linux/drivers/infiniband/core/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53
  54#include "core_priv.h"
  55
  56static int ib_resolve_eth_dmac(struct ib_device *device,
  57                               struct rdma_ah_attr *ah_attr);
  58
  59static const char * const ib_events[] = {
  60        [IB_EVENT_CQ_ERR]               = "CQ error",
  61        [IB_EVENT_QP_FATAL]             = "QP fatal error",
  62        [IB_EVENT_QP_REQ_ERR]           = "QP request error",
  63        [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
  64        [IB_EVENT_COMM_EST]             = "communication established",
  65        [IB_EVENT_SQ_DRAINED]           = "send queue drained",
  66        [IB_EVENT_PATH_MIG]             = "path migration successful",
  67        [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
  68        [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
  69        [IB_EVENT_PORT_ACTIVE]          = "port active",
  70        [IB_EVENT_PORT_ERR]             = "port error",
  71        [IB_EVENT_LID_CHANGE]           = "LID change",
  72        [IB_EVENT_PKEY_CHANGE]          = "P_key change",
  73        [IB_EVENT_SM_CHANGE]            = "SM change",
  74        [IB_EVENT_SRQ_ERR]              = "SRQ error",
  75        [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
  76        [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
  77        [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
  78        [IB_EVENT_GID_CHANGE]           = "GID changed",
  79};
  80
  81const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  82{
  83        size_t index = event;
  84
  85        return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  86                        ib_events[index] : "unrecognized event";
  87}
  88EXPORT_SYMBOL(ib_event_msg);
  89
  90static const char * const wc_statuses[] = {
  91        [IB_WC_SUCCESS]                 = "success",
  92        [IB_WC_LOC_LEN_ERR]             = "local length error",
  93        [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
  94        [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
  95        [IB_WC_LOC_PROT_ERR]            = "local protection error",
  96        [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
  97        [IB_WC_MW_BIND_ERR]             = "memory management operation error",
  98        [IB_WC_BAD_RESP_ERR]            = "bad response error",
  99        [IB_WC_LOC_ACCESS_ERR]          = "local access error",
 100        [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
 101        [IB_WC_REM_ACCESS_ERR]          = "remote access error",
 102        [IB_WC_REM_OP_ERR]              = "remote operation error",
 103        [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
 104        [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
 105        [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
 106        [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
 107        [IB_WC_REM_ABORT_ERR]           = "operation aborted",
 108        [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
 109        [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
 110        [IB_WC_FATAL_ERR]               = "fatal error",
 111        [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
 112        [IB_WC_GENERAL_ERR]             = "general error",
 113};
 114
 115const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 116{
 117        size_t index = status;
 118
 119        return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 120                        wc_statuses[index] : "unrecognized status";
 121}
 122EXPORT_SYMBOL(ib_wc_status_msg);
 123
 124__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 125{
 126        switch (rate) {
 127        case IB_RATE_2_5_GBPS: return   1;
 128        case IB_RATE_5_GBPS:   return   2;
 129        case IB_RATE_10_GBPS:  return   4;
 130        case IB_RATE_20_GBPS:  return   8;
 131        case IB_RATE_30_GBPS:  return  12;
 132        case IB_RATE_40_GBPS:  return  16;
 133        case IB_RATE_60_GBPS:  return  24;
 134        case IB_RATE_80_GBPS:  return  32;
 135        case IB_RATE_120_GBPS: return  48;
 136        case IB_RATE_14_GBPS:  return   6;
 137        case IB_RATE_56_GBPS:  return  22;
 138        case IB_RATE_112_GBPS: return  45;
 139        case IB_RATE_168_GBPS: return  67;
 140        case IB_RATE_25_GBPS:  return  10;
 141        case IB_RATE_100_GBPS: return  40;
 142        case IB_RATE_200_GBPS: return  80;
 143        case IB_RATE_300_GBPS: return 120;
 144        default:               return  -1;
 145        }
 146}
 147EXPORT_SYMBOL(ib_rate_to_mult);
 148
 149__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 150{
 151        switch (mult) {
 152        case 1:   return IB_RATE_2_5_GBPS;
 153        case 2:   return IB_RATE_5_GBPS;
 154        case 4:   return IB_RATE_10_GBPS;
 155        case 8:   return IB_RATE_20_GBPS;
 156        case 12:  return IB_RATE_30_GBPS;
 157        case 16:  return IB_RATE_40_GBPS;
 158        case 24:  return IB_RATE_60_GBPS;
 159        case 32:  return IB_RATE_80_GBPS;
 160        case 48:  return IB_RATE_120_GBPS;
 161        case 6:   return IB_RATE_14_GBPS;
 162        case 22:  return IB_RATE_56_GBPS;
 163        case 45:  return IB_RATE_112_GBPS;
 164        case 67:  return IB_RATE_168_GBPS;
 165        case 10:  return IB_RATE_25_GBPS;
 166        case 40:  return IB_RATE_100_GBPS;
 167        case 80:  return IB_RATE_200_GBPS;
 168        case 120: return IB_RATE_300_GBPS;
 169        default:  return IB_RATE_PORT_CURRENT;
 170        }
 171}
 172EXPORT_SYMBOL(mult_to_ib_rate);
 173
 174__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 175{
 176        switch (rate) {
 177        case IB_RATE_2_5_GBPS: return 2500;
 178        case IB_RATE_5_GBPS:   return 5000;
 179        case IB_RATE_10_GBPS:  return 10000;
 180        case IB_RATE_20_GBPS:  return 20000;
 181        case IB_RATE_30_GBPS:  return 30000;
 182        case IB_RATE_40_GBPS:  return 40000;
 183        case IB_RATE_60_GBPS:  return 60000;
 184        case IB_RATE_80_GBPS:  return 80000;
 185        case IB_RATE_120_GBPS: return 120000;
 186        case IB_RATE_14_GBPS:  return 14062;
 187        case IB_RATE_56_GBPS:  return 56250;
 188        case IB_RATE_112_GBPS: return 112500;
 189        case IB_RATE_168_GBPS: return 168750;
 190        case IB_RATE_25_GBPS:  return 25781;
 191        case IB_RATE_100_GBPS: return 103125;
 192        case IB_RATE_200_GBPS: return 206250;
 193        case IB_RATE_300_GBPS: return 309375;
 194        default:               return -1;
 195        }
 196}
 197EXPORT_SYMBOL(ib_rate_to_mbps);
 198
 199__attribute_const__ enum rdma_transport_type
 200rdma_node_get_transport(enum rdma_node_type node_type)
 201{
 202
 203        if (node_type == RDMA_NODE_USNIC)
 204                return RDMA_TRANSPORT_USNIC;
 205        if (node_type == RDMA_NODE_USNIC_UDP)
 206                return RDMA_TRANSPORT_USNIC_UDP;
 207        if (node_type == RDMA_NODE_RNIC)
 208                return RDMA_TRANSPORT_IWARP;
 209
 210        return RDMA_TRANSPORT_IB;
 211}
 212EXPORT_SYMBOL(rdma_node_get_transport);
 213
 214enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 215{
 216        enum rdma_transport_type lt;
 217        if (device->get_link_layer)
 218                return device->get_link_layer(device, port_num);
 219
 220        lt = rdma_node_get_transport(device->node_type);
 221        if (lt == RDMA_TRANSPORT_IB)
 222                return IB_LINK_LAYER_INFINIBAND;
 223
 224        return IB_LINK_LAYER_ETHERNET;
 225}
 226EXPORT_SYMBOL(rdma_port_get_link_layer);
 227
 228/* Protection domains */
 229
 230/**
 231 * ib_alloc_pd - Allocates an unused protection domain.
 232 * @device: The device on which to allocate the protection domain.
 233 *
 234 * A protection domain object provides an association between QPs, shared
 235 * receive queues, address handles, memory regions, and memory windows.
 236 *
 237 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 238 * memory operations.
 239 */
 240struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 241                const char *caller)
 242{
 243        struct ib_pd *pd;
 244        int mr_access_flags = 0;
 245
 246        pd = device->alloc_pd(device, NULL, NULL);
 247        if (IS_ERR(pd))
 248                return pd;
 249
 250        pd->device = device;
 251        pd->uobject = NULL;
 252        pd->__internal_mr = NULL;
 253        atomic_set(&pd->usecnt, 0);
 254        pd->flags = flags;
 255
 256        if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 257                pd->local_dma_lkey = device->local_dma_lkey;
 258        else
 259                mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 260
 261        if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 262                pr_warn("%s: enabling unsafe global rkey\n", caller);
 263                mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 264        }
 265
 266        pd->res.type = RDMA_RESTRACK_PD;
 267        pd->res.kern_name = caller;
 268        rdma_restrack_add(&pd->res);
 269
 270        if (mr_access_flags) {
 271                struct ib_mr *mr;
 272
 273                mr = pd->device->get_dma_mr(pd, mr_access_flags);
 274                if (IS_ERR(mr)) {
 275                        ib_dealloc_pd(pd);
 276                        return ERR_CAST(mr);
 277                }
 278
 279                mr->device      = pd->device;
 280                mr->pd          = pd;
 281                mr->uobject     = NULL;
 282                mr->need_inval  = false;
 283
 284                pd->__internal_mr = mr;
 285
 286                if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 287                        pd->local_dma_lkey = pd->__internal_mr->lkey;
 288
 289                if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 290                        pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 291        }
 292
 293        return pd;
 294}
 295EXPORT_SYMBOL(__ib_alloc_pd);
 296
 297/**
 298 * ib_dealloc_pd - Deallocates a protection domain.
 299 * @pd: The protection domain to deallocate.
 300 *
 301 * It is an error to call this function while any resources in the pd still
 302 * exist.  The caller is responsible to synchronously destroy them and
 303 * guarantee no new allocations will happen.
 304 */
 305void ib_dealloc_pd(struct ib_pd *pd)
 306{
 307        int ret;
 308
 309        if (pd->__internal_mr) {
 310                ret = pd->device->dereg_mr(pd->__internal_mr);
 311                WARN_ON(ret);
 312                pd->__internal_mr = NULL;
 313        }
 314
 315        /* uverbs manipulates usecnt with proper locking, while the kabi
 316           requires the caller to guarantee we can't race here. */
 317        WARN_ON(atomic_read(&pd->usecnt));
 318
 319        rdma_restrack_del(&pd->res);
 320        /* Making delalloc_pd a void return is a WIP, no driver should return
 321           an error here. */
 322        ret = pd->device->dealloc_pd(pd);
 323        WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
 324}
 325EXPORT_SYMBOL(ib_dealloc_pd);
 326
 327/* Address handles */
 328
 329/**
 330 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 331 * @dest:       Pointer to destination ah_attr. Contents of the destination
 332 *              pointer is assumed to be invalid and attribute are overwritten.
 333 * @src:        Pointer to source ah_attr.
 334 */
 335void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 336                       const struct rdma_ah_attr *src)
 337{
 338        *dest = *src;
 339        if (dest->grh.sgid_attr)
 340                rdma_hold_gid_attr(dest->grh.sgid_attr);
 341}
 342EXPORT_SYMBOL(rdma_copy_ah_attr);
 343
 344/**
 345 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
 346 * @old:        Pointer to existing ah_attr which needs to be replaced.
 347 *              old is assumed to be valid or zero'd
 348 * @new:        Pointer to the new ah_attr.
 349 *
 350 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 351 * old the ah_attr is valid; after that it copies the new attribute and holds
 352 * the reference to the replaced ah_attr.
 353 */
 354void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 355                          const struct rdma_ah_attr *new)
 356{
 357        rdma_destroy_ah_attr(old);
 358        *old = *new;
 359        if (old->grh.sgid_attr)
 360                rdma_hold_gid_attr(old->grh.sgid_attr);
 361}
 362EXPORT_SYMBOL(rdma_replace_ah_attr);
 363
 364/**
 365 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 366 * @dest:       Pointer to destination ah_attr to copy to.
 367 *              dest is assumed to be valid or zero'd
 368 * @src:        Pointer to the new ah_attr.
 369 *
 370 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 371 * if it is valid. This also transfers ownership of internal references from
 372 * src to dest, making src invalid in the process. No new reference of the src
 373 * ah_attr is taken.
 374 */
 375void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 376{
 377        rdma_destroy_ah_attr(dest);
 378        *dest = *src;
 379        src->grh.sgid_attr = NULL;
 380}
 381EXPORT_SYMBOL(rdma_move_ah_attr);
 382
 383/*
 384 * Validate that the rdma_ah_attr is valid for the device before passing it
 385 * off to the driver.
 386 */
 387static int rdma_check_ah_attr(struct ib_device *device,
 388                              struct rdma_ah_attr *ah_attr)
 389{
 390        if (!rdma_is_port_valid(device, ah_attr->port_num))
 391                return -EINVAL;
 392
 393        if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 394             ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 395            !(ah_attr->ah_flags & IB_AH_GRH))
 396                return -EINVAL;
 397
 398        if (ah_attr->grh.sgid_attr) {
 399                /*
 400                 * Make sure the passed sgid_attr is consistent with the
 401                 * parameters
 402                 */
 403                if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 404                    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 405                        return -EINVAL;
 406        }
 407        return 0;
 408}
 409
 410/*
 411 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 412 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 413 */
 414static int rdma_fill_sgid_attr(struct ib_device *device,
 415                               struct rdma_ah_attr *ah_attr,
 416                               const struct ib_gid_attr **old_sgid_attr)
 417{
 418        const struct ib_gid_attr *sgid_attr;
 419        struct ib_global_route *grh;
 420        int ret;
 421
 422        *old_sgid_attr = ah_attr->grh.sgid_attr;
 423
 424        ret = rdma_check_ah_attr(device, ah_attr);
 425        if (ret)
 426                return ret;
 427
 428        if (!(ah_attr->ah_flags & IB_AH_GRH))
 429                return 0;
 430
 431        grh = rdma_ah_retrieve_grh(ah_attr);
 432        if (grh->sgid_attr)
 433                return 0;
 434
 435        sgid_attr =
 436                rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 437        if (IS_ERR(sgid_attr))
 438                return PTR_ERR(sgid_attr);
 439
 440        /* Move ownerhip of the kref into the ah_attr */
 441        grh->sgid_attr = sgid_attr;
 442        return 0;
 443}
 444
 445static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 446                                  const struct ib_gid_attr *old_sgid_attr)
 447{
 448        /*
 449         * Fill didn't change anything, the caller retains ownership of
 450         * whatever it passed
 451         */
 452        if (ah_attr->grh.sgid_attr == old_sgid_attr)
 453                return;
 454
 455        /*
 456         * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 457         * doesn't see any change in the rdma_ah_attr. If we get here
 458         * old_sgid_attr is NULL.
 459         */
 460        rdma_destroy_ah_attr(ah_attr);
 461}
 462
 463static const struct ib_gid_attr *
 464rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 465                      const struct ib_gid_attr *old_attr)
 466{
 467        if (old_attr)
 468                rdma_put_gid_attr(old_attr);
 469        if (ah_attr->ah_flags & IB_AH_GRH) {
 470                rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 471                return ah_attr->grh.sgid_attr;
 472        }
 473        return NULL;
 474}
 475
 476static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 477                                     struct rdma_ah_attr *ah_attr,
 478                                     struct ib_udata *udata)
 479{
 480        struct ib_ah *ah;
 481
 482        if (!pd->device->create_ah)
 483                return ERR_PTR(-EOPNOTSUPP);
 484
 485        ah = pd->device->create_ah(pd, ah_attr, udata);
 486
 487        if (!IS_ERR(ah)) {
 488                ah->device  = pd->device;
 489                ah->pd      = pd;
 490                ah->uobject = NULL;
 491                ah->type    = ah_attr->type;
 492                ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 493
 494                atomic_inc(&pd->usecnt);
 495        }
 496
 497        return ah;
 498}
 499
 500/**
 501 * rdma_create_ah - Creates an address handle for the
 502 * given address vector.
 503 * @pd: The protection domain associated with the address handle.
 504 * @ah_attr: The attributes of the address vector.
 505 *
 506 * It returns 0 on success and returns appropriate error code on error.
 507 * The address handle is used to reference a local or global destination
 508 * in all UD QP post sends.
 509 */
 510struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
 511{
 512        const struct ib_gid_attr *old_sgid_attr;
 513        struct ib_ah *ah;
 514        int ret;
 515
 516        ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 517        if (ret)
 518                return ERR_PTR(ret);
 519
 520        ah = _rdma_create_ah(pd, ah_attr, NULL);
 521
 522        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 523        return ah;
 524}
 525EXPORT_SYMBOL(rdma_create_ah);
 526
 527/**
 528 * rdma_create_user_ah - Creates an address handle for the
 529 * given address vector.
 530 * It resolves destination mac address for ah attribute of RoCE type.
 531 * @pd: The protection domain associated with the address handle.
 532 * @ah_attr: The attributes of the address vector.
 533 * @udata: pointer to user's input output buffer information need by
 534 *         provider driver.
 535 *
 536 * It returns 0 on success and returns appropriate error code on error.
 537 * The address handle is used to reference a local or global destination
 538 * in all UD QP post sends.
 539 */
 540struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 541                                  struct rdma_ah_attr *ah_attr,
 542                                  struct ib_udata *udata)
 543{
 544        const struct ib_gid_attr *old_sgid_attr;
 545        struct ib_ah *ah;
 546        int err;
 547
 548        err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 549        if (err)
 550                return ERR_PTR(err);
 551
 552        if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 553                err = ib_resolve_eth_dmac(pd->device, ah_attr);
 554                if (err) {
 555                        ah = ERR_PTR(err);
 556                        goto out;
 557                }
 558        }
 559
 560        ah = _rdma_create_ah(pd, ah_attr, udata);
 561
 562out:
 563        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 564        return ah;
 565}
 566EXPORT_SYMBOL(rdma_create_user_ah);
 567
 568int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 569{
 570        const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 571        struct iphdr ip4h_checked;
 572        const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 573
 574        /* If it's IPv6, the version must be 6, otherwise, the first
 575         * 20 bytes (before the IPv4 header) are garbled.
 576         */
 577        if (ip6h->version != 6)
 578                return (ip4h->version == 4) ? 4 : 0;
 579        /* version may be 6 or 4 because the first 20 bytes could be garbled */
 580
 581        /* RoCE v2 requires no options, thus header length
 582         * must be 5 words
 583         */
 584        if (ip4h->ihl != 5)
 585                return 6;
 586
 587        /* Verify checksum.
 588         * We can't write on scattered buffers so we need to copy to
 589         * temp buffer.
 590         */
 591        memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 592        ip4h_checked.check = 0;
 593        ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 594        /* if IPv4 header checksum is OK, believe it */
 595        if (ip4h->check == ip4h_checked.check)
 596                return 4;
 597        return 6;
 598}
 599EXPORT_SYMBOL(ib_get_rdma_header_version);
 600
 601static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 602                                                     u8 port_num,
 603                                                     const struct ib_grh *grh)
 604{
 605        int grh_version;
 606
 607        if (rdma_protocol_ib(device, port_num))
 608                return RDMA_NETWORK_IB;
 609
 610        grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 611
 612        if (grh_version == 4)
 613                return RDMA_NETWORK_IPV4;
 614
 615        if (grh->next_hdr == IPPROTO_UDP)
 616                return RDMA_NETWORK_IPV6;
 617
 618        return RDMA_NETWORK_ROCE_V1;
 619}
 620
 621struct find_gid_index_context {
 622        u16 vlan_id;
 623        enum ib_gid_type gid_type;
 624};
 625
 626static bool find_gid_index(const union ib_gid *gid,
 627                           const struct ib_gid_attr *gid_attr,
 628                           void *context)
 629{
 630        struct find_gid_index_context *ctx = context;
 631
 632        if (ctx->gid_type != gid_attr->gid_type)
 633                return false;
 634
 635        if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
 636            (is_vlan_dev(gid_attr->ndev) &&
 637             vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
 638                return false;
 639
 640        return true;
 641}
 642
 643static const struct ib_gid_attr *
 644get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
 645                       u16 vlan_id, const union ib_gid *sgid,
 646                       enum ib_gid_type gid_type)
 647{
 648        struct find_gid_index_context context = {.vlan_id = vlan_id,
 649                                                 .gid_type = gid_type};
 650
 651        return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 652                                       &context);
 653}
 654
 655int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 656                              enum rdma_network_type net_type,
 657                              union ib_gid *sgid, union ib_gid *dgid)
 658{
 659        struct sockaddr_in  src_in;
 660        struct sockaddr_in  dst_in;
 661        __be32 src_saddr, dst_saddr;
 662
 663        if (!sgid || !dgid)
 664                return -EINVAL;
 665
 666        if (net_type == RDMA_NETWORK_IPV4) {
 667                memcpy(&src_in.sin_addr.s_addr,
 668                       &hdr->roce4grh.saddr, 4);
 669                memcpy(&dst_in.sin_addr.s_addr,
 670                       &hdr->roce4grh.daddr, 4);
 671                src_saddr = src_in.sin_addr.s_addr;
 672                dst_saddr = dst_in.sin_addr.s_addr;
 673                ipv6_addr_set_v4mapped(src_saddr,
 674                                       (struct in6_addr *)sgid);
 675                ipv6_addr_set_v4mapped(dst_saddr,
 676                                       (struct in6_addr *)dgid);
 677                return 0;
 678        } else if (net_type == RDMA_NETWORK_IPV6 ||
 679                   net_type == RDMA_NETWORK_IB) {
 680                *dgid = hdr->ibgrh.dgid;
 681                *sgid = hdr->ibgrh.sgid;
 682                return 0;
 683        } else {
 684                return -EINVAL;
 685        }
 686}
 687EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 688
 689/* Resolve destination mac address and hop limit for unicast destination
 690 * GID entry, considering the source GID entry as well.
 691 * ah_attribute must have have valid port_num, sgid_index.
 692 */
 693static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 694                                       struct rdma_ah_attr *ah_attr)
 695{
 696        struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 697        const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 698        int hop_limit = 0xff;
 699        int ret = 0;
 700
 701        /* If destination is link local and source GID is RoCEv1,
 702         * IP stack is not used.
 703         */
 704        if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 705            sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 706                rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 707                                ah_attr->roce.dmac);
 708                return ret;
 709        }
 710
 711        ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 712                                           ah_attr->roce.dmac,
 713                                           sgid_attr->ndev, &hop_limit);
 714
 715        grh->hop_limit = hop_limit;
 716        return ret;
 717}
 718
 719/*
 720 * This function initializes address handle attributes from the incoming packet.
 721 * Incoming packet has dgid of the receiver node on which this code is
 722 * getting executed and, sgid contains the GID of the sender.
 723 *
 724 * When resolving mac address of destination, the arrived dgid is used
 725 * as sgid and, sgid is used as dgid because sgid contains destinations
 726 * GID whom to respond to.
 727 *
 728 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 729 * attr.
 730 */
 731int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
 732                            const struct ib_wc *wc, const struct ib_grh *grh,
 733                            struct rdma_ah_attr *ah_attr)
 734{
 735        u32 flow_class;
 736        int ret;
 737        enum rdma_network_type net_type = RDMA_NETWORK_IB;
 738        enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 739        const struct ib_gid_attr *sgid_attr;
 740        int hoplimit = 0xff;
 741        union ib_gid dgid;
 742        union ib_gid sgid;
 743
 744        might_sleep();
 745
 746        memset(ah_attr, 0, sizeof *ah_attr);
 747        ah_attr->type = rdma_ah_find_type(device, port_num);
 748        if (rdma_cap_eth_ah(device, port_num)) {
 749                if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 750                        net_type = wc->network_hdr_type;
 751                else
 752                        net_type = ib_get_net_type_by_grh(device, port_num, grh);
 753                gid_type = ib_network_to_gid_type(net_type);
 754        }
 755        ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 756                                        &sgid, &dgid);
 757        if (ret)
 758                return ret;
 759
 760        rdma_ah_set_sl(ah_attr, wc->sl);
 761        rdma_ah_set_port_num(ah_attr, port_num);
 762
 763        if (rdma_protocol_roce(device, port_num)) {
 764                u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 765                                wc->vlan_id : 0xffff;
 766
 767                if (!(wc->wc_flags & IB_WC_GRH))
 768                        return -EPROTOTYPE;
 769
 770                sgid_attr = get_sgid_attr_from_eth(device, port_num,
 771                                                   vlan_id, &dgid,
 772                                                   gid_type);
 773                if (IS_ERR(sgid_attr))
 774                        return PTR_ERR(sgid_attr);
 775
 776                flow_class = be32_to_cpu(grh->version_tclass_flow);
 777                rdma_move_grh_sgid_attr(ah_attr,
 778                                        &sgid,
 779                                        flow_class & 0xFFFFF,
 780                                        hoplimit,
 781                                        (flow_class >> 20) & 0xFF,
 782                                        sgid_attr);
 783
 784                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 785                if (ret)
 786                        rdma_destroy_ah_attr(ah_attr);
 787
 788                return ret;
 789        } else {
 790                rdma_ah_set_dlid(ah_attr, wc->slid);
 791                rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 792
 793                if ((wc->wc_flags & IB_WC_GRH) == 0)
 794                        return 0;
 795
 796                if (dgid.global.interface_id !=
 797                                        cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 798                        sgid_attr = rdma_find_gid_by_port(
 799                                device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 800                } else
 801                        sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 802
 803                if (IS_ERR(sgid_attr))
 804                        return PTR_ERR(sgid_attr);
 805                flow_class = be32_to_cpu(grh->version_tclass_flow);
 806                rdma_move_grh_sgid_attr(ah_attr,
 807                                        &sgid,
 808                                        flow_class & 0xFFFFF,
 809                                        hoplimit,
 810                                        (flow_class >> 20) & 0xFF,
 811                                        sgid_attr);
 812
 813                return 0;
 814        }
 815}
 816EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 817
 818/**
 819 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 820 * of the reference
 821 *
 822 * @attr:       Pointer to AH attribute structure
 823 * @dgid:       Destination GID
 824 * @flow_label: Flow label
 825 * @hop_limit:  Hop limit
 826 * @traffic_class: traffic class
 827 * @sgid_attr:  Pointer to SGID attribute
 828 *
 829 * This takes ownership of the sgid_attr reference. The caller must ensure
 830 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 831 * calling this function.
 832 */
 833void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 834                             u32 flow_label, u8 hop_limit, u8 traffic_class,
 835                             const struct ib_gid_attr *sgid_attr)
 836{
 837        rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 838                        traffic_class);
 839        attr->grh.sgid_attr = sgid_attr;
 840}
 841EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 842
 843/**
 844 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 845 * ah attribute.
 846 * @ah_attr: Pointer to ah attribute
 847 *
 848 * Release reference to the SGID attribute of the ah attribute if it is
 849 * non NULL. It is safe to call this multiple times, and safe to call it on
 850 * a zero initialized ah_attr.
 851 */
 852void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 853{
 854        if (ah_attr->grh.sgid_attr) {
 855                rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 856                ah_attr->grh.sgid_attr = NULL;
 857        }
 858}
 859EXPORT_SYMBOL(rdma_destroy_ah_attr);
 860
 861struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 862                                   const struct ib_grh *grh, u8 port_num)
 863{
 864        struct rdma_ah_attr ah_attr;
 865        struct ib_ah *ah;
 866        int ret;
 867
 868        ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 869        if (ret)
 870                return ERR_PTR(ret);
 871
 872        ah = rdma_create_ah(pd, &ah_attr);
 873
 874        rdma_destroy_ah_attr(&ah_attr);
 875        return ah;
 876}
 877EXPORT_SYMBOL(ib_create_ah_from_wc);
 878
 879int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 880{
 881        const struct ib_gid_attr *old_sgid_attr;
 882        int ret;
 883
 884        if (ah->type != ah_attr->type)
 885                return -EINVAL;
 886
 887        ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 888        if (ret)
 889                return ret;
 890
 891        ret = ah->device->modify_ah ?
 892                ah->device->modify_ah(ah, ah_attr) :
 893                -EOPNOTSUPP;
 894
 895        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 896        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 897        return ret;
 898}
 899EXPORT_SYMBOL(rdma_modify_ah);
 900
 901int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 902{
 903        ah_attr->grh.sgid_attr = NULL;
 904
 905        return ah->device->query_ah ?
 906                ah->device->query_ah(ah, ah_attr) :
 907                -EOPNOTSUPP;
 908}
 909EXPORT_SYMBOL(rdma_query_ah);
 910
 911int rdma_destroy_ah(struct ib_ah *ah)
 912{
 913        const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 914        struct ib_pd *pd;
 915        int ret;
 916
 917        pd = ah->pd;
 918        ret = ah->device->destroy_ah(ah);
 919        if (!ret) {
 920                atomic_dec(&pd->usecnt);
 921                if (sgid_attr)
 922                        rdma_put_gid_attr(sgid_attr);
 923        }
 924
 925        return ret;
 926}
 927EXPORT_SYMBOL(rdma_destroy_ah);
 928
 929/* Shared receive queues */
 930
 931struct ib_srq *ib_create_srq(struct ib_pd *pd,
 932                             struct ib_srq_init_attr *srq_init_attr)
 933{
 934        struct ib_srq *srq;
 935
 936        if (!pd->device->create_srq)
 937                return ERR_PTR(-EOPNOTSUPP);
 938
 939        srq = pd->device->create_srq(pd, srq_init_attr, NULL);
 940
 941        if (!IS_ERR(srq)) {
 942                srq->device        = pd->device;
 943                srq->pd            = pd;
 944                srq->uobject       = NULL;
 945                srq->event_handler = srq_init_attr->event_handler;
 946                srq->srq_context   = srq_init_attr->srq_context;
 947                srq->srq_type      = srq_init_attr->srq_type;
 948                if (ib_srq_has_cq(srq->srq_type)) {
 949                        srq->ext.cq   = srq_init_attr->ext.cq;
 950                        atomic_inc(&srq->ext.cq->usecnt);
 951                }
 952                if (srq->srq_type == IB_SRQT_XRC) {
 953                        srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
 954                        atomic_inc(&srq->ext.xrc.xrcd->usecnt);
 955                }
 956                atomic_inc(&pd->usecnt);
 957                atomic_set(&srq->usecnt, 0);
 958        }
 959
 960        return srq;
 961}
 962EXPORT_SYMBOL(ib_create_srq);
 963
 964int ib_modify_srq(struct ib_srq *srq,
 965                  struct ib_srq_attr *srq_attr,
 966                  enum ib_srq_attr_mask srq_attr_mask)
 967{
 968        return srq->device->modify_srq ?
 969                srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
 970                -EOPNOTSUPP;
 971}
 972EXPORT_SYMBOL(ib_modify_srq);
 973
 974int ib_query_srq(struct ib_srq *srq,
 975                 struct ib_srq_attr *srq_attr)
 976{
 977        return srq->device->query_srq ?
 978                srq->device->query_srq(srq, srq_attr) : -EOPNOTSUPP;
 979}
 980EXPORT_SYMBOL(ib_query_srq);
 981
 982int ib_destroy_srq(struct ib_srq *srq)
 983{
 984        struct ib_pd *pd;
 985        enum ib_srq_type srq_type;
 986        struct ib_xrcd *uninitialized_var(xrcd);
 987        struct ib_cq *uninitialized_var(cq);
 988        int ret;
 989
 990        if (atomic_read(&srq->usecnt))
 991                return -EBUSY;
 992
 993        pd = srq->pd;
 994        srq_type = srq->srq_type;
 995        if (ib_srq_has_cq(srq_type))
 996                cq = srq->ext.cq;
 997        if (srq_type == IB_SRQT_XRC)
 998                xrcd = srq->ext.xrc.xrcd;
 999
1000        ret = srq->device->destroy_srq(srq);
1001        if (!ret) {
1002                atomic_dec(&pd->usecnt);
1003                if (srq_type == IB_SRQT_XRC)
1004                        atomic_dec(&xrcd->usecnt);
1005                if (ib_srq_has_cq(srq_type))
1006                        atomic_dec(&cq->usecnt);
1007        }
1008
1009        return ret;
1010}
1011EXPORT_SYMBOL(ib_destroy_srq);
1012
1013/* Queue pairs */
1014
1015static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1016{
1017        struct ib_qp *qp = context;
1018        unsigned long flags;
1019
1020        spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1021        list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1022                if (event->element.qp->event_handler)
1023                        event->element.qp->event_handler(event, event->element.qp->qp_context);
1024        spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1025}
1026
1027static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1028{
1029        mutex_lock(&xrcd->tgt_qp_mutex);
1030        list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1031        mutex_unlock(&xrcd->tgt_qp_mutex);
1032}
1033
1034static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1035                                  void (*event_handler)(struct ib_event *, void *),
1036                                  void *qp_context)
1037{
1038        struct ib_qp *qp;
1039        unsigned long flags;
1040        int err;
1041
1042        qp = kzalloc(sizeof *qp, GFP_KERNEL);
1043        if (!qp)
1044                return ERR_PTR(-ENOMEM);
1045
1046        qp->real_qp = real_qp;
1047        err = ib_open_shared_qp_security(qp, real_qp->device);
1048        if (err) {
1049                kfree(qp);
1050                return ERR_PTR(err);
1051        }
1052
1053        qp->real_qp = real_qp;
1054        atomic_inc(&real_qp->usecnt);
1055        qp->device = real_qp->device;
1056        qp->event_handler = event_handler;
1057        qp->qp_context = qp_context;
1058        qp->qp_num = real_qp->qp_num;
1059        qp->qp_type = real_qp->qp_type;
1060
1061        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1062        list_add(&qp->open_list, &real_qp->open_list);
1063        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1064
1065        return qp;
1066}
1067
1068struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1069                         struct ib_qp_open_attr *qp_open_attr)
1070{
1071        struct ib_qp *qp, *real_qp;
1072
1073        if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1074                return ERR_PTR(-EINVAL);
1075
1076        qp = ERR_PTR(-EINVAL);
1077        mutex_lock(&xrcd->tgt_qp_mutex);
1078        list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1079                if (real_qp->qp_num == qp_open_attr->qp_num) {
1080                        qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1081                                          qp_open_attr->qp_context);
1082                        break;
1083                }
1084        }
1085        mutex_unlock(&xrcd->tgt_qp_mutex);
1086        return qp;
1087}
1088EXPORT_SYMBOL(ib_open_qp);
1089
1090static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
1091                struct ib_qp_init_attr *qp_init_attr)
1092{
1093        struct ib_qp *real_qp = qp;
1094
1095        qp->event_handler = __ib_shared_qp_event_handler;
1096        qp->qp_context = qp;
1097        qp->pd = NULL;
1098        qp->send_cq = qp->recv_cq = NULL;
1099        qp->srq = NULL;
1100        qp->xrcd = qp_init_attr->xrcd;
1101        atomic_inc(&qp_init_attr->xrcd->usecnt);
1102        INIT_LIST_HEAD(&qp->open_list);
1103
1104        qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1105                          qp_init_attr->qp_context);
1106        if (!IS_ERR(qp))
1107                __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1108        else
1109                real_qp->device->destroy_qp(real_qp);
1110        return qp;
1111}
1112
1113struct ib_qp *ib_create_qp(struct ib_pd *pd,
1114                           struct ib_qp_init_attr *qp_init_attr)
1115{
1116        struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1117        struct ib_qp *qp;
1118        int ret;
1119
1120        if (qp_init_attr->rwq_ind_tbl &&
1121            (qp_init_attr->recv_cq ||
1122            qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1123            qp_init_attr->cap.max_recv_sge))
1124                return ERR_PTR(-EINVAL);
1125
1126        /*
1127         * If the callers is using the RDMA API calculate the resources
1128         * needed for the RDMA READ/WRITE operations.
1129         *
1130         * Note that these callers need to pass in a port number.
1131         */
1132        if (qp_init_attr->cap.max_rdma_ctxs)
1133                rdma_rw_init_qp(device, qp_init_attr);
1134
1135        qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1136        if (IS_ERR(qp))
1137                return qp;
1138
1139        ret = ib_create_qp_security(qp, device);
1140        if (ret) {
1141                ib_destroy_qp(qp);
1142                return ERR_PTR(ret);
1143        }
1144
1145        qp->real_qp    = qp;
1146        qp->qp_type    = qp_init_attr->qp_type;
1147        qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1148
1149        atomic_set(&qp->usecnt, 0);
1150        qp->mrs_used = 0;
1151        spin_lock_init(&qp->mr_lock);
1152        INIT_LIST_HEAD(&qp->rdma_mrs);
1153        INIT_LIST_HEAD(&qp->sig_mrs);
1154        qp->port = 0;
1155
1156        if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
1157                return ib_create_xrc_qp(qp, qp_init_attr);
1158
1159        qp->event_handler = qp_init_attr->event_handler;
1160        qp->qp_context = qp_init_attr->qp_context;
1161        if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1162                qp->recv_cq = NULL;
1163                qp->srq = NULL;
1164        } else {
1165                qp->recv_cq = qp_init_attr->recv_cq;
1166                if (qp_init_attr->recv_cq)
1167                        atomic_inc(&qp_init_attr->recv_cq->usecnt);
1168                qp->srq = qp_init_attr->srq;
1169                if (qp->srq)
1170                        atomic_inc(&qp_init_attr->srq->usecnt);
1171        }
1172
1173        qp->send_cq = qp_init_attr->send_cq;
1174        qp->xrcd    = NULL;
1175
1176        atomic_inc(&pd->usecnt);
1177        if (qp_init_attr->send_cq)
1178                atomic_inc(&qp_init_attr->send_cq->usecnt);
1179        if (qp_init_attr->rwq_ind_tbl)
1180                atomic_inc(&qp->rwq_ind_tbl->usecnt);
1181
1182        if (qp_init_attr->cap.max_rdma_ctxs) {
1183                ret = rdma_rw_init_mrs(qp, qp_init_attr);
1184                if (ret) {
1185                        pr_err("failed to init MR pool ret= %d\n", ret);
1186                        ib_destroy_qp(qp);
1187                        return ERR_PTR(ret);
1188                }
1189        }
1190
1191        /*
1192         * Note: all hw drivers guarantee that max_send_sge is lower than
1193         * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1194         * max_send_sge <= max_sge_rd.
1195         */
1196        qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1197        qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1198                                 device->attrs.max_sge_rd);
1199
1200        return qp;
1201}
1202EXPORT_SYMBOL(ib_create_qp);
1203
1204static const struct {
1205        int                     valid;
1206        enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1207        enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1208} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1209        [IB_QPS_RESET] = {
1210                [IB_QPS_RESET] = { .valid = 1 },
1211                [IB_QPS_INIT]  = {
1212                        .valid = 1,
1213                        .req_param = {
1214                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1215                                                IB_QP_PORT                      |
1216                                                IB_QP_QKEY),
1217                                [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1218                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1219                                                IB_QP_PORT                      |
1220                                                IB_QP_ACCESS_FLAGS),
1221                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1222                                                IB_QP_PORT                      |
1223                                                IB_QP_ACCESS_FLAGS),
1224                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1225                                                IB_QP_PORT                      |
1226                                                IB_QP_ACCESS_FLAGS),
1227                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1228                                                IB_QP_PORT                      |
1229                                                IB_QP_ACCESS_FLAGS),
1230                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1231                                                IB_QP_QKEY),
1232                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1233                                                IB_QP_QKEY),
1234                        }
1235                },
1236        },
1237        [IB_QPS_INIT]  = {
1238                [IB_QPS_RESET] = { .valid = 1 },
1239                [IB_QPS_ERR] =   { .valid = 1 },
1240                [IB_QPS_INIT]  = {
1241                        .valid = 1,
1242                        .opt_param = {
1243                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1244                                                IB_QP_PORT                      |
1245                                                IB_QP_QKEY),
1246                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1247                                                IB_QP_PORT                      |
1248                                                IB_QP_ACCESS_FLAGS),
1249                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1250                                                IB_QP_PORT                      |
1251                                                IB_QP_ACCESS_FLAGS),
1252                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1253                                                IB_QP_PORT                      |
1254                                                IB_QP_ACCESS_FLAGS),
1255                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1256                                                IB_QP_PORT                      |
1257                                                IB_QP_ACCESS_FLAGS),
1258                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1259                                                IB_QP_QKEY),
1260                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1261                                                IB_QP_QKEY),
1262                        }
1263                },
1264                [IB_QPS_RTR]   = {
1265                        .valid = 1,
1266                        .req_param = {
1267                                [IB_QPT_UC]  = (IB_QP_AV                        |
1268                                                IB_QP_PATH_MTU                  |
1269                                                IB_QP_DEST_QPN                  |
1270                                                IB_QP_RQ_PSN),
1271                                [IB_QPT_RC]  = (IB_QP_AV                        |
1272                                                IB_QP_PATH_MTU                  |
1273                                                IB_QP_DEST_QPN                  |
1274                                                IB_QP_RQ_PSN                    |
1275                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1276                                                IB_QP_MIN_RNR_TIMER),
1277                                [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1278                                                IB_QP_PATH_MTU                  |
1279                                                IB_QP_DEST_QPN                  |
1280                                                IB_QP_RQ_PSN),
1281                                [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1282                                                IB_QP_PATH_MTU                  |
1283                                                IB_QP_DEST_QPN                  |
1284                                                IB_QP_RQ_PSN                    |
1285                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1286                                                IB_QP_MIN_RNR_TIMER),
1287                        },
1288                        .opt_param = {
1289                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1290                                                 IB_QP_QKEY),
1291                                 [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1292                                                 IB_QP_ACCESS_FLAGS             |
1293                                                 IB_QP_PKEY_INDEX),
1294                                 [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1295                                                 IB_QP_ACCESS_FLAGS             |
1296                                                 IB_QP_PKEY_INDEX),
1297                                 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1298                                                 IB_QP_ACCESS_FLAGS             |
1299                                                 IB_QP_PKEY_INDEX),
1300                                 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1301                                                 IB_QP_ACCESS_FLAGS             |
1302                                                 IB_QP_PKEY_INDEX),
1303                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1304                                                 IB_QP_QKEY),
1305                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1306                                                 IB_QP_QKEY),
1307                         },
1308                },
1309        },
1310        [IB_QPS_RTR]   = {
1311                [IB_QPS_RESET] = { .valid = 1 },
1312                [IB_QPS_ERR] =   { .valid = 1 },
1313                [IB_QPS_RTS]   = {
1314                        .valid = 1,
1315                        .req_param = {
1316                                [IB_QPT_UD]  = IB_QP_SQ_PSN,
1317                                [IB_QPT_UC]  = IB_QP_SQ_PSN,
1318                                [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1319                                                IB_QP_RETRY_CNT                 |
1320                                                IB_QP_RNR_RETRY                 |
1321                                                IB_QP_SQ_PSN                    |
1322                                                IB_QP_MAX_QP_RD_ATOMIC),
1323                                [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1324                                                IB_QP_RETRY_CNT                 |
1325                                                IB_QP_RNR_RETRY                 |
1326                                                IB_QP_SQ_PSN                    |
1327                                                IB_QP_MAX_QP_RD_ATOMIC),
1328                                [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1329                                                IB_QP_SQ_PSN),
1330                                [IB_QPT_SMI] = IB_QP_SQ_PSN,
1331                                [IB_QPT_GSI] = IB_QP_SQ_PSN,
1332                        },
1333                        .opt_param = {
1334                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1335                                                 IB_QP_QKEY),
1336                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1337                                                 IB_QP_ALT_PATH                 |
1338                                                 IB_QP_ACCESS_FLAGS             |
1339                                                 IB_QP_PATH_MIG_STATE),
1340                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1341                                                 IB_QP_ALT_PATH                 |
1342                                                 IB_QP_ACCESS_FLAGS             |
1343                                                 IB_QP_MIN_RNR_TIMER            |
1344                                                 IB_QP_PATH_MIG_STATE),
1345                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1346                                                 IB_QP_ALT_PATH                 |
1347                                                 IB_QP_ACCESS_FLAGS             |
1348                                                 IB_QP_PATH_MIG_STATE),
1349                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1350                                                 IB_QP_ALT_PATH                 |
1351                                                 IB_QP_ACCESS_FLAGS             |
1352                                                 IB_QP_MIN_RNR_TIMER            |
1353                                                 IB_QP_PATH_MIG_STATE),
1354                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1355                                                 IB_QP_QKEY),
1356                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1357                                                 IB_QP_QKEY),
1358                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1359                         }
1360                }
1361        },
1362        [IB_QPS_RTS]   = {
1363                [IB_QPS_RESET] = { .valid = 1 },
1364                [IB_QPS_ERR] =   { .valid = 1 },
1365                [IB_QPS_RTS]   = {
1366                        .valid = 1,
1367                        .opt_param = {
1368                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1369                                                IB_QP_QKEY),
1370                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1371                                                IB_QP_ACCESS_FLAGS              |
1372                                                IB_QP_ALT_PATH                  |
1373                                                IB_QP_PATH_MIG_STATE),
1374                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1375                                                IB_QP_ACCESS_FLAGS              |
1376                                                IB_QP_ALT_PATH                  |
1377                                                IB_QP_PATH_MIG_STATE            |
1378                                                IB_QP_MIN_RNR_TIMER),
1379                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1380                                                IB_QP_ACCESS_FLAGS              |
1381                                                IB_QP_ALT_PATH                  |
1382                                                IB_QP_PATH_MIG_STATE),
1383                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1384                                                IB_QP_ACCESS_FLAGS              |
1385                                                IB_QP_ALT_PATH                  |
1386                                                IB_QP_PATH_MIG_STATE            |
1387                                                IB_QP_MIN_RNR_TIMER),
1388                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1389                                                IB_QP_QKEY),
1390                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1391                                                IB_QP_QKEY),
1392                                [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1393                        }
1394                },
1395                [IB_QPS_SQD]   = {
1396                        .valid = 1,
1397                        .opt_param = {
1398                                [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1399                                [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1400                                [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1401                                [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1402                                [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1403                                [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1404                                [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1405                        }
1406                },
1407        },
1408        [IB_QPS_SQD]   = {
1409                [IB_QPS_RESET] = { .valid = 1 },
1410                [IB_QPS_ERR] =   { .valid = 1 },
1411                [IB_QPS_RTS]   = {
1412                        .valid = 1,
1413                        .opt_param = {
1414                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1415                                                IB_QP_QKEY),
1416                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1417                                                IB_QP_ALT_PATH                  |
1418                                                IB_QP_ACCESS_FLAGS              |
1419                                                IB_QP_PATH_MIG_STATE),
1420                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1421                                                IB_QP_ALT_PATH                  |
1422                                                IB_QP_ACCESS_FLAGS              |
1423                                                IB_QP_MIN_RNR_TIMER             |
1424                                                IB_QP_PATH_MIG_STATE),
1425                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1426                                                IB_QP_ALT_PATH                  |
1427                                                IB_QP_ACCESS_FLAGS              |
1428                                                IB_QP_PATH_MIG_STATE),
1429                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1430                                                IB_QP_ALT_PATH                  |
1431                                                IB_QP_ACCESS_FLAGS              |
1432                                                IB_QP_MIN_RNR_TIMER             |
1433                                                IB_QP_PATH_MIG_STATE),
1434                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1435                                                IB_QP_QKEY),
1436                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1437                                                IB_QP_QKEY),
1438                        }
1439                },
1440                [IB_QPS_SQD]   = {
1441                        .valid = 1,
1442                        .opt_param = {
1443                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1444                                                IB_QP_QKEY),
1445                                [IB_QPT_UC]  = (IB_QP_AV                        |
1446                                                IB_QP_ALT_PATH                  |
1447                                                IB_QP_ACCESS_FLAGS              |
1448                                                IB_QP_PKEY_INDEX                |
1449                                                IB_QP_PATH_MIG_STATE),
1450                                [IB_QPT_RC]  = (IB_QP_PORT                      |
1451                                                IB_QP_AV                        |
1452                                                IB_QP_TIMEOUT                   |
1453                                                IB_QP_RETRY_CNT                 |
1454                                                IB_QP_RNR_RETRY                 |
1455                                                IB_QP_MAX_QP_RD_ATOMIC          |
1456                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1457                                                IB_QP_ALT_PATH                  |
1458                                                IB_QP_ACCESS_FLAGS              |
1459                                                IB_QP_PKEY_INDEX                |
1460                                                IB_QP_MIN_RNR_TIMER             |
1461                                                IB_QP_PATH_MIG_STATE),
1462                                [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1463                                                IB_QP_AV                        |
1464                                                IB_QP_TIMEOUT                   |
1465                                                IB_QP_RETRY_CNT                 |
1466                                                IB_QP_RNR_RETRY                 |
1467                                                IB_QP_MAX_QP_RD_ATOMIC          |
1468                                                IB_QP_ALT_PATH                  |
1469                                                IB_QP_ACCESS_FLAGS              |
1470                                                IB_QP_PKEY_INDEX                |
1471                                                IB_QP_PATH_MIG_STATE),
1472                                [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1473                                                IB_QP_AV                        |
1474                                                IB_QP_TIMEOUT                   |
1475                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1476                                                IB_QP_ALT_PATH                  |
1477                                                IB_QP_ACCESS_FLAGS              |
1478                                                IB_QP_PKEY_INDEX                |
1479                                                IB_QP_MIN_RNR_TIMER             |
1480                                                IB_QP_PATH_MIG_STATE),
1481                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1482                                                IB_QP_QKEY),
1483                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1484                                                IB_QP_QKEY),
1485                        }
1486                }
1487        },
1488        [IB_QPS_SQE]   = {
1489                [IB_QPS_RESET] = { .valid = 1 },
1490                [IB_QPS_ERR] =   { .valid = 1 },
1491                [IB_QPS_RTS]   = {
1492                        .valid = 1,
1493                        .opt_param = {
1494                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1495                                                IB_QP_QKEY),
1496                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1497                                                IB_QP_ACCESS_FLAGS),
1498                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1499                                                IB_QP_QKEY),
1500                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1501                                                IB_QP_QKEY),
1502                        }
1503                }
1504        },
1505        [IB_QPS_ERR] = {
1506                [IB_QPS_RESET] = { .valid = 1 },
1507                [IB_QPS_ERR] =   { .valid = 1 }
1508        }
1509};
1510
1511bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1512                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1513                        enum rdma_link_layer ll)
1514{
1515        enum ib_qp_attr_mask req_param, opt_param;
1516
1517        if (mask & IB_QP_CUR_STATE  &&
1518            cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1519            cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1520                return false;
1521
1522        if (!qp_state_table[cur_state][next_state].valid)
1523                return false;
1524
1525        req_param = qp_state_table[cur_state][next_state].req_param[type];
1526        opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1527
1528        if ((mask & req_param) != req_param)
1529                return false;
1530
1531        if (mask & ~(req_param | opt_param | IB_QP_STATE))
1532                return false;
1533
1534        return true;
1535}
1536EXPORT_SYMBOL(ib_modify_qp_is_ok);
1537
1538/**
1539 * ib_resolve_eth_dmac - Resolve destination mac address
1540 * @device:             Device to consider
1541 * @ah_attr:            address handle attribute which describes the
1542 *                      source and destination parameters
1543 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1544 * returns 0 on success or appropriate error code. It initializes the
1545 * necessary ah_attr fields when call is successful.
1546 */
1547static int ib_resolve_eth_dmac(struct ib_device *device,
1548                               struct rdma_ah_attr *ah_attr)
1549{
1550        int ret = 0;
1551
1552        if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1553                if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1554                        __be32 addr = 0;
1555
1556                        memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1557                        ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1558                } else {
1559                        ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1560                                        (char *)ah_attr->roce.dmac);
1561                }
1562        } else {
1563                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1564        }
1565        return ret;
1566}
1567
1568static bool is_qp_type_connected(const struct ib_qp *qp)
1569{
1570        return (qp->qp_type == IB_QPT_UC ||
1571                qp->qp_type == IB_QPT_RC ||
1572                qp->qp_type == IB_QPT_XRC_INI ||
1573                qp->qp_type == IB_QPT_XRC_TGT);
1574}
1575
1576/**
1577 * IB core internal function to perform QP attributes modification.
1578 */
1579static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1580                         int attr_mask, struct ib_udata *udata)
1581{
1582        u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1583        const struct ib_gid_attr *old_sgid_attr_av;
1584        const struct ib_gid_attr *old_sgid_attr_alt_av;
1585        int ret;
1586
1587        if (attr_mask & IB_QP_AV) {
1588                ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1589                                          &old_sgid_attr_av);
1590                if (ret)
1591                        return ret;
1592        }
1593        if (attr_mask & IB_QP_ALT_PATH) {
1594                /*
1595                 * FIXME: This does not track the migration state, so if the
1596                 * user loads a new alternate path after the HW has migrated
1597                 * from primary->alternate we will keep the wrong
1598                 * references. This is OK for IB because the reference
1599                 * counting does not serve any functional purpose.
1600                 */
1601                ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1602                                          &old_sgid_attr_alt_av);
1603                if (ret)
1604                        goto out_av;
1605
1606                /*
1607                 * Today the core code can only handle alternate paths and APM
1608                 * for IB. Ban them in roce mode.
1609                 */
1610                if (!(rdma_protocol_ib(qp->device,
1611                                       attr->alt_ah_attr.port_num) &&
1612                      rdma_protocol_ib(qp->device, port))) {
1613                        ret = EINVAL;
1614                        goto out;
1615                }
1616        }
1617
1618        /*
1619         * If the user provided the qp_attr then we have to resolve it. Kernel
1620         * users have to provide already resolved rdma_ah_attr's
1621         */
1622        if (udata && (attr_mask & IB_QP_AV) &&
1623            attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1624            is_qp_type_connected(qp)) {
1625                ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1626                if (ret)
1627                        goto out;
1628        }
1629
1630        if (rdma_ib_or_roce(qp->device, port)) {
1631                if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1632                        pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n",
1633                                __func__, qp->device->name);
1634                        attr->rq_psn &= 0xffffff;
1635                }
1636
1637                if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1638                        pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n",
1639                                __func__, qp->device->name);
1640                        attr->sq_psn &= 0xffffff;
1641                }
1642        }
1643
1644        ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1645        if (ret)
1646                goto out;
1647
1648        if (attr_mask & IB_QP_PORT)
1649                qp->port = attr->port_num;
1650        if (attr_mask & IB_QP_AV)
1651                qp->av_sgid_attr =
1652                        rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1653        if (attr_mask & IB_QP_ALT_PATH)
1654                qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1655                        &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1656
1657out:
1658        if (attr_mask & IB_QP_ALT_PATH)
1659                rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1660out_av:
1661        if (attr_mask & IB_QP_AV)
1662                rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1663        return ret;
1664}
1665
1666/**
1667 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1668 * @ib_qp: The QP to modify.
1669 * @attr: On input, specifies the QP attributes to modify.  On output,
1670 *   the current values of selected QP attributes are returned.
1671 * @attr_mask: A bit-mask used to specify which attributes of the QP
1672 *   are being modified.
1673 * @udata: pointer to user's input output buffer information
1674 *   are being modified.
1675 * It returns 0 on success and returns appropriate error code on error.
1676 */
1677int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1678                            int attr_mask, struct ib_udata *udata)
1679{
1680        return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1681}
1682EXPORT_SYMBOL(ib_modify_qp_with_udata);
1683
1684int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1685{
1686        int rc;
1687        u32 netdev_speed;
1688        struct net_device *netdev;
1689        struct ethtool_link_ksettings lksettings;
1690
1691        if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1692                return -EINVAL;
1693
1694        if (!dev->get_netdev)
1695                return -EOPNOTSUPP;
1696
1697        netdev = dev->get_netdev(dev, port_num);
1698        if (!netdev)
1699                return -ENODEV;
1700
1701        rtnl_lock();
1702        rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1703        rtnl_unlock();
1704
1705        dev_put(netdev);
1706
1707        if (!rc) {
1708                netdev_speed = lksettings.base.speed;
1709        } else {
1710                netdev_speed = SPEED_1000;
1711                pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1712                        netdev_speed);
1713        }
1714
1715        if (netdev_speed <= SPEED_1000) {
1716                *width = IB_WIDTH_1X;
1717                *speed = IB_SPEED_SDR;
1718        } else if (netdev_speed <= SPEED_10000) {
1719                *width = IB_WIDTH_1X;
1720                *speed = IB_SPEED_FDR10;
1721        } else if (netdev_speed <= SPEED_20000) {
1722                *width = IB_WIDTH_4X;
1723                *speed = IB_SPEED_DDR;
1724        } else if (netdev_speed <= SPEED_25000) {
1725                *width = IB_WIDTH_1X;
1726                *speed = IB_SPEED_EDR;
1727        } else if (netdev_speed <= SPEED_40000) {
1728                *width = IB_WIDTH_4X;
1729                *speed = IB_SPEED_FDR10;
1730        } else {
1731                *width = IB_WIDTH_4X;
1732                *speed = IB_SPEED_EDR;
1733        }
1734
1735        return 0;
1736}
1737EXPORT_SYMBOL(ib_get_eth_speed);
1738
1739int ib_modify_qp(struct ib_qp *qp,
1740                 struct ib_qp_attr *qp_attr,
1741                 int qp_attr_mask)
1742{
1743        return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1744}
1745EXPORT_SYMBOL(ib_modify_qp);
1746
1747int ib_query_qp(struct ib_qp *qp,
1748                struct ib_qp_attr *qp_attr,
1749                int qp_attr_mask,
1750                struct ib_qp_init_attr *qp_init_attr)
1751{
1752        qp_attr->ah_attr.grh.sgid_attr = NULL;
1753        qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1754
1755        return qp->device->query_qp ?
1756                qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1757                -EOPNOTSUPP;
1758}
1759EXPORT_SYMBOL(ib_query_qp);
1760
1761int ib_close_qp(struct ib_qp *qp)
1762{
1763        struct ib_qp *real_qp;
1764        unsigned long flags;
1765
1766        real_qp = qp->real_qp;
1767        if (real_qp == qp)
1768                return -EINVAL;
1769
1770        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1771        list_del(&qp->open_list);
1772        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1773
1774        atomic_dec(&real_qp->usecnt);
1775        if (qp->qp_sec)
1776                ib_close_shared_qp_security(qp->qp_sec);
1777        kfree(qp);
1778
1779        return 0;
1780}
1781EXPORT_SYMBOL(ib_close_qp);
1782
1783static int __ib_destroy_shared_qp(struct ib_qp *qp)
1784{
1785        struct ib_xrcd *xrcd;
1786        struct ib_qp *real_qp;
1787        int ret;
1788
1789        real_qp = qp->real_qp;
1790        xrcd = real_qp->xrcd;
1791
1792        mutex_lock(&xrcd->tgt_qp_mutex);
1793        ib_close_qp(qp);
1794        if (atomic_read(&real_qp->usecnt) == 0)
1795                list_del(&real_qp->xrcd_list);
1796        else
1797                real_qp = NULL;
1798        mutex_unlock(&xrcd->tgt_qp_mutex);
1799
1800        if (real_qp) {
1801                ret = ib_destroy_qp(real_qp);
1802                if (!ret)
1803                        atomic_dec(&xrcd->usecnt);
1804                else
1805                        __ib_insert_xrcd_qp(xrcd, real_qp);
1806        }
1807
1808        return 0;
1809}
1810
1811int ib_destroy_qp(struct ib_qp *qp)
1812{
1813        const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1814        const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1815        struct ib_pd *pd;
1816        struct ib_cq *scq, *rcq;
1817        struct ib_srq *srq;
1818        struct ib_rwq_ind_table *ind_tbl;
1819        struct ib_qp_security *sec;
1820        int ret;
1821
1822        WARN_ON_ONCE(qp->mrs_used > 0);
1823
1824        if (atomic_read(&qp->usecnt))
1825                return -EBUSY;
1826
1827        if (qp->real_qp != qp)
1828                return __ib_destroy_shared_qp(qp);
1829
1830        pd   = qp->pd;
1831        scq  = qp->send_cq;
1832        rcq  = qp->recv_cq;
1833        srq  = qp->srq;
1834        ind_tbl = qp->rwq_ind_tbl;
1835        sec  = qp->qp_sec;
1836        if (sec)
1837                ib_destroy_qp_security_begin(sec);
1838
1839        if (!qp->uobject)
1840                rdma_rw_cleanup_mrs(qp);
1841
1842        rdma_restrack_del(&qp->res);
1843        ret = qp->device->destroy_qp(qp);
1844        if (!ret) {
1845                if (alt_path_sgid_attr)
1846                        rdma_put_gid_attr(alt_path_sgid_attr);
1847                if (av_sgid_attr)
1848                        rdma_put_gid_attr(av_sgid_attr);
1849                if (pd)
1850                        atomic_dec(&pd->usecnt);
1851                if (scq)
1852                        atomic_dec(&scq->usecnt);
1853                if (rcq)
1854                        atomic_dec(&rcq->usecnt);
1855                if (srq)
1856                        atomic_dec(&srq->usecnt);
1857                if (ind_tbl)
1858                        atomic_dec(&ind_tbl->usecnt);
1859                if (sec)
1860                        ib_destroy_qp_security_end(sec);
1861        } else {
1862                if (sec)
1863                        ib_destroy_qp_security_abort(sec);
1864        }
1865
1866        return ret;
1867}
1868EXPORT_SYMBOL(ib_destroy_qp);
1869
1870/* Completion queues */
1871
1872struct ib_cq *__ib_create_cq(struct ib_device *device,
1873                             ib_comp_handler comp_handler,
1874                             void (*event_handler)(struct ib_event *, void *),
1875                             void *cq_context,
1876                             const struct ib_cq_init_attr *cq_attr,
1877                             const char *caller)
1878{
1879        struct ib_cq *cq;
1880
1881        cq = device->create_cq(device, cq_attr, NULL, NULL);
1882
1883        if (!IS_ERR(cq)) {
1884                cq->device        = device;
1885                cq->uobject       = NULL;
1886                cq->comp_handler  = comp_handler;
1887                cq->event_handler = event_handler;
1888                cq->cq_context    = cq_context;
1889                atomic_set(&cq->usecnt, 0);
1890                cq->res.type = RDMA_RESTRACK_CQ;
1891                cq->res.kern_name = caller;
1892                rdma_restrack_add(&cq->res);
1893        }
1894
1895        return cq;
1896}
1897EXPORT_SYMBOL(__ib_create_cq);
1898
1899int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1900{
1901        return cq->device->modify_cq ?
1902                cq->device->modify_cq(cq, cq_count, cq_period) : -EOPNOTSUPP;
1903}
1904EXPORT_SYMBOL(rdma_set_cq_moderation);
1905
1906int ib_destroy_cq(struct ib_cq *cq)
1907{
1908        if (atomic_read(&cq->usecnt))
1909                return -EBUSY;
1910
1911        rdma_restrack_del(&cq->res);
1912        return cq->device->destroy_cq(cq);
1913}
1914EXPORT_SYMBOL(ib_destroy_cq);
1915
1916int ib_resize_cq(struct ib_cq *cq, int cqe)
1917{
1918        return cq->device->resize_cq ?
1919                cq->device->resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1920}
1921EXPORT_SYMBOL(ib_resize_cq);
1922
1923/* Memory regions */
1924
1925int ib_dereg_mr(struct ib_mr *mr)
1926{
1927        struct ib_pd *pd = mr->pd;
1928        struct ib_dm *dm = mr->dm;
1929        int ret;
1930
1931        rdma_restrack_del(&mr->res);
1932        ret = mr->device->dereg_mr(mr);
1933        if (!ret) {
1934                atomic_dec(&pd->usecnt);
1935                if (dm)
1936                        atomic_dec(&dm->usecnt);
1937        }
1938
1939        return ret;
1940}
1941EXPORT_SYMBOL(ib_dereg_mr);
1942
1943/**
1944 * ib_alloc_mr() - Allocates a memory region
1945 * @pd:            protection domain associated with the region
1946 * @mr_type:       memory region type
1947 * @max_num_sg:    maximum sg entries available for registration.
1948 *
1949 * Notes:
1950 * Memory registeration page/sg lists must not exceed max_num_sg.
1951 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1952 * max_num_sg * used_page_size.
1953 *
1954 */
1955struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1956                          enum ib_mr_type mr_type,
1957                          u32 max_num_sg)
1958{
1959        struct ib_mr *mr;
1960
1961        if (!pd->device->alloc_mr)
1962                return ERR_PTR(-EOPNOTSUPP);
1963
1964        mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1965        if (!IS_ERR(mr)) {
1966                mr->device  = pd->device;
1967                mr->pd      = pd;
1968                mr->dm      = NULL;
1969                mr->uobject = NULL;
1970                atomic_inc(&pd->usecnt);
1971                mr->need_inval = false;
1972                mr->res.type = RDMA_RESTRACK_MR;
1973                rdma_restrack_add(&mr->res);
1974        }
1975
1976        return mr;
1977}
1978EXPORT_SYMBOL(ib_alloc_mr);
1979
1980/* "Fast" memory regions */
1981
1982struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1983                            int mr_access_flags,
1984                            struct ib_fmr_attr *fmr_attr)
1985{
1986        struct ib_fmr *fmr;
1987
1988        if (!pd->device->alloc_fmr)
1989                return ERR_PTR(-EOPNOTSUPP);
1990
1991        fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1992        if (!IS_ERR(fmr)) {
1993                fmr->device = pd->device;
1994                fmr->pd     = pd;
1995                atomic_inc(&pd->usecnt);
1996        }
1997
1998        return fmr;
1999}
2000EXPORT_SYMBOL(ib_alloc_fmr);
2001
2002int ib_unmap_fmr(struct list_head *fmr_list)
2003{
2004        struct ib_fmr *fmr;
2005
2006        if (list_empty(fmr_list))
2007                return 0;
2008
2009        fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2010        return fmr->device->unmap_fmr(fmr_list);
2011}
2012EXPORT_SYMBOL(ib_unmap_fmr);
2013
2014int ib_dealloc_fmr(struct ib_fmr *fmr)
2015{
2016        struct ib_pd *pd;
2017        int ret;
2018
2019        pd = fmr->pd;
2020        ret = fmr->device->dealloc_fmr(fmr);
2021        if (!ret)
2022                atomic_dec(&pd->usecnt);
2023
2024        return ret;
2025}
2026EXPORT_SYMBOL(ib_dealloc_fmr);
2027
2028/* Multicast groups */
2029
2030static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2031{
2032        struct ib_qp_init_attr init_attr = {};
2033        struct ib_qp_attr attr = {};
2034        int num_eth_ports = 0;
2035        int port;
2036
2037        /* If QP state >= init, it is assigned to a port and we can check this
2038         * port only.
2039         */
2040        if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2041                if (attr.qp_state >= IB_QPS_INIT) {
2042                        if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2043                            IB_LINK_LAYER_INFINIBAND)
2044                                return true;
2045                        goto lid_check;
2046                }
2047        }
2048
2049        /* Can't get a quick answer, iterate over all ports */
2050        for (port = 0; port < qp->device->phys_port_cnt; port++)
2051                if (rdma_port_get_link_layer(qp->device, port) !=
2052                    IB_LINK_LAYER_INFINIBAND)
2053                        num_eth_ports++;
2054
2055        /* If we have at lease one Ethernet port, RoCE annex declares that
2056         * multicast LID should be ignored. We can't tell at this step if the
2057         * QP belongs to an IB or Ethernet port.
2058         */
2059        if (num_eth_ports)
2060                return true;
2061
2062        /* If all the ports are IB, we can check according to IB spec. */
2063lid_check:
2064        return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2065                 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2066}
2067
2068int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2069{
2070        int ret;
2071
2072        if (!qp->device->attach_mcast)
2073                return -EOPNOTSUPP;
2074
2075        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2076            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2077                return -EINVAL;
2078
2079        ret = qp->device->attach_mcast(qp, gid, lid);
2080        if (!ret)
2081                atomic_inc(&qp->usecnt);
2082        return ret;
2083}
2084EXPORT_SYMBOL(ib_attach_mcast);
2085
2086int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2087{
2088        int ret;
2089
2090        if (!qp->device->detach_mcast)
2091                return -EOPNOTSUPP;
2092
2093        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2094            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2095                return -EINVAL;
2096
2097        ret = qp->device->detach_mcast(qp, gid, lid);
2098        if (!ret)
2099                atomic_dec(&qp->usecnt);
2100        return ret;
2101}
2102EXPORT_SYMBOL(ib_detach_mcast);
2103
2104struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2105{
2106        struct ib_xrcd *xrcd;
2107
2108        if (!device->alloc_xrcd)
2109                return ERR_PTR(-EOPNOTSUPP);
2110
2111        xrcd = device->alloc_xrcd(device, NULL, NULL);
2112        if (!IS_ERR(xrcd)) {
2113                xrcd->device = device;
2114                xrcd->inode = NULL;
2115                atomic_set(&xrcd->usecnt, 0);
2116                mutex_init(&xrcd->tgt_qp_mutex);
2117                INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2118        }
2119
2120        return xrcd;
2121}
2122EXPORT_SYMBOL(__ib_alloc_xrcd);
2123
2124int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
2125{
2126        struct ib_qp *qp;
2127        int ret;
2128
2129        if (atomic_read(&xrcd->usecnt))
2130                return -EBUSY;
2131
2132        while (!list_empty(&xrcd->tgt_qp_list)) {
2133                qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2134                ret = ib_destroy_qp(qp);
2135                if (ret)
2136                        return ret;
2137        }
2138
2139        return xrcd->device->dealloc_xrcd(xrcd);
2140}
2141EXPORT_SYMBOL(ib_dealloc_xrcd);
2142
2143/**
2144 * ib_create_wq - Creates a WQ associated with the specified protection
2145 * domain.
2146 * @pd: The protection domain associated with the WQ.
2147 * @wq_attr: A list of initial attributes required to create the
2148 * WQ. If WQ creation succeeds, then the attributes are updated to
2149 * the actual capabilities of the created WQ.
2150 *
2151 * wq_attr->max_wr and wq_attr->max_sge determine
2152 * the requested size of the WQ, and set to the actual values allocated
2153 * on return.
2154 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2155 * at least as large as the requested values.
2156 */
2157struct ib_wq *ib_create_wq(struct ib_pd *pd,
2158                           struct ib_wq_init_attr *wq_attr)
2159{
2160        struct ib_wq *wq;
2161
2162        if (!pd->device->create_wq)
2163                return ERR_PTR(-EOPNOTSUPP);
2164
2165        wq = pd->device->create_wq(pd, wq_attr, NULL);
2166        if (!IS_ERR(wq)) {
2167                wq->event_handler = wq_attr->event_handler;
2168                wq->wq_context = wq_attr->wq_context;
2169                wq->wq_type = wq_attr->wq_type;
2170                wq->cq = wq_attr->cq;
2171                wq->device = pd->device;
2172                wq->pd = pd;
2173                wq->uobject = NULL;
2174                atomic_inc(&pd->usecnt);
2175                atomic_inc(&wq_attr->cq->usecnt);
2176                atomic_set(&wq->usecnt, 0);
2177        }
2178        return wq;
2179}
2180EXPORT_SYMBOL(ib_create_wq);
2181
2182/**
2183 * ib_destroy_wq - Destroys the specified WQ.
2184 * @wq: The WQ to destroy.
2185 */
2186int ib_destroy_wq(struct ib_wq *wq)
2187{
2188        int err;
2189        struct ib_cq *cq = wq->cq;
2190        struct ib_pd *pd = wq->pd;
2191
2192        if (atomic_read(&wq->usecnt))
2193                return -EBUSY;
2194
2195        err = wq->device->destroy_wq(wq);
2196        if (!err) {
2197                atomic_dec(&pd->usecnt);
2198                atomic_dec(&cq->usecnt);
2199        }
2200        return err;
2201}
2202EXPORT_SYMBOL(ib_destroy_wq);
2203
2204/**
2205 * ib_modify_wq - Modifies the specified WQ.
2206 * @wq: The WQ to modify.
2207 * @wq_attr: On input, specifies the WQ attributes to modify.
2208 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2209 *   are being modified.
2210 * On output, the current values of selected WQ attributes are returned.
2211 */
2212int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2213                 u32 wq_attr_mask)
2214{
2215        int err;
2216
2217        if (!wq->device->modify_wq)
2218                return -EOPNOTSUPP;
2219
2220        err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2221        return err;
2222}
2223EXPORT_SYMBOL(ib_modify_wq);
2224
2225/*
2226 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2227 * @device: The device on which to create the rwq indirection table.
2228 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2229 * create the Indirection Table.
2230 *
2231 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2232 *      than the created ib_rwq_ind_table object and the caller is responsible
2233 *      for its memory allocation/free.
2234 */
2235struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2236                                                 struct ib_rwq_ind_table_init_attr *init_attr)
2237{
2238        struct ib_rwq_ind_table *rwq_ind_table;
2239        int i;
2240        u32 table_size;
2241
2242        if (!device->create_rwq_ind_table)
2243                return ERR_PTR(-EOPNOTSUPP);
2244
2245        table_size = (1 << init_attr->log_ind_tbl_size);
2246        rwq_ind_table = device->create_rwq_ind_table(device,
2247                                init_attr, NULL);
2248        if (IS_ERR(rwq_ind_table))
2249                return rwq_ind_table;
2250
2251        rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2252        rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2253        rwq_ind_table->device = device;
2254        rwq_ind_table->uobject = NULL;
2255        atomic_set(&rwq_ind_table->usecnt, 0);
2256
2257        for (i = 0; i < table_size; i++)
2258                atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2259
2260        return rwq_ind_table;
2261}
2262EXPORT_SYMBOL(ib_create_rwq_ind_table);
2263
2264/*
2265 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2266 * @wq_ind_table: The Indirection Table to destroy.
2267*/
2268int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2269{
2270        int err, i;
2271        u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2272        struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2273
2274        if (atomic_read(&rwq_ind_table->usecnt))
2275                return -EBUSY;
2276
2277        err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
2278        if (!err) {
2279                for (i = 0; i < table_size; i++)
2280                        atomic_dec(&ind_tbl[i]->usecnt);
2281        }
2282
2283        return err;
2284}
2285EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2286
2287int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2288                       struct ib_mr_status *mr_status)
2289{
2290        return mr->device->check_mr_status ?
2291                mr->device->check_mr_status(mr, check_mask, mr_status) : -EOPNOTSUPP;
2292}
2293EXPORT_SYMBOL(ib_check_mr_status);
2294
2295int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2296                         int state)
2297{
2298        if (!device->set_vf_link_state)
2299                return -EOPNOTSUPP;
2300
2301        return device->set_vf_link_state(device, vf, port, state);
2302}
2303EXPORT_SYMBOL(ib_set_vf_link_state);
2304
2305int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2306                     struct ifla_vf_info *info)
2307{
2308        if (!device->get_vf_config)
2309                return -EOPNOTSUPP;
2310
2311        return device->get_vf_config(device, vf, port, info);
2312}
2313EXPORT_SYMBOL(ib_get_vf_config);
2314
2315int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2316                    struct ifla_vf_stats *stats)
2317{
2318        if (!device->get_vf_stats)
2319                return -EOPNOTSUPP;
2320
2321        return device->get_vf_stats(device, vf, port, stats);
2322}
2323EXPORT_SYMBOL(ib_get_vf_stats);
2324
2325int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2326                   int type)
2327{
2328        if (!device->set_vf_guid)
2329                return -EOPNOTSUPP;
2330
2331        return device->set_vf_guid(device, vf, port, guid, type);
2332}
2333EXPORT_SYMBOL(ib_set_vf_guid);
2334
2335/**
2336 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2337 *     and set it the memory region.
2338 * @mr:            memory region
2339 * @sg:            dma mapped scatterlist
2340 * @sg_nents:      number of entries in sg
2341 * @sg_offset:     offset in bytes into sg
2342 * @page_size:     page vector desired page size
2343 *
2344 * Constraints:
2345 * - The first sg element is allowed to have an offset.
2346 * - Each sg element must either be aligned to page_size or virtually
2347 *   contiguous to the previous element. In case an sg element has a
2348 *   non-contiguous offset, the mapping prefix will not include it.
2349 * - The last sg element is allowed to have length less than page_size.
2350 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2351 *   then only max_num_sg entries will be mapped.
2352 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2353 *   constraints holds and the page_size argument is ignored.
2354 *
2355 * Returns the number of sg elements that were mapped to the memory region.
2356 *
2357 * After this completes successfully, the  memory region
2358 * is ready for registration.
2359 */
2360int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2361                 unsigned int *sg_offset, unsigned int page_size)
2362{
2363        if (unlikely(!mr->device->map_mr_sg))
2364                return -EOPNOTSUPP;
2365
2366        mr->page_size = page_size;
2367
2368        return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2369}
2370EXPORT_SYMBOL(ib_map_mr_sg);
2371
2372/**
2373 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2374 *     to a page vector
2375 * @mr:            memory region
2376 * @sgl:           dma mapped scatterlist
2377 * @sg_nents:      number of entries in sg
2378 * @sg_offset_p:   IN:  start offset in bytes into sg
2379 *                 OUT: offset in bytes for element n of the sg of the first
2380 *                      byte that has not been processed where n is the return
2381 *                      value of this function.
2382 * @set_page:      driver page assignment function pointer
2383 *
2384 * Core service helper for drivers to convert the largest
2385 * prefix of given sg list to a page vector. The sg list
2386 * prefix converted is the prefix that meet the requirements
2387 * of ib_map_mr_sg.
2388 *
2389 * Returns the number of sg elements that were assigned to
2390 * a page vector.
2391 */
2392int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2393                unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2394{
2395        struct scatterlist *sg;
2396        u64 last_end_dma_addr = 0;
2397        unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2398        unsigned int last_page_off = 0;
2399        u64 page_mask = ~((u64)mr->page_size - 1);
2400        int i, ret;
2401
2402        if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2403                return -EINVAL;
2404
2405        mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2406        mr->length = 0;
2407
2408        for_each_sg(sgl, sg, sg_nents, i) {
2409                u64 dma_addr = sg_dma_address(sg) + sg_offset;
2410                u64 prev_addr = dma_addr;
2411                unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2412                u64 end_dma_addr = dma_addr + dma_len;
2413                u64 page_addr = dma_addr & page_mask;
2414
2415                /*
2416                 * For the second and later elements, check whether either the
2417                 * end of element i-1 or the start of element i is not aligned
2418                 * on a page boundary.
2419                 */
2420                if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2421                        /* Stop mapping if there is a gap. */
2422                        if (last_end_dma_addr != dma_addr)
2423                                break;
2424
2425                        /*
2426                         * Coalesce this element with the last. If it is small
2427                         * enough just update mr->length. Otherwise start
2428                         * mapping from the next page.
2429                         */
2430                        goto next_page;
2431                }
2432
2433                do {
2434                        ret = set_page(mr, page_addr);
2435                        if (unlikely(ret < 0)) {
2436                                sg_offset = prev_addr - sg_dma_address(sg);
2437                                mr->length += prev_addr - dma_addr;
2438                                if (sg_offset_p)
2439                                        *sg_offset_p = sg_offset;
2440                                return i || sg_offset ? i : ret;
2441                        }
2442                        prev_addr = page_addr;
2443next_page:
2444                        page_addr += mr->page_size;
2445                } while (page_addr < end_dma_addr);
2446
2447                mr->length += dma_len;
2448                last_end_dma_addr = end_dma_addr;
2449                last_page_off = end_dma_addr & ~page_mask;
2450
2451                sg_offset = 0;
2452        }
2453
2454        if (sg_offset_p)
2455                *sg_offset_p = 0;
2456        return i;
2457}
2458EXPORT_SYMBOL(ib_sg_to_pages);
2459
2460struct ib_drain_cqe {
2461        struct ib_cqe cqe;
2462        struct completion done;
2463};
2464
2465static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2466{
2467        struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2468                                                cqe);
2469
2470        complete(&cqe->done);
2471}
2472
2473/*
2474 * Post a WR and block until its completion is reaped for the SQ.
2475 */
2476static void __ib_drain_sq(struct ib_qp *qp)
2477{
2478        struct ib_cq *cq = qp->send_cq;
2479        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2480        struct ib_drain_cqe sdrain;
2481        struct ib_rdma_wr swr = {
2482                .wr = {
2483                        .next = NULL,
2484                        { .wr_cqe       = &sdrain.cqe, },
2485                        .opcode = IB_WR_RDMA_WRITE,
2486                },
2487        };
2488        int ret;
2489
2490        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2491        if (ret) {
2492                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2493                return;
2494        }
2495
2496        sdrain.cqe.done = ib_drain_qp_done;
2497        init_completion(&sdrain.done);
2498
2499        ret = ib_post_send(qp, &swr.wr, NULL);
2500        if (ret) {
2501                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2502                return;
2503        }
2504
2505        if (cq->poll_ctx == IB_POLL_DIRECT)
2506                while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2507                        ib_process_cq_direct(cq, -1);
2508        else
2509                wait_for_completion(&sdrain.done);
2510}
2511
2512/*
2513 * Post a WR and block until its completion is reaped for the RQ.
2514 */
2515static void __ib_drain_rq(struct ib_qp *qp)
2516{
2517        struct ib_cq *cq = qp->recv_cq;
2518        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2519        struct ib_drain_cqe rdrain;
2520        struct ib_recv_wr rwr = {};
2521        int ret;
2522
2523        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2524        if (ret) {
2525                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2526                return;
2527        }
2528
2529        rwr.wr_cqe = &rdrain.cqe;
2530        rdrain.cqe.done = ib_drain_qp_done;
2531        init_completion(&rdrain.done);
2532
2533        ret = ib_post_recv(qp, &rwr, NULL);
2534        if (ret) {
2535                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2536                return;
2537        }
2538
2539        if (cq->poll_ctx == IB_POLL_DIRECT)
2540                while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2541                        ib_process_cq_direct(cq, -1);
2542        else
2543                wait_for_completion(&rdrain.done);
2544}
2545
2546/**
2547 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2548 *                 application.
2549 * @qp:            queue pair to drain
2550 *
2551 * If the device has a provider-specific drain function, then
2552 * call that.  Otherwise call the generic drain function
2553 * __ib_drain_sq().
2554 *
2555 * The caller must:
2556 *
2557 * ensure there is room in the CQ and SQ for the drain work request and
2558 * completion.
2559 *
2560 * allocate the CQ using ib_alloc_cq().
2561 *
2562 * ensure that there are no other contexts that are posting WRs concurrently.
2563 * Otherwise the drain is not guaranteed.
2564 */
2565void ib_drain_sq(struct ib_qp *qp)
2566{
2567        if (qp->device->drain_sq)
2568                qp->device->drain_sq(qp);
2569        else
2570                __ib_drain_sq(qp);
2571}
2572EXPORT_SYMBOL(ib_drain_sq);
2573
2574/**
2575 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2576 *                 application.
2577 * @qp:            queue pair to drain
2578 *
2579 * If the device has a provider-specific drain function, then
2580 * call that.  Otherwise call the generic drain function
2581 * __ib_drain_rq().
2582 *
2583 * The caller must:
2584 *
2585 * ensure there is room in the CQ and RQ for the drain work request and
2586 * completion.
2587 *
2588 * allocate the CQ using ib_alloc_cq().
2589 *
2590 * ensure that there are no other contexts that are posting WRs concurrently.
2591 * Otherwise the drain is not guaranteed.
2592 */
2593void ib_drain_rq(struct ib_qp *qp)
2594{
2595        if (qp->device->drain_rq)
2596                qp->device->drain_rq(qp);
2597        else
2598                __ib_drain_rq(qp);
2599}
2600EXPORT_SYMBOL(ib_drain_rq);
2601
2602/**
2603 * ib_drain_qp() - Block until all CQEs have been consumed by the
2604 *                 application on both the RQ and SQ.
2605 * @qp:            queue pair to drain
2606 *
2607 * The caller must:
2608 *
2609 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2610 * and completions.
2611 *
2612 * allocate the CQs using ib_alloc_cq().
2613 *
2614 * ensure that there are no other contexts that are posting WRs concurrently.
2615 * Otherwise the drain is not guaranteed.
2616 */
2617void ib_drain_qp(struct ib_qp *qp)
2618{
2619        ib_drain_sq(qp);
2620        if (!qp->srq)
2621                ib_drain_rq(qp);
2622}
2623EXPORT_SYMBOL(ib_drain_qp);
2624