1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <linux/dma-mapping.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kernel.h>
18#include <linux/kthread.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/platform_device.h>
22#include <linux/stmp_device.h>
23
24#include <crypto/aes.h>
25#include <crypto/sha.h>
26#include <crypto/internal/hash.h>
27#include <crypto/internal/skcipher.h>
28
29#define DCP_MAX_CHANS 4
30#define DCP_BUF_SZ PAGE_SIZE
31
32#define DCP_ALIGNMENT 64
33
34
35struct dcp_dma_desc {
36 uint32_t next_cmd_addr;
37 uint32_t control0;
38 uint32_t control1;
39 uint32_t source;
40 uint32_t destination;
41 uint32_t size;
42 uint32_t payload;
43 uint32_t status;
44};
45
46
47struct dcp_coherent_block {
48 uint8_t aes_in_buf[DCP_BUF_SZ];
49 uint8_t aes_out_buf[DCP_BUF_SZ];
50 uint8_t sha_in_buf[DCP_BUF_SZ];
51
52 uint8_t aes_key[2 * AES_KEYSIZE_128];
53
54 struct dcp_dma_desc desc[DCP_MAX_CHANS];
55};
56
57struct dcp {
58 struct device *dev;
59 void __iomem *base;
60
61 uint32_t caps;
62
63 struct dcp_coherent_block *coh;
64
65 struct completion completion[DCP_MAX_CHANS];
66 spinlock_t lock[DCP_MAX_CHANS];
67 struct task_struct *thread[DCP_MAX_CHANS];
68 struct crypto_queue queue[DCP_MAX_CHANS];
69};
70
71enum dcp_chan {
72 DCP_CHAN_HASH_SHA = 0,
73 DCP_CHAN_CRYPTO = 2,
74};
75
76struct dcp_async_ctx {
77
78 enum dcp_chan chan;
79 uint32_t fill;
80
81
82 struct mutex mutex;
83 uint32_t alg;
84 unsigned int hot:1;
85
86
87 struct crypto_skcipher *fallback;
88 unsigned int key_len;
89 uint8_t key[AES_KEYSIZE_128];
90};
91
92struct dcp_aes_req_ctx {
93 unsigned int enc:1;
94 unsigned int ecb:1;
95};
96
97struct dcp_sha_req_ctx {
98 unsigned int init:1;
99 unsigned int fini:1;
100};
101
102
103
104
105
106static struct dcp *global_sdcp;
107
108
109#define MXS_DCP_CTRL 0x00
110#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
111#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
112
113#define MXS_DCP_STAT 0x10
114#define MXS_DCP_STAT_CLR 0x18
115#define MXS_DCP_STAT_IRQ_MASK 0xf
116
117#define MXS_DCP_CHANNELCTRL 0x20
118#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
119
120#define MXS_DCP_CAPABILITY1 0x40
121#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
122#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
123#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
124
125#define MXS_DCP_CONTEXT 0x50
126
127#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
128
129#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
130
131#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
132#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
133
134
135#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
136#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
137#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
138#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
139#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
140#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
141#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
142#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
143#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
144
145#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
146#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
147#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
148#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
149#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
150
151static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
152{
153 struct dcp *sdcp = global_sdcp;
154 const int chan = actx->chan;
155 uint32_t stat;
156 unsigned long ret;
157 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
158
159 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
160 DMA_TO_DEVICE);
161
162 reinit_completion(&sdcp->completion[chan]);
163
164
165 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
166
167
168 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
169
170
171 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
172
173 ret = wait_for_completion_timeout(&sdcp->completion[chan],
174 msecs_to_jiffies(1000));
175 if (!ret) {
176 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
177 chan, readl(sdcp->base + MXS_DCP_STAT));
178 return -ETIMEDOUT;
179 }
180
181 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
182 if (stat & 0xff) {
183 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
184 chan, stat);
185 return -EINVAL;
186 }
187
188 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
189
190 return 0;
191}
192
193
194
195
196static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
197 struct ablkcipher_request *req, int init)
198{
199 struct dcp *sdcp = global_sdcp;
200 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
201 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
202 int ret;
203
204 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
205 2 * AES_KEYSIZE_128,
206 DMA_TO_DEVICE);
207 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
208 DCP_BUF_SZ, DMA_TO_DEVICE);
209 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
210 DCP_BUF_SZ, DMA_FROM_DEVICE);
211
212
213 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
214 MXS_DCP_CONTROL0_INTERRUPT |
215 MXS_DCP_CONTROL0_ENABLE_CIPHER;
216
217
218 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
219
220 if (rctx->enc)
221 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
222 if (init)
223 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
224
225 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
226
227 if (rctx->ecb)
228 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
229 else
230 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
231
232 desc->next_cmd_addr = 0;
233 desc->source = src_phys;
234 desc->destination = dst_phys;
235 desc->size = actx->fill;
236 desc->payload = key_phys;
237 desc->status = 0;
238
239 ret = mxs_dcp_start_dma(actx);
240
241 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
242 DMA_TO_DEVICE);
243 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
244 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
245
246 return ret;
247}
248
249static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
250{
251 struct dcp *sdcp = global_sdcp;
252
253 struct ablkcipher_request *req = ablkcipher_request_cast(arq);
254 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
255 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
256
257 struct scatterlist *dst = req->dst;
258 struct scatterlist *src = req->src;
259 const int nents = sg_nents(req->src);
260
261 const int out_off = DCP_BUF_SZ;
262 uint8_t *in_buf = sdcp->coh->aes_in_buf;
263 uint8_t *out_buf = sdcp->coh->aes_out_buf;
264
265 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
266 uint32_t dst_off = 0;
267
268 uint8_t *key = sdcp->coh->aes_key;
269
270 int ret = 0;
271 int split = 0;
272 unsigned int i, len, clen, rem = 0;
273 int init = 0;
274
275 actx->fill = 0;
276
277
278 memcpy(key, actx->key, actx->key_len);
279
280 if (!rctx->ecb) {
281
282 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
283
284 init = 1;
285 } else {
286 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
287 }
288
289 for_each_sg(req->src, src, nents, i) {
290 src_buf = sg_virt(src);
291 len = sg_dma_len(src);
292
293 do {
294 if (actx->fill + len > out_off)
295 clen = out_off - actx->fill;
296 else
297 clen = len;
298
299 memcpy(in_buf + actx->fill, src_buf, clen);
300 len -= clen;
301 src_buf += clen;
302 actx->fill += clen;
303
304
305
306
307
308 if (actx->fill == out_off || sg_is_last(src)) {
309 ret = mxs_dcp_run_aes(actx, req, init);
310 if (ret)
311 return ret;
312 init = 0;
313
314 out_tmp = out_buf;
315 while (dst && actx->fill) {
316 if (!split) {
317 dst_buf = sg_virt(dst);
318 dst_off = 0;
319 }
320 rem = min(sg_dma_len(dst) - dst_off,
321 actx->fill);
322
323 memcpy(dst_buf + dst_off, out_tmp, rem);
324 out_tmp += rem;
325 dst_off += rem;
326 actx->fill -= rem;
327
328 if (dst_off == sg_dma_len(dst)) {
329 dst = sg_next(dst);
330 split = 0;
331 } else {
332 split = 1;
333 }
334 }
335 }
336 } while (len);
337 }
338
339 return ret;
340}
341
342static int dcp_chan_thread_aes(void *data)
343{
344 struct dcp *sdcp = global_sdcp;
345 const int chan = DCP_CHAN_CRYPTO;
346
347 struct crypto_async_request *backlog;
348 struct crypto_async_request *arq;
349
350 int ret;
351
352 while (!kthread_should_stop()) {
353 set_current_state(TASK_INTERRUPTIBLE);
354
355 spin_lock(&sdcp->lock[chan]);
356 backlog = crypto_get_backlog(&sdcp->queue[chan]);
357 arq = crypto_dequeue_request(&sdcp->queue[chan]);
358 spin_unlock(&sdcp->lock[chan]);
359
360 if (!backlog && !arq) {
361 schedule();
362 continue;
363 }
364
365 set_current_state(TASK_RUNNING);
366
367 if (backlog)
368 backlog->complete(backlog, -EINPROGRESS);
369
370 if (arq) {
371 ret = mxs_dcp_aes_block_crypt(arq);
372 arq->complete(arq, ret);
373 }
374 }
375
376 return 0;
377}
378
379static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
380{
381 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
382 struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
383 SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
384 int ret;
385
386 skcipher_request_set_tfm(subreq, ctx->fallback);
387 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
388 skcipher_request_set_crypt(subreq, req->src, req->dst,
389 req->nbytes, req->info);
390
391 if (enc)
392 ret = crypto_skcipher_encrypt(subreq);
393 else
394 ret = crypto_skcipher_decrypt(subreq);
395
396 skcipher_request_zero(subreq);
397
398 return ret;
399}
400
401static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
402{
403 struct dcp *sdcp = global_sdcp;
404 struct crypto_async_request *arq = &req->base;
405 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
406 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
407 int ret;
408
409 if (unlikely(actx->key_len != AES_KEYSIZE_128))
410 return mxs_dcp_block_fallback(req, enc);
411
412 rctx->enc = enc;
413 rctx->ecb = ecb;
414 actx->chan = DCP_CHAN_CRYPTO;
415
416 spin_lock(&sdcp->lock[actx->chan]);
417 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
418 spin_unlock(&sdcp->lock[actx->chan]);
419
420 wake_up_process(sdcp->thread[actx->chan]);
421
422 return -EINPROGRESS;
423}
424
425static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
426{
427 return mxs_dcp_aes_enqueue(req, 0, 1);
428}
429
430static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
431{
432 return mxs_dcp_aes_enqueue(req, 1, 1);
433}
434
435static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
436{
437 return mxs_dcp_aes_enqueue(req, 0, 0);
438}
439
440static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
441{
442 return mxs_dcp_aes_enqueue(req, 1, 0);
443}
444
445static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
446 unsigned int len)
447{
448 struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
449 unsigned int ret;
450
451
452
453
454
455
456 actx->key_len = len;
457 if (len == AES_KEYSIZE_128) {
458 memcpy(actx->key, key, len);
459 return 0;
460 }
461
462
463
464
465
466
467 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
468 crypto_skcipher_set_flags(actx->fallback,
469 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
470
471 ret = crypto_skcipher_setkey(actx->fallback, key, len);
472 if (!ret)
473 return 0;
474
475 tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
476 tfm->base.crt_flags |= crypto_skcipher_get_flags(actx->fallback) &
477 CRYPTO_TFM_RES_MASK;
478
479 return ret;
480}
481
482static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
483{
484 const char *name = crypto_tfm_alg_name(tfm);
485 const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
486 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
487 struct crypto_skcipher *blk;
488
489 blk = crypto_alloc_skcipher(name, 0, flags);
490 if (IS_ERR(blk))
491 return PTR_ERR(blk);
492
493 actx->fallback = blk;
494 tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
495 return 0;
496}
497
498static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
499{
500 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
501
502 crypto_free_skcipher(actx->fallback);
503}
504
505
506
507
508static int mxs_dcp_run_sha(struct ahash_request *req)
509{
510 struct dcp *sdcp = global_sdcp;
511 int ret;
512
513 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
514 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
515 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
516 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
517
518 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
519
520 dma_addr_t digest_phys = 0;
521 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
522 DCP_BUF_SZ, DMA_TO_DEVICE);
523
524
525 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
526 MXS_DCP_CONTROL0_INTERRUPT |
527 MXS_DCP_CONTROL0_ENABLE_HASH;
528 if (rctx->init)
529 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
530
531 desc->control1 = actx->alg;
532 desc->next_cmd_addr = 0;
533 desc->source = buf_phys;
534 desc->destination = 0;
535 desc->size = actx->fill;
536 desc->payload = 0;
537 desc->status = 0;
538
539
540 if (rctx->fini) {
541 digest_phys = dma_map_single(sdcp->dev, req->result,
542 halg->digestsize, DMA_FROM_DEVICE);
543 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
544 desc->payload = digest_phys;
545 }
546
547 ret = mxs_dcp_start_dma(actx);
548
549 if (rctx->fini)
550 dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
551 DMA_FROM_DEVICE);
552
553 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
554
555 return ret;
556}
557
558static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
559{
560 struct dcp *sdcp = global_sdcp;
561
562 struct ahash_request *req = ahash_request_cast(arq);
563 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
564 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
565 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
566 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
567 const int nents = sg_nents(req->src);
568
569 uint8_t *in_buf = sdcp->coh->sha_in_buf;
570
571 uint8_t *src_buf;
572
573 struct scatterlist *src;
574
575 unsigned int i, len, clen;
576 int ret;
577
578 int fin = rctx->fini;
579 if (fin)
580 rctx->fini = 0;
581
582 for_each_sg(req->src, src, nents, i) {
583 src_buf = sg_virt(src);
584 len = sg_dma_len(src);
585
586 do {
587 if (actx->fill + len > DCP_BUF_SZ)
588 clen = DCP_BUF_SZ - actx->fill;
589 else
590 clen = len;
591
592 memcpy(in_buf + actx->fill, src_buf, clen);
593 len -= clen;
594 src_buf += clen;
595 actx->fill += clen;
596
597
598
599
600
601 if (len && actx->fill == DCP_BUF_SZ) {
602 ret = mxs_dcp_run_sha(req);
603 if (ret)
604 return ret;
605 actx->fill = 0;
606 rctx->init = 0;
607 }
608 } while (len);
609 }
610
611 if (fin) {
612 rctx->fini = 1;
613
614
615 if (!req->result)
616 return -EINVAL;
617
618 ret = mxs_dcp_run_sha(req);
619 if (ret)
620 return ret;
621
622 actx->fill = 0;
623
624
625 for (i = 0; i < halg->digestsize / 2; i++) {
626 swap(req->result[i],
627 req->result[halg->digestsize - i - 1]);
628 }
629 }
630
631 return 0;
632}
633
634static int dcp_chan_thread_sha(void *data)
635{
636 struct dcp *sdcp = global_sdcp;
637 const int chan = DCP_CHAN_HASH_SHA;
638
639 struct crypto_async_request *backlog;
640 struct crypto_async_request *arq;
641
642 struct dcp_sha_req_ctx *rctx;
643
644 struct ahash_request *req;
645 int ret, fini;
646
647 while (!kthread_should_stop()) {
648 set_current_state(TASK_INTERRUPTIBLE);
649
650 spin_lock(&sdcp->lock[chan]);
651 backlog = crypto_get_backlog(&sdcp->queue[chan]);
652 arq = crypto_dequeue_request(&sdcp->queue[chan]);
653 spin_unlock(&sdcp->lock[chan]);
654
655 if (!backlog && !arq) {
656 schedule();
657 continue;
658 }
659
660 set_current_state(TASK_RUNNING);
661
662 if (backlog)
663 backlog->complete(backlog, -EINPROGRESS);
664
665 if (arq) {
666 req = ahash_request_cast(arq);
667 rctx = ahash_request_ctx(req);
668
669 ret = dcp_sha_req_to_buf(arq);
670 fini = rctx->fini;
671 arq->complete(arq, ret);
672 }
673 }
674
675 return 0;
676}
677
678static int dcp_sha_init(struct ahash_request *req)
679{
680 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
681 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
682
683 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
684
685
686
687
688
689 memset(actx, 0, sizeof(*actx));
690
691 if (strcmp(halg->base.cra_name, "sha1") == 0)
692 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
693 else
694 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
695
696 actx->fill = 0;
697 actx->hot = 0;
698 actx->chan = DCP_CHAN_HASH_SHA;
699
700 mutex_init(&actx->mutex);
701
702 return 0;
703}
704
705static int dcp_sha_update_fx(struct ahash_request *req, int fini)
706{
707 struct dcp *sdcp = global_sdcp;
708
709 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
710 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
711 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
712
713 int ret;
714
715
716
717
718
719 if (!req->nbytes && !fini)
720 return 0;
721
722 mutex_lock(&actx->mutex);
723
724 rctx->fini = fini;
725
726 if (!actx->hot) {
727 actx->hot = 1;
728 rctx->init = 1;
729 }
730
731 spin_lock(&sdcp->lock[actx->chan]);
732 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
733 spin_unlock(&sdcp->lock[actx->chan]);
734
735 wake_up_process(sdcp->thread[actx->chan]);
736 mutex_unlock(&actx->mutex);
737
738 return -EINPROGRESS;
739}
740
741static int dcp_sha_update(struct ahash_request *req)
742{
743 return dcp_sha_update_fx(req, 0);
744}
745
746static int dcp_sha_final(struct ahash_request *req)
747{
748 ahash_request_set_crypt(req, NULL, req->result, 0);
749 req->nbytes = 0;
750 return dcp_sha_update_fx(req, 1);
751}
752
753static int dcp_sha_finup(struct ahash_request *req)
754{
755 return dcp_sha_update_fx(req, 1);
756}
757
758static int dcp_sha_digest(struct ahash_request *req)
759{
760 int ret;
761
762 ret = dcp_sha_init(req);
763 if (ret)
764 return ret;
765
766 return dcp_sha_finup(req);
767}
768
769static int dcp_sha_noimport(struct ahash_request *req, const void *in)
770{
771 return -ENOSYS;
772}
773
774static int dcp_sha_noexport(struct ahash_request *req, void *out)
775{
776 return -ENOSYS;
777}
778
779static int dcp_sha_cra_init(struct crypto_tfm *tfm)
780{
781 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
782 sizeof(struct dcp_sha_req_ctx));
783 return 0;
784}
785
786static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
787{
788}
789
790
791static struct crypto_alg dcp_aes_algs[] = {
792 {
793 .cra_name = "ecb(aes)",
794 .cra_driver_name = "ecb-aes-dcp",
795 .cra_priority = 400,
796 .cra_alignmask = 15,
797 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
798 CRYPTO_ALG_ASYNC |
799 CRYPTO_ALG_NEED_FALLBACK,
800 .cra_init = mxs_dcp_aes_fallback_init,
801 .cra_exit = mxs_dcp_aes_fallback_exit,
802 .cra_blocksize = AES_BLOCK_SIZE,
803 .cra_ctxsize = sizeof(struct dcp_async_ctx),
804 .cra_type = &crypto_ablkcipher_type,
805 .cra_module = THIS_MODULE,
806 .cra_u = {
807 .ablkcipher = {
808 .min_keysize = AES_MIN_KEY_SIZE,
809 .max_keysize = AES_MAX_KEY_SIZE,
810 .setkey = mxs_dcp_aes_setkey,
811 .encrypt = mxs_dcp_aes_ecb_encrypt,
812 .decrypt = mxs_dcp_aes_ecb_decrypt
813 },
814 },
815 }, {
816 .cra_name = "cbc(aes)",
817 .cra_driver_name = "cbc-aes-dcp",
818 .cra_priority = 400,
819 .cra_alignmask = 15,
820 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
821 CRYPTO_ALG_ASYNC |
822 CRYPTO_ALG_NEED_FALLBACK,
823 .cra_init = mxs_dcp_aes_fallback_init,
824 .cra_exit = mxs_dcp_aes_fallback_exit,
825 .cra_blocksize = AES_BLOCK_SIZE,
826 .cra_ctxsize = sizeof(struct dcp_async_ctx),
827 .cra_type = &crypto_ablkcipher_type,
828 .cra_module = THIS_MODULE,
829 .cra_u = {
830 .ablkcipher = {
831 .min_keysize = AES_MIN_KEY_SIZE,
832 .max_keysize = AES_MAX_KEY_SIZE,
833 .setkey = mxs_dcp_aes_setkey,
834 .encrypt = mxs_dcp_aes_cbc_encrypt,
835 .decrypt = mxs_dcp_aes_cbc_decrypt,
836 .ivsize = AES_BLOCK_SIZE,
837 },
838 },
839 },
840};
841
842
843static struct ahash_alg dcp_sha1_alg = {
844 .init = dcp_sha_init,
845 .update = dcp_sha_update,
846 .final = dcp_sha_final,
847 .finup = dcp_sha_finup,
848 .digest = dcp_sha_digest,
849 .import = dcp_sha_noimport,
850 .export = dcp_sha_noexport,
851 .halg = {
852 .digestsize = SHA1_DIGEST_SIZE,
853 .base = {
854 .cra_name = "sha1",
855 .cra_driver_name = "sha1-dcp",
856 .cra_priority = 400,
857 .cra_alignmask = 63,
858 .cra_flags = CRYPTO_ALG_ASYNC,
859 .cra_blocksize = SHA1_BLOCK_SIZE,
860 .cra_ctxsize = sizeof(struct dcp_async_ctx),
861 .cra_module = THIS_MODULE,
862 .cra_init = dcp_sha_cra_init,
863 .cra_exit = dcp_sha_cra_exit,
864 },
865 },
866};
867
868
869static struct ahash_alg dcp_sha256_alg = {
870 .init = dcp_sha_init,
871 .update = dcp_sha_update,
872 .final = dcp_sha_final,
873 .finup = dcp_sha_finup,
874 .digest = dcp_sha_digest,
875 .import = dcp_sha_noimport,
876 .export = dcp_sha_noexport,
877 .halg = {
878 .digestsize = SHA256_DIGEST_SIZE,
879 .base = {
880 .cra_name = "sha256",
881 .cra_driver_name = "sha256-dcp",
882 .cra_priority = 400,
883 .cra_alignmask = 63,
884 .cra_flags = CRYPTO_ALG_ASYNC,
885 .cra_blocksize = SHA256_BLOCK_SIZE,
886 .cra_ctxsize = sizeof(struct dcp_async_ctx),
887 .cra_module = THIS_MODULE,
888 .cra_init = dcp_sha_cra_init,
889 .cra_exit = dcp_sha_cra_exit,
890 },
891 },
892};
893
894static irqreturn_t mxs_dcp_irq(int irq, void *context)
895{
896 struct dcp *sdcp = context;
897 uint32_t stat;
898 int i;
899
900 stat = readl(sdcp->base + MXS_DCP_STAT);
901 stat &= MXS_DCP_STAT_IRQ_MASK;
902 if (!stat)
903 return IRQ_NONE;
904
905
906 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
907
908
909 for (i = 0; i < DCP_MAX_CHANS; i++)
910 if (stat & (1 << i))
911 complete(&sdcp->completion[i]);
912
913 return IRQ_HANDLED;
914}
915
916static int mxs_dcp_probe(struct platform_device *pdev)
917{
918 struct device *dev = &pdev->dev;
919 struct dcp *sdcp = NULL;
920 int i, ret;
921
922 struct resource *iores;
923 int dcp_vmi_irq, dcp_irq;
924
925 if (global_sdcp) {
926 dev_err(dev, "Only one DCP instance allowed!\n");
927 return -ENODEV;
928 }
929
930 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
931 dcp_vmi_irq = platform_get_irq(pdev, 0);
932 if (dcp_vmi_irq < 0) {
933 dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq);
934 return dcp_vmi_irq;
935 }
936
937 dcp_irq = platform_get_irq(pdev, 1);
938 if (dcp_irq < 0) {
939 dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_irq);
940 return dcp_irq;
941 }
942
943 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
944 if (!sdcp)
945 return -ENOMEM;
946
947 sdcp->dev = dev;
948 sdcp->base = devm_ioremap_resource(dev, iores);
949 if (IS_ERR(sdcp->base))
950 return PTR_ERR(sdcp->base);
951
952
953 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
954 "dcp-vmi-irq", sdcp);
955 if (ret) {
956 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
957 return ret;
958 }
959
960 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
961 "dcp-irq", sdcp);
962 if (ret) {
963 dev_err(dev, "Failed to claim DCP IRQ!\n");
964 return ret;
965 }
966
967
968 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
969 GFP_KERNEL);
970 if (!sdcp->coh)
971 return -ENOMEM;
972
973
974 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
975
976
977 ret = stmp_reset_block(sdcp->base);
978 if (ret)
979 return ret;
980
981
982 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
983 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
984 sdcp->base + MXS_DCP_CTRL);
985
986
987 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
988 sdcp->base + MXS_DCP_CHANNELCTRL);
989
990
991
992
993
994
995
996
997 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
998 for (i = 0; i < DCP_MAX_CHANS; i++)
999 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1000 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1001
1002 global_sdcp = sdcp;
1003
1004 platform_set_drvdata(pdev, sdcp);
1005
1006 for (i = 0; i < DCP_MAX_CHANS; i++) {
1007 spin_lock_init(&sdcp->lock[i]);
1008 init_completion(&sdcp->completion[i]);
1009 crypto_init_queue(&sdcp->queue[i], 50);
1010 }
1011
1012
1013 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1014 NULL, "mxs_dcp_chan/sha");
1015 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1016 dev_err(dev, "Error starting SHA thread!\n");
1017 return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1018 }
1019
1020 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1021 NULL, "mxs_dcp_chan/aes");
1022 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1023 dev_err(dev, "Error starting SHA thread!\n");
1024 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1025 goto err_destroy_sha_thread;
1026 }
1027
1028
1029 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1030
1031 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1032 ret = crypto_register_algs(dcp_aes_algs,
1033 ARRAY_SIZE(dcp_aes_algs));
1034 if (ret) {
1035
1036 dev_err(dev, "Failed to register AES crypto!\n");
1037 goto err_destroy_aes_thread;
1038 }
1039 }
1040
1041 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1042 ret = crypto_register_ahash(&dcp_sha1_alg);
1043 if (ret) {
1044 dev_err(dev, "Failed to register %s hash!\n",
1045 dcp_sha1_alg.halg.base.cra_name);
1046 goto err_unregister_aes;
1047 }
1048 }
1049
1050 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1051 ret = crypto_register_ahash(&dcp_sha256_alg);
1052 if (ret) {
1053 dev_err(dev, "Failed to register %s hash!\n",
1054 dcp_sha256_alg.halg.base.cra_name);
1055 goto err_unregister_sha1;
1056 }
1057 }
1058
1059 return 0;
1060
1061err_unregister_sha1:
1062 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1063 crypto_unregister_ahash(&dcp_sha1_alg);
1064
1065err_unregister_aes:
1066 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1067 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1068
1069err_destroy_aes_thread:
1070 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1071
1072err_destroy_sha_thread:
1073 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1074 return ret;
1075}
1076
1077static int mxs_dcp_remove(struct platform_device *pdev)
1078{
1079 struct dcp *sdcp = platform_get_drvdata(pdev);
1080
1081 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1082 crypto_unregister_ahash(&dcp_sha256_alg);
1083
1084 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1085 crypto_unregister_ahash(&dcp_sha1_alg);
1086
1087 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1088 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1089
1090 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1091 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1092
1093 platform_set_drvdata(pdev, NULL);
1094
1095 global_sdcp = NULL;
1096
1097 return 0;
1098}
1099
1100static const struct of_device_id mxs_dcp_dt_ids[] = {
1101 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1102 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1103 { }
1104};
1105
1106MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1107
1108static struct platform_driver mxs_dcp_driver = {
1109 .probe = mxs_dcp_probe,
1110 .remove = mxs_dcp_remove,
1111 .driver = {
1112 .name = "mxs-dcp",
1113 .of_match_table = mxs_dcp_dt_ids,
1114 },
1115};
1116
1117module_platform_driver(mxs_dcp_driver);
1118
1119MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1120MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1121MODULE_LICENSE("GPL");
1122MODULE_ALIAS("platform:mxs-dcp");
1123