linux/drivers/infiniband/hw/hfi1/firmware.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 - 2017 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/firmware.h>
  49#include <linux/mutex.h>
  50#include <linux/module.h>
  51#include <linux/delay.h>
  52#include <linux/crc32.h>
  53
  54#include "hfi.h"
  55#include "trace.h"
  56
  57/*
  58 * Make it easy to toggle firmware file name and if it gets loaded by
  59 * editing the following. This may be something we do while in development
  60 * but not necessarily something a user would ever need to use.
  61 */
  62#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
  63#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
  64#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
  65#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
  66#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
  67#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
  68#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
  69#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
  70#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
  71
  72MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
  73MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
  74MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
  75MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
  76
  77static uint fw_8051_load = 1;
  78static uint fw_fabric_serdes_load = 1;
  79static uint fw_pcie_serdes_load = 1;
  80static uint fw_sbus_load = 1;
  81
  82/* Firmware file names get set in hfi1_firmware_init() based on the above */
  83static char *fw_8051_name;
  84static char *fw_fabric_serdes_name;
  85static char *fw_sbus_name;
  86static char *fw_pcie_serdes_name;
  87
  88#define SBUS_MAX_POLL_COUNT 100
  89#define SBUS_COUNTER(reg, name) \
  90        (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
  91         ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
  92
  93/*
  94 * Firmware security header.
  95 */
  96struct css_header {
  97        u32 module_type;
  98        u32 header_len;
  99        u32 header_version;
 100        u32 module_id;
 101        u32 module_vendor;
 102        u32 date;               /* BCD yyyymmdd */
 103        u32 size;               /* in DWORDs */
 104        u32 key_size;           /* in DWORDs */
 105        u32 modulus_size;       /* in DWORDs */
 106        u32 exponent_size;      /* in DWORDs */
 107        u32 reserved[22];
 108};
 109
 110/* expected field values */
 111#define CSS_MODULE_TYPE    0x00000006
 112#define CSS_HEADER_LEN     0x000000a1
 113#define CSS_HEADER_VERSION 0x00010000
 114#define CSS_MODULE_VENDOR  0x00008086
 115
 116#define KEY_SIZE      256
 117#define MU_SIZE         8
 118#define EXPONENT_SIZE   4
 119
 120/* size of platform configuration partition */
 121#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
 122
 123/* size of file of plaform configuration encoded in format version 4 */
 124#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
 125
 126/* the file itself */
 127struct firmware_file {
 128        struct css_header css_header;
 129        u8 modulus[KEY_SIZE];
 130        u8 exponent[EXPONENT_SIZE];
 131        u8 signature[KEY_SIZE];
 132        u8 firmware[];
 133};
 134
 135struct augmented_firmware_file {
 136        struct css_header css_header;
 137        u8 modulus[KEY_SIZE];
 138        u8 exponent[EXPONENT_SIZE];
 139        u8 signature[KEY_SIZE];
 140        u8 r2[KEY_SIZE];
 141        u8 mu[MU_SIZE];
 142        u8 firmware[];
 143};
 144
 145/* augmented file size difference */
 146#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
 147                                                sizeof(struct firmware_file))
 148
 149struct firmware_details {
 150        /* Linux core piece */
 151        const struct firmware *fw;
 152
 153        struct css_header *css_header;
 154        u8 *firmware_ptr;               /* pointer to binary data */
 155        u32 firmware_len;               /* length in bytes */
 156        u8 *modulus;                    /* pointer to the modulus */
 157        u8 *exponent;                   /* pointer to the exponent */
 158        u8 *signature;                  /* pointer to the signature */
 159        u8 *r2;                         /* pointer to r2 */
 160        u8 *mu;                         /* pointer to mu */
 161        struct augmented_firmware_file dummy_header;
 162};
 163
 164/*
 165 * The mutex protects fw_state, fw_err, and all of the firmware_details
 166 * variables.
 167 */
 168static DEFINE_MUTEX(fw_mutex);
 169enum fw_state {
 170        FW_EMPTY,
 171        FW_TRY,
 172        FW_FINAL,
 173        FW_ERR
 174};
 175
 176static enum fw_state fw_state = FW_EMPTY;
 177static int fw_err;
 178static struct firmware_details fw_8051;
 179static struct firmware_details fw_fabric;
 180static struct firmware_details fw_pcie;
 181static struct firmware_details fw_sbus;
 182
 183/* flags for turn_off_spicos() */
 184#define SPICO_SBUS   0x1
 185#define SPICO_FABRIC 0x2
 186#define ENABLE_SPICO_SMASK 0x1
 187
 188/* security block commands */
 189#define RSA_CMD_INIT  0x1
 190#define RSA_CMD_START 0x2
 191
 192/* security block status */
 193#define RSA_STATUS_IDLE   0x0
 194#define RSA_STATUS_ACTIVE 0x1
 195#define RSA_STATUS_DONE   0x2
 196#define RSA_STATUS_FAILED 0x3
 197
 198/* RSA engine timeout, in ms */
 199#define RSA_ENGINE_TIMEOUT 100 /* ms */
 200
 201/* hardware mutex timeout, in ms */
 202#define HM_TIMEOUT 10 /* ms */
 203
 204/* 8051 memory access timeout, in us */
 205#define DC8051_ACCESS_TIMEOUT 100 /* us */
 206
 207/* the number of fabric SerDes on the SBus */
 208#define NUM_FABRIC_SERDES 4
 209
 210/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
 211#define SBUS_READ_COMPLETE 0x4
 212
 213/* SBus fabric SerDes addresses, one set per HFI */
 214static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
 215        { 0x01, 0x02, 0x03, 0x04 },
 216        { 0x28, 0x29, 0x2a, 0x2b }
 217};
 218
 219/* SBus PCIe SerDes addresses, one set per HFI */
 220static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
 221        { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
 222          0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
 223        { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
 224          0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
 225};
 226
 227/* SBus PCIe PCS addresses, one set per HFI */
 228const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
 229        { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
 230          0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
 231        { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
 232          0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
 233};
 234
 235/* SBus fabric SerDes broadcast addresses, one per HFI */
 236static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
 237static const u8 all_fabric_serdes_broadcast = 0xe1;
 238
 239/* SBus PCIe SerDes broadcast addresses, one per HFI */
 240const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
 241static const u8 all_pcie_serdes_broadcast = 0xe0;
 242
 243static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
 244        0,
 245        SYSTEM_TABLE_MAX,
 246        PORT_TABLE_MAX,
 247        RX_PRESET_TABLE_MAX,
 248        TX_PRESET_TABLE_MAX,
 249        QSFP_ATTEN_TABLE_MAX,
 250        VARIABLE_SETTINGS_TABLE_MAX
 251};
 252
 253/* forwards */
 254static void dispose_one_firmware(struct firmware_details *fdet);
 255static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
 256                                       struct firmware_details *fdet);
 257static void dump_fw_version(struct hfi1_devdata *dd);
 258
 259/*
 260 * Read a single 64-bit value from 8051 data memory.
 261 *
 262 * Expects:
 263 * o caller to have already set up data read, no auto increment
 264 * o caller to turn off read enable when finished
 265 *
 266 * The address argument is a byte offset.  Bits 0:2 in the address are
 267 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
 268 * the lower bits are zero.
 269 *
 270 * Return 0 on success, -ENXIO on a read error (timeout).
 271 */
 272static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
 273{
 274        u64 reg;
 275        int count;
 276
 277        /* step 1: set the address, clear enable */
 278        reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 279                        << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
 280        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 281        /* step 2: enable */
 282        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
 283                  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
 284
 285        /* wait until ACCESS_COMPLETED is set */
 286        count = 0;
 287        while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 288                    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 289                    == 0) {
 290                count++;
 291                if (count > DC8051_ACCESS_TIMEOUT) {
 292                        dd_dev_err(dd, "timeout reading 8051 data\n");
 293                        return -ENXIO;
 294                }
 295                ndelay(10);
 296        }
 297
 298        /* gather the data */
 299        *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
 300
 301        return 0;
 302}
 303
 304/*
 305 * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
 306 * Return 0 on success, -errno on error.
 307 */
 308int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
 309{
 310        unsigned long flags;
 311        u32 done;
 312        int ret = 0;
 313
 314        spin_lock_irqsave(&dd->dc8051_memlock, flags);
 315
 316        /* data read set-up, no auto-increment */
 317        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 318
 319        for (done = 0; done < len; addr += 8, done += 8, result++) {
 320                ret = __read_8051_data(dd, addr, result);
 321                if (ret)
 322                        break;
 323        }
 324
 325        /* turn off read enable */
 326        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 327
 328        spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
 329
 330        return ret;
 331}
 332
 333/*
 334 * Write data or code to the 8051 code or data RAM.
 335 */
 336static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
 337                      const u8 *data, u32 len)
 338{
 339        u64 reg;
 340        u32 offset;
 341        int aligned, count;
 342
 343        /* check alignment */
 344        aligned = ((unsigned long)data & 0x7) == 0;
 345
 346        /* write set-up */
 347        reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
 348                | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
 349        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
 350
 351        reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 352                        << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
 353                | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
 354        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 355
 356        /* write */
 357        for (offset = 0; offset < len; offset += 8) {
 358                int bytes = len - offset;
 359
 360                if (bytes < 8) {
 361                        reg = 0;
 362                        memcpy(&reg, &data[offset], bytes);
 363                } else if (aligned) {
 364                        reg = *(u64 *)&data[offset];
 365                } else {
 366                        memcpy(&reg, &data[offset], 8);
 367                }
 368                write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
 369
 370                /* wait until ACCESS_COMPLETED is set */
 371                count = 0;
 372                while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 373                    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 374                    == 0) {
 375                        count++;
 376                        if (count > DC8051_ACCESS_TIMEOUT) {
 377                                dd_dev_err(dd, "timeout writing 8051 data\n");
 378                                return -ENXIO;
 379                        }
 380                        udelay(1);
 381                }
 382        }
 383
 384        /* turn off write access, auto increment (also sets to data access) */
 385        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 386        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 387
 388        return 0;
 389}
 390
 391/* return 0 if values match, non-zero and complain otherwise */
 392static int invalid_header(struct hfi1_devdata *dd, const char *what,
 393                          u32 actual, u32 expected)
 394{
 395        if (actual == expected)
 396                return 0;
 397
 398        dd_dev_err(dd,
 399                   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
 400                   what, expected, actual);
 401        return 1;
 402}
 403
 404/*
 405 * Verify that the static fields in the CSS header match.
 406 */
 407static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
 408{
 409        /* verify CSS header fields (most sizes are in DW, so add /4) */
 410        if (invalid_header(dd, "module_type", css->module_type,
 411                           CSS_MODULE_TYPE) ||
 412            invalid_header(dd, "header_len", css->header_len,
 413                           (sizeof(struct firmware_file) / 4)) ||
 414            invalid_header(dd, "header_version", css->header_version,
 415                           CSS_HEADER_VERSION) ||
 416            invalid_header(dd, "module_vendor", css->module_vendor,
 417                           CSS_MODULE_VENDOR) ||
 418            invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
 419            invalid_header(dd, "modulus_size", css->modulus_size,
 420                           KEY_SIZE / 4) ||
 421            invalid_header(dd, "exponent_size", css->exponent_size,
 422                           EXPONENT_SIZE / 4)) {
 423                return -EINVAL;
 424        }
 425        return 0;
 426}
 427
 428/*
 429 * Make sure there are at least some bytes after the prefix.
 430 */
 431static int payload_check(struct hfi1_devdata *dd, const char *name,
 432                         long file_size, long prefix_size)
 433{
 434        /* make sure we have some payload */
 435        if (prefix_size >= file_size) {
 436                dd_dev_err(dd,
 437                           "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
 438                           name, file_size, prefix_size);
 439                return -EINVAL;
 440        }
 441
 442        return 0;
 443}
 444
 445/*
 446 * Request the firmware from the system.  Extract the pieces and fill in
 447 * fdet.  If successful, the caller will need to call dispose_one_firmware().
 448 * Returns 0 on success, -ERRNO on error.
 449 */
 450static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
 451                               struct firmware_details *fdet)
 452{
 453        struct css_header *css;
 454        int ret;
 455
 456        memset(fdet, 0, sizeof(*fdet));
 457
 458        ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
 459        if (ret) {
 460                dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
 461                            name, ret);
 462                return ret;
 463        }
 464
 465        /* verify the firmware */
 466        if (fdet->fw->size < sizeof(struct css_header)) {
 467                dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
 468                ret = -EINVAL;
 469                goto done;
 470        }
 471        css = (struct css_header *)fdet->fw->data;
 472
 473        hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
 474        hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
 475        hfi1_cdbg(FIRMWARE, "CSS structure:");
 476        hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
 477        hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
 478                  css->header_len, 4 * css->header_len);
 479        hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
 480        hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
 481        hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
 482        hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
 483        hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
 484                  css->size, 4 * css->size);
 485        hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
 486                  css->key_size, 4 * css->key_size);
 487        hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
 488                  css->modulus_size, 4 * css->modulus_size);
 489        hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
 490                  css->exponent_size, 4 * css->exponent_size);
 491        hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
 492                  fdet->fw->size - sizeof(struct firmware_file));
 493
 494        /*
 495         * If the file does not have a valid CSS header, fail.
 496         * Otherwise, check the CSS size field for an expected size.
 497         * The augmented file has r2 and mu inserted after the header
 498         * was generated, so there will be a known difference between
 499         * the CSS header size and the actual file size.  Use this
 500         * difference to identify an augmented file.
 501         *
 502         * Note: css->size is in DWORDs, multiply by 4 to get bytes.
 503         */
 504        ret = verify_css_header(dd, css);
 505        if (ret) {
 506                dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
 507        } else if ((css->size * 4) == fdet->fw->size) {
 508                /* non-augmented firmware file */
 509                struct firmware_file *ff = (struct firmware_file *)
 510                                                        fdet->fw->data;
 511
 512                /* make sure there are bytes in the payload */
 513                ret = payload_check(dd, name, fdet->fw->size,
 514                                    sizeof(struct firmware_file));
 515                if (ret == 0) {
 516                        fdet->css_header = css;
 517                        fdet->modulus = ff->modulus;
 518                        fdet->exponent = ff->exponent;
 519                        fdet->signature = ff->signature;
 520                        fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
 521                        fdet->mu = fdet->dummy_header.mu; /* use dummy space */
 522                        fdet->firmware_ptr = ff->firmware;
 523                        fdet->firmware_len = fdet->fw->size -
 524                                                sizeof(struct firmware_file);
 525                        /*
 526                         * Header does not include r2 and mu - generate here.
 527                         * For now, fail.
 528                         */
 529                        dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
 530                        ret = -EINVAL;
 531                }
 532        } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
 533                /* augmented firmware file */
 534                struct augmented_firmware_file *aff =
 535                        (struct augmented_firmware_file *)fdet->fw->data;
 536
 537                /* make sure there are bytes in the payload */
 538                ret = payload_check(dd, name, fdet->fw->size,
 539                                    sizeof(struct augmented_firmware_file));
 540                if (ret == 0) {
 541                        fdet->css_header = css;
 542                        fdet->modulus = aff->modulus;
 543                        fdet->exponent = aff->exponent;
 544                        fdet->signature = aff->signature;
 545                        fdet->r2 = aff->r2;
 546                        fdet->mu = aff->mu;
 547                        fdet->firmware_ptr = aff->firmware;
 548                        fdet->firmware_len = fdet->fw->size -
 549                                        sizeof(struct augmented_firmware_file);
 550                }
 551        } else {
 552                /* css->size check failed */
 553                dd_dev_err(dd,
 554                           "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
 555                           fdet->fw->size / 4,
 556                           (fdet->fw->size - AUGMENT_SIZE) / 4,
 557                           css->size);
 558
 559                ret = -EINVAL;
 560        }
 561
 562done:
 563        /* if returning an error, clean up after ourselves */
 564        if (ret)
 565                dispose_one_firmware(fdet);
 566        return ret;
 567}
 568
 569static void dispose_one_firmware(struct firmware_details *fdet)
 570{
 571        release_firmware(fdet->fw);
 572        /* erase all previous information */
 573        memset(fdet, 0, sizeof(*fdet));
 574}
 575
 576/*
 577 * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
 578 * at all.  If called with the firmware state in FW_TRY, use alternate names.
 579 * On exit, this routine will have set the firmware state to one of FW_TRY,
 580 * FW_FINAL, or FW_ERR.
 581 *
 582 * Must be holding fw_mutex.
 583 */
 584static void __obtain_firmware(struct hfi1_devdata *dd)
 585{
 586        int err = 0;
 587
 588        if (fw_state == FW_FINAL)       /* nothing more to obtain */
 589                return;
 590        if (fw_state == FW_ERR)         /* already in error */
 591                return;
 592
 593        /* fw_state is FW_EMPTY or FW_TRY */
 594retry:
 595        if (fw_state == FW_TRY) {
 596                /*
 597                 * We tried the original and it failed.  Move to the
 598                 * alternate.
 599                 */
 600                dd_dev_warn(dd, "using alternate firmware names\n");
 601                /*
 602                 * Let others run.  Some systems, when missing firmware, does
 603                 * something that holds for 30 seconds.  If we do that twice
 604                 * in a row it triggers task blocked warning.
 605                 */
 606                cond_resched();
 607                if (fw_8051_load)
 608                        dispose_one_firmware(&fw_8051);
 609                if (fw_fabric_serdes_load)
 610                        dispose_one_firmware(&fw_fabric);
 611                if (fw_sbus_load)
 612                        dispose_one_firmware(&fw_sbus);
 613                if (fw_pcie_serdes_load)
 614                        dispose_one_firmware(&fw_pcie);
 615                fw_8051_name = ALT_FW_8051_NAME_ASIC;
 616                fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
 617                fw_sbus_name = ALT_FW_SBUS_NAME;
 618                fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
 619
 620                /*
 621                 * Add a delay before obtaining and loading debug firmware.
 622                 * Authorization will fail if the delay between firmware
 623                 * authorization events is shorter than 50us. Add 100us to
 624                 * make a delay time safe.
 625                 */
 626                usleep_range(100, 120);
 627        }
 628
 629        if (fw_sbus_load) {
 630                err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
 631                if (err)
 632                        goto done;
 633        }
 634
 635        if (fw_pcie_serdes_load) {
 636                err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
 637                if (err)
 638                        goto done;
 639        }
 640
 641        if (fw_fabric_serdes_load) {
 642                err = obtain_one_firmware(dd, fw_fabric_serdes_name,
 643                                          &fw_fabric);
 644                if (err)
 645                        goto done;
 646        }
 647
 648        if (fw_8051_load) {
 649                err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
 650                if (err)
 651                        goto done;
 652        }
 653
 654done:
 655        if (err) {
 656                /* oops, had problems obtaining a firmware */
 657                if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
 658                        /* retry with alternate (RTL only) */
 659                        fw_state = FW_TRY;
 660                        goto retry;
 661                }
 662                dd_dev_err(dd, "unable to obtain working firmware\n");
 663                fw_state = FW_ERR;
 664                fw_err = -ENOENT;
 665        } else {
 666                /* success */
 667                if (fw_state == FW_EMPTY &&
 668                    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
 669                        fw_state = FW_TRY;      /* may retry later */
 670                else
 671                        fw_state = FW_FINAL;    /* cannot try again */
 672        }
 673}
 674
 675/*
 676 * Called by all HFIs when loading their firmware - i.e. device probe time.
 677 * The first one will do the actual firmware load.  Use a mutex to resolve
 678 * any possible race condition.
 679 *
 680 * The call to this routine cannot be moved to driver load because the kernel
 681 * call request_firmware() requires a device which is only available after
 682 * the first device probe.
 683 */
 684static int obtain_firmware(struct hfi1_devdata *dd)
 685{
 686        unsigned long timeout;
 687
 688        mutex_lock(&fw_mutex);
 689
 690        /* 40s delay due to long delay on missing firmware on some systems */
 691        timeout = jiffies + msecs_to_jiffies(40000);
 692        while (fw_state == FW_TRY) {
 693                /*
 694                 * Another device is trying the firmware.  Wait until it
 695                 * decides what works (or not).
 696                 */
 697                if (time_after(jiffies, timeout)) {
 698                        /* waited too long */
 699                        dd_dev_err(dd, "Timeout waiting for firmware try");
 700                        fw_state = FW_ERR;
 701                        fw_err = -ETIMEDOUT;
 702                        break;
 703                }
 704                mutex_unlock(&fw_mutex);
 705                msleep(20);     /* arbitrary delay */
 706                mutex_lock(&fw_mutex);
 707        }
 708        /* not in FW_TRY state */
 709
 710        /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
 711        if (fw_state == FW_EMPTY)
 712                __obtain_firmware(dd);
 713
 714        mutex_unlock(&fw_mutex);
 715        return fw_err;
 716}
 717
 718/*
 719 * Called when the driver unloads.  The timing is asymmetric with its
 720 * counterpart, obtain_firmware().  If called at device remove time,
 721 * then it is conceivable that another device could probe while the
 722 * firmware is being disposed.  The mutexes can be moved to do that
 723 * safely, but then the firmware would be requested from the OS multiple
 724 * times.
 725 *
 726 * No mutex is needed as the driver is unloading and there cannot be any
 727 * other callers.
 728 */
 729void dispose_firmware(void)
 730{
 731        dispose_one_firmware(&fw_8051);
 732        dispose_one_firmware(&fw_fabric);
 733        dispose_one_firmware(&fw_pcie);
 734        dispose_one_firmware(&fw_sbus);
 735
 736        /* retain the error state, otherwise revert to empty */
 737        if (fw_state != FW_ERR)
 738                fw_state = FW_EMPTY;
 739}
 740
 741/*
 742 * Called with the result of a firmware download.
 743 *
 744 * Return 1 to retry loading the firmware, 0 to stop.
 745 */
 746static int retry_firmware(struct hfi1_devdata *dd, int load_result)
 747{
 748        int retry;
 749
 750        mutex_lock(&fw_mutex);
 751
 752        if (load_result == 0) {
 753                /*
 754                 * The load succeeded, so expect all others to do the same.
 755                 * Do not retry again.
 756                 */
 757                if (fw_state == FW_TRY)
 758                        fw_state = FW_FINAL;
 759                retry = 0;      /* do NOT retry */
 760        } else if (fw_state == FW_TRY) {
 761                /* load failed, obtain alternate firmware */
 762                __obtain_firmware(dd);
 763                retry = (fw_state == FW_FINAL);
 764        } else {
 765                /* else in FW_FINAL or FW_ERR, no retry in either case */
 766                retry = 0;
 767        }
 768
 769        mutex_unlock(&fw_mutex);
 770        return retry;
 771}
 772
 773/*
 774 * Write a block of data to a given array CSR.  All calls will be in
 775 * multiples of 8 bytes.
 776 */
 777static void write_rsa_data(struct hfi1_devdata *dd, int what,
 778                           const u8 *data, int nbytes)
 779{
 780        int qw_size = nbytes / 8;
 781        int i;
 782
 783        if (((unsigned long)data & 0x7) == 0) {
 784                /* aligned */
 785                u64 *ptr = (u64 *)data;
 786
 787                for (i = 0; i < qw_size; i++, ptr++)
 788                        write_csr(dd, what + (8 * i), *ptr);
 789        } else {
 790                /* not aligned */
 791                for (i = 0; i < qw_size; i++, data += 8) {
 792                        u64 value;
 793
 794                        memcpy(&value, data, 8);
 795                        write_csr(dd, what + (8 * i), value);
 796                }
 797        }
 798}
 799
 800/*
 801 * Write a block of data to a given CSR as a stream of writes.  All calls will
 802 * be in multiples of 8 bytes.
 803 */
 804static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
 805                                    const u8 *data, int nbytes)
 806{
 807        u64 *ptr = (u64 *)data;
 808        int qw_size = nbytes / 8;
 809
 810        for (; qw_size > 0; qw_size--, ptr++)
 811                write_csr(dd, what, *ptr);
 812}
 813
 814/*
 815 * Download the signature and start the RSA mechanism.  Wait for
 816 * RSA_ENGINE_TIMEOUT before giving up.
 817 */
 818static int run_rsa(struct hfi1_devdata *dd, const char *who,
 819                   const u8 *signature)
 820{
 821        unsigned long timeout;
 822        u64 reg;
 823        u32 status;
 824        int ret = 0;
 825
 826        /* write the signature */
 827        write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
 828
 829        /* initialize RSA */
 830        write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
 831
 832        /*
 833         * Make sure the engine is idle and insert a delay between the two
 834         * writes to MISC_CFG_RSA_CMD.
 835         */
 836        status = (read_csr(dd, MISC_CFG_FW_CTRL)
 837                           & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 838                             >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 839        if (status != RSA_STATUS_IDLE) {
 840                dd_dev_err(dd, "%s security engine not idle - giving up\n",
 841                           who);
 842                return -EBUSY;
 843        }
 844
 845        /* start RSA */
 846        write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
 847
 848        /*
 849         * Look for the result.
 850         *
 851         * The RSA engine is hooked up to two MISC errors.  The driver
 852         * masks these errors as they do not respond to the standard
 853         * error "clear down" mechanism.  Look for these errors here and
 854         * clear them when possible.  This routine will exit with the
 855         * errors of the current run still set.
 856         *
 857         * MISC_FW_AUTH_FAILED_ERR
 858         *      Firmware authorization failed.  This can be cleared by
 859         *      re-initializing the RSA engine, then clearing the status bit.
 860         *      Do not re-init the RSA angine immediately after a successful
 861         *      run - this will reset the current authorization.
 862         *
 863         * MISC_KEY_MISMATCH_ERR
 864         *      Key does not match.  The only way to clear this is to load
 865         *      a matching key then clear the status bit.  If this error
 866         *      is raised, it will persist outside of this routine until a
 867         *      matching key is loaded.
 868         */
 869        timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
 870        while (1) {
 871                status = (read_csr(dd, MISC_CFG_FW_CTRL)
 872                           & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 873                             >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 874
 875                if (status == RSA_STATUS_IDLE) {
 876                        /* should not happen */
 877                        dd_dev_err(dd, "%s firmware security bad idle state\n",
 878                                   who);
 879                        ret = -EINVAL;
 880                        break;
 881                } else if (status == RSA_STATUS_DONE) {
 882                        /* finished successfully */
 883                        break;
 884                } else if (status == RSA_STATUS_FAILED) {
 885                        /* finished unsuccessfully */
 886                        ret = -EINVAL;
 887                        break;
 888                }
 889                /* else still active */
 890
 891                if (time_after(jiffies, timeout)) {
 892                        /*
 893                         * Timed out while active.  We can't reset the engine
 894                         * if it is stuck active, but run through the
 895                         * error code to see what error bits are set.
 896                         */
 897                        dd_dev_err(dd, "%s firmware security time out\n", who);
 898                        ret = -ETIMEDOUT;
 899                        break;
 900                }
 901
 902                msleep(20);
 903        }
 904
 905        /*
 906         * Arrive here on success or failure.  Clear all RSA engine
 907         * errors.  All current errors will stick - the RSA logic is keeping
 908         * error high.  All previous errors will clear - the RSA logic
 909         * is not keeping the error high.
 910         */
 911        write_csr(dd, MISC_ERR_CLEAR,
 912                  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
 913                  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
 914        /*
 915         * All that is left are the current errors.  Print warnings on
 916         * authorization failure details, if any.  Firmware authorization
 917         * can be retried, so these are only warnings.
 918         */
 919        reg = read_csr(dd, MISC_ERR_STATUS);
 920        if (ret) {
 921                if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
 922                        dd_dev_warn(dd, "%s firmware authorization failed\n",
 923                                    who);
 924                if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
 925                        dd_dev_warn(dd, "%s firmware key mismatch\n", who);
 926        }
 927
 928        return ret;
 929}
 930
 931static void load_security_variables(struct hfi1_devdata *dd,
 932                                    struct firmware_details *fdet)
 933{
 934        /* Security variables a.  Write the modulus */
 935        write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
 936        /* Security variables b.  Write the r2 */
 937        write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
 938        /* Security variables c.  Write the mu */
 939        write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
 940        /* Security variables d.  Write the header */
 941        write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
 942                                (u8 *)fdet->css_header,
 943                                sizeof(struct css_header));
 944}
 945
 946/* return the 8051 firmware state */
 947static inline u32 get_firmware_state(struct hfi1_devdata *dd)
 948{
 949        u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
 950
 951        return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
 952                                & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
 953}
 954
 955/*
 956 * Wait until the firmware is up and ready to take host requests.
 957 * Return 0 on success, -ETIMEDOUT on timeout.
 958 */
 959int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
 960{
 961        unsigned long timeout;
 962
 963        /* in the simulator, the fake 8051 is always ready */
 964        if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
 965                return 0;
 966
 967        timeout = msecs_to_jiffies(mstimeout) + jiffies;
 968        while (1) {
 969                if (get_firmware_state(dd) == 0xa0)     /* ready */
 970                        return 0;
 971                if (time_after(jiffies, timeout))       /* timed out */
 972                        return -ETIMEDOUT;
 973                usleep_range(1950, 2050); /* sleep 2ms-ish */
 974        }
 975}
 976
 977/*
 978 * Load the 8051 firmware.
 979 */
 980static int load_8051_firmware(struct hfi1_devdata *dd,
 981                              struct firmware_details *fdet)
 982{
 983        u64 reg;
 984        int ret;
 985        u8 ver_major;
 986        u8 ver_minor;
 987        u8 ver_patch;
 988
 989        /*
 990         * DC Reset sequence
 991         * Load DC 8051 firmware
 992         */
 993        /*
 994         * DC reset step 1: Reset DC8051
 995         */
 996        reg = DC_DC8051_CFG_RST_M8051W_SMASK
 997                | DC_DC8051_CFG_RST_CRAM_SMASK
 998                | DC_DC8051_CFG_RST_DRAM_SMASK
 999                | DC_DC8051_CFG_RST_IRAM_SMASK
1000                | DC_DC8051_CFG_RST_SFR_SMASK;
1001        write_csr(dd, DC_DC8051_CFG_RST, reg);
1002
1003        /*
1004         * DC reset step 2 (optional): Load 8051 data memory with link
1005         * configuration
1006         */
1007
1008        /*
1009         * DC reset step 3: Load DC8051 firmware
1010         */
1011        /* release all but the core reset */
1012        reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1013        write_csr(dd, DC_DC8051_CFG_RST, reg);
1014
1015        /* Firmware load step 1 */
1016        load_security_variables(dd, fdet);
1017
1018        /*
1019         * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1020         */
1021        write_csr(dd, MISC_CFG_FW_CTRL, 0);
1022
1023        /* Firmware load steps 3-5 */
1024        ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1025                         fdet->firmware_len);
1026        if (ret)
1027                return ret;
1028
1029        /*
1030         * DC reset step 4. Host starts the DC8051 firmware
1031         */
1032        /*
1033         * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1034         */
1035        write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1036
1037        /* Firmware load steps 7-10 */
1038        ret = run_rsa(dd, "8051", fdet->signature);
1039        if (ret)
1040                return ret;
1041
1042        /* clear all reset bits, releasing the 8051 */
1043        write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1044
1045        /*
1046         * DC reset step 5. Wait for firmware to be ready to accept host
1047         * requests.
1048         */
1049        ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1050        if (ret) { /* timed out */
1051                dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1052                           get_firmware_state(dd));
1053                return -ETIMEDOUT;
1054        }
1055
1056        read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1057        dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1058                    (int)ver_major, (int)ver_minor, (int)ver_patch);
1059        dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1060        ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1061        if (ret != HCMD_SUCCESS) {
1062                dd_dev_err(dd,
1063                           "Failed to set host interface version, return 0x%x\n",
1064                           ret);
1065                return -EIO;
1066        }
1067
1068        return 0;
1069}
1070
1071/*
1072 * Write the SBus request register
1073 *
1074 * No need for masking - the arguments are sized exactly.
1075 */
1076void sbus_request(struct hfi1_devdata *dd,
1077                  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1078{
1079        write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1080                  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1081                  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1082                  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1083                  ((u64)receiver_addr <<
1084                   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1085}
1086
1087/*
1088 * Read a value from the SBus.
1089 *
1090 * Requires the caller to be in fast mode
1091 */
1092static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1093                     u32 data_in)
1094{
1095        u64 reg;
1096        int retries;
1097        int success = 0;
1098        u32 result = 0;
1099        u32 result_code = 0;
1100
1101        sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1102
1103        for (retries = 0; retries < 100; retries++) {
1104                usleep_range(1000, 1200); /* arbitrary */
1105                reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1106                result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1107                                & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1108                if (result_code != SBUS_READ_COMPLETE)
1109                        continue;
1110
1111                success = 1;
1112                result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1113                           & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1114                break;
1115        }
1116
1117        if (!success) {
1118                dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1119                           result_code);
1120        }
1121
1122        return result;
1123}
1124
1125/*
1126 * Turn off the SBus and fabric serdes spicos.
1127 *
1128 * + Must be called with Sbus fast mode turned on.
1129 * + Must be called after fabric serdes broadcast is set up.
1130 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1131 *   when using MISC_CFG_FW_CTRL.
1132 */
1133static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1134{
1135        /* only needed on A0 */
1136        if (!is_ax(dd))
1137                return;
1138
1139        dd_dev_info(dd, "Turning off spicos:%s%s\n",
1140                    flags & SPICO_SBUS ? " SBus" : "",
1141                    flags & SPICO_FABRIC ? " fabric" : "");
1142
1143        write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1144        /* disable SBus spico */
1145        if (flags & SPICO_SBUS)
1146                sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1147                             WRITE_SBUS_RECEIVER, 0x00000040);
1148
1149        /* disable the fabric serdes spicos */
1150        if (flags & SPICO_FABRIC)
1151                sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1152                             0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1153        write_csr(dd, MISC_CFG_FW_CTRL, 0);
1154}
1155
1156/*
1157 * Reset all of the fabric serdes for this HFI in preparation to take the
1158 * link to Polling.
1159 *
1160 * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1161 * the fabric serdes download to the other HFI on the ASIC will have turned
1162 * off the firmware validation on this HFI.  This means we can't write to the
1163 * registers to reset the serdes.  Work around this by performing a complete
1164 * re-download and validation of the fabric serdes firmware.  This, as a
1165 * by-product, will reset the serdes.  NOTE: the re-download requires that
1166 * the 8051 be in the Offline state.  I.e. not actively trying to use the
1167 * serdes.  This routine is called at the point where the link is Offline and
1168 * is getting ready to go to Polling.
1169 */
1170void fabric_serdes_reset(struct hfi1_devdata *dd)
1171{
1172        int ret;
1173
1174        if (!fw_fabric_serdes_load)
1175                return;
1176
1177        ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1178        if (ret) {
1179                dd_dev_err(dd,
1180                           "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1181                return;
1182        }
1183        set_sbus_fast_mode(dd);
1184
1185        if (is_ax(dd)) {
1186                /* A0 serdes do not work with a re-download */
1187                u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1188
1189                /* place SerDes in reset and disable SPICO */
1190                sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1191                /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1192                udelay(1);
1193                /* remove SerDes reset */
1194                sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1195                /* turn SPICO enable on */
1196                sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1197        } else {
1198                turn_off_spicos(dd, SPICO_FABRIC);
1199                /*
1200                 * No need for firmware retry - what to download has already
1201                 * been decided.
1202                 * No need to pay attention to the load return - the only
1203                 * failure is a validation failure, which has already been
1204                 * checked by the initial download.
1205                 */
1206                (void)load_fabric_serdes_firmware(dd, &fw_fabric);
1207        }
1208
1209        clear_sbus_fast_mode(dd);
1210        release_chip_resource(dd, CR_SBUS);
1211}
1212
1213/* Access to the SBus in this routine should probably be serialized */
1214int sbus_request_slow(struct hfi1_devdata *dd,
1215                      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1216{
1217        u64 reg, count = 0;
1218
1219        /* make sure fast mode is clear */
1220        clear_sbus_fast_mode(dd);
1221
1222        sbus_request(dd, receiver_addr, data_addr, command, data_in);
1223        write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1224                  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1225        /* Wait for both DONE and RCV_DATA_VALID to go high */
1226        reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1227        while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1228                 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1229                if (count++ >= SBUS_MAX_POLL_COUNT) {
1230                        u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1231                        /*
1232                         * If the loop has timed out, we are OK if DONE bit
1233                         * is set and RCV_DATA_VALID and EXECUTE counters
1234                         * are the same. If not, we cannot proceed.
1235                         */
1236                        if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1237                            (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1238                             SBUS_COUNTER(counts, EXECUTE)))
1239                                break;
1240                        return -ETIMEDOUT;
1241                }
1242                udelay(1);
1243                reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1244        }
1245        count = 0;
1246        write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1247        /* Wait for DONE to clear after EXECUTE is cleared */
1248        reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1249        while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1250                if (count++ >= SBUS_MAX_POLL_COUNT)
1251                        return -ETIME;
1252                udelay(1);
1253                reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1254        }
1255        return 0;
1256}
1257
1258static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1259                                       struct firmware_details *fdet)
1260{
1261        int i, err;
1262        const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1263
1264        dd_dev_info(dd, "Downloading fabric firmware\n");
1265
1266        /* step 1: load security variables */
1267        load_security_variables(dd, fdet);
1268        /* step 2: place SerDes in reset and disable SPICO */
1269        sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1270        /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1271        udelay(1);
1272        /* step 3:  remove SerDes reset */
1273        sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1274        /* step 4: assert IMEM override */
1275        sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1276        /* step 5: download SerDes machine code */
1277        for (i = 0; i < fdet->firmware_len; i += 4) {
1278                sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1279                             *(u32 *)&fdet->firmware_ptr[i]);
1280        }
1281        /* step 6: IMEM override off */
1282        sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1283        /* step 7: turn ECC on */
1284        sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1285
1286        /* steps 8-11: run the RSA engine */
1287        err = run_rsa(dd, "fabric serdes", fdet->signature);
1288        if (err)
1289                return err;
1290
1291        /* step 12: turn SPICO enable on */
1292        sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1293        /* step 13: enable core hardware interrupts */
1294        sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1295
1296        return 0;
1297}
1298
1299static int load_sbus_firmware(struct hfi1_devdata *dd,
1300                              struct firmware_details *fdet)
1301{
1302        int i, err;
1303        const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1304
1305        dd_dev_info(dd, "Downloading SBus firmware\n");
1306
1307        /* step 1: load security variables */
1308        load_security_variables(dd, fdet);
1309        /* step 2: place SPICO into reset and enable off */
1310        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1311        /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1312        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1313        /* step 4: set starting IMEM address for burst download */
1314        sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1315        /* step 5: download the SBus Master machine code */
1316        for (i = 0; i < fdet->firmware_len; i += 4) {
1317                sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1318                             *(u32 *)&fdet->firmware_ptr[i]);
1319        }
1320        /* step 6: set IMEM_CNTL_EN off */
1321        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1322        /* step 7: turn ECC on */
1323        sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1324
1325        /* steps 8-11: run the RSA engine */
1326        err = run_rsa(dd, "SBus", fdet->signature);
1327        if (err)
1328                return err;
1329
1330        /* step 12: set SPICO_ENABLE on */
1331        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1332
1333        return 0;
1334}
1335
1336static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1337                                     struct firmware_details *fdet)
1338{
1339        int i;
1340        const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1341
1342        dd_dev_info(dd, "Downloading PCIe firmware\n");
1343
1344        /* step 1: load security variables */
1345        load_security_variables(dd, fdet);
1346        /* step 2: assert single step (halts the SBus Master spico) */
1347        sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1348        /* step 3: enable XDMEM access */
1349        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1350        /* step 4: load firmware into SBus Master XDMEM */
1351        /*
1352         * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1353         * we only need to pick up the bytes and write them
1354         */
1355        for (i = 0; i < fdet->firmware_len; i += 4) {
1356                sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1357                             *(u32 *)&fdet->firmware_ptr[i]);
1358        }
1359        /* step 5: disable XDMEM access */
1360        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1361        /* step 6: allow SBus Spico to run */
1362        sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1363
1364        /*
1365         * steps 7-11: run RSA, if it succeeds, firmware is available to
1366         * be swapped
1367         */
1368        return run_rsa(dd, "PCIe serdes", fdet->signature);
1369}
1370
1371/*
1372 * Set the given broadcast values on the given list of devices.
1373 */
1374static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1375                                 const u8 *addrs, int count)
1376{
1377        while (--count >= 0) {
1378                /*
1379                 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1380                 * defaults for everything else.  Do not read-modify-write,
1381                 * per instruction from the manufacturer.
1382                 *
1383                 * Register 0xfd:
1384                 *      bits    what
1385                 *      -----   ---------------------------------
1386                 *        0     IGNORE_BROADCAST  (default 0)
1387                 *      11:4    BROADCAST_GROUP_1 (default 0xff)
1388                 *      23:16   BROADCAST_GROUP_2 (default 0xff)
1389                 */
1390                sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1391                             (u32)bg1 << 4 | (u32)bg2 << 16);
1392        }
1393}
1394
1395int acquire_hw_mutex(struct hfi1_devdata *dd)
1396{
1397        unsigned long timeout;
1398        int try = 0;
1399        u8 mask = 1 << dd->hfi1_id;
1400        u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1401
1402        if (user == mask) {
1403                dd_dev_info(dd,
1404                            "Hardware mutex already acquired, mutex mask %u\n",
1405                            (u32)mask);
1406                return 0;
1407        }
1408
1409retry:
1410        timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1411        while (1) {
1412                write_csr(dd, ASIC_CFG_MUTEX, mask);
1413                user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1414                if (user == mask)
1415                        return 0; /* success */
1416                if (time_after(jiffies, timeout))
1417                        break; /* timed out */
1418                msleep(20);
1419        }
1420
1421        /* timed out */
1422        dd_dev_err(dd,
1423                   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1424                   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1425
1426        if (try == 0) {
1427                /* break mutex and retry */
1428                write_csr(dd, ASIC_CFG_MUTEX, 0);
1429                try++;
1430                goto retry;
1431        }
1432
1433        return -EBUSY;
1434}
1435
1436void release_hw_mutex(struct hfi1_devdata *dd)
1437{
1438        u8 mask = 1 << dd->hfi1_id;
1439        u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1440
1441        if (user != mask)
1442                dd_dev_warn(dd,
1443                            "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1444                            (u32)user, (u32)mask);
1445        else
1446                write_csr(dd, ASIC_CFG_MUTEX, 0);
1447}
1448
1449/* return the given resource bit(s) as a mask for the given HFI */
1450static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1451{
1452        return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1453}
1454
1455static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1456                                       const char *func)
1457{
1458        dd_dev_err(dd,
1459                   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1460                   func);
1461}
1462
1463/*
1464 * Acquire access to a chip resource.
1465 *
1466 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1467 */
1468static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1469{
1470        u64 scratch0, all_bits, my_bit;
1471        int ret;
1472
1473        if (resource & CR_DYN_MASK) {
1474                /* a dynamic resource is in use if either HFI has set the bit */
1475                if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1476                    (resource & (CR_I2C1 | CR_I2C2))) {
1477                        /* discrete devices must serialize across both chains */
1478                        all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1479                                        resource_mask(1, CR_I2C1 | CR_I2C2);
1480                } else {
1481                        all_bits = resource_mask(0, resource) |
1482                                                resource_mask(1, resource);
1483                }
1484                my_bit = resource_mask(dd->hfi1_id, resource);
1485        } else {
1486                /* non-dynamic resources are not split between HFIs */
1487                all_bits = resource;
1488                my_bit = resource;
1489        }
1490
1491        /* lock against other callers within the driver wanting a resource */
1492        mutex_lock(&dd->asic_data->asic_resource_mutex);
1493
1494        ret = acquire_hw_mutex(dd);
1495        if (ret) {
1496                fail_mutex_acquire_message(dd, __func__);
1497                ret = -EIO;
1498                goto done;
1499        }
1500
1501        scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1502        if (scratch0 & all_bits) {
1503                ret = -EBUSY;
1504        } else {
1505                write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1506                /* force write to be visible to other HFI on another OS */
1507                (void)read_csr(dd, ASIC_CFG_SCRATCH);
1508        }
1509
1510        release_hw_mutex(dd);
1511
1512done:
1513        mutex_unlock(&dd->asic_data->asic_resource_mutex);
1514        return ret;
1515}
1516
1517/*
1518 * Acquire access to a chip resource, wait up to mswait milliseconds for
1519 * the resource to become available.
1520 *
1521 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1522 * acquire failed.
1523 */
1524int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1525{
1526        unsigned long timeout;
1527        int ret;
1528
1529        timeout = jiffies + msecs_to_jiffies(mswait);
1530        while (1) {
1531                ret = __acquire_chip_resource(dd, resource);
1532                if (ret != -EBUSY)
1533                        return ret;
1534                /* resource is busy, check our timeout */
1535                if (time_after_eq(jiffies, timeout))
1536                        return -EBUSY;
1537                usleep_range(80, 120);  /* arbitrary delay */
1538        }
1539}
1540
1541/*
1542 * Release access to a chip resource
1543 */
1544void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1545{
1546        u64 scratch0, bit;
1547
1548        /* only dynamic resources should ever be cleared */
1549        if (!(resource & CR_DYN_MASK)) {
1550                dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1551                           resource);
1552                return;
1553        }
1554        bit = resource_mask(dd->hfi1_id, resource);
1555
1556        /* lock against other callers within the driver wanting a resource */
1557        mutex_lock(&dd->asic_data->asic_resource_mutex);
1558
1559        if (acquire_hw_mutex(dd)) {
1560                fail_mutex_acquire_message(dd, __func__);
1561                goto done;
1562        }
1563
1564        scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1565        if ((scratch0 & bit) != 0) {
1566                scratch0 &= ~bit;
1567                write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1568                /* force write to be visible to other HFI on another OS */
1569                (void)read_csr(dd, ASIC_CFG_SCRATCH);
1570        } else {
1571                dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1572                            __func__, dd->hfi1_id, resource);
1573        }
1574
1575        release_hw_mutex(dd);
1576
1577done:
1578        mutex_unlock(&dd->asic_data->asic_resource_mutex);
1579}
1580
1581/*
1582 * Return true if resource is set, false otherwise.  Print a warning
1583 * if not set and a function is supplied.
1584 */
1585bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1586                         const char *func)
1587{
1588        u64 scratch0, bit;
1589
1590        if (resource & CR_DYN_MASK)
1591                bit = resource_mask(dd->hfi1_id, resource);
1592        else
1593                bit = resource;
1594
1595        scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1596        if ((scratch0 & bit) == 0) {
1597                if (func)
1598                        dd_dev_warn(dd,
1599                                    "%s: id %d, resource 0x%x, not acquired!\n",
1600                                    func, dd->hfi1_id, resource);
1601                return false;
1602        }
1603        return true;
1604}
1605
1606static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1607{
1608        u64 scratch0;
1609
1610        /* lock against other callers within the driver wanting a resource */
1611        mutex_lock(&dd->asic_data->asic_resource_mutex);
1612
1613        if (acquire_hw_mutex(dd)) {
1614                fail_mutex_acquire_message(dd, func);
1615                goto done;
1616        }
1617
1618        /* clear all dynamic access bits for this HFI */
1619        scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1620        scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1621        write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1622        /* force write to be visible to other HFI on another OS */
1623        (void)read_csr(dd, ASIC_CFG_SCRATCH);
1624
1625        release_hw_mutex(dd);
1626
1627done:
1628        mutex_unlock(&dd->asic_data->asic_resource_mutex);
1629}
1630
1631void init_chip_resources(struct hfi1_devdata *dd)
1632{
1633        /* clear any holds left by us */
1634        clear_chip_resources(dd, __func__);
1635}
1636
1637void finish_chip_resources(struct hfi1_devdata *dd)
1638{
1639        /* clear any holds left by us */
1640        clear_chip_resources(dd, __func__);
1641}
1642
1643void set_sbus_fast_mode(struct hfi1_devdata *dd)
1644{
1645        write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1646                  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1647}
1648
1649void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1650{
1651        u64 reg, count = 0;
1652
1653        reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1654        while (SBUS_COUNTER(reg, EXECUTE) !=
1655               SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1656                if (count++ >= SBUS_MAX_POLL_COUNT)
1657                        break;
1658                udelay(1);
1659                reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1660        }
1661        write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1662}
1663
1664int load_firmware(struct hfi1_devdata *dd)
1665{
1666        int ret;
1667
1668        if (fw_fabric_serdes_load) {
1669                ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1670                if (ret)
1671                        return ret;
1672
1673                set_sbus_fast_mode(dd);
1674
1675                set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1676                                     fabric_serdes_broadcast[dd->hfi1_id],
1677                                     fabric_serdes_addrs[dd->hfi1_id],
1678                                     NUM_FABRIC_SERDES);
1679                turn_off_spicos(dd, SPICO_FABRIC);
1680                do {
1681                        ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1682                } while (retry_firmware(dd, ret));
1683
1684                clear_sbus_fast_mode(dd);
1685                release_chip_resource(dd, CR_SBUS);
1686                if (ret)
1687                        return ret;
1688        }
1689
1690        if (fw_8051_load) {
1691                do {
1692                        ret = load_8051_firmware(dd, &fw_8051);
1693                } while (retry_firmware(dd, ret));
1694                if (ret)
1695                        return ret;
1696        }
1697
1698        dump_fw_version(dd);
1699        return 0;
1700}
1701
1702int hfi1_firmware_init(struct hfi1_devdata *dd)
1703{
1704        /* only RTL can use these */
1705        if (dd->icode != ICODE_RTL_SILICON) {
1706                fw_fabric_serdes_load = 0;
1707                fw_pcie_serdes_load = 0;
1708                fw_sbus_load = 0;
1709        }
1710
1711        /* no 8051 or QSFP on simulator */
1712        if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1713                fw_8051_load = 0;
1714
1715        if (!fw_8051_name) {
1716                if (dd->icode == ICODE_RTL_SILICON)
1717                        fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1718                else
1719                        fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1720        }
1721        if (!fw_fabric_serdes_name)
1722                fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1723        if (!fw_sbus_name)
1724                fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1725        if (!fw_pcie_serdes_name)
1726                fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1727
1728        return obtain_firmware(dd);
1729}
1730
1731/*
1732 * This function is a helper function for parse_platform_config(...) and
1733 * does not check for validity of the platform configuration cache
1734 * (because we know it is invalid as we are building up the cache).
1735 * As such, this should not be called from anywhere other than
1736 * parse_platform_config
1737 */
1738static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1739{
1740        u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1741        struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1742
1743        if (!system_table)
1744                return -EINVAL;
1745
1746        meta_ver_meta =
1747        *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1748        + SYSTEM_TABLE_META_VERSION);
1749
1750        mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1751        ver_start = meta_ver_meta & mask;
1752
1753        meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1754
1755        mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1756        ver_len = meta_ver_meta & mask;
1757
1758        ver_start /= 8;
1759        meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1760
1761        if (meta_ver < 4) {
1762                dd_dev_info(
1763                        dd, "%s:Please update platform config\n", __func__);
1764                return -EINVAL;
1765        }
1766        return 0;
1767}
1768
1769int parse_platform_config(struct hfi1_devdata *dd)
1770{
1771        struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1772        struct hfi1_pportdata *ppd = dd->pport;
1773        u32 *ptr = NULL;
1774        u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1775        u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1776        int ret = -EINVAL; /* assume failure */
1777
1778        /*
1779         * For integrated devices that did not fall back to the default file,
1780         * the SI tuning information for active channels is acquired from the
1781         * scratch register bitmap, thus there is no platform config to parse.
1782         * Skip parsing in these situations.
1783         */
1784        if (ppd->config_from_scratch)
1785                return 0;
1786
1787        if (!dd->platform_config.data) {
1788                dd_dev_err(dd, "%s: Missing config file\n", __func__);
1789                goto bail;
1790        }
1791        ptr = (u32 *)dd->platform_config.data;
1792
1793        magic_num = *ptr;
1794        ptr++;
1795        if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1796                dd_dev_err(dd, "%s: Bad config file\n", __func__);
1797                goto bail;
1798        }
1799
1800        /* Field is file size in DWORDs */
1801        file_length = (*ptr) * 4;
1802
1803        /*
1804         * Length can't be larger than partition size. Assume platform
1805         * config format version 4 is being used. Interpret the file size
1806         * field as header instead by not moving the pointer.
1807         */
1808        if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1809                dd_dev_info(dd,
1810                            "%s:File length out of bounds, using alternative format\n",
1811                            __func__);
1812                file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1813        } else {
1814                ptr++;
1815        }
1816
1817        if (file_length > dd->platform_config.size) {
1818                dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1819                            __func__);
1820                goto bail;
1821        } else if (file_length < dd->platform_config.size) {
1822                dd_dev_info(dd,
1823                            "%s:File claims to be smaller than read size, continuing\n",
1824                            __func__);
1825        }
1826        /* exactly equal, perfection */
1827
1828        /*
1829         * In both cases where we proceed, using the self-reported file length
1830         * is the safer option. In case of old format a predefined value is
1831         * being used.
1832         */
1833        while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1834                header1 = *ptr;
1835                header2 = *(ptr + 1);
1836                if (header1 != ~header2) {
1837                        dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1838                                   __func__, (ptr - (u32 *)
1839                                              dd->platform_config.data));
1840                        goto bail;
1841                }
1842
1843                record_idx = *ptr &
1844                        ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1845
1846                table_length_dwords = (*ptr >>
1847                                PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1848                      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1849
1850                table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1851                        ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1852
1853                /* Done with this set of headers */
1854                ptr += 2;
1855
1856                if (record_idx) {
1857                        /* data table */
1858                        switch (table_type) {
1859                        case PLATFORM_CONFIG_SYSTEM_TABLE:
1860                                pcfgcache->config_tables[table_type].num_table =
1861                                                                        1;
1862                                ret = check_meta_version(dd, ptr);
1863                                if (ret)
1864                                        goto bail;
1865                                break;
1866                        case PLATFORM_CONFIG_PORT_TABLE:
1867                                pcfgcache->config_tables[table_type].num_table =
1868                                                                        2;
1869                                break;
1870                        case PLATFORM_CONFIG_RX_PRESET_TABLE:
1871                                /* fall through */
1872                        case PLATFORM_CONFIG_TX_PRESET_TABLE:
1873                                /* fall through */
1874                        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1875                                /* fall through */
1876                        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1877                                pcfgcache->config_tables[table_type].num_table =
1878                                                        table_length_dwords;
1879                                break;
1880                        default:
1881                                dd_dev_err(dd,
1882                                           "%s: Unknown data table %d, offset %ld\n",
1883                                           __func__, table_type,
1884                                           (ptr - (u32 *)
1885                                            dd->platform_config.data));
1886                                goto bail; /* We don't trust this file now */
1887                        }
1888                        pcfgcache->config_tables[table_type].table = ptr;
1889                } else {
1890                        /* metadata table */
1891                        switch (table_type) {
1892                        case PLATFORM_CONFIG_SYSTEM_TABLE:
1893                                /* fall through */
1894                        case PLATFORM_CONFIG_PORT_TABLE:
1895                                /* fall through */
1896                        case PLATFORM_CONFIG_RX_PRESET_TABLE:
1897                                /* fall through */
1898                        case PLATFORM_CONFIG_TX_PRESET_TABLE:
1899                                /* fall through */
1900                        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1901                                /* fall through */
1902                        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1903                                break;
1904                        default:
1905                                dd_dev_err(dd,
1906                                           "%s: Unknown meta table %d, offset %ld\n",
1907                                           __func__, table_type,
1908                                           (ptr -
1909                                            (u32 *)dd->platform_config.data));
1910                                goto bail; /* We don't trust this file now */
1911                        }
1912                        pcfgcache->config_tables[table_type].table_metadata =
1913                                                                        ptr;
1914                }
1915
1916                /* Calculate and check table crc */
1917                crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1918                               (table_length_dwords * 4));
1919                crc ^= ~(u32)0;
1920
1921                /* Jump the table */
1922                ptr += table_length_dwords;
1923                if (crc != *ptr) {
1924                        dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1925                                   __func__, (ptr -
1926                                   (u32 *)dd->platform_config.data));
1927                        goto bail;
1928                }
1929                /* Jump the CRC DWORD */
1930                ptr++;
1931        }
1932
1933        pcfgcache->cache_valid = 1;
1934        return 0;
1935bail:
1936        memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1937        return ret;
1938}
1939
1940static void get_integrated_platform_config_field(
1941                struct hfi1_devdata *dd,
1942                enum platform_config_table_type_encoding table_type,
1943                int field_index, u32 *data)
1944{
1945        struct hfi1_pportdata *ppd = dd->pport;
1946        u8 *cache = ppd->qsfp_info.cache;
1947        u32 tx_preset = 0;
1948
1949        switch (table_type) {
1950        case PLATFORM_CONFIG_SYSTEM_TABLE:
1951                if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1952                        *data = ppd->max_power_class;
1953                else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1954                        *data = ppd->default_atten;
1955                break;
1956        case PLATFORM_CONFIG_PORT_TABLE:
1957                if (field_index == PORT_TABLE_PORT_TYPE)
1958                        *data = ppd->port_type;
1959                else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1960                        *data = ppd->local_atten;
1961                else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1962                        *data = ppd->remote_atten;
1963                break;
1964        case PLATFORM_CONFIG_RX_PRESET_TABLE:
1965                if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1966                        *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1967                                QSFP_RX_CDR_APPLY_SHIFT;
1968                else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1969                        *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1970                                QSFP_RX_EMP_APPLY_SHIFT;
1971                else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1972                        *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1973                                QSFP_RX_AMP_APPLY_SHIFT;
1974                else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1975                        *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1976                                QSFP_RX_CDR_SHIFT;
1977                else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1978                        *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1979                                QSFP_RX_EMP_SHIFT;
1980                else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1981                        *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1982                                QSFP_RX_AMP_SHIFT;
1983                break;
1984        case PLATFORM_CONFIG_TX_PRESET_TABLE:
1985                if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1986                        tx_preset = ppd->tx_preset_eq;
1987                else
1988                        tx_preset = ppd->tx_preset_noeq;
1989                if (field_index == TX_PRESET_TABLE_PRECUR)
1990                        *data = (tx_preset & TX_PRECUR_SMASK) >>
1991                                TX_PRECUR_SHIFT;
1992                else if (field_index == TX_PRESET_TABLE_ATTN)
1993                        *data = (tx_preset & TX_ATTN_SMASK) >>
1994                                TX_ATTN_SHIFT;
1995                else if (field_index == TX_PRESET_TABLE_POSTCUR)
1996                        *data = (tx_preset & TX_POSTCUR_SMASK) >>
1997                                TX_POSTCUR_SHIFT;
1998                else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1999                        *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
2000                                QSFP_TX_CDR_APPLY_SHIFT;
2001                else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
2002                        *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
2003                                QSFP_TX_EQ_APPLY_SHIFT;
2004                else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
2005                        *data = (tx_preset & QSFP_TX_CDR_SMASK) >>
2006                                QSFP_TX_CDR_SHIFT;
2007                else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
2008                        *data = (tx_preset & QSFP_TX_EQ_SMASK) >>
2009                                QSFP_TX_EQ_SHIFT;
2010                break;
2011        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2012        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2013        default:
2014                break;
2015        }
2016}
2017
2018static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
2019                                          int field, u32 *field_len_bits,
2020                                          u32 *field_start_bits)
2021{
2022        struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2023        u32 *src_ptr = NULL;
2024
2025        if (!pcfgcache->cache_valid)
2026                return -EINVAL;
2027
2028        switch (table) {
2029        case PLATFORM_CONFIG_SYSTEM_TABLE:
2030                /* fall through */
2031        case PLATFORM_CONFIG_PORT_TABLE:
2032                /* fall through */
2033        case PLATFORM_CONFIG_RX_PRESET_TABLE:
2034                /* fall through */
2035        case PLATFORM_CONFIG_TX_PRESET_TABLE:
2036                /* fall through */
2037        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2038                /* fall through */
2039        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2040                if (field && field < platform_config_table_limits[table])
2041                        src_ptr =
2042                        pcfgcache->config_tables[table].table_metadata + field;
2043                break;
2044        default:
2045                dd_dev_info(dd, "%s: Unknown table\n", __func__);
2046                break;
2047        }
2048
2049        if (!src_ptr)
2050                return -EINVAL;
2051
2052        if (field_start_bits)
2053                *field_start_bits = *src_ptr &
2054                      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2055
2056        if (field_len_bits)
2057                *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2058                       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2059
2060        return 0;
2061}
2062
2063/* This is the central interface to getting data out of the platform config
2064 * file. It depends on parse_platform_config() having populated the
2065 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2066 * validate the sanity of the cache.
2067 *
2068 * The non-obvious parameters:
2069 * @table_index: Acts as a look up key into which instance of the tables the
2070 * relevant field is fetched from.
2071 *
2072 * This applies to the data tables that have multiple instances. The port table
2073 * is an exception to this rule as each HFI only has one port and thus the
2074 * relevant table can be distinguished by hfi_id.
2075 *
2076 * @data: pointer to memory that will be populated with the field requested.
2077 * @len: length of memory pointed by @data in bytes.
2078 */
2079int get_platform_config_field(struct hfi1_devdata *dd,
2080                              enum platform_config_table_type_encoding
2081                              table_type, int table_index, int field_index,
2082                              u32 *data, u32 len)
2083{
2084        int ret = 0, wlen = 0, seek = 0;
2085        u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2086        struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2087        struct hfi1_pportdata *ppd = dd->pport;
2088
2089        if (data)
2090                memset(data, 0, len);
2091        else
2092                return -EINVAL;
2093
2094        if (ppd->config_from_scratch) {
2095                /*
2096                 * Use saved configuration from ppd for integrated platforms
2097                 */
2098                get_integrated_platform_config_field(dd, table_type,
2099                                                     field_index, data);
2100                return 0;
2101        }
2102
2103        ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2104                                             &field_len_bits,
2105                                             &field_start_bits);
2106        if (ret)
2107                return -EINVAL;
2108
2109        /* Convert length to bits */
2110        len *= 8;
2111
2112        /* Our metadata function checked cache_valid and field_index for us */
2113        switch (table_type) {
2114        case PLATFORM_CONFIG_SYSTEM_TABLE:
2115                src_ptr = pcfgcache->config_tables[table_type].table;
2116
2117                if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2118                        if (len < field_len_bits)
2119                                return -EINVAL;
2120
2121                        seek = field_start_bits / 8;
2122                        wlen = field_len_bits / 8;
2123
2124                        src_ptr = (u32 *)((u8 *)src_ptr + seek);
2125
2126                        /*
2127                         * We expect the field to be byte aligned and whole byte
2128                         * lengths if we are here
2129                         */
2130                        memcpy(data, src_ptr, wlen);
2131                        return 0;
2132                }
2133                break;
2134        case PLATFORM_CONFIG_PORT_TABLE:
2135                /* Port table is 4 DWORDS */
2136                src_ptr = dd->hfi1_id ?
2137                        pcfgcache->config_tables[table_type].table + 4 :
2138                        pcfgcache->config_tables[table_type].table;
2139                break;
2140        case PLATFORM_CONFIG_RX_PRESET_TABLE:
2141                /* fall through */
2142        case PLATFORM_CONFIG_TX_PRESET_TABLE:
2143                /* fall through */
2144        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2145                /* fall through */
2146        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2147                src_ptr = pcfgcache->config_tables[table_type].table;
2148
2149                if (table_index <
2150                        pcfgcache->config_tables[table_type].num_table)
2151                        src_ptr += table_index;
2152                else
2153                        src_ptr = NULL;
2154                break;
2155        default:
2156                dd_dev_info(dd, "%s: Unknown table\n", __func__);
2157                break;
2158        }
2159
2160        if (!src_ptr || len < field_len_bits)
2161                return -EINVAL;
2162
2163        src_ptr += (field_start_bits / 32);
2164        *data = (*src_ptr >> (field_start_bits % 32)) &
2165                        ((1 << field_len_bits) - 1);
2166
2167        return 0;
2168}
2169
2170/*
2171 * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2172 * to the SBus firmware is needed before updating the PCIe firmware.
2173 *
2174 * Note: caller must be holding the SBus resource.
2175 */
2176int load_pcie_firmware(struct hfi1_devdata *dd)
2177{
2178        int ret = 0;
2179
2180        /* both firmware loads below use the SBus */
2181        set_sbus_fast_mode(dd);
2182
2183        if (fw_sbus_load) {
2184                turn_off_spicos(dd, SPICO_SBUS);
2185                do {
2186                        ret = load_sbus_firmware(dd, &fw_sbus);
2187                } while (retry_firmware(dd, ret));
2188                if (ret)
2189                        goto done;
2190        }
2191
2192        if (fw_pcie_serdes_load) {
2193                dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2194                set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2195                                     pcie_serdes_broadcast[dd->hfi1_id],
2196                                     pcie_serdes_addrs[dd->hfi1_id],
2197                                     NUM_PCIE_SERDES);
2198                do {
2199                        ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2200                } while (retry_firmware(dd, ret));
2201                if (ret)
2202                        goto done;
2203        }
2204
2205done:
2206        clear_sbus_fast_mode(dd);
2207
2208        return ret;
2209}
2210
2211/*
2212 * Read the GUID from the hardware, store it in dd.
2213 */
2214void read_guid(struct hfi1_devdata *dd)
2215{
2216        /* Take the DC out of reset to get a valid GUID value */
2217        write_csr(dd, CCE_DC_CTRL, 0);
2218        (void)read_csr(dd, CCE_DC_CTRL);
2219
2220        dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2221        dd_dev_info(dd, "GUID %llx",
2222                    (unsigned long long)dd->base_guid);
2223}
2224
2225/* read and display firmware version info */
2226static void dump_fw_version(struct hfi1_devdata *dd)
2227{
2228        u32 pcie_vers[NUM_PCIE_SERDES];
2229        u32 fabric_vers[NUM_FABRIC_SERDES];
2230        u32 sbus_vers;
2231        int i;
2232        int all_same;
2233        int ret;
2234        u8 rcv_addr;
2235
2236        ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2237        if (ret) {
2238                dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2239                return;
2240        }
2241
2242        /* set fast mode */
2243        set_sbus_fast_mode(dd);
2244
2245        /* read version for SBus Master */
2246        sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2247        sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2248        /* wait for interrupt to be processed */
2249        usleep_range(10000, 11000);
2250        sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2251        dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2252
2253        /* read version for PCIe SerDes */
2254        all_same = 1;
2255        pcie_vers[0] = 0;
2256        for (i = 0; i < NUM_PCIE_SERDES; i++) {
2257                rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2258                sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2259                /* wait for interrupt to be processed */
2260                usleep_range(10000, 11000);
2261                pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2262                if (i > 0 && pcie_vers[0] != pcie_vers[i])
2263                        all_same = 0;
2264        }
2265
2266        if (all_same) {
2267                dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2268                            pcie_vers[0]);
2269        } else {
2270                dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2271                for (i = 0; i < NUM_PCIE_SERDES; i++) {
2272                        dd_dev_info(dd,
2273                                    "PCIe SerDes lane %d firmware version 0x%x\n",
2274                                    i, pcie_vers[i]);
2275                }
2276        }
2277
2278        /* read version for fabric SerDes */
2279        all_same = 1;
2280        fabric_vers[0] = 0;
2281        for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2282                rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2283                sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2284                /* wait for interrupt to be processed */
2285                usleep_range(10000, 11000);
2286                fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2287                if (i > 0 && fabric_vers[0] != fabric_vers[i])
2288                        all_same = 0;
2289        }
2290
2291        if (all_same) {
2292                dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2293                            fabric_vers[0]);
2294        } else {
2295                dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2296                for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2297                        dd_dev_info(dd,
2298                                    "Fabric SerDes lane %d firmware version 0x%x\n",
2299                                    i, fabric_vers[i]);
2300                }
2301        }
2302
2303        clear_sbus_fast_mode(dd);
2304        release_chip_resource(dd, CR_SBUS);
2305}
2306