linux/drivers/iio/temperature/mlx90632.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
   4 *
   5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
   6 *
   7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
   8 */
   9#include <linux/delay.h>
  10#include <linux/err.h>
  11#include <linux/gpio/consumer.h>
  12#include <linux/i2c.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/math64.h>
  16#include <linux/of.h>
  17#include <linux/pm_runtime.h>
  18#include <linux/regmap.h>
  19
  20#include <linux/iio/iio.h>
  21#include <linux/iio/sysfs.h>
  22
  23/* Memory sections addresses */
  24#define MLX90632_ADDR_RAM       0x4000 /* Start address of ram */
  25#define MLX90632_ADDR_EEPROM    0x2480 /* Start address of user eeprom */
  26
  27/* EEPROM addresses - used at startup */
  28#define MLX90632_EE_CTRL        0x24d4 /* Control register initial value */
  29#define MLX90632_EE_I2C_ADDR    0x24d5 /* I2C address register initial value */
  30#define MLX90632_EE_VERSION     0x240b /* EEPROM version reg address */
  31#define MLX90632_EE_P_R         0x240c /* P_R calibration register 32bit */
  32#define MLX90632_EE_P_G         0x240e /* P_G calibration register 32bit */
  33#define MLX90632_EE_P_T         0x2410 /* P_T calibration register 32bit */
  34#define MLX90632_EE_P_O         0x2412 /* P_O calibration register 32bit */
  35#define MLX90632_EE_Aa          0x2414 /* Aa calibration register 32bit */
  36#define MLX90632_EE_Ab          0x2416 /* Ab calibration register 32bit */
  37#define MLX90632_EE_Ba          0x2418 /* Ba calibration register 32bit */
  38#define MLX90632_EE_Bb          0x241a /* Bb calibration register 32bit */
  39#define MLX90632_EE_Ca          0x241c /* Ca calibration register 32bit */
  40#define MLX90632_EE_Cb          0x241e /* Cb calibration register 32bit */
  41#define MLX90632_EE_Da          0x2420 /* Da calibration register 32bit */
  42#define MLX90632_EE_Db          0x2422 /* Db calibration register 32bit */
  43#define MLX90632_EE_Ea          0x2424 /* Ea calibration register 32bit */
  44#define MLX90632_EE_Eb          0x2426 /* Eb calibration register 32bit */
  45#define MLX90632_EE_Fa          0x2428 /* Fa calibration register 32bit */
  46#define MLX90632_EE_Fb          0x242a /* Fb calibration register 32bit */
  47#define MLX90632_EE_Ga          0x242c /* Ga calibration register 32bit */
  48
  49#define MLX90632_EE_Gb          0x242e /* Gb calibration register 16bit */
  50#define MLX90632_EE_Ka          0x242f /* Ka calibration register 16bit */
  51
  52#define MLX90632_EE_Ha          0x2481 /* Ha customer calib value reg 16bit */
  53#define MLX90632_EE_Hb          0x2482 /* Hb customer calib value reg 16bit */
  54
  55/* Register addresses - volatile */
  56#define MLX90632_REG_I2C_ADDR   0x3000 /* Chip I2C address register */
  57
  58/* Control register address - volatile */
  59#define MLX90632_REG_CONTROL    0x3001 /* Control Register address */
  60#define   MLX90632_CFG_PWR_MASK         GENMASK(2, 1) /* PowerMode Mask */
  61/* PowerModes statuses */
  62#define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
  63#define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
  64#define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
  65#define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
  66#define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
  67
  68/* Device status register - volatile */
  69#define MLX90632_REG_STATUS     0x3fff /* Device status register */
  70#define   MLX90632_STAT_BUSY            BIT(10) /* Device busy indicator */
  71#define   MLX90632_STAT_EE_BUSY         BIT(9) /* EEPROM busy indicator */
  72#define   MLX90632_STAT_BRST            BIT(8) /* Brown out reset indicator */
  73#define   MLX90632_STAT_CYCLE_POS       GENMASK(6, 2) /* Data position */
  74#define   MLX90632_STAT_DATA_RDY        BIT(0) /* Data ready indicator */
  75
  76/* RAM_MEAS address-es for each channel */
  77#define MLX90632_RAM_1(meas_num)        (MLX90632_ADDR_RAM + 3 * meas_num)
  78#define MLX90632_RAM_2(meas_num)        (MLX90632_ADDR_RAM + 3 * meas_num + 1)
  79#define MLX90632_RAM_3(meas_num)        (MLX90632_ADDR_RAM + 3 * meas_num + 2)
  80
  81/* Magic constants */
  82#define MLX90632_ID_MEDICAL     0x0105 /* EEPROM DSPv5 Medical device id */
  83#define MLX90632_ID_CONSUMER    0x0205 /* EEPROM DSPv5 Consumer device id */
  84#define MLX90632_RESET_CMD      0x0006 /* Reset sensor (address or global) */
  85#define MLX90632_REF_12         12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
  86#define MLX90632_REF_3          12LL /**< ResCtrlRef value of Channel 3 */
  87#define MLX90632_MAX_MEAS_NUM   31 /**< Maximum measurements in list */
  88#define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
  89
  90struct mlx90632_data {
  91        struct i2c_client *client;
  92        struct mutex lock; /* Multiple reads for single measurement */
  93        struct regmap *regmap;
  94        u16 emissivity;
  95};
  96
  97static const struct regmap_range mlx90632_volatile_reg_range[] = {
  98        regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
  99        regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
 100        regmap_reg_range(MLX90632_RAM_1(0),
 101                         MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
 102};
 103
 104static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
 105        .yes_ranges = mlx90632_volatile_reg_range,
 106        .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
 107};
 108
 109static const struct regmap_range mlx90632_read_reg_range[] = {
 110        regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
 111        regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
 112        regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
 113        regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
 114        regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
 115        regmap_reg_range(MLX90632_RAM_1(0),
 116                         MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
 117};
 118
 119static const struct regmap_access_table mlx90632_readable_regs_tbl = {
 120        .yes_ranges = mlx90632_read_reg_range,
 121        .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
 122};
 123
 124static const struct regmap_range mlx90632_no_write_reg_range[] = {
 125        regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
 126        regmap_reg_range(MLX90632_RAM_1(0),
 127                         MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
 128};
 129
 130static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
 131        .no_ranges = mlx90632_no_write_reg_range,
 132        .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
 133};
 134
 135static const struct regmap_config mlx90632_regmap = {
 136        .reg_bits = 16,
 137        .val_bits = 16,
 138
 139        .volatile_table = &mlx90632_volatile_regs_tbl,
 140        .rd_table = &mlx90632_readable_regs_tbl,
 141        .wr_table = &mlx90632_writeable_regs_tbl,
 142
 143        .use_single_rw = true,
 144        .reg_format_endian = REGMAP_ENDIAN_BIG,
 145        .val_format_endian = REGMAP_ENDIAN_BIG,
 146        .cache_type = REGCACHE_RBTREE,
 147};
 148
 149static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
 150{
 151        return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
 152                                  MLX90632_CFG_PWR_MASK,
 153                                  MLX90632_PWR_STATUS_SLEEP_STEP);
 154}
 155
 156static s32 mlx90632_pwr_continuous(struct regmap *regmap)
 157{
 158        return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
 159                                  MLX90632_CFG_PWR_MASK,
 160                                  MLX90632_PWR_STATUS_CONTINUOUS);
 161}
 162
 163/**
 164 * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
 165 * @*data: pointer to mlx90632_data object containing regmap information
 166 *
 167 * Perform a measurement and return latest measurement cycle position reported
 168 * by sensor. This is a blocking function for 500ms, as that is default sensor
 169 * refresh rate.
 170 */
 171static int mlx90632_perform_measurement(struct mlx90632_data *data)
 172{
 173        int ret, tries = 100;
 174        unsigned int reg_status;
 175
 176        ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
 177                                 MLX90632_STAT_DATA_RDY, 0);
 178        if (ret < 0)
 179                return ret;
 180
 181        while (tries-- > 0) {
 182                ret = regmap_read(data->regmap, MLX90632_REG_STATUS,
 183                                  &reg_status);
 184                if (ret < 0)
 185                        return ret;
 186                if (reg_status & MLX90632_STAT_DATA_RDY)
 187                        break;
 188                usleep_range(10000, 11000);
 189        }
 190
 191        if (tries < 0) {
 192                dev_err(&data->client->dev, "data not ready");
 193                return -ETIMEDOUT;
 194        }
 195
 196        return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
 197}
 198
 199static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
 200                                       uint8_t *channel_old)
 201{
 202        switch (perform_ret) {
 203        case 1:
 204                *channel_new = 1;
 205                *channel_old = 2;
 206                break;
 207        case 2:
 208                *channel_new = 2;
 209                *channel_old = 1;
 210                break;
 211        default:
 212                return -EINVAL;
 213        }
 214
 215        return 0;
 216}
 217
 218static int mlx90632_read_ambient_raw(struct regmap *regmap,
 219                                     s16 *ambient_new_raw, s16 *ambient_old_raw)
 220{
 221        int ret;
 222        unsigned int read_tmp;
 223
 224        ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
 225        if (ret < 0)
 226                return ret;
 227        *ambient_new_raw = (s16)read_tmp;
 228
 229        ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
 230        if (ret < 0)
 231                return ret;
 232        *ambient_old_raw = (s16)read_tmp;
 233
 234        return ret;
 235}
 236
 237static int mlx90632_read_object_raw(struct regmap *regmap,
 238                                    int perform_measurement_ret,
 239                                    s16 *object_new_raw, s16 *object_old_raw)
 240{
 241        int ret;
 242        unsigned int read_tmp;
 243        s16 read;
 244        u8 channel = 0;
 245        u8 channel_old = 0;
 246
 247        ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
 248                                          &channel_old);
 249        if (ret != 0)
 250                return ret;
 251
 252        ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
 253        if (ret < 0)
 254                return ret;
 255
 256        read = (s16)read_tmp;
 257
 258        ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
 259        if (ret < 0)
 260                return ret;
 261        *object_new_raw = (read + (s16)read_tmp) / 2;
 262
 263        ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
 264        if (ret < 0)
 265                return ret;
 266        read = (s16)read_tmp;
 267
 268        ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
 269        if (ret < 0)
 270                return ret;
 271        *object_old_raw = (read + (s16)read_tmp) / 2;
 272
 273        return ret;
 274}
 275
 276static int mlx90632_read_all_channel(struct mlx90632_data *data,
 277                                     s16 *ambient_new_raw, s16 *ambient_old_raw,
 278                                     s16 *object_new_raw, s16 *object_old_raw)
 279{
 280        s32 ret, measurement;
 281
 282        mutex_lock(&data->lock);
 283        measurement = mlx90632_perform_measurement(data);
 284        if (measurement < 0) {
 285                ret = measurement;
 286                goto read_unlock;
 287        }
 288        ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
 289                                        ambient_old_raw);
 290        if (ret < 0)
 291                goto read_unlock;
 292
 293        ret = mlx90632_read_object_raw(data->regmap, measurement,
 294                                       object_new_raw, object_old_raw);
 295read_unlock:
 296        mutex_unlock(&data->lock);
 297        return ret;
 298}
 299
 300static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
 301                                     s32 *reg_value)
 302{
 303        s32 ret;
 304        unsigned int read;
 305        u32 value;
 306
 307        ret = regmap_read(regmap, reg_lsb, &read);
 308        if (ret < 0)
 309                return ret;
 310
 311        value = read;
 312
 313        ret = regmap_read(regmap, reg_lsb + 1, &read);
 314        if (ret < 0)
 315                return ret;
 316
 317        *reg_value = (read << 16) | (value & 0xffff);
 318
 319        return 0;
 320}
 321
 322static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
 323                                        s16 ambient_old_raw, s16 Gb)
 324{
 325        s64 VR_Ta, kGb, tmp;
 326
 327        kGb = ((s64)Gb * 1000LL) >> 10ULL;
 328        VR_Ta = (s64)ambient_old_raw * 1000000LL +
 329                kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
 330                        (MLX90632_REF_3));
 331        tmp = div64_s64(
 332                         div64_s64(((s64)ambient_new_raw * 1000000000000LL),
 333                                   (MLX90632_REF_3)), VR_Ta);
 334        return div64_s64(tmp << 19ULL, 1000LL);
 335}
 336
 337static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
 338                                        s16 ambient_new_raw,
 339                                        s16 ambient_old_raw, s16 Ka)
 340{
 341        s64 VR_IR, kKa, tmp;
 342
 343        kKa = ((s64)Ka * 1000LL) >> 10ULL;
 344        VR_IR = (s64)ambient_old_raw * 1000000LL +
 345                kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
 346                        (MLX90632_REF_3));
 347        tmp = div64_s64(
 348                        div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
 349                                   * 1000000000000LL), (MLX90632_REF_12)),
 350                        VR_IR);
 351        return div64_s64((tmp << 19ULL), 1000LL);
 352}
 353
 354static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
 355                                      s32 P_T, s32 P_R, s32 P_G, s32 P_O,
 356                                      s16 Gb)
 357{
 358        s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
 359
 360        AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
 361                                           Gb);
 362        Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
 363        Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
 364        Ablock = Asub * (Bsub * Bsub);
 365        Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
 366        Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
 367
 368        sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
 369
 370        return div64_s64(sum, 10000000LL);
 371}
 372
 373static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
 374                                               s64 TAdut, s32 Fa, s32 Fb,
 375                                               s32 Ga, s16 Ha, s16 Hb,
 376                                               u16 emissivity)
 377{
 378        s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr;
 379        s64 Ha_customer, Hb_customer;
 380
 381        Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
 382        Hb_customer = ((s64)Hb * 100) >> 10ULL;
 383
 384        calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
 385                             * 1000LL)) >> 36LL;
 386        calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
 387        Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
 388                                * Ha_customer), 1000LL);
 389        Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
 390        Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
 391        Alpha_corr = div64_s64(Alpha_corr, 1000LL);
 392        ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
 393        TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) *
 394                (div64_s64(TAdut, 10000LL) + 27315) *
 395                (div64_s64(TAdut, 10000LL)  + 27315) *
 396                (div64_s64(TAdut, 10000LL) + 27315);
 397
 398        return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
 399                - 27315 - Hb_customer) * 10;
 400}
 401
 402static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
 403                                     s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
 404                                     u16 tmp_emi)
 405{
 406        s64 kTA, kTA0, TAdut;
 407        s64 temp = 25000;
 408        s8 i;
 409
 410        kTA = (Ea * 1000LL) >> 16LL;
 411        kTA0 = (Eb * 1000LL) >> 8LL;
 412        TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
 413
 414        /* Iterations of calculation as described in datasheet */
 415        for (i = 0; i < 5; ++i) {
 416                temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut,
 417                                                           Fa, Fb, Ga, Ha, Hb,
 418                                                           tmp_emi);
 419        }
 420        return temp;
 421}
 422
 423static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
 424{
 425        s32 ret;
 426        s32 Ea, Eb, Fa, Fb, Ga;
 427        unsigned int read_tmp;
 428        s16 Ha, Hb, Gb, Ka;
 429        s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
 430        s64 object, ambient;
 431
 432        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
 433        if (ret < 0)
 434                return ret;
 435        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
 436        if (ret < 0)
 437                return ret;
 438        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
 439        if (ret < 0)
 440                return ret;
 441        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
 442        if (ret < 0)
 443                return ret;
 444        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
 445        if (ret < 0)
 446                return ret;
 447        ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
 448        if (ret < 0)
 449                return ret;
 450        Ha = (s16)read_tmp;
 451        ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
 452        if (ret < 0)
 453                return ret;
 454        Hb = (s16)read_tmp;
 455        ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
 456        if (ret < 0)
 457                return ret;
 458        Gb = (s16)read_tmp;
 459        ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
 460        if (ret < 0)
 461                return ret;
 462        Ka = (s16)read_tmp;
 463
 464        ret = mlx90632_read_all_channel(data,
 465                                        &ambient_new_raw, &ambient_old_raw,
 466                                        &object_new_raw, &object_old_raw);
 467        if (ret < 0)
 468                return ret;
 469
 470        ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
 471                                               ambient_old_raw, Gb);
 472        object = mlx90632_preprocess_temp_obj(object_new_raw,
 473                                              object_old_raw,
 474                                              ambient_new_raw,
 475                                              ambient_old_raw, Ka);
 476
 477        *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
 478                                         Ha, Hb, data->emissivity);
 479        return 0;
 480}
 481
 482static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
 483{
 484        s32 ret;
 485        unsigned int read_tmp;
 486        s32 PT, PR, PG, PO;
 487        s16 Gb;
 488        s16 ambient_new_raw, ambient_old_raw;
 489
 490        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
 491        if (ret < 0)
 492                return ret;
 493        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
 494        if (ret < 0)
 495                return ret;
 496        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
 497        if (ret < 0)
 498                return ret;
 499        ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
 500        if (ret < 0)
 501                return ret;
 502        ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
 503        if (ret < 0)
 504                return ret;
 505        Gb = (s16)read_tmp;
 506
 507        ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
 508                                        &ambient_old_raw);
 509        if (ret < 0)
 510                return ret;
 511        *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
 512                                          PT, PR, PG, PO, Gb);
 513        return ret;
 514}
 515
 516static int mlx90632_read_raw(struct iio_dev *indio_dev,
 517                             struct iio_chan_spec const *channel, int *val,
 518                             int *val2, long mask)
 519{
 520        struct mlx90632_data *data = iio_priv(indio_dev);
 521        int ret;
 522
 523        switch (mask) {
 524        case IIO_CHAN_INFO_PROCESSED:
 525                switch (channel->channel2) {
 526                case IIO_MOD_TEMP_AMBIENT:
 527                        ret = mlx90632_calc_ambient_dsp105(data, val);
 528                        if (ret < 0)
 529                                return ret;
 530                        return IIO_VAL_INT;
 531                case IIO_MOD_TEMP_OBJECT:
 532                        ret = mlx90632_calc_object_dsp105(data, val);
 533                        if (ret < 0)
 534                                return ret;
 535                        return IIO_VAL_INT;
 536                default:
 537                        return -EINVAL;
 538                }
 539        case IIO_CHAN_INFO_CALIBEMISSIVITY:
 540                if (data->emissivity == 1000) {
 541                        *val = 1;
 542                        *val2 = 0;
 543                } else {
 544                        *val = 0;
 545                        *val2 = data->emissivity * 1000;
 546                }
 547                return IIO_VAL_INT_PLUS_MICRO;
 548
 549        default:
 550                return -EINVAL;
 551        }
 552}
 553
 554static int mlx90632_write_raw(struct iio_dev *indio_dev,
 555                              struct iio_chan_spec const *channel, int val,
 556                              int val2, long mask)
 557{
 558        struct mlx90632_data *data = iio_priv(indio_dev);
 559
 560        switch (mask) {
 561        case IIO_CHAN_INFO_CALIBEMISSIVITY:
 562                /* Confirm we are within 0 and 1.0 */
 563                if (val < 0 || val2 < 0 || val > 1 ||
 564                    (val == 1 && val2 != 0))
 565                        return -EINVAL;
 566                data->emissivity = val * 1000 + val2 / 1000;
 567                return 0;
 568        default:
 569                return -EINVAL;
 570        }
 571}
 572
 573static const struct iio_chan_spec mlx90632_channels[] = {
 574        {
 575                .type = IIO_TEMP,
 576                .modified = 1,
 577                .channel2 = IIO_MOD_TEMP_AMBIENT,
 578                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
 579        },
 580        {
 581                .type = IIO_TEMP,
 582                .modified = 1,
 583                .channel2 = IIO_MOD_TEMP_OBJECT,
 584                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
 585                        BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
 586        },
 587};
 588
 589static const struct iio_info mlx90632_info = {
 590        .read_raw = mlx90632_read_raw,
 591        .write_raw = mlx90632_write_raw,
 592};
 593
 594static int mlx90632_sleep(struct mlx90632_data *data)
 595{
 596        regcache_mark_dirty(data->regmap);
 597
 598        dev_dbg(&data->client->dev, "Requesting sleep");
 599        return mlx90632_pwr_set_sleep_step(data->regmap);
 600}
 601
 602static int mlx90632_wakeup(struct mlx90632_data *data)
 603{
 604        int ret;
 605
 606        ret = regcache_sync(data->regmap);
 607        if (ret < 0) {
 608                dev_err(&data->client->dev,
 609                        "Failed to sync regmap registers: %d\n", ret);
 610                return ret;
 611        }
 612
 613        dev_dbg(&data->client->dev, "Requesting wake-up\n");
 614        return mlx90632_pwr_continuous(data->regmap);
 615}
 616
 617static int mlx90632_probe(struct i2c_client *client,
 618                          const struct i2c_device_id *id)
 619{
 620        struct iio_dev *indio_dev;
 621        struct mlx90632_data *mlx90632;
 622        struct regmap *regmap;
 623        int ret;
 624        unsigned int read;
 625
 626        indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
 627        if (!indio_dev) {
 628                dev_err(&client->dev, "Failed to allocate device\n");
 629                return -ENOMEM;
 630        }
 631
 632        regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
 633        if (IS_ERR(regmap)) {
 634                ret = PTR_ERR(regmap);
 635                dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
 636                return ret;
 637        }
 638
 639        mlx90632 = iio_priv(indio_dev);
 640        i2c_set_clientdata(client, indio_dev);
 641        mlx90632->client = client;
 642        mlx90632->regmap = regmap;
 643
 644        mutex_init(&mlx90632->lock);
 645        indio_dev->dev.parent = &client->dev;
 646        indio_dev->name = id->name;
 647        indio_dev->modes = INDIO_DIRECT_MODE;
 648        indio_dev->info = &mlx90632_info;
 649        indio_dev->channels = mlx90632_channels;
 650        indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
 651
 652        ret = mlx90632_wakeup(mlx90632);
 653        if (ret < 0) {
 654                dev_err(&client->dev, "Wakeup failed: %d\n", ret);
 655                return ret;
 656        }
 657
 658        ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
 659        if (ret < 0) {
 660                dev_err(&client->dev, "read of version failed: %d\n", ret);
 661                return ret;
 662        }
 663        if (read == MLX90632_ID_MEDICAL) {
 664                dev_dbg(&client->dev,
 665                        "Detected Medical EEPROM calibration %x\n", read);
 666        } else if (read == MLX90632_ID_CONSUMER) {
 667                dev_dbg(&client->dev,
 668                        "Detected Consumer EEPROM calibration %x\n", read);
 669        } else {
 670                dev_err(&client->dev,
 671                        "EEPROM version mismatch %x (expected %x or %x)\n",
 672                        read, MLX90632_ID_CONSUMER, MLX90632_ID_MEDICAL);
 673                return -EPROTONOSUPPORT;
 674        }
 675
 676        mlx90632->emissivity = 1000;
 677
 678        pm_runtime_disable(&client->dev);
 679        ret = pm_runtime_set_active(&client->dev);
 680        if (ret < 0) {
 681                mlx90632_sleep(mlx90632);
 682                return ret;
 683        }
 684        pm_runtime_enable(&client->dev);
 685        pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
 686        pm_runtime_use_autosuspend(&client->dev);
 687
 688        return iio_device_register(indio_dev);
 689}
 690
 691static int mlx90632_remove(struct i2c_client *client)
 692{
 693        struct iio_dev *indio_dev = i2c_get_clientdata(client);
 694        struct mlx90632_data *data = iio_priv(indio_dev);
 695
 696        iio_device_unregister(indio_dev);
 697
 698        pm_runtime_disable(&client->dev);
 699        pm_runtime_set_suspended(&client->dev);
 700        pm_runtime_put_noidle(&client->dev);
 701
 702        mlx90632_sleep(data);
 703
 704        return 0;
 705}
 706
 707static const struct i2c_device_id mlx90632_id[] = {
 708        { "mlx90632", 0 },
 709        { }
 710};
 711MODULE_DEVICE_TABLE(i2c, mlx90632_id);
 712
 713static const struct of_device_id mlx90632_of_match[] = {
 714        { .compatible = "melexis,mlx90632" },
 715        { }
 716};
 717MODULE_DEVICE_TABLE(of, mlx90632_of_match);
 718
 719static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
 720{
 721        struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
 722        struct mlx90632_data *data = iio_priv(indio_dev);
 723
 724        return mlx90632_sleep(data);
 725}
 726
 727static int __maybe_unused mlx90632_pm_resume(struct device *dev)
 728{
 729        struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
 730        struct mlx90632_data *data = iio_priv(indio_dev);
 731
 732        return mlx90632_wakeup(data);
 733}
 734
 735static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
 736                            mlx90632_pm_resume, NULL);
 737
 738static struct i2c_driver mlx90632_driver = {
 739        .driver = {
 740                .name   = "mlx90632",
 741                .of_match_table = mlx90632_of_match,
 742                .pm     = &mlx90632_pm_ops,
 743        },
 744        .probe = mlx90632_probe,
 745        .remove = mlx90632_remove,
 746        .id_table = mlx90632_id,
 747};
 748module_i2c_driver(mlx90632_driver);
 749
 750MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
 751MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
 752MODULE_LICENSE("GPL v2");
 753