683        struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 684
 685        /*
 686         * Start hashing session. The code below only inits the
 687         * hashing session context, nothing more.
 688         */
 689        memset(actx, 0, sizeof(*actx));
 690
 691        if (strcmp(halg->base.cra_name, "sha1") == 0)
 692                actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
 693        else
 694                actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
 695
 696        actx->fill = 0;
 697        actx->hot = 0;
 698        actx->chan = DCP_CHAN_HASH_SHA;
 699
 700        mutex_init(&actx->mutex);
 701
 702        return 0;
 703}
 704
 705static int dcp_sha_update_fx(struct ahash_request *req, int fini)
 706{
 707        struct dcp *sdcp = global_sdcp;
 708
 709        struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 710        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 711        struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 712
 713        int ret;
 714
 715        /*
 716         * Ignore requests that have no data in them and are not
 717         * the trailing requests in the stream of requests.
 718         */
 719        if (!req->nbytes && !fini)
 720                return 0;
 721
 722        mutex_lock(&actx->mutex);
 723
 724        rctx->fini = fini;
 725
 726        if (!actx->hot) {
 727                actx->hot = 1;
 728                rctx->init = 1;
 729        }
 730
 731        spin_lock(&sdcp->lock[actx->chan]);
 732        ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
 733        spin_unlock(&sdcp->lock[actx->chan]);
 734
 735        wake_up_process(sdcp->thread[actx->chan]);
 736        mutex_unlock(&actx->mutex);
 737
 738        return -EINPROGRESS;
 739}
 740
 741static int dcp_sha_update(struct ahash_request *req)
 742{
 743        return dcp_sha_update_fx(req, 0);
 744}
 745
 746static int dcp_sha_final(struct ahash_request *req)
 747{
 748        ahash_request_set_crypt(req, NULL, req->result, 0);
 749        req->nbytes = 0;
 750        return dcp_sha_update_fx(req, 1);
 751}
 752
 753static int dcp_sha_finup(struct ahash_request *req)
 754{
 755        return dcp_sha_update_fx(req, 1);
 756}
 757
 758static int dcp_sha_digest(struct ahash_request *req)
 759{
 760        int ret;
 761
 762        ret = dcp_sha_init(req);
 763        if (ret)
 764                return ret;
 765
 766        return dcp_sha_finup(req);
 767}
 768
 769static int dcp_sha_noimport(struct ahash_request *req, const void *in)
 770{
 771        return -ENOSYS;
 772}
 773
 774static int dcp_sha_noexport(struct ahash_request *req, void *out)
 775{
 776        return -ENOSYS;
 777}
 778
 779static int dcp_sha_cra_init(struct crypto_tfm *tfm)
 780{
 781        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 782                                 sizeof(struct dcp_sha_req_ctx));
 783        return 0;
 784}
 785
 786static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
 787{
 788}
 789
 790/* AES 128 ECB and AES 128 CBC */
 791static struct crypto_alg dcp_aes_algs[] = {
 792        {
 793                .cra_name               = "ecb(aes)",
 794                .cra_driver_name        = "ecb-aes-dcp",
 795                .cra_priority           = 400,
 796                .cra_alignmask          = 15,
 797                .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
 798                                          CRYPTO_ALG_ASYNC |
 799                                          CRYPTO_ALG_NEED_FALLBACK,
 800                .cra_init               = mxs_dcp_aes_fallback_init,
 801                .cra_exit               = mxs_dcp_aes_fallback_exit,
 802                .cra_blocksize          = AES_BLOCK_SIZE,
 803                .cra_ctxsize            = sizeof(struct dcp_async_ctx),
 804                .cra_type               = &crypto_ablkcipher_type,
 805                .cra_module             = THIS_MODULE,
 806                .cra_u  = {
 807                        .ablkcipher = {
 808                                .min_keysize    = AES_MIN_KEY_SIZE,
 809                                .max_keysize    = AES_MAX_KEY_SIZE,
 810                                .setkey         = mxs_dcp_aes_setkey,
 811                                .encrypt        = mxs_dcp_aes_ecb_encrypt,
 812                                .decrypt        = mxs_dcp_aes_ecb_decrypt
 813                        },
 814                },
 815        }, {
 816                .cra_name               = "cbc(aes)",
 817                .cra_driver_name        = "cbc-aes-dcp",
 818                .cra_priority           = 400,
 819                .cra_alignmask          = 15,
 820                .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
 821                                          CRYPTO_ALG_ASYNC |
 822                                          CRYPTO_ALG_NEED_FALLBACK,
 823                .cra_init               = mxs_dcp_aes_fallback_init,
 824                .cra_exit               = mxs_dcp_aes_fallback_exit,
 825                .cra_blocksize          = AES_BLOCK_SIZE,
 826                .cra_ctxsize            = sizeof(struct dcp_async_ctx),
 827                .cra_type               = &crypto_ablkcipher_type,
 828                .cra_module             = THIS_MODULE,
 829                .cra_u = {
 830                        .ablkcipher = {
 831                                .min_keysize    = AES_MIN_KEY_SIZE,
 832                                .max_keysize    = AES_MAX_KEY_SIZE,
 833                                .setkey         = mxs_dcp_aes_setkey,
 834                                .encrypt        = mxs_dcp_aes_cbc_encrypt,
 835                                .decrypt        = mxs_dcp_aes_cbc_decrypt,
 836                                .ivsize         = AES_BLOCK_SIZE,
 837                        },
 838                },
 839        },
 840};
 841
 842/* SHA1 */
 843static struct ahash_alg dcp_sha1_alg = {
 844        .init   = dcp_sha_init,
 845        .update = dcp_sha_update,
 846        .final  = dcp_sha_final,
 847        .finup  = dcp_sha_finup,
 848        .digest = dcp_sha_digest,
 849        .import = dcp_sha_noimport,
 850        .export = dcp_sha_noexport,
 851        .halg   = {
 852                .digestsize     = SHA1_DIGEST_SIZE,
 853                .base           = {
 854                        .cra_name               = "sha1",
 855                        .cra_driver_name        = "sha1-dcp",
 856                        .cra_priority           = 400,
 857                        .cra_alignmask          = 63,
 858                        .cra_flags              = CRYPTO_ALG_ASYNC,
 859                        .cra_blocksize          = SHA1_BLOCK_SIZE,
 860                        .cra_ctxsize            = sizeof(struct dcp_async_ctx),
 861                        .cra_module             = THIS_MODULE,
 862                        .cra_init               = dcp_sha_cra_init,
 863                        .cra_exit               = dcp_sha_cra_exit,
 864                },
 865        },
 866};
 867
 868/* SHA256 */
 869static struct ahash_alg dcp_sha256_alg = {
 870        .init   = dcp_sha_init,
 871        .update = dcp_sha_update,
 872        .final  = dcp_sha_final,
 873        .finup  = dcp_sha_finup,
 874        .digest = dcp_sha_digest,
 875        .import = dcp_sha_noimport,
 876        .export = dcp_sha_noexport,
 877        .halg   = {
 878                .digestsize     = SHA256_DIGEST_SIZE,
 879                .base           = {
 880                        .cra_name               = "sha256",
 881                        .cra_driver_name        = "sha256-dcp",
 882                        .cra_priority           = 400,
 883                        .cra_alignmask          = 63,
 884                        .cra_flags              = CRYPTO_ALG_ASYNC,
 885                        .cra_blocksize          = SHA256_BLOCK_SIZE,
 886                        .cra_ctxsize            = sizeof(struct dcp_async_ctx),
 887                        .cra_module             = THIS_MODULE,
 888                        .cra_init               = dcp_sha_cra_init,
 889                        .cra_exit               = dcp_sha_cra_exit,
 890                },
 891        },
 892};
 893
 894static irqreturn_t mxs_dcp_irq(int irq, void *context)
 895{
 896        struct dcp *sdcp = context;
 897        uint32_t stat;
 898        int i;
 899
 900        stat = readl(sdcp->base + MXS_DCP_STAT);
 901        stat &= MXS_DCP_STAT_IRQ_MASK;
 902        if (!stat)
 903                return IRQ_NONE;
 904
 905        /* Clear the interrupts. */
 906        writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
 907
 908        /* Complete the DMA requests that finished. */
 909        for (i = 0; i < DCP_MAX_CHANS; i++)
 910                if (stat & (1 << i))
 911                        complete(&sdcp->completion[i]);
 912
 913        return IRQ_HANDLED;
 914}
 915
 916static int mxs_dcp_probe(struct platform_device *pdev)
 917{
 918        struct device *dev = &pdev->dev;
 919        struct dcp *sdcp = NULL;
 920        int i, ret;
 921
 922        struct resource *iores;
 923        int dcp_vmi_irq, dcp_irq;
 924
 925        if (global_sdcp) {
 926                dev_err(dev, "Only one DCP instance allowed!\n");
 927                return -ENODEV;
 928        }
 929
 930        iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 931        dcp_vmi_irq = platform_get_irq(pdev, 0);
 932        if (dcp_vmi_irq < 0) {
 933                dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq);
 934                return dcp_vmi_irq;
 935        }
 936
 937        dcp_irq = platform_get_irq(pdev, 1);
 938        if (dcp_irq < 0) {
 939                dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_irq);
 940                return dcp_irq;
 941        }
 942
 943        sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
 944        if (!sdcp)
 945                return -ENOMEM;
 946
 947        sdcp->dev = dev;
 948        sdcp->base = devm_ioremap_resource(dev, iores);
 949        if (IS_ERR(sdcp->base))
 950                return PTR_ERR(sdcp->base);
 951
 952
 953        ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
 954                               "dcp-vmi-irq", sdcp);
 955        if (ret) {
 956                dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
 957                return ret;
 958        }
 959
 960        ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
 961                               "dcp-irq", sdcp);
 962        if (ret) {
 963                dev_err(dev, "Failed to claim DCP IRQ!\n");
 964                return ret;
 965        }
 966
 967        /* Allocate coherent helper block. */
 968        sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
 969                                   GFP_KERNEL);
 970        if (!sdcp->coh)
 971                return -ENOMEM;
 972
 973        /* Re-align the structure so it fits the DCP constraints. */
 974        sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
 975
 976        /* Restart the DCP block. */
 977        ret = stmp_reset_block(sdcp->base);
 978        if (ret)
 979                return ret;
 980
 981        /* Initialize control register. */
 982        writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
 983               MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
 984               sdcp->base + MXS_DCP_CTRL);
 985
 986        /* Enable all DCP DMA channels. */
 987        writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
 988               sdcp->base + MXS_DCP_CHANNELCTRL);
 989
 990        /*
 991         * We do not enable context switching. Give the context buffer a
 992         * pointer to an illegal address so if context switching is
 993         * inadvertantly enabled, the DCP will return an error instead of
 994         * trashing good memory. The DCP DMA cannot access ROM, so any ROM
 995         * address will do.
 996         */
 997        writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
 998        for (i = 0; i < DCP_MAX_CHANS; i++)
 999                writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1000        writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1001
1002        global_sdcp = sdcp;
1003
1004        platform_set_drvdata(pdev, sdcp);
1005
1006        for (i = 0; i < DCP_MAX_CHANS; i++) {
1007                spin_lock_init(&sdcp->lock[i]);
1008                init_completion(&sdcp->completion[i]);
1009                crypto_init_queue(&sdcp->queue[i], 50);
1010        }
1011
1012        /* Create the SHA and AES handler threads. */
1013        sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1014                                                      NULL, "mxs_dcp_chan/sha");
1015        if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1016                dev_err(dev, "Error starting SHA thread!\n");
1017                return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1018        }
1019
1020        sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1021                                                    NULL, "mxs_dcp_chan/aes");
1022        if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1023                dev_err(dev, "Error starting SHA thread!\n");
1024                ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1025                goto err_destroy_sha_thread;
1026        }
1027
1028        /* Register the various crypto algorithms. */
1029        sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1030
1031        if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1032                ret = crypto_register_algs(dcp_aes_algs,
1033                                           ARRAY_SIZE(dcp_aes_algs));
1034                if (ret) {
1035                        /* Failed to register algorithm. */
1036                        dev_err(dev, "Failed to register AES crypto!\n");
1037                        goto err_destroy_aes_thread;
1038                }
1039        }
1040
1041        if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1042                ret = crypto_register_ahash(&dcp_sha1_alg);
1043                if (ret) {
1044                        dev_err(dev, "Failed to register %s hash!\n",
1045                                dcp_sha1_alg.halg.base.cra_name);
1046                        goto err_unregister_aes;
1047                }
1048        }
1049
1050        if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1051                ret = crypto_register_ahash(&dcp_sha256_alg);
1052                if (ret) {
1053                        dev_err(dev, "Failed to register %s hash!\n",
1054                                dcp_sha256_alg.halg.base.cra_name);
1055                        goto err_unregister_sha1;
1056                }
1057        }
1058
1059        return 0;
1060
1061err_unregister_sha1:
1062        if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1063                crypto_unregister_ahash(&dcp_sha1_alg);
1064
1065err_unregister_aes:
1066        if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1067                crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1068
1069err_destroy_aes_thread:
1070        kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1071
1072err_destroy_sha_thread:
1073        kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1074        return ret;
1075}
1076
1077static int mxs_dcp_remove(struct platform_device *pdev)
1078{
1079        struct dcp *sdcp = platform_get_drvdata(pdev);
1080
1081        if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1082                crypto_unregister_ahash(&dcp_sha256_alg);
1083
1084        if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1085                crypto_unregister_ahash(&dcp_sha1_alg);
1086
1087        if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1088                crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1089
1090        kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1091        kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1092
1093        platform_set_drvdata(pdev, NULL);
1094
1095        global_sdcp = NULL;
1096
1097        return 0;
1098}
1099
1100static const struct of_device_id mxs_dcp_dt_ids[] = {
1101        { .compatible = "fsl,imx23-dcp", .data = NULL, },
1102        { .compatible = "fsl,imx28-dcp", .data = NULL, },
1103        { /* sentinel */ }
1104};
1105
1106MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1107
1108static struct platform_driver mxs_dcp_driver = {
1109        .probe  = mxs_dcp_probe,
1110        .remove = mxs_dcp_remove,
1111        .driver = {
1112                .name           = "mxs-dcp",
1113                .of_match_table = mxs_dcp_dt_ids,
1114        },
1115};
1116
1117module_platform_driver(mxs_dcp_driver);
1118
1119MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1120MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1121MODULE_LICENSE("GPL");
1122MODULE_ALIAS("platform:mxs-dcp");
1123