linux/drivers/edac/edac_mc.c
<<
>>
Prefs
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Thayne Harbaugh
   8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
   9 *      http://www.anime.net/~goemon/linux-ecc/
  10 *
  11 * Modified by Dave Peterson and Doug Thompson
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/proc_fs.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/sysctl.h>
  22#include <linux/highmem.h>
  23#include <linux/timer.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/spinlock.h>
  27#include <linux/list.h>
  28#include <linux/ctype.h>
  29#include <linux/edac.h>
  30#include <linux/bitops.h>
  31#include <linux/uaccess.h>
  32#include <asm/page.h>
  33#include "edac_mc.h"
  34#include "edac_module.h"
  35#include <ras/ras_event.h>
  36
  37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
  38#include <asm/edac.h>
  39#else
  40#define edac_atomic_scrub(va, size) do { } while (0)
  41#endif
  42
  43int edac_op_state = EDAC_OPSTATE_INVAL;
  44EXPORT_SYMBOL_GPL(edac_op_state);
  45
  46static int edac_report = EDAC_REPORTING_ENABLED;
  47
  48/* lock to memory controller's control array */
  49static DEFINE_MUTEX(mem_ctls_mutex);
  50static LIST_HEAD(mc_devices);
  51
  52/*
  53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  54 *      apei/ghes and i7core_edac to be used at the same time.
  55 */
  56static const char *edac_mc_owner;
  57
  58static struct bus_type mc_bus[EDAC_MAX_MCS];
  59
  60int edac_get_report_status(void)
  61{
  62        return edac_report;
  63}
  64EXPORT_SYMBOL_GPL(edac_get_report_status);
  65
  66void edac_set_report_status(int new)
  67{
  68        if (new == EDAC_REPORTING_ENABLED ||
  69            new == EDAC_REPORTING_DISABLED ||
  70            new == EDAC_REPORTING_FORCE)
  71                edac_report = new;
  72}
  73EXPORT_SYMBOL_GPL(edac_set_report_status);
  74
  75static int edac_report_set(const char *str, const struct kernel_param *kp)
  76{
  77        if (!str)
  78                return -EINVAL;
  79
  80        if (!strncmp(str, "on", 2))
  81                edac_report = EDAC_REPORTING_ENABLED;
  82        else if (!strncmp(str, "off", 3))
  83                edac_report = EDAC_REPORTING_DISABLED;
  84        else if (!strncmp(str, "force", 5))
  85                edac_report = EDAC_REPORTING_FORCE;
  86
  87        return 0;
  88}
  89
  90static int edac_report_get(char *buffer, const struct kernel_param *kp)
  91{
  92        int ret = 0;
  93
  94        switch (edac_report) {
  95        case EDAC_REPORTING_ENABLED:
  96                ret = sprintf(buffer, "on");
  97                break;
  98        case EDAC_REPORTING_DISABLED:
  99                ret = sprintf(buffer, "off");
 100                break;
 101        case EDAC_REPORTING_FORCE:
 102                ret = sprintf(buffer, "force");
 103                break;
 104        default:
 105                ret = -EINVAL;
 106                break;
 107        }
 108
 109        return ret;
 110}
 111
 112static const struct kernel_param_ops edac_report_ops = {
 113        .set = edac_report_set,
 114        .get = edac_report_get,
 115};
 116
 117module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
 118
 119unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
 120                                 unsigned len)
 121{
 122        struct mem_ctl_info *mci = dimm->mci;
 123        int i, n, count = 0;
 124        char *p = buf;
 125
 126        for (i = 0; i < mci->n_layers; i++) {
 127                n = snprintf(p, len, "%s %d ",
 128                              edac_layer_name[mci->layers[i].type],
 129                              dimm->location[i]);
 130                p += n;
 131                len -= n;
 132                count += n;
 133                if (!len)
 134                        break;
 135        }
 136
 137        return count;
 138}
 139
 140#ifdef CONFIG_EDAC_DEBUG
 141
 142static void edac_mc_dump_channel(struct rank_info *chan)
 143{
 144        edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
 145        edac_dbg(4, "    channel = %p\n", chan);
 146        edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
 147        edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
 148}
 149
 150static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
 151{
 152        char location[80];
 153
 154        edac_dimm_info_location(dimm, location, sizeof(location));
 155
 156        edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
 157                 dimm->mci->csbased ? "rank" : "dimm",
 158                 number, location, dimm->csrow, dimm->cschannel);
 159        edac_dbg(4, "  dimm = %p\n", dimm);
 160        edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
 161        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 162        edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
 163        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 164}
 165
 166static void edac_mc_dump_csrow(struct csrow_info *csrow)
 167{
 168        edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 169        edac_dbg(4, "  csrow = %p\n", csrow);
 170        edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 171        edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 172        edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 173        edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 174        edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 175        edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 176}
 177
 178static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 179{
 180        edac_dbg(3, "\tmci = %p\n", mci);
 181        edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 182        edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 183        edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 184        edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 185        edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 186                 mci->nr_csrows, mci->csrows);
 187        edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 188                 mci->tot_dimms, mci->dimms);
 189        edac_dbg(3, "\tdev = %p\n", mci->pdev);
 190        edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 191                 mci->mod_name, mci->ctl_name);
 192        edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 193}
 194
 195#endif                          /* CONFIG_EDAC_DEBUG */
 196
 197const char * const edac_mem_types[] = {
 198        [MEM_EMPTY]     = "Empty",
 199        [MEM_RESERVED]  = "Reserved",
 200        [MEM_UNKNOWN]   = "Unknown",
 201        [MEM_FPM]       = "FPM",
 202        [MEM_EDO]       = "EDO",
 203        [MEM_BEDO]      = "BEDO",
 204        [MEM_SDR]       = "Unbuffered-SDR",
 205        [MEM_RDR]       = "Registered-SDR",
 206        [MEM_DDR]       = "Unbuffered-DDR",
 207        [MEM_RDDR]      = "Registered-DDR",
 208        [MEM_RMBS]      = "RMBS",
 209        [MEM_DDR2]      = "Unbuffered-DDR2",
 210        [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
 211        [MEM_RDDR2]     = "Registered-DDR2",
 212        [MEM_XDR]       = "XDR",
 213        [MEM_DDR3]      = "Unbuffered-DDR3",
 214        [MEM_RDDR3]     = "Registered-DDR3",
 215        [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
 216        [MEM_DDR4]      = "Unbuffered-DDR4",
 217        [MEM_RDDR4]     = "Registered-DDR4",
 218        [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
 219        [MEM_NVDIMM]    = "Non-volatile-RAM",
 220};
 221EXPORT_SYMBOL_GPL(edac_mem_types);
 222
 223/**
 224 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 225 * @p:          pointer to a pointer with the memory offset to be used. At
 226 *              return, this will be incremented to point to the next offset
 227 * @size:       Size of the data structure to be reserved
 228 * @n_elems:    Number of elements that should be reserved
 229 *
 230 * If 'size' is a constant, the compiler will optimize this whole function
 231 * down to either a no-op or the addition of a constant to the value of '*p'.
 232 *
 233 * The 'p' pointer is absolutely needed to keep the proper advancing
 234 * further in memory to the proper offsets when allocating the struct along
 235 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 236 * above, for example.
 237 *
 238 * At return, the pointer 'p' will be incremented to be used on a next call
 239 * to this function.
 240 */
 241void *edac_align_ptr(void **p, unsigned size, int n_elems)
 242{
 243        unsigned align, r;
 244        void *ptr = *p;
 245
 246        *p += size * n_elems;
 247
 248        /*
 249         * 'p' can possibly be an unaligned item X such that sizeof(X) is
 250         * 'size'.  Adjust 'p' so that its alignment is at least as
 251         * stringent as what the compiler would provide for X and return
 252         * the aligned result.
 253         * Here we assume that the alignment of a "long long" is the most
 254         * stringent alignment that the compiler will ever provide by default.
 255         * As far as I know, this is a reasonable assumption.
 256         */
 257        if (size > sizeof(long))
 258                align = sizeof(long long);
 259        else if (size > sizeof(int))
 260                align = sizeof(long);
 261        else if (size > sizeof(short))
 262                align = sizeof(int);
 263        else if (size > sizeof(char))
 264                align = sizeof(short);
 265        else
 266                return (char *)ptr;
 267
 268        r = (unsigned long)p % align;
 269
 270        if (r == 0)
 271                return (char *)ptr;
 272
 273        *p += align - r;
 274
 275        return (void *)(((unsigned long)ptr) + align - r);
 276}
 277
 278static void _edac_mc_free(struct mem_ctl_info *mci)
 279{
 280        int i, chn, row;
 281        struct csrow_info *csr;
 282        const unsigned int tot_dimms = mci->tot_dimms;
 283        const unsigned int tot_channels = mci->num_cschannel;
 284        const unsigned int tot_csrows = mci->nr_csrows;
 285
 286        if (mci->dimms) {
 287                for (i = 0; i < tot_dimms; i++)
 288                        kfree(mci->dimms[i]);
 289                kfree(mci->dimms);
 290        }
 291        if (mci->csrows) {
 292                for (row = 0; row < tot_csrows; row++) {
 293                        csr = mci->csrows[row];
 294                        if (csr) {
 295                                if (csr->channels) {
 296                                        for (chn = 0; chn < tot_channels; chn++)
 297                                                kfree(csr->channels[chn]);
 298                                        kfree(csr->channels);
 299                                }
 300                                kfree(csr);
 301                        }
 302                }
 303                kfree(mci->csrows);
 304        }
 305        kfree(mci);
 306}
 307
 308struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
 309                                   unsigned n_layers,
 310                                   struct edac_mc_layer *layers,
 311                                   unsigned sz_pvt)
 312{
 313        struct mem_ctl_info *mci;
 314        struct edac_mc_layer *layer;
 315        struct csrow_info *csr;
 316        struct rank_info *chan;
 317        struct dimm_info *dimm;
 318        u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 319        unsigned pos[EDAC_MAX_LAYERS];
 320        unsigned size, tot_dimms = 1, count = 1;
 321        unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
 322        void *pvt, *p, *ptr = NULL;
 323        int i, j, row, chn, n, len, off;
 324        bool per_rank = false;
 325
 326        BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
 327        /*
 328         * Calculate the total amount of dimms and csrows/cschannels while
 329         * in the old API emulation mode
 330         */
 331        for (i = 0; i < n_layers; i++) {
 332                tot_dimms *= layers[i].size;
 333                if (layers[i].is_virt_csrow)
 334                        tot_csrows *= layers[i].size;
 335                else
 336                        tot_channels *= layers[i].size;
 337
 338                if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
 339                        per_rank = true;
 340        }
 341
 342        /* Figure out the offsets of the various items from the start of an mc
 343         * structure.  We want the alignment of each item to be at least as
 344         * stringent as what the compiler would provide if we could simply
 345         * hardcode everything into a single struct.
 346         */
 347        mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
 348        layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
 349        for (i = 0; i < n_layers; i++) {
 350                count *= layers[i].size;
 351                edac_dbg(4, "errcount layer %d size %d\n", i, count);
 352                ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 353                ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 354                tot_errcount += 2 * count;
 355        }
 356
 357        edac_dbg(4, "allocating %d error counters\n", tot_errcount);
 358        pvt = edac_align_ptr(&ptr, sz_pvt, 1);
 359        size = ((unsigned long)pvt) + sz_pvt;
 360
 361        edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
 362                 size,
 363                 tot_dimms,
 364                 per_rank ? "ranks" : "dimms",
 365                 tot_csrows * tot_channels);
 366
 367        mci = kzalloc(size, GFP_KERNEL);
 368        if (mci == NULL)
 369                return NULL;
 370
 371        /* Adjust pointers so they point within the memory we just allocated
 372         * rather than an imaginary chunk of memory located at address 0.
 373         */
 374        layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
 375        for (i = 0; i < n_layers; i++) {
 376                mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
 377                mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
 378        }
 379        pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
 380
 381        /* setup index and various internal pointers */
 382        mci->mc_idx = mc_num;
 383        mci->tot_dimms = tot_dimms;
 384        mci->pvt_info = pvt;
 385        mci->n_layers = n_layers;
 386        mci->layers = layer;
 387        memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 388        mci->nr_csrows = tot_csrows;
 389        mci->num_cschannel = tot_channels;
 390        mci->csbased = per_rank;
 391
 392        /*
 393         * Alocate and fill the csrow/channels structs
 394         */
 395        mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
 396        if (!mci->csrows)
 397                goto error;
 398        for (row = 0; row < tot_csrows; row++) {
 399                csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 400                if (!csr)
 401                        goto error;
 402                mci->csrows[row] = csr;
 403                csr->csrow_idx = row;
 404                csr->mci = mci;
 405                csr->nr_channels = tot_channels;
 406                csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
 407                                        GFP_KERNEL);
 408                if (!csr->channels)
 409                        goto error;
 410
 411                for (chn = 0; chn < tot_channels; chn++) {
 412                        chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 413                        if (!chan)
 414                                goto error;
 415                        csr->channels[chn] = chan;
 416                        chan->chan_idx = chn;
 417                        chan->csrow = csr;
 418                }
 419        }
 420
 421        /*
 422         * Allocate and fill the dimm structs
 423         */
 424        mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
 425        if (!mci->dimms)
 426                goto error;
 427
 428        memset(&pos, 0, sizeof(pos));
 429        row = 0;
 430        chn = 0;
 431        for (i = 0; i < tot_dimms; i++) {
 432                chan = mci->csrows[row]->channels[chn];
 433                off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
 434                if (off < 0 || off >= tot_dimms) {
 435                        edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
 436                        goto error;
 437                }
 438
 439                dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 440                if (!dimm)
 441                        goto error;
 442                mci->dimms[off] = dimm;
 443                dimm->mci = mci;
 444
 445                /*
 446                 * Copy DIMM location and initialize it.
 447                 */
 448                len = sizeof(dimm->label);
 449                p = dimm->label;
 450                n = snprintf(p, len, "mc#%u", mc_num);
 451                p += n;
 452                len -= n;
 453                for (j = 0; j < n_layers; j++) {
 454                        n = snprintf(p, len, "%s#%u",
 455                                     edac_layer_name[layers[j].type],
 456                                     pos[j]);
 457                        p += n;
 458                        len -= n;
 459                        dimm->location[j] = pos[j];
 460
 461                        if (len <= 0)
 462                                break;
 463                }
 464
 465                /* Link it to the csrows old API data */
 466                chan->dimm = dimm;
 467                dimm->csrow = row;
 468                dimm->cschannel = chn;
 469
 470                /* Increment csrow location */
 471                if (layers[0].is_virt_csrow) {
 472                        chn++;
 473                        if (chn == tot_channels) {
 474                                chn = 0;
 475                                row++;
 476                        }
 477                } else {
 478                        row++;
 479                        if (row == tot_csrows) {
 480                                row = 0;
 481                                chn++;
 482                        }
 483                }
 484
 485                /* Increment dimm location */
 486                for (j = n_layers - 1; j >= 0; j--) {
 487                        pos[j]++;
 488                        if (pos[j] < layers[j].size)
 489                                break;
 490                        pos[j] = 0;
 491                }
 492        }
 493
 494        mci->op_state = OP_ALLOC;
 495
 496        return mci;
 497
 498error:
 499        _edac_mc_free(mci);
 500
 501        return NULL;
 502}
 503EXPORT_SYMBOL_GPL(edac_mc_alloc);
 504
 505void edac_mc_free(struct mem_ctl_info *mci)
 506{
 507        edac_dbg(1, "\n");
 508
 509        /* If we're not yet registered with sysfs free only what was allocated
 510         * in edac_mc_alloc().
 511         */
 512        if (!device_is_registered(&mci->dev)) {
 513                _edac_mc_free(mci);
 514                return;
 515        }
 516
 517        /* the mci instance is freed here, when the sysfs object is dropped */
 518        edac_unregister_sysfs(mci);
 519}
 520EXPORT_SYMBOL_GPL(edac_mc_free);
 521
 522bool edac_has_mcs(void)
 523{
 524        bool ret;
 525
 526        mutex_lock(&mem_ctls_mutex);
 527
 528        ret = list_empty(&mc_devices);
 529
 530        mutex_unlock(&mem_ctls_mutex);
 531
 532        return !ret;
 533}
 534EXPORT_SYMBOL_GPL(edac_has_mcs);
 535
 536/* Caller must hold mem_ctls_mutex */
 537static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
 538{
 539        struct mem_ctl_info *mci;
 540        struct list_head *item;
 541
 542        edac_dbg(3, "\n");
 543
 544        list_for_each(item, &mc_devices) {
 545                mci = list_entry(item, struct mem_ctl_info, link);
 546
 547                if (mci->pdev == dev)
 548                        return mci;
 549        }
 550
 551        return NULL;
 552}
 553
 554/**
 555 * find_mci_by_dev
 556 *
 557 *      scan list of controllers looking for the one that manages
 558 *      the 'dev' device
 559 * @dev: pointer to a struct device related with the MCI
 560 */
 561struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 562{
 563        struct mem_ctl_info *ret;
 564
 565        mutex_lock(&mem_ctls_mutex);
 566        ret = __find_mci_by_dev(dev);
 567        mutex_unlock(&mem_ctls_mutex);
 568
 569        return ret;
 570}
 571EXPORT_SYMBOL_GPL(find_mci_by_dev);
 572
 573/*
 574 * edac_mc_workq_function
 575 *      performs the operation scheduled by a workq request
 576 */
 577static void edac_mc_workq_function(struct work_struct *work_req)
 578{
 579        struct delayed_work *d_work = to_delayed_work(work_req);
 580        struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 581
 582        mutex_lock(&mem_ctls_mutex);
 583
 584        if (mci->op_state != OP_RUNNING_POLL) {
 585                mutex_unlock(&mem_ctls_mutex);
 586                return;
 587        }
 588
 589        if (edac_op_state == EDAC_OPSTATE_POLL)
 590                mci->edac_check(mci);
 591
 592        mutex_unlock(&mem_ctls_mutex);
 593
 594        /* Queue ourselves again. */
 595        edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 596}
 597
 598/*
 599 * edac_mc_reset_delay_period(unsigned long value)
 600 *
 601 *      user space has updated our poll period value, need to
 602 *      reset our workq delays
 603 */
 604void edac_mc_reset_delay_period(unsigned long value)
 605{
 606        struct mem_ctl_info *mci;
 607        struct list_head *item;
 608
 609        mutex_lock(&mem_ctls_mutex);
 610
 611        list_for_each(item, &mc_devices) {
 612                mci = list_entry(item, struct mem_ctl_info, link);
 613
 614                if (mci->op_state == OP_RUNNING_POLL)
 615                        edac_mod_work(&mci->work, value);
 616        }
 617        mutex_unlock(&mem_ctls_mutex);
 618}
 619
 620
 621
 622/* Return 0 on success, 1 on failure.
 623 * Before calling this function, caller must
 624 * assign a unique value to mci->mc_idx.
 625 *
 626 *      locking model:
 627 *
 628 *              called with the mem_ctls_mutex lock held
 629 */
 630static int add_mc_to_global_list(struct mem_ctl_info *mci)
 631{
 632        struct list_head *item, *insert_before;
 633        struct mem_ctl_info *p;
 634
 635        insert_before = &mc_devices;
 636
 637        p = __find_mci_by_dev(mci->pdev);
 638        if (unlikely(p != NULL))
 639                goto fail0;
 640
 641        list_for_each(item, &mc_devices) {
 642                p = list_entry(item, struct mem_ctl_info, link);
 643
 644                if (p->mc_idx >= mci->mc_idx) {
 645                        if (unlikely(p->mc_idx == mci->mc_idx))
 646                                goto fail1;
 647
 648                        insert_before = item;
 649                        break;
 650                }
 651        }
 652
 653        list_add_tail_rcu(&mci->link, insert_before);
 654        return 0;
 655
 656fail0:
 657        edac_printk(KERN_WARNING, EDAC_MC,
 658                "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 659                edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 660        return 1;
 661
 662fail1:
 663        edac_printk(KERN_WARNING, EDAC_MC,
 664                "bug in low-level driver: attempt to assign\n"
 665                "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 666        return 1;
 667}
 668
 669static int del_mc_from_global_list(struct mem_ctl_info *mci)
 670{
 671        list_del_rcu(&mci->link);
 672
 673        /* these are for safe removal of devices from global list while
 674         * NMI handlers may be traversing list
 675         */
 676        synchronize_rcu();
 677        INIT_LIST_HEAD(&mci->link);
 678
 679        return list_empty(&mc_devices);
 680}
 681
 682struct mem_ctl_info *edac_mc_find(int idx)
 683{
 684        struct mem_ctl_info *mci = NULL;
 685        struct list_head *item;
 686
 687        mutex_lock(&mem_ctls_mutex);
 688
 689        list_for_each(item, &mc_devices) {
 690                mci = list_entry(item, struct mem_ctl_info, link);
 691
 692                if (mci->mc_idx >= idx) {
 693                        if (mci->mc_idx == idx) {
 694                                goto unlock;
 695                        }
 696                        break;
 697                }
 698        }
 699
 700unlock:
 701        mutex_unlock(&mem_ctls_mutex);
 702        return mci;
 703}
 704EXPORT_SYMBOL(edac_mc_find);
 705
 706const char *edac_get_owner(void)
 707{
 708        return edac_mc_owner;
 709}
 710EXPORT_SYMBOL_GPL(edac_get_owner);
 711
 712/* FIXME - should a warning be printed if no error detection? correction? */
 713int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
 714                               const struct attribute_group **groups)
 715{
 716        int ret = -EINVAL;
 717        edac_dbg(0, "\n");
 718
 719        if (mci->mc_idx >= EDAC_MAX_MCS) {
 720                pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
 721                return -ENODEV;
 722        }
 723
 724#ifdef CONFIG_EDAC_DEBUG
 725        if (edac_debug_level >= 3)
 726                edac_mc_dump_mci(mci);
 727
 728        if (edac_debug_level >= 4) {
 729                int i;
 730
 731                for (i = 0; i < mci->nr_csrows; i++) {
 732                        struct csrow_info *csrow = mci->csrows[i];
 733                        u32 nr_pages = 0;
 734                        int j;
 735
 736                        for (j = 0; j < csrow->nr_channels; j++)
 737                                nr_pages += csrow->channels[j]->dimm->nr_pages;
 738                        if (!nr_pages)
 739                                continue;
 740                        edac_mc_dump_csrow(csrow);
 741                        for (j = 0; j < csrow->nr_channels; j++)
 742                                if (csrow->channels[j]->dimm->nr_pages)
 743                                        edac_mc_dump_channel(csrow->channels[j]);
 744                }
 745                for (i = 0; i < mci->tot_dimms; i++)
 746                        if (mci->dimms[i]->nr_pages)
 747                                edac_mc_dump_dimm(mci->dimms[i], i);
 748        }
 749#endif
 750        mutex_lock(&mem_ctls_mutex);
 751
 752        if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
 753                ret = -EPERM;
 754                goto fail0;
 755        }
 756
 757        if (add_mc_to_global_list(mci))
 758                goto fail0;
 759
 760        /* set load time so that error rate can be tracked */
 761        mci->start_time = jiffies;
 762
 763        mci->bus = &mc_bus[mci->mc_idx];
 764
 765        if (edac_create_sysfs_mci_device(mci, groups)) {
 766                edac_mc_printk(mci, KERN_WARNING,
 767                        "failed to create sysfs device\n");
 768                goto fail1;
 769        }
 770
 771        if (mci->edac_check) {
 772                mci->op_state = OP_RUNNING_POLL;
 773
 774                INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 775                edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 776
 777        } else {
 778                mci->op_state = OP_RUNNING_INTERRUPT;
 779        }
 780
 781        /* Report action taken */
 782        edac_mc_printk(mci, KERN_INFO,
 783                "Giving out device to module %s controller %s: DEV %s (%s)\n",
 784                mci->mod_name, mci->ctl_name, mci->dev_name,
 785                edac_op_state_to_string(mci->op_state));
 786
 787        edac_mc_owner = mci->mod_name;
 788
 789        mutex_unlock(&mem_ctls_mutex);
 790        return 0;
 791
 792fail1:
 793        del_mc_from_global_list(mci);
 794
 795fail0:
 796        mutex_unlock(&mem_ctls_mutex);
 797        return ret;
 798}
 799EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
 800
 801struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 802{
 803        struct mem_ctl_info *mci;
 804
 805        edac_dbg(0, "\n");
 806
 807        mutex_lock(&mem_ctls_mutex);
 808
 809        /* find the requested mci struct in the global list */
 810        mci = __find_mci_by_dev(dev);
 811        if (mci == NULL) {
 812                mutex_unlock(&mem_ctls_mutex);
 813                return NULL;
 814        }
 815
 816        /* mark MCI offline: */
 817        mci->op_state = OP_OFFLINE;
 818
 819        if (del_mc_from_global_list(mci))
 820                edac_mc_owner = NULL;
 821
 822        mutex_unlock(&mem_ctls_mutex);
 823
 824        if (mci->edac_check)
 825                edac_stop_work(&mci->work);
 826
 827        /* remove from sysfs */
 828        edac_remove_sysfs_mci_device(mci);
 829
 830        edac_printk(KERN_INFO, EDAC_MC,
 831                "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 832                mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 833
 834        return mci;
 835}
 836EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 837
 838static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 839                                u32 size)
 840{
 841        struct page *pg;
 842        void *virt_addr;
 843        unsigned long flags = 0;
 844
 845        edac_dbg(3, "\n");
 846
 847        /* ECC error page was not in our memory. Ignore it. */
 848        if (!pfn_valid(page))
 849                return;
 850
 851        /* Find the actual page structure then map it and fix */
 852        pg = pfn_to_page(page);
 853
 854        if (PageHighMem(pg))
 855                local_irq_save(flags);
 856
 857        virt_addr = kmap_atomic(pg);
 858
 859        /* Perform architecture specific atomic scrub operation */
 860        edac_atomic_scrub(virt_addr + offset, size);
 861
 862        /* Unmap and complete */
 863        kunmap_atomic(virt_addr);
 864
 865        if (PageHighMem(pg))
 866                local_irq_restore(flags);
 867}
 868
 869/* FIXME - should return -1 */
 870int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 871{
 872        struct csrow_info **csrows = mci->csrows;
 873        int row, i, j, n;
 874
 875        edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 876        row = -1;
 877
 878        for (i = 0; i < mci->nr_csrows; i++) {
 879                struct csrow_info *csrow = csrows[i];
 880                n = 0;
 881                for (j = 0; j < csrow->nr_channels; j++) {
 882                        struct dimm_info *dimm = csrow->channels[j]->dimm;
 883                        n += dimm->nr_pages;
 884                }
 885                if (n == 0)
 886                        continue;
 887
 888                edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 889                         mci->mc_idx,
 890                         csrow->first_page, page, csrow->last_page,
 891                         csrow->page_mask);
 892
 893                if ((page >= csrow->first_page) &&
 894                    (page <= csrow->last_page) &&
 895                    ((page & csrow->page_mask) ==
 896                     (csrow->first_page & csrow->page_mask))) {
 897                        row = i;
 898                        break;
 899                }
 900        }
 901
 902        if (row == -1)
 903                edac_mc_printk(mci, KERN_ERR,
 904                        "could not look up page error address %lx\n",
 905                        (unsigned long)page);
 906
 907        return row;
 908}
 909EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 910
 911const char *edac_layer_name[] = {
 912        [EDAC_MC_LAYER_BRANCH] = "branch",
 913        [EDAC_MC_LAYER_CHANNEL] = "channel",
 914        [EDAC_MC_LAYER_SLOT] = "slot",
 915        [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 916        [EDAC_MC_LAYER_ALL_MEM] = "memory",
 917};
 918EXPORT_SYMBOL_GPL(edac_layer_name);
 919
 920static void edac_inc_ce_error(struct mem_ctl_info *mci,
 921                              bool enable_per_layer_report,
 922                              const int pos[EDAC_MAX_LAYERS],
 923                              const u16 count)
 924{
 925        int i, index = 0;
 926
 927        mci->ce_mc += count;
 928
 929        if (!enable_per_layer_report) {
 930                mci->ce_noinfo_count += count;
 931                return;
 932        }
 933
 934        for (i = 0; i < mci->n_layers; i++) {
 935                if (pos[i] < 0)
 936                        break;
 937                index += pos[i];
 938                mci->ce_per_layer[i][index] += count;
 939
 940                if (i < mci->n_layers - 1)
 941                        index *= mci->layers[i + 1].size;
 942        }
 943}
 944
 945static void edac_inc_ue_error(struct mem_ctl_info *mci,
 946                                    bool enable_per_layer_report,
 947                                    const int pos[EDAC_MAX_LAYERS],
 948                                    const u16 count)
 949{
 950        int i, index = 0;
 951
 952        mci->ue_mc += count;
 953
 954        if (!enable_per_layer_report) {
 955                mci->ue_noinfo_count += count;
 956                return;
 957        }
 958
 959        for (i = 0; i < mci->n_layers; i++) {
 960                if (pos[i] < 0)
 961                        break;
 962                index += pos[i];
 963                mci->ue_per_layer[i][index] += count;
 964
 965                if (i < mci->n_layers - 1)
 966                        index *= mci->layers[i + 1].size;
 967        }
 968}
 969
 970static void edac_ce_error(struct mem_ctl_info *mci,
 971                          const u16 error_count,
 972                          const int pos[EDAC_MAX_LAYERS],
 973                          const char *msg,
 974                          const char *location,
 975                          const char *label,
 976                          const char *detail,
 977                          const char *other_detail,
 978                          const bool enable_per_layer_report,
 979                          const unsigned long page_frame_number,
 980                          const unsigned long offset_in_page,
 981                          long grain)
 982{
 983        unsigned long remapped_page;
 984        char *msg_aux = "";
 985
 986        if (*msg)
 987                msg_aux = " ";
 988
 989        if (edac_mc_get_log_ce()) {
 990                if (other_detail && *other_detail)
 991                        edac_mc_printk(mci, KERN_WARNING,
 992                                       "%d CE %s%son %s (%s %s - %s)\n",
 993                                       error_count, msg, msg_aux, label,
 994                                       location, detail, other_detail);
 995                else
 996                        edac_mc_printk(mci, KERN_WARNING,
 997                                       "%d CE %s%son %s (%s %s)\n",
 998                                       error_count, msg, msg_aux, label,
 999                                       location, detail);
1000        }
1001        edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1002
1003        if (mci->scrub_mode == SCRUB_SW_SRC) {
1004                /*
1005                        * Some memory controllers (called MCs below) can remap
1006                        * memory so that it is still available at a different
1007                        * address when PCI devices map into memory.
1008                        * MC's that can't do this, lose the memory where PCI
1009                        * devices are mapped. This mapping is MC-dependent
1010                        * and so we call back into the MC driver for it to
1011                        * map the MC page to a physical (CPU) page which can
1012                        * then be mapped to a virtual page - which can then
1013                        * be scrubbed.
1014                        */
1015                remapped_page = mci->ctl_page_to_phys ?
1016                        mci->ctl_page_to_phys(mci, page_frame_number) :
1017                        page_frame_number;
1018
1019                edac_mc_scrub_block(remapped_page,
1020                                        offset_in_page, grain);
1021        }
1022}
1023
1024static void edac_ue_error(struct mem_ctl_info *mci,
1025                          const u16 error_count,
1026                          const int pos[EDAC_MAX_LAYERS],
1027                          const char *msg,
1028                          const char *location,
1029                          const char *label,
1030                          const char *detail,
1031                          const char *other_detail,
1032                          const bool enable_per_layer_report)
1033{
1034        char *msg_aux = "";
1035
1036        if (*msg)
1037                msg_aux = " ";
1038
1039        if (edac_mc_get_log_ue()) {
1040                if (other_detail && *other_detail)
1041                        edac_mc_printk(mci, KERN_WARNING,
1042                                       "%d UE %s%son %s (%s %s - %s)\n",
1043                                       error_count, msg, msg_aux, label,
1044                                       location, detail, other_detail);
1045                else
1046                        edac_mc_printk(mci, KERN_WARNING,
1047                                       "%d UE %s%son %s (%s %s)\n",
1048                                       error_count, msg, msg_aux, label,
1049                                       location, detail);
1050        }
1051
1052        if (edac_mc_get_panic_on_ue()) {
1053                if (other_detail && *other_detail)
1054                        panic("UE %s%son %s (%s%s - %s)\n",
1055                              msg, msg_aux, label, location, detail, other_detail);
1056                else
1057                        panic("UE %s%son %s (%s%s)\n",
1058                              msg, msg_aux, label, location, detail);
1059        }
1060
1061        edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1062}
1063
1064void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1065                              struct mem_ctl_info *mci,
1066                              struct edac_raw_error_desc *e)
1067{
1068        char detail[80];
1069        int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1070
1071        /* Memory type dependent details about the error */
1072        if (type == HW_EVENT_ERR_CORRECTED) {
1073                snprintf(detail, sizeof(detail),
1074                        "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1075                        e->page_frame_number, e->offset_in_page,
1076                        e->grain, e->syndrome);
1077                edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1078                              detail, e->other_detail, e->enable_per_layer_report,
1079                              e->page_frame_number, e->offset_in_page, e->grain);
1080        } else {
1081                snprintf(detail, sizeof(detail),
1082                        "page:0x%lx offset:0x%lx grain:%ld",
1083                        e->page_frame_number, e->offset_in_page, e->grain);
1084
1085                edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1086                              detail, e->other_detail, e->enable_per_layer_report);
1087        }
1088
1089
1090}
1091EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1092
1093void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1094                          struct mem_ctl_info *mci,
1095                          const u16 error_count,
1096                          const unsigned long page_frame_number,
1097                          const unsigned long offset_in_page,
1098                          const unsigned long syndrome,
1099                          const int top_layer,
1100                          const int mid_layer,
1101                          const int low_layer,
1102                          const char *msg,
1103                          const char *other_detail)
1104{
1105        char *p;
1106        int row = -1, chan = -1;
1107        int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1108        int i, n_labels = 0;
1109        u8 grain_bits;
1110        struct edac_raw_error_desc *e = &mci->error_desc;
1111
1112        edac_dbg(3, "MC%d\n", mci->mc_idx);
1113
1114        /* Fills the error report buffer */
1115        memset(e, 0, sizeof (*e));
1116        e->error_count = error_count;
1117        e->top_layer = top_layer;
1118        e->mid_layer = mid_layer;
1119        e->low_layer = low_layer;
1120        e->page_frame_number = page_frame_number;
1121        e->offset_in_page = offset_in_page;
1122        e->syndrome = syndrome;
1123        e->msg = msg;
1124        e->other_detail = other_detail;
1125
1126        /*
1127         * Check if the event report is consistent and if the memory
1128         * location is known. If it is known, enable_per_layer_report will be
1129         * true, the DIMM(s) label info will be filled and the per-layer
1130         * error counters will be incremented.
1131         */
1132        for (i = 0; i < mci->n_layers; i++) {
1133                if (pos[i] >= (int)mci->layers[i].size) {
1134
1135                        edac_mc_printk(mci, KERN_ERR,
1136                                       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1137                                       edac_layer_name[mci->layers[i].type],
1138                                       pos[i], mci->layers[i].size);
1139                        /*
1140                         * Instead of just returning it, let's use what's
1141                         * known about the error. The increment routines and
1142                         * the DIMM filter logic will do the right thing by
1143                         * pointing the likely damaged DIMMs.
1144                         */
1145                        pos[i] = -1;
1146                }
1147                if (pos[i] >= 0)
1148                        e->enable_per_layer_report = true;
1149        }
1150
1151        /*
1152         * Get the dimm label/grain that applies to the match criteria.
1153         * As the error algorithm may not be able to point to just one memory
1154         * stick, the logic here will get all possible labels that could
1155         * pottentially be affected by the error.
1156         * On FB-DIMM memory controllers, for uncorrected errors, it is common
1157         * to have only the MC channel and the MC dimm (also called "branch")
1158         * but the channel is not known, as the memory is arranged in pairs,
1159         * where each memory belongs to a separate channel within the same
1160         * branch.
1161         */
1162        p = e->label;
1163        *p = '\0';
1164
1165        for (i = 0; i < mci->tot_dimms; i++) {
1166                struct dimm_info *dimm = mci->dimms[i];
1167
1168                if (top_layer >= 0 && top_layer != dimm->location[0])
1169                        continue;
1170                if (mid_layer >= 0 && mid_layer != dimm->location[1])
1171                        continue;
1172                if (low_layer >= 0 && low_layer != dimm->location[2])
1173                        continue;
1174
1175                /* get the max grain, over the error match range */
1176                if (dimm->grain > e->grain)
1177                        e->grain = dimm->grain;
1178
1179                /*
1180                 * If the error is memory-controller wide, there's no need to
1181                 * seek for the affected DIMMs because the whole
1182                 * channel/memory controller/...  may be affected.
1183                 * Also, don't show errors for empty DIMM slots.
1184                 */
1185                if (e->enable_per_layer_report && dimm->nr_pages) {
1186                        if (n_labels >= EDAC_MAX_LABELS) {
1187                                e->enable_per_layer_report = false;
1188                                break;
1189                        }
1190                        n_labels++;
1191                        if (p != e->label) {
1192                                strcpy(p, OTHER_LABEL);
1193                                p += strlen(OTHER_LABEL);
1194                        }
1195                        strcpy(p, dimm->label);
1196                        p += strlen(p);
1197                        *p = '\0';
1198
1199                        /*
1200                         * get csrow/channel of the DIMM, in order to allow
1201                         * incrementing the compat API counters
1202                         */
1203                        edac_dbg(4, "%s csrows map: (%d,%d)\n",
1204                                 mci->csbased ? "rank" : "dimm",
1205                                 dimm->csrow, dimm->cschannel);
1206                        if (row == -1)
1207                                row = dimm->csrow;
1208                        else if (row >= 0 && row != dimm->csrow)
1209                                row = -2;
1210
1211                        if (chan == -1)
1212                                chan = dimm->cschannel;
1213                        else if (chan >= 0 && chan != dimm->cschannel)
1214                                chan = -2;
1215                }
1216        }
1217
1218        if (!e->enable_per_layer_report) {
1219                strcpy(e->label, "any memory");
1220        } else {
1221                edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1222                if (p == e->label)
1223                        strcpy(e->label, "unknown memory");
1224                if (type == HW_EVENT_ERR_CORRECTED) {
1225                        if (row >= 0) {
1226                                mci->csrows[row]->ce_count += error_count;
1227                                if (chan >= 0)
1228                                        mci->csrows[row]->channels[chan]->ce_count += error_count;
1229                        }
1230                } else
1231                        if (row >= 0)
1232                                mci->csrows[row]->ue_count += error_count;
1233        }
1234
1235        /* Fill the RAM location data */
1236        p = e->location;
1237
1238        for (i = 0; i < mci->n_layers; i++) {
1239                if (pos[i] < 0)
1240                        continue;
1241
1242                p += sprintf(p, "%s:%d ",
1243                             edac_layer_name[mci->layers[i].type],
1244                             pos[i]);
1245        }
1246        if (p > e->location)
1247                *(p - 1) = '\0';
1248
1249        /* Report the error via the trace interface */
1250        grain_bits = fls_long(e->grain) + 1;
1251
1252        if (IS_ENABLED(CONFIG_RAS))
1253                trace_mc_event(type, e->msg, e->label, e->error_count,
1254                               mci->mc_idx, e->top_layer, e->mid_layer,
1255                               e->low_layer,
1256                               (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1257                               grain_bits, e->syndrome, e->other_detail);
1258
1259        edac_raw_mc_handle_error(type, mci, e);
1260}
1261EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1262