linux/drivers/infiniband/ulp/srpt/ib_srpt.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
   3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/err.h>
  39#include <linux/ctype.h>
  40#include <linux/kthread.h>
  41#include <linux/string.h>
  42#include <linux/delay.h>
  43#include <linux/atomic.h>
  44#include <linux/inet.h>
  45#include <rdma/ib_cache.h>
  46#include <scsi/scsi_proto.h>
  47#include <scsi/scsi_tcq.h>
  48#include <target/target_core_base.h>
  49#include <target/target_core_fabric.h>
  50#include "ib_srpt.h"
  51
  52/* Name of this kernel module. */
  53#define DRV_NAME                "ib_srpt"
  54#define DRV_VERSION             "2.0.0"
  55#define DRV_RELDATE             "2011-02-14"
  56
  57#define SRPT_ID_STRING  "Linux SRP target"
  58
  59#undef pr_fmt
  60#define pr_fmt(fmt) DRV_NAME " " fmt
  61
  62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
  63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
  64                   "v" DRV_VERSION " (" DRV_RELDATE ")");
  65MODULE_LICENSE("Dual BSD/GPL");
  66
  67/*
  68 * Global Variables
  69 */
  70
  71static u64 srpt_service_guid;
  72static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
  73static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
  74
  75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
  76module_param(srp_max_req_size, int, 0444);
  77MODULE_PARM_DESC(srp_max_req_size,
  78                 "Maximum size of SRP request messages in bytes.");
  79
  80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
  81module_param(srpt_srq_size, int, 0444);
  82MODULE_PARM_DESC(srpt_srq_size,
  83                 "Shared receive queue (SRQ) size.");
  84
  85static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
  86{
  87        return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
  88}
  89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
  90                  0444);
  91MODULE_PARM_DESC(srpt_service_guid,
  92                 "Using this value for ioc_guid, id_ext, and cm_listen_id"
  93                 " instead of using the node_guid of the first HCA.");
  94
  95static struct ib_client srpt_client;
  96/* Protects both rdma_cm_port and rdma_cm_id. */
  97static DEFINE_MUTEX(rdma_cm_mutex);
  98/* Port number RDMA/CM will bind to. */
  99static u16 rdma_cm_port;
 100static struct rdma_cm_id *rdma_cm_id;
 101static void srpt_release_cmd(struct se_cmd *se_cmd);
 102static void srpt_free_ch(struct kref *kref);
 103static int srpt_queue_status(struct se_cmd *cmd);
 104static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 105static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
 106static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
 107
 108/*
 109 * The only allowed channel state changes are those that change the channel
 110 * state into a state with a higher numerical value. Hence the new > prev test.
 111 */
 112static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
 113{
 114        unsigned long flags;
 115        enum rdma_ch_state prev;
 116        bool changed = false;
 117
 118        spin_lock_irqsave(&ch->spinlock, flags);
 119        prev = ch->state;
 120        if (new > prev) {
 121                ch->state = new;
 122                changed = true;
 123        }
 124        spin_unlock_irqrestore(&ch->spinlock, flags);
 125
 126        return changed;
 127}
 128
 129/**
 130 * srpt_event_handler - asynchronous IB event callback function
 131 * @handler: IB event handler registered by ib_register_event_handler().
 132 * @event: Description of the event that occurred.
 133 *
 134 * Callback function called by the InfiniBand core when an asynchronous IB
 135 * event occurs. This callback may occur in interrupt context. See also
 136 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 137 * Architecture Specification.
 138 */
 139static void srpt_event_handler(struct ib_event_handler *handler,
 140                               struct ib_event *event)
 141{
 142        struct srpt_device *sdev;
 143        struct srpt_port *sport;
 144        u8 port_num;
 145
 146        sdev = ib_get_client_data(event->device, &srpt_client);
 147        if (!sdev || sdev->device != event->device)
 148                return;
 149
 150        pr_debug("ASYNC event= %d on device= %s\n", event->event,
 151                 sdev->device->name);
 152
 153        switch (event->event) {
 154        case IB_EVENT_PORT_ERR:
 155                port_num = event->element.port_num - 1;
 156                if (port_num < sdev->device->phys_port_cnt) {
 157                        sport = &sdev->port[port_num];
 158                        sport->lid = 0;
 159                        sport->sm_lid = 0;
 160                } else {
 161                        WARN(true, "event %d: port_num %d out of range 1..%d\n",
 162                             event->event, port_num + 1,
 163                             sdev->device->phys_port_cnt);
 164                }
 165                break;
 166        case IB_EVENT_PORT_ACTIVE:
 167        case IB_EVENT_LID_CHANGE:
 168        case IB_EVENT_PKEY_CHANGE:
 169        case IB_EVENT_SM_CHANGE:
 170        case IB_EVENT_CLIENT_REREGISTER:
 171        case IB_EVENT_GID_CHANGE:
 172                /* Refresh port data asynchronously. */
 173                port_num = event->element.port_num - 1;
 174                if (port_num < sdev->device->phys_port_cnt) {
 175                        sport = &sdev->port[port_num];
 176                        if (!sport->lid && !sport->sm_lid)
 177                                schedule_work(&sport->work);
 178                } else {
 179                        WARN(true, "event %d: port_num %d out of range 1..%d\n",
 180                             event->event, port_num + 1,
 181                             sdev->device->phys_port_cnt);
 182                }
 183                break;
 184        default:
 185                pr_err("received unrecognized IB event %d\n", event->event);
 186                break;
 187        }
 188}
 189
 190/**
 191 * srpt_srq_event - SRQ event callback function
 192 * @event: Description of the event that occurred.
 193 * @ctx: Context pointer specified at SRQ creation time.
 194 */
 195static void srpt_srq_event(struct ib_event *event, void *ctx)
 196{
 197        pr_debug("SRQ event %d\n", event->event);
 198}
 199
 200static const char *get_ch_state_name(enum rdma_ch_state s)
 201{
 202        switch (s) {
 203        case CH_CONNECTING:
 204                return "connecting";
 205        case CH_LIVE:
 206                return "live";
 207        case CH_DISCONNECTING:
 208                return "disconnecting";
 209        case CH_DRAINING:
 210                return "draining";
 211        case CH_DISCONNECTED:
 212                return "disconnected";
 213        }
 214        return "???";
 215}
 216
 217/**
 218 * srpt_qp_event - QP event callback function
 219 * @event: Description of the event that occurred.
 220 * @ch: SRPT RDMA channel.
 221 */
 222static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
 223{
 224        pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n",
 225                 event->event, ch, ch->sess_name, ch->state);
 226
 227        switch (event->event) {
 228        case IB_EVENT_COMM_EST:
 229                if (ch->using_rdma_cm)
 230                        rdma_notify(ch->rdma_cm.cm_id, event->event);
 231                else
 232                        ib_cm_notify(ch->ib_cm.cm_id, event->event);
 233                break;
 234        case IB_EVENT_QP_LAST_WQE_REACHED:
 235                pr_debug("%s-%d, state %s: received Last WQE event.\n",
 236                         ch->sess_name, ch->qp->qp_num,
 237                         get_ch_state_name(ch->state));
 238                break;
 239        default:
 240                pr_err("received unrecognized IB QP event %d\n", event->event);
 241                break;
 242        }
 243}
 244
 245/**
 246 * srpt_set_ioc - initialize a IOUnitInfo structure
 247 * @c_list: controller list.
 248 * @slot: one-based slot number.
 249 * @value: four-bit value.
 250 *
 251 * Copies the lowest four bits of value in element slot of the array of four
 252 * bit elements called c_list (controller list). The index slot is one-based.
 253 */
 254static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
 255{
 256        u16 id;
 257        u8 tmp;
 258
 259        id = (slot - 1) / 2;
 260        if (slot & 0x1) {
 261                tmp = c_list[id] & 0xf;
 262                c_list[id] = (value << 4) | tmp;
 263        } else {
 264                tmp = c_list[id] & 0xf0;
 265                c_list[id] = (value & 0xf) | tmp;
 266        }
 267}
 268
 269/**
 270 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 271 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
 272 *
 273 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 274 * Specification.
 275 */
 276static void srpt_get_class_port_info(struct ib_dm_mad *mad)
 277{
 278        struct ib_class_port_info *cif;
 279
 280        cif = (struct ib_class_port_info *)mad->data;
 281        memset(cif, 0, sizeof(*cif));
 282        cif->base_version = 1;
 283        cif->class_version = 1;
 284
 285        ib_set_cpi_resp_time(cif, 20);
 286        mad->mad_hdr.status = 0;
 287}
 288
 289/**
 290 * srpt_get_iou - write IOUnitInfo to a management datagram
 291 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
 292 *
 293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 295 */
 296static void srpt_get_iou(struct ib_dm_mad *mad)
 297{
 298        struct ib_dm_iou_info *ioui;
 299        u8 slot;
 300        int i;
 301
 302        ioui = (struct ib_dm_iou_info *)mad->data;
 303        ioui->change_id = cpu_to_be16(1);
 304        ioui->max_controllers = 16;
 305
 306        /* set present for slot 1 and empty for the rest */
 307        srpt_set_ioc(ioui->controller_list, 1, 1);
 308        for (i = 1, slot = 2; i < 16; i++, slot++)
 309                srpt_set_ioc(ioui->controller_list, slot, 0);
 310
 311        mad->mad_hdr.status = 0;
 312}
 313
 314/**
 315 * srpt_get_ioc - write IOControllerprofile to a management datagram
 316 * @sport: HCA port through which the MAD has been received.
 317 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 318 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
 319 *
 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 321 * Architecture Specification. See also section B.7, table B.7 in the SRP
 322 * r16a document.
 323 */
 324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
 325                         struct ib_dm_mad *mad)
 326{
 327        struct srpt_device *sdev = sport->sdev;
 328        struct ib_dm_ioc_profile *iocp;
 329        int send_queue_depth;
 330
 331        iocp = (struct ib_dm_ioc_profile *)mad->data;
 332
 333        if (!slot || slot > 16) {
 334                mad->mad_hdr.status
 335                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 336                return;
 337        }
 338
 339        if (slot > 2) {
 340                mad->mad_hdr.status
 341                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 342                return;
 343        }
 344
 345        if (sdev->use_srq)
 346                send_queue_depth = sdev->srq_size;
 347        else
 348                send_queue_depth = min(MAX_SRPT_RQ_SIZE,
 349                                       sdev->device->attrs.max_qp_wr);
 350
 351        memset(iocp, 0, sizeof(*iocp));
 352        strcpy(iocp->id_string, SRPT_ID_STRING);
 353        iocp->guid = cpu_to_be64(srpt_service_guid);
 354        iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
 355        iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
 356        iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
 357        iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
 358        iocp->subsys_device_id = 0x0;
 359        iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
 360        iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
 361        iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
 362        iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
 363        iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
 364        iocp->rdma_read_depth = 4;
 365        iocp->send_size = cpu_to_be32(srp_max_req_size);
 366        iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
 367                                          1U << 24));
 368        iocp->num_svc_entries = 1;
 369        iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
 370                SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
 371
 372        mad->mad_hdr.status = 0;
 373}
 374
 375/**
 376 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 377 * @ioc_guid: I/O controller GUID to use in reply.
 378 * @slot: I/O controller number.
 379 * @hi: End of the range of service entries to be specified in the reply.
 380 * @lo: Start of the range of service entries to be specified in the reply..
 381 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
 382 *
 383 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 384 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 385 */
 386static void srpt_get_svc_entries(u64 ioc_guid,
 387                                 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
 388{
 389        struct ib_dm_svc_entries *svc_entries;
 390
 391        WARN_ON(!ioc_guid);
 392
 393        if (!slot || slot > 16) {
 394                mad->mad_hdr.status
 395                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 396                return;
 397        }
 398
 399        if (slot > 2 || lo > hi || hi > 1) {
 400                mad->mad_hdr.status
 401                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 402                return;
 403        }
 404
 405        svc_entries = (struct ib_dm_svc_entries *)mad->data;
 406        memset(svc_entries, 0, sizeof(*svc_entries));
 407        svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
 408        snprintf(svc_entries->service_entries[0].name,
 409                 sizeof(svc_entries->service_entries[0].name),
 410                 "%s%016llx",
 411                 SRP_SERVICE_NAME_PREFIX,
 412                 ioc_guid);
 413
 414        mad->mad_hdr.status = 0;
 415}
 416
 417/**
 418 * srpt_mgmt_method_get - process a received management datagram
 419 * @sp:      HCA port through which the MAD has been received.
 420 * @rq_mad:  received MAD.
 421 * @rsp_mad: response MAD.
 422 */
 423static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
 424                                 struct ib_dm_mad *rsp_mad)
 425{
 426        u16 attr_id;
 427        u32 slot;
 428        u8 hi, lo;
 429
 430        attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
 431        switch (attr_id) {
 432        case DM_ATTR_CLASS_PORT_INFO:
 433                srpt_get_class_port_info(rsp_mad);
 434                break;
 435        case DM_ATTR_IOU_INFO:
 436                srpt_get_iou(rsp_mad);
 437                break;
 438        case DM_ATTR_IOC_PROFILE:
 439                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 440                srpt_get_ioc(sp, slot, rsp_mad);
 441                break;
 442        case DM_ATTR_SVC_ENTRIES:
 443                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 444                hi = (u8) ((slot >> 8) & 0xff);
 445                lo = (u8) (slot & 0xff);
 446                slot = (u16) ((slot >> 16) & 0xffff);
 447                srpt_get_svc_entries(srpt_service_guid,
 448                                     slot, hi, lo, rsp_mad);
 449                break;
 450        default:
 451                rsp_mad->mad_hdr.status =
 452                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 453                break;
 454        }
 455}
 456
 457/**
 458 * srpt_mad_send_handler - MAD send completion callback
 459 * @mad_agent: Return value of ib_register_mad_agent().
 460 * @mad_wc: Work completion reporting that the MAD has been sent.
 461 */
 462static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
 463                                  struct ib_mad_send_wc *mad_wc)
 464{
 465        rdma_destroy_ah(mad_wc->send_buf->ah);
 466        ib_free_send_mad(mad_wc->send_buf);
 467}
 468
 469/**
 470 * srpt_mad_recv_handler - MAD reception callback function
 471 * @mad_agent: Return value of ib_register_mad_agent().
 472 * @send_buf: Not used.
 473 * @mad_wc: Work completion reporting that a MAD has been received.
 474 */
 475static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
 476                                  struct ib_mad_send_buf *send_buf,
 477                                  struct ib_mad_recv_wc *mad_wc)
 478{
 479        struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
 480        struct ib_ah *ah;
 481        struct ib_mad_send_buf *rsp;
 482        struct ib_dm_mad *dm_mad;
 483
 484        if (!mad_wc || !mad_wc->recv_buf.mad)
 485                return;
 486
 487        ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
 488                                  mad_wc->recv_buf.grh, mad_agent->port_num);
 489        if (IS_ERR(ah))
 490                goto err;
 491
 492        BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
 493
 494        rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
 495                                 mad_wc->wc->pkey_index, 0,
 496                                 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
 497                                 GFP_KERNEL,
 498                                 IB_MGMT_BASE_VERSION);
 499        if (IS_ERR(rsp))
 500                goto err_rsp;
 501
 502        rsp->ah = ah;
 503
 504        dm_mad = rsp->mad;
 505        memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
 506        dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
 507        dm_mad->mad_hdr.status = 0;
 508
 509        switch (mad_wc->recv_buf.mad->mad_hdr.method) {
 510        case IB_MGMT_METHOD_GET:
 511                srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
 512                break;
 513        case IB_MGMT_METHOD_SET:
 514                dm_mad->mad_hdr.status =
 515                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 516                break;
 517        default:
 518                dm_mad->mad_hdr.status =
 519                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
 520                break;
 521        }
 522
 523        if (!ib_post_send_mad(rsp, NULL)) {
 524                ib_free_recv_mad(mad_wc);
 525                /* will destroy_ah & free_send_mad in send completion */
 526                return;
 527        }
 528
 529        ib_free_send_mad(rsp);
 530
 531err_rsp:
 532        rdma_destroy_ah(ah);
 533err:
 534        ib_free_recv_mad(mad_wc);
 535}
 536
 537static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
 538{
 539        const __be16 *g = (const __be16 *)guid;
 540
 541        return snprintf(buf, size, "%04x:%04x:%04x:%04x",
 542                        be16_to_cpu(g[0]), be16_to_cpu(g[1]),
 543                        be16_to_cpu(g[2]), be16_to_cpu(g[3]));
 544}
 545
 546/**
 547 * srpt_refresh_port - configure a HCA port
 548 * @sport: SRPT HCA port.
 549 *
 550 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 551 * lid and gid values, and register a callback function for processing MADs
 552 * on the specified port.
 553 *
 554 * Note: It is safe to call this function more than once for the same port.
 555 */
 556static int srpt_refresh_port(struct srpt_port *sport)
 557{
 558        struct ib_mad_reg_req reg_req;
 559        struct ib_port_modify port_modify;
 560        struct ib_port_attr port_attr;
 561        int ret;
 562
 563        memset(&port_modify, 0, sizeof(port_modify));
 564        port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 565        port_modify.clr_port_cap_mask = 0;
 566
 567        ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 568        if (ret)
 569                goto err_mod_port;
 570
 571        ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
 572        if (ret)
 573                goto err_query_port;
 574
 575        sport->sm_lid = port_attr.sm_lid;
 576        sport->lid = port_attr.lid;
 577
 578        ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
 579        if (ret)
 580                goto err_query_port;
 581
 582        sport->port_guid_wwn.priv = sport;
 583        srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
 584                         &sport->gid.global.interface_id);
 585        sport->port_gid_wwn.priv = sport;
 586        snprintf(sport->port_gid, sizeof(sport->port_gid),
 587                 "0x%016llx%016llx",
 588                 be64_to_cpu(sport->gid.global.subnet_prefix),
 589                 be64_to_cpu(sport->gid.global.interface_id));
 590
 591        if (!sport->mad_agent) {
 592                memset(&reg_req, 0, sizeof(reg_req));
 593                reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
 594                reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
 595                set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
 596                set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
 597
 598                sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
 599                                                         sport->port,
 600                                                         IB_QPT_GSI,
 601                                                         &reg_req, 0,
 602                                                         srpt_mad_send_handler,
 603                                                         srpt_mad_recv_handler,
 604                                                         sport, 0);
 605                if (IS_ERR(sport->mad_agent)) {
 606                        ret = PTR_ERR(sport->mad_agent);
 607                        sport->mad_agent = NULL;
 608                        goto err_query_port;
 609                }
 610        }
 611
 612        return 0;
 613
 614err_query_port:
 615
 616        port_modify.set_port_cap_mask = 0;
 617        port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 618        ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 619
 620err_mod_port:
 621
 622        return ret;
 623}
 624
 625/**
 626 * srpt_unregister_mad_agent - unregister MAD callback functions
 627 * @sdev: SRPT HCA pointer.
 628 *
 629 * Note: It is safe to call this function more than once for the same device.
 630 */
 631static void srpt_unregister_mad_agent(struct srpt_device *sdev)
 632{
 633        struct ib_port_modify port_modify = {
 634                .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
 635        };
 636        struct srpt_port *sport;
 637        int i;
 638
 639        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
 640                sport = &sdev->port[i - 1];
 641                WARN_ON(sport->port != i);
 642                if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
 643                        pr_err("disabling MAD processing failed.\n");
 644                if (sport->mad_agent) {
 645                        ib_unregister_mad_agent(sport->mad_agent);
 646                        sport->mad_agent = NULL;
 647                }
 648        }
 649}
 650
 651/**
 652 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 653 * @sdev: SRPT HCA pointer.
 654 * @ioctx_size: I/O context size.
 655 * @dma_size: Size of I/O context DMA buffer.
 656 * @dir: DMA data direction.
 657 */
 658static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
 659                                           int ioctx_size, int dma_size,
 660                                           enum dma_data_direction dir)
 661{
 662        struct srpt_ioctx *ioctx;
 663
 664        ioctx = kmalloc(ioctx_size, GFP_KERNEL);
 665        if (!ioctx)
 666                goto err;
 667
 668        ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
 669        if (!ioctx->buf)
 670                goto err_free_ioctx;
 671
 672        ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
 673        if (ib_dma_mapping_error(sdev->device, ioctx->dma))
 674                goto err_free_buf;
 675
 676        return ioctx;
 677
 678err_free_buf:
 679        kfree(ioctx->buf);
 680err_free_ioctx:
 681        kfree(ioctx);
 682err:
 683        return NULL;
 684}
 685
 686/**
 687 * srpt_free_ioctx - free a SRPT I/O context structure
 688 * @sdev: SRPT HCA pointer.
 689 * @ioctx: I/O context pointer.
 690 * @dma_size: Size of I/O context DMA buffer.
 691 * @dir: DMA data direction.
 692 */
 693static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
 694                            int dma_size, enum dma_data_direction dir)
 695{
 696        if (!ioctx)
 697                return;
 698
 699        ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
 700        kfree(ioctx->buf);
 701        kfree(ioctx);
 702}
 703
 704/**
 705 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
 706 * @sdev:       Device to allocate the I/O context ring for.
 707 * @ring_size:  Number of elements in the I/O context ring.
 708 * @ioctx_size: I/O context size.
 709 * @dma_size:   DMA buffer size.
 710 * @dir:        DMA data direction.
 711 */
 712static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
 713                                int ring_size, int ioctx_size,
 714                                int dma_size, enum dma_data_direction dir)
 715{
 716        struct srpt_ioctx **ring;
 717        int i;
 718
 719        WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
 720                && ioctx_size != sizeof(struct srpt_send_ioctx));
 721
 722        ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
 723        if (!ring)
 724                goto out;
 725        for (i = 0; i < ring_size; ++i) {
 726                ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
 727                if (!ring[i])
 728                        goto err;
 729                ring[i]->index = i;
 730        }
 731        goto out;
 732
 733err:
 734        while (--i >= 0)
 735                srpt_free_ioctx(sdev, ring[i], dma_size, dir);
 736        kvfree(ring);
 737        ring = NULL;
 738out:
 739        return ring;
 740}
 741
 742/**
 743 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 744 * @ioctx_ring: I/O context ring to be freed.
 745 * @sdev: SRPT HCA pointer.
 746 * @ring_size: Number of ring elements.
 747 * @dma_size: Size of I/O context DMA buffer.
 748 * @dir: DMA data direction.
 749 */
 750static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
 751                                 struct srpt_device *sdev, int ring_size,
 752                                 int dma_size, enum dma_data_direction dir)
 753{
 754        int i;
 755
 756        if (!ioctx_ring)
 757                return;
 758
 759        for (i = 0; i < ring_size; ++i)
 760                srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
 761        kvfree(ioctx_ring);
 762}
 763
 764/**
 765 * srpt_set_cmd_state - set the state of a SCSI command
 766 * @ioctx: Send I/O context.
 767 * @new: New I/O context state.
 768 *
 769 * Does not modify the state of aborted commands. Returns the previous command
 770 * state.
 771 */
 772static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
 773                                                  enum srpt_command_state new)
 774{
 775        enum srpt_command_state previous;
 776
 777        previous = ioctx->state;
 778        if (previous != SRPT_STATE_DONE)
 779                ioctx->state = new;
 780
 781        return previous;
 782}
 783
 784/**
 785 * srpt_test_and_set_cmd_state - test and set the state of a command
 786 * @ioctx: Send I/O context.
 787 * @old: Current I/O context state.
 788 * @new: New I/O context state.
 789 *
 790 * Returns true if and only if the previous command state was equal to 'old'.
 791 */
 792static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
 793                                        enum srpt_command_state old,
 794                                        enum srpt_command_state new)
 795{
 796        enum srpt_command_state previous;
 797
 798        WARN_ON(!ioctx);
 799        WARN_ON(old == SRPT_STATE_DONE);
 800        WARN_ON(new == SRPT_STATE_NEW);
 801
 802        previous = ioctx->state;
 803        if (previous == old)
 804                ioctx->state = new;
 805
 806        return previous == old;
 807}
 808
 809/**
 810 * srpt_post_recv - post an IB receive request
 811 * @sdev: SRPT HCA pointer.
 812 * @ch: SRPT RDMA channel.
 813 * @ioctx: Receive I/O context pointer.
 814 */
 815static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
 816                          struct srpt_recv_ioctx *ioctx)
 817{
 818        struct ib_sge list;
 819        struct ib_recv_wr wr;
 820
 821        BUG_ON(!sdev);
 822        list.addr = ioctx->ioctx.dma;
 823        list.length = srp_max_req_size;
 824        list.lkey = sdev->lkey;
 825
 826        ioctx->ioctx.cqe.done = srpt_recv_done;
 827        wr.wr_cqe = &ioctx->ioctx.cqe;
 828        wr.next = NULL;
 829        wr.sg_list = &list;
 830        wr.num_sge = 1;
 831
 832        if (sdev->use_srq)
 833                return ib_post_srq_recv(sdev->srq, &wr, NULL);
 834        else
 835                return ib_post_recv(ch->qp, &wr, NULL);
 836}
 837
 838/**
 839 * srpt_zerolength_write - perform a zero-length RDMA write
 840 * @ch: SRPT RDMA channel.
 841 *
 842 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 843 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 844 * request, the R_Key shall not be validated, even if the request includes
 845 * Immediate data.
 846 */
 847static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
 848{
 849        struct ib_rdma_wr wr = {
 850                .wr = {
 851                        .next           = NULL,
 852                        { .wr_cqe       = &ch->zw_cqe, },
 853                        .opcode         = IB_WR_RDMA_WRITE,
 854                        .send_flags     = IB_SEND_SIGNALED,
 855                }
 856        };
 857
 858        pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
 859                 ch->qp->qp_num);
 860
 861        return ib_post_send(ch->qp, &wr.wr, NULL);
 862}
 863
 864static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
 865{
 866        struct srpt_rdma_ch *ch = cq->cq_context;
 867
 868        pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
 869                 wc->status);
 870
 871        if (wc->status == IB_WC_SUCCESS) {
 872                srpt_process_wait_list(ch);
 873        } else {
 874                if (srpt_set_ch_state(ch, CH_DISCONNECTED))
 875                        schedule_work(&ch->release_work);
 876                else
 877                        pr_debug("%s-%d: already disconnected.\n",
 878                                 ch->sess_name, ch->qp->qp_num);
 879        }
 880}
 881
 882static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
 883                struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
 884                unsigned *sg_cnt)
 885{
 886        enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
 887        struct srpt_rdma_ch *ch = ioctx->ch;
 888        struct scatterlist *prev = NULL;
 889        unsigned prev_nents;
 890        int ret, i;
 891
 892        if (nbufs == 1) {
 893                ioctx->rw_ctxs = &ioctx->s_rw_ctx;
 894        } else {
 895                ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
 896                        GFP_KERNEL);
 897                if (!ioctx->rw_ctxs)
 898                        return -ENOMEM;
 899        }
 900
 901        for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
 902                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 903                u64 remote_addr = be64_to_cpu(db->va);
 904                u32 size = be32_to_cpu(db->len);
 905                u32 rkey = be32_to_cpu(db->key);
 906
 907                ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
 908                                i < nbufs - 1);
 909                if (ret)
 910                        goto unwind;
 911
 912                ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
 913                                ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
 914                if (ret < 0) {
 915                        target_free_sgl(ctx->sg, ctx->nents);
 916                        goto unwind;
 917                }
 918
 919                ioctx->n_rdma += ret;
 920                ioctx->n_rw_ctx++;
 921
 922                if (prev) {
 923                        sg_unmark_end(&prev[prev_nents - 1]);
 924                        sg_chain(prev, prev_nents + 1, ctx->sg);
 925                } else {
 926                        *sg = ctx->sg;
 927                }
 928
 929                prev = ctx->sg;
 930                prev_nents = ctx->nents;
 931
 932                *sg_cnt += ctx->nents;
 933        }
 934
 935        return 0;
 936
 937unwind:
 938        while (--i >= 0) {
 939                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 940
 941                rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
 942                                ctx->sg, ctx->nents, dir);
 943                target_free_sgl(ctx->sg, ctx->nents);
 944        }
 945        if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
 946                kfree(ioctx->rw_ctxs);
 947        return ret;
 948}
 949
 950static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
 951                                    struct srpt_send_ioctx *ioctx)
 952{
 953        enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
 954        int i;
 955
 956        for (i = 0; i < ioctx->n_rw_ctx; i++) {
 957                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 958
 959                rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
 960                                ctx->sg, ctx->nents, dir);
 961                target_free_sgl(ctx->sg, ctx->nents);
 962        }
 963
 964        if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
 965                kfree(ioctx->rw_ctxs);
 966}
 967
 968static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
 969{
 970        /*
 971         * The pointer computations below will only be compiled correctly
 972         * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
 973         * whether srp_cmd::add_data has been declared as a byte pointer.
 974         */
 975        BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
 976                     !__same_type(srp_cmd->add_data[0], (u8)0));
 977
 978        /*
 979         * According to the SRP spec, the lower two bits of the 'ADDITIONAL
 980         * CDB LENGTH' field are reserved and the size in bytes of this field
 981         * is four times the value specified in bits 3..7. Hence the "& ~3".
 982         */
 983        return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
 984}
 985
 986/**
 987 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
 988 * @ioctx: Pointer to the I/O context associated with the request.
 989 * @srp_cmd: Pointer to the SRP_CMD request data.
 990 * @dir: Pointer to the variable to which the transfer direction will be
 991 *   written.
 992 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 993 * @sg_cnt: [out] length of @sg.
 994 * @data_len: Pointer to the variable to which the total data length of all
 995 *   descriptors in the SRP_CMD request will be written.
 996 *
 997 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 998 *
 999 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1000 * -ENOMEM when memory allocation fails and zero upon success.
1001 */
1002static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
1003                struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1004                struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
1005{
1006        BUG_ON(!dir);
1007        BUG_ON(!data_len);
1008
1009        /*
1010         * The lower four bits of the buffer format field contain the DATA-IN
1011         * buffer descriptor format, and the highest four bits contain the
1012         * DATA-OUT buffer descriptor format.
1013         */
1014        if (srp_cmd->buf_fmt & 0xf)
1015                /* DATA-IN: transfer data from target to initiator (read). */
1016                *dir = DMA_FROM_DEVICE;
1017        else if (srp_cmd->buf_fmt >> 4)
1018                /* DATA-OUT: transfer data from initiator to target (write). */
1019                *dir = DMA_TO_DEVICE;
1020        else
1021                *dir = DMA_NONE;
1022
1023        /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1024        ioctx->cmd.data_direction = *dir;
1025
1026        if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1027            ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1028                struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1029
1030                *data_len = be32_to_cpu(db->len);
1031                return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1032        } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1033                   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1034                struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1035                int nbufs = be32_to_cpu(idb->table_desc.len) /
1036                                sizeof(struct srp_direct_buf);
1037
1038                if (nbufs >
1039                    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1040                        pr_err("received unsupported SRP_CMD request"
1041                               " type (%u out + %u in != %u / %zu)\n",
1042                               srp_cmd->data_out_desc_cnt,
1043                               srp_cmd->data_in_desc_cnt,
1044                               be32_to_cpu(idb->table_desc.len),
1045                               sizeof(struct srp_direct_buf));
1046                        return -EINVAL;
1047                }
1048
1049                *data_len = be32_to_cpu(idb->len);
1050                return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1051                                sg, sg_cnt);
1052        } else {
1053                *data_len = 0;
1054                return 0;
1055        }
1056}
1057
1058/**
1059 * srpt_init_ch_qp - initialize queue pair attributes
1060 * @ch: SRPT RDMA channel.
1061 * @qp: Queue pair pointer.
1062 *
1063 * Initialized the attributes of queue pair 'qp' by allowing local write,
1064 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1065 */
1066static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1067{
1068        struct ib_qp_attr *attr;
1069        int ret;
1070
1071        WARN_ON_ONCE(ch->using_rdma_cm);
1072
1073        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1074        if (!attr)
1075                return -ENOMEM;
1076
1077        attr->qp_state = IB_QPS_INIT;
1078        attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1079        attr->port_num = ch->sport->port;
1080
1081        ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1082                                  ch->pkey, &attr->pkey_index);
1083        if (ret < 0)
1084                pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1085                       ch->pkey, ret);
1086
1087        ret = ib_modify_qp(qp, attr,
1088                           IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1089                           IB_QP_PKEY_INDEX);
1090
1091        kfree(attr);
1092        return ret;
1093}
1094
1095/**
1096 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1097 * @ch: channel of the queue pair.
1098 * @qp: queue pair to change the state of.
1099 *
1100 * Returns zero upon success and a negative value upon failure.
1101 *
1102 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1103 * If this structure ever becomes larger, it might be necessary to allocate
1104 * it dynamically instead of on the stack.
1105 */
1106static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1107{
1108        struct ib_qp_attr qp_attr;
1109        int attr_mask;
1110        int ret;
1111
1112        WARN_ON_ONCE(ch->using_rdma_cm);
1113
1114        qp_attr.qp_state = IB_QPS_RTR;
1115        ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1116        if (ret)
1117                goto out;
1118
1119        qp_attr.max_dest_rd_atomic = 4;
1120
1121        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1122
1123out:
1124        return ret;
1125}
1126
1127/**
1128 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1129 * @ch: channel of the queue pair.
1130 * @qp: queue pair to change the state of.
1131 *
1132 * Returns zero upon success and a negative value upon failure.
1133 *
1134 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1135 * If this structure ever becomes larger, it might be necessary to allocate
1136 * it dynamically instead of on the stack.
1137 */
1138static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1139{
1140        struct ib_qp_attr qp_attr;
1141        int attr_mask;
1142        int ret;
1143
1144        qp_attr.qp_state = IB_QPS_RTS;
1145        ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1146        if (ret)
1147                goto out;
1148
1149        qp_attr.max_rd_atomic = 4;
1150
1151        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1152
1153out:
1154        return ret;
1155}
1156
1157/**
1158 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1159 * @ch: SRPT RDMA channel.
1160 */
1161static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1162{
1163        struct ib_qp_attr qp_attr;
1164
1165        qp_attr.qp_state = IB_QPS_ERR;
1166        return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1167}
1168
1169/**
1170 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1171 * @ch: SRPT RDMA channel.
1172 */
1173static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1174{
1175        struct srpt_send_ioctx *ioctx;
1176        unsigned long flags;
1177
1178        BUG_ON(!ch);
1179
1180        ioctx = NULL;
1181        spin_lock_irqsave(&ch->spinlock, flags);
1182        if (!list_empty(&ch->free_list)) {
1183                ioctx = list_first_entry(&ch->free_list,
1184                                         struct srpt_send_ioctx, free_list);
1185                list_del(&ioctx->free_list);
1186        }
1187        spin_unlock_irqrestore(&ch->spinlock, flags);
1188
1189        if (!ioctx)
1190                return ioctx;
1191
1192        BUG_ON(ioctx->ch != ch);
1193        ioctx->state = SRPT_STATE_NEW;
1194        ioctx->n_rdma = 0;
1195        ioctx->n_rw_ctx = 0;
1196        ioctx->queue_status_only = false;
1197        /*
1198         * transport_init_se_cmd() does not initialize all fields, so do it
1199         * here.
1200         */
1201        memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1202        memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1203
1204        return ioctx;
1205}
1206
1207/**
1208 * srpt_abort_cmd - abort a SCSI command
1209 * @ioctx:   I/O context associated with the SCSI command.
1210 */
1211static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1212{
1213        enum srpt_command_state state;
1214
1215        BUG_ON(!ioctx);
1216
1217        /*
1218         * If the command is in a state where the target core is waiting for
1219         * the ib_srpt driver, change the state to the next state.
1220         */
1221
1222        state = ioctx->state;
1223        switch (state) {
1224        case SRPT_STATE_NEED_DATA:
1225                ioctx->state = SRPT_STATE_DATA_IN;
1226                break;
1227        case SRPT_STATE_CMD_RSP_SENT:
1228        case SRPT_STATE_MGMT_RSP_SENT:
1229                ioctx->state = SRPT_STATE_DONE;
1230                break;
1231        default:
1232                WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1233                          __func__, state);
1234                break;
1235        }
1236
1237        pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1238                 ioctx->state, ioctx->cmd.tag);
1239
1240        switch (state) {
1241        case SRPT_STATE_NEW:
1242        case SRPT_STATE_DATA_IN:
1243        case SRPT_STATE_MGMT:
1244        case SRPT_STATE_DONE:
1245                /*
1246                 * Do nothing - defer abort processing until
1247                 * srpt_queue_response() is invoked.
1248                 */
1249                break;
1250        case SRPT_STATE_NEED_DATA:
1251                pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1252                transport_generic_request_failure(&ioctx->cmd,
1253                                        TCM_CHECK_CONDITION_ABORT_CMD);
1254                break;
1255        case SRPT_STATE_CMD_RSP_SENT:
1256                /*
1257                 * SRP_RSP sending failed or the SRP_RSP send completion has
1258                 * not been received in time.
1259                 */
1260                transport_generic_free_cmd(&ioctx->cmd, 0);
1261                break;
1262        case SRPT_STATE_MGMT_RSP_SENT:
1263                transport_generic_free_cmd(&ioctx->cmd, 0);
1264                break;
1265        default:
1266                WARN(1, "Unexpected command state (%d)", state);
1267                break;
1268        }
1269
1270        return state;
1271}
1272
1273/**
1274 * srpt_rdma_read_done - RDMA read completion callback
1275 * @cq: Completion queue.
1276 * @wc: Work completion.
1277 *
1278 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1279 * the data that has been transferred via IB RDMA had to be postponed until the
1280 * check_stop_free() callback.  None of this is necessary anymore and needs to
1281 * be cleaned up.
1282 */
1283static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1284{
1285        struct srpt_rdma_ch *ch = cq->cq_context;
1286        struct srpt_send_ioctx *ioctx =
1287                container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1288
1289        WARN_ON(ioctx->n_rdma <= 0);
1290        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1291        ioctx->n_rdma = 0;
1292
1293        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1294                pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1295                        ioctx, wc->status);
1296                srpt_abort_cmd(ioctx);
1297                return;
1298        }
1299
1300        if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1301                                        SRPT_STATE_DATA_IN))
1302                target_execute_cmd(&ioctx->cmd);
1303        else
1304                pr_err("%s[%d]: wrong state = %d\n", __func__,
1305                       __LINE__, ioctx->state);
1306}
1307
1308/**
1309 * srpt_build_cmd_rsp - build a SRP_RSP response
1310 * @ch: RDMA channel through which the request has been received.
1311 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1312 *   be built in the buffer ioctx->buf points at and hence this function will
1313 *   overwrite the request data.
1314 * @tag: tag of the request for which this response is being generated.
1315 * @status: value for the STATUS field of the SRP_RSP information unit.
1316 *
1317 * Returns the size in bytes of the SRP_RSP response.
1318 *
1319 * An SRP_RSP response contains a SCSI status or service response. See also
1320 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1321 * response. See also SPC-2 for more information about sense data.
1322 */
1323static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1324                              struct srpt_send_ioctx *ioctx, u64 tag,
1325                              int status)
1326{
1327        struct srp_rsp *srp_rsp;
1328        const u8 *sense_data;
1329        int sense_data_len, max_sense_len;
1330
1331        /*
1332         * The lowest bit of all SAM-3 status codes is zero (see also
1333         * paragraph 5.3 in SAM-3).
1334         */
1335        WARN_ON(status & 1);
1336
1337        srp_rsp = ioctx->ioctx.buf;
1338        BUG_ON(!srp_rsp);
1339
1340        sense_data = ioctx->sense_data;
1341        sense_data_len = ioctx->cmd.scsi_sense_length;
1342        WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1343
1344        memset(srp_rsp, 0, sizeof(*srp_rsp));
1345        srp_rsp->opcode = SRP_RSP;
1346        srp_rsp->req_lim_delta =
1347                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1348        srp_rsp->tag = tag;
1349        srp_rsp->status = status;
1350
1351        if (sense_data_len) {
1352                BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1353                max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1354                if (sense_data_len > max_sense_len) {
1355                        pr_warn("truncated sense data from %d to %d"
1356                                " bytes\n", sense_data_len, max_sense_len);
1357                        sense_data_len = max_sense_len;
1358                }
1359
1360                srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1361                srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1362                memcpy(srp_rsp + 1, sense_data, sense_data_len);
1363        }
1364
1365        return sizeof(*srp_rsp) + sense_data_len;
1366}
1367
1368/**
1369 * srpt_build_tskmgmt_rsp - build a task management response
1370 * @ch:       RDMA channel through which the request has been received.
1371 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1372 * @rsp_code: RSP_CODE that will be stored in the response.
1373 * @tag:      Tag of the request for which this response is being generated.
1374 *
1375 * Returns the size in bytes of the SRP_RSP response.
1376 *
1377 * An SRP_RSP response contains a SCSI status or service response. See also
1378 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1379 * response.
1380 */
1381static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1382                                  struct srpt_send_ioctx *ioctx,
1383                                  u8 rsp_code, u64 tag)
1384{
1385        struct srp_rsp *srp_rsp;
1386        int resp_data_len;
1387        int resp_len;
1388
1389        resp_data_len = 4;
1390        resp_len = sizeof(*srp_rsp) + resp_data_len;
1391
1392        srp_rsp = ioctx->ioctx.buf;
1393        BUG_ON(!srp_rsp);
1394        memset(srp_rsp, 0, sizeof(*srp_rsp));
1395
1396        srp_rsp->opcode = SRP_RSP;
1397        srp_rsp->req_lim_delta =
1398                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1399        srp_rsp->tag = tag;
1400
1401        srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1402        srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1403        srp_rsp->data[3] = rsp_code;
1404
1405        return resp_len;
1406}
1407
1408static int srpt_check_stop_free(struct se_cmd *cmd)
1409{
1410        struct srpt_send_ioctx *ioctx = container_of(cmd,
1411                                struct srpt_send_ioctx, cmd);
1412
1413        return target_put_sess_cmd(&ioctx->cmd);
1414}
1415
1416/**
1417 * srpt_handle_cmd - process a SRP_CMD information unit
1418 * @ch: SRPT RDMA channel.
1419 * @recv_ioctx: Receive I/O context.
1420 * @send_ioctx: Send I/O context.
1421 */
1422static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1423                            struct srpt_recv_ioctx *recv_ioctx,
1424                            struct srpt_send_ioctx *send_ioctx)
1425{
1426        struct se_cmd *cmd;
1427        struct srp_cmd *srp_cmd;
1428        struct scatterlist *sg = NULL;
1429        unsigned sg_cnt = 0;
1430        u64 data_len;
1431        enum dma_data_direction dir;
1432        int rc;
1433
1434        BUG_ON(!send_ioctx);
1435
1436        srp_cmd = recv_ioctx->ioctx.buf;
1437        cmd = &send_ioctx->cmd;
1438        cmd->tag = srp_cmd->tag;
1439
1440        switch (srp_cmd->task_attr) {
1441        case SRP_CMD_SIMPLE_Q:
1442                cmd->sam_task_attr = TCM_SIMPLE_TAG;
1443                break;
1444        case SRP_CMD_ORDERED_Q:
1445        default:
1446                cmd->sam_task_attr = TCM_ORDERED_TAG;
1447                break;
1448        case SRP_CMD_HEAD_OF_Q:
1449                cmd->sam_task_attr = TCM_HEAD_TAG;
1450                break;
1451        case SRP_CMD_ACA:
1452                cmd->sam_task_attr = TCM_ACA_TAG;
1453                break;
1454        }
1455
1456        rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
1457                        &data_len);
1458        if (rc) {
1459                if (rc != -EAGAIN) {
1460                        pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1461                               srp_cmd->tag);
1462                }
1463                goto release_ioctx;
1464        }
1465
1466        rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1467                               &send_ioctx->sense_data[0],
1468                               scsilun_to_int(&srp_cmd->lun), data_len,
1469                               TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1470                               sg, sg_cnt, NULL, 0, NULL, 0);
1471        if (rc != 0) {
1472                pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1473                         srp_cmd->tag);
1474                goto release_ioctx;
1475        }
1476        return;
1477
1478release_ioctx:
1479        send_ioctx->state = SRPT_STATE_DONE;
1480        srpt_release_cmd(cmd);
1481}
1482
1483static int srp_tmr_to_tcm(int fn)
1484{
1485        switch (fn) {
1486        case SRP_TSK_ABORT_TASK:
1487                return TMR_ABORT_TASK;
1488        case SRP_TSK_ABORT_TASK_SET:
1489                return TMR_ABORT_TASK_SET;
1490        case SRP_TSK_CLEAR_TASK_SET:
1491                return TMR_CLEAR_TASK_SET;
1492        case SRP_TSK_LUN_RESET:
1493                return TMR_LUN_RESET;
1494        case SRP_TSK_CLEAR_ACA:
1495                return TMR_CLEAR_ACA;
1496        default:
1497                return -1;
1498        }
1499}
1500
1501/**
1502 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1503 * @ch: SRPT RDMA channel.
1504 * @recv_ioctx: Receive I/O context.
1505 * @send_ioctx: Send I/O context.
1506 *
1507 * Returns 0 if and only if the request will be processed by the target core.
1508 *
1509 * For more information about SRP_TSK_MGMT information units, see also section
1510 * 6.7 in the SRP r16a document.
1511 */
1512static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1513                                 struct srpt_recv_ioctx *recv_ioctx,
1514                                 struct srpt_send_ioctx *send_ioctx)
1515{
1516        struct srp_tsk_mgmt *srp_tsk;
1517        struct se_cmd *cmd;
1518        struct se_session *sess = ch->sess;
1519        int tcm_tmr;
1520        int rc;
1521
1522        BUG_ON(!send_ioctx);
1523
1524        srp_tsk = recv_ioctx->ioctx.buf;
1525        cmd = &send_ioctx->cmd;
1526
1527        pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1528                 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1529                 ch->sess);
1530
1531        srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1532        send_ioctx->cmd.tag = srp_tsk->tag;
1533        tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1534        rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1535                               scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1536                               GFP_KERNEL, srp_tsk->task_tag,
1537                               TARGET_SCF_ACK_KREF);
1538        if (rc != 0) {
1539                send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1540                goto fail;
1541        }
1542        return;
1543fail:
1544        transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1545}
1546
1547/**
1548 * srpt_handle_new_iu - process a newly received information unit
1549 * @ch:    RDMA channel through which the information unit has been received.
1550 * @recv_ioctx: Receive I/O context associated with the information unit.
1551 */
1552static bool
1553srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1554{
1555        struct srpt_send_ioctx *send_ioctx = NULL;
1556        struct srp_cmd *srp_cmd;
1557        bool res = false;
1558        u8 opcode;
1559
1560        BUG_ON(!ch);
1561        BUG_ON(!recv_ioctx);
1562
1563        if (unlikely(ch->state == CH_CONNECTING))
1564                goto push;
1565
1566        ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1567                                   recv_ioctx->ioctx.dma, srp_max_req_size,
1568                                   DMA_FROM_DEVICE);
1569
1570        srp_cmd = recv_ioctx->ioctx.buf;
1571        opcode = srp_cmd->opcode;
1572        if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1573                send_ioctx = srpt_get_send_ioctx(ch);
1574                if (unlikely(!send_ioctx))
1575                        goto push;
1576        }
1577
1578        if (!list_empty(&recv_ioctx->wait_list)) {
1579                WARN_ON_ONCE(!ch->processing_wait_list);
1580                list_del_init(&recv_ioctx->wait_list);
1581        }
1582
1583        switch (opcode) {
1584        case SRP_CMD:
1585                srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1586                break;
1587        case SRP_TSK_MGMT:
1588                srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1589                break;
1590        case SRP_I_LOGOUT:
1591                pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1592                break;
1593        case SRP_CRED_RSP:
1594                pr_debug("received SRP_CRED_RSP\n");
1595                break;
1596        case SRP_AER_RSP:
1597                pr_debug("received SRP_AER_RSP\n");
1598                break;
1599        case SRP_RSP:
1600                pr_err("Received SRP_RSP\n");
1601                break;
1602        default:
1603                pr_err("received IU with unknown opcode 0x%x\n", opcode);
1604                break;
1605        }
1606
1607        srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1608        res = true;
1609
1610out:
1611        return res;
1612
1613push:
1614        if (list_empty(&recv_ioctx->wait_list)) {
1615                WARN_ON_ONCE(ch->processing_wait_list);
1616                list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1617        }
1618        goto out;
1619}
1620
1621static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1622{
1623        struct srpt_rdma_ch *ch = cq->cq_context;
1624        struct srpt_recv_ioctx *ioctx =
1625                container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1626
1627        if (wc->status == IB_WC_SUCCESS) {
1628                int req_lim;
1629
1630                req_lim = atomic_dec_return(&ch->req_lim);
1631                if (unlikely(req_lim < 0))
1632                        pr_err("req_lim = %d < 0\n", req_lim);
1633                srpt_handle_new_iu(ch, ioctx);
1634        } else {
1635                pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1636                                    ioctx, wc->status);
1637        }
1638}
1639
1640/*
1641 * This function must be called from the context in which RDMA completions are
1642 * processed because it accesses the wait list without protection against
1643 * access from other threads.
1644 */
1645static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1646{
1647        struct srpt_recv_ioctx *recv_ioctx, *tmp;
1648
1649        WARN_ON_ONCE(ch->state == CH_CONNECTING);
1650
1651        if (list_empty(&ch->cmd_wait_list))
1652                return;
1653
1654        WARN_ON_ONCE(ch->processing_wait_list);
1655        ch->processing_wait_list = true;
1656        list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1657                                 wait_list) {
1658                if (!srpt_handle_new_iu(ch, recv_ioctx))
1659                        break;
1660        }
1661        ch->processing_wait_list = false;
1662}
1663
1664/**
1665 * srpt_send_done - send completion callback
1666 * @cq: Completion queue.
1667 * @wc: Work completion.
1668 *
1669 * Note: Although this has not yet been observed during tests, at least in
1670 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1671 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1672 * value in each response is set to one, and it is possible that this response
1673 * makes the initiator send a new request before the send completion for that
1674 * response has been processed. This could e.g. happen if the call to
1675 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1676 * if IB retransmission causes generation of the send completion to be
1677 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1678 * are queued on cmd_wait_list. The code below processes these delayed
1679 * requests one at a time.
1680 */
1681static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1682{
1683        struct srpt_rdma_ch *ch = cq->cq_context;
1684        struct srpt_send_ioctx *ioctx =
1685                container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1686        enum srpt_command_state state;
1687
1688        state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1689
1690        WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1691                state != SRPT_STATE_MGMT_RSP_SENT);
1692
1693        atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1694
1695        if (wc->status != IB_WC_SUCCESS)
1696                pr_info("sending response for ioctx 0x%p failed"
1697                        " with status %d\n", ioctx, wc->status);
1698
1699        if (state != SRPT_STATE_DONE) {
1700                transport_generic_free_cmd(&ioctx->cmd, 0);
1701        } else {
1702                pr_err("IB completion has been received too late for"
1703                       " wr_id = %u.\n", ioctx->ioctx.index);
1704        }
1705
1706        srpt_process_wait_list(ch);
1707}
1708
1709/**
1710 * srpt_create_ch_ib - create receive and send completion queues
1711 * @ch: SRPT RDMA channel.
1712 */
1713static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1714{
1715        struct ib_qp_init_attr *qp_init;
1716        struct srpt_port *sport = ch->sport;
1717        struct srpt_device *sdev = sport->sdev;
1718        const struct ib_device_attr *attrs = &sdev->device->attrs;
1719        int sq_size = sport->port_attrib.srp_sq_size;
1720        int i, ret;
1721
1722        WARN_ON(ch->rq_size < 1);
1723
1724        ret = -ENOMEM;
1725        qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1726        if (!qp_init)
1727                goto out;
1728
1729retry:
1730        ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1731                        0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1732        if (IS_ERR(ch->cq)) {
1733                ret = PTR_ERR(ch->cq);
1734                pr_err("failed to create CQ cqe= %d ret= %d\n",
1735                       ch->rq_size + sq_size, ret);
1736                goto out;
1737        }
1738
1739        qp_init->qp_context = (void *)ch;
1740        qp_init->event_handler
1741                = (void(*)(struct ib_event *, void*))srpt_qp_event;
1742        qp_init->send_cq = ch->cq;
1743        qp_init->recv_cq = ch->cq;
1744        qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1745        qp_init->qp_type = IB_QPT_RC;
1746        /*
1747         * We divide up our send queue size into half SEND WRs to send the
1748         * completions, and half R/W contexts to actually do the RDMA
1749         * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1750         * both both, as RDMA contexts will also post completions for the
1751         * RDMA READ case.
1752         */
1753        qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1754        qp_init->cap.max_rdma_ctxs = sq_size / 2;
1755        qp_init->cap.max_send_sge = min(attrs->max_send_sge,
1756                                        SRPT_MAX_SG_PER_WQE);
1757        qp_init->port_num = ch->sport->port;
1758        if (sdev->use_srq) {
1759                qp_init->srq = sdev->srq;
1760        } else {
1761                qp_init->cap.max_recv_wr = ch->rq_size;
1762                qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1763                                                SRPT_MAX_SG_PER_WQE);
1764        }
1765
1766        if (ch->using_rdma_cm) {
1767                ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1768                ch->qp = ch->rdma_cm.cm_id->qp;
1769        } else {
1770                ch->qp = ib_create_qp(sdev->pd, qp_init);
1771                if (!IS_ERR(ch->qp)) {
1772                        ret = srpt_init_ch_qp(ch, ch->qp);
1773                        if (ret)
1774                                ib_destroy_qp(ch->qp);
1775                } else {
1776                        ret = PTR_ERR(ch->qp);
1777                }
1778        }
1779        if (ret) {
1780                bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1781
1782                if (retry) {
1783                        pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1784                                 sq_size, ret);
1785                        ib_free_cq(ch->cq);
1786                        sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1787                        goto retry;
1788                } else {
1789                        pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1790                               sq_size, ret);
1791                        goto err_destroy_cq;
1792                }
1793        }
1794
1795        atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1796
1797        pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1798                 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1799                 qp_init->cap.max_send_wr, ch);
1800
1801        if (!sdev->use_srq)
1802                for (i = 0; i < ch->rq_size; i++)
1803                        srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1804
1805out:
1806        kfree(qp_init);
1807        return ret;
1808
1809err_destroy_cq:
1810        ch->qp = NULL;
1811        ib_free_cq(ch->cq);
1812        goto out;
1813}
1814
1815static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1816{
1817        ib_destroy_qp(ch->qp);
1818        ib_free_cq(ch->cq);
1819}
1820
1821/**
1822 * srpt_close_ch - close a RDMA channel
1823 * @ch: SRPT RDMA channel.
1824 *
1825 * Make sure all resources associated with the channel will be deallocated at
1826 * an appropriate time.
1827 *
1828 * Returns true if and only if the channel state has been modified into
1829 * CH_DRAINING.
1830 */
1831static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1832{
1833        int ret;
1834
1835        if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1836                pr_debug("%s: already closed\n", ch->sess_name);
1837                return false;
1838        }
1839
1840        kref_get(&ch->kref);
1841
1842        ret = srpt_ch_qp_err(ch);
1843        if (ret < 0)
1844                pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1845                       ch->sess_name, ch->qp->qp_num, ret);
1846
1847        ret = srpt_zerolength_write(ch);
1848        if (ret < 0) {
1849                pr_err("%s-%d: queuing zero-length write failed: %d\n",
1850                       ch->sess_name, ch->qp->qp_num, ret);
1851                if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1852                        schedule_work(&ch->release_work);
1853                else
1854                        WARN_ON_ONCE(true);
1855        }
1856
1857        kref_put(&ch->kref, srpt_free_ch);
1858
1859        return true;
1860}
1861
1862/*
1863 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1864 * reached the connected state, close it. If a channel is in the connected
1865 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1866 * the responsibility of the caller to ensure that this function is not
1867 * invoked concurrently with the code that accepts a connection. This means
1868 * that this function must either be invoked from inside a CM callback
1869 * function or that it must be invoked with the srpt_port.mutex held.
1870 */
1871static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1872{
1873        int ret;
1874
1875        if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1876                return -ENOTCONN;
1877
1878        if (ch->using_rdma_cm) {
1879                ret = rdma_disconnect(ch->rdma_cm.cm_id);
1880        } else {
1881                ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1882                if (ret < 0)
1883                        ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1884        }
1885
1886        if (ret < 0 && srpt_close_ch(ch))
1887                ret = 0;
1888
1889        return ret;
1890}
1891
1892static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch)
1893{
1894        struct srpt_nexus *nexus;
1895        struct srpt_rdma_ch *ch2;
1896        bool res = true;
1897
1898        rcu_read_lock();
1899        list_for_each_entry(nexus, &sport->nexus_list, entry) {
1900                list_for_each_entry(ch2, &nexus->ch_list, list) {
1901                        if (ch2 == ch) {
1902                                res = false;
1903                                goto done;
1904                        }
1905                }
1906        }
1907done:
1908        rcu_read_unlock();
1909
1910        return res;
1911}
1912
1913/* Send DREQ and wait for DREP. */
1914static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1915{
1916        struct srpt_port *sport = ch->sport;
1917
1918        pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1919                 ch->state);
1920
1921        mutex_lock(&sport->mutex);
1922        srpt_disconnect_ch(ch);
1923        mutex_unlock(&sport->mutex);
1924
1925        while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch),
1926                                  5 * HZ) == 0)
1927                pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1928                        ch->sess_name, ch->qp->qp_num, ch->state);
1929
1930}
1931
1932static void __srpt_close_all_ch(struct srpt_port *sport)
1933{
1934        struct srpt_nexus *nexus;
1935        struct srpt_rdma_ch *ch;
1936
1937        lockdep_assert_held(&sport->mutex);
1938
1939        list_for_each_entry(nexus, &sport->nexus_list, entry) {
1940                list_for_each_entry(ch, &nexus->ch_list, list) {
1941                        if (srpt_disconnect_ch(ch) >= 0)
1942                                pr_info("Closing channel %s because target %s_%d has been disabled\n",
1943                                        ch->sess_name,
1944                                        sport->sdev->device->name, sport->port);
1945                        srpt_close_ch(ch);
1946                }
1947        }
1948}
1949
1950/*
1951 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1952 * it does not yet exist.
1953 */
1954static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
1955                                         const u8 i_port_id[16],
1956                                         const u8 t_port_id[16])
1957{
1958        struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
1959
1960        for (;;) {
1961                mutex_lock(&sport->mutex);
1962                list_for_each_entry(n, &sport->nexus_list, entry) {
1963                        if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
1964                            memcmp(n->t_port_id, t_port_id, 16) == 0) {
1965                                nexus = n;
1966                                break;
1967                        }
1968                }
1969                if (!nexus && tmp_nexus) {
1970                        list_add_tail_rcu(&tmp_nexus->entry,
1971                                          &sport->nexus_list);
1972                        swap(nexus, tmp_nexus);
1973                }
1974                mutex_unlock(&sport->mutex);
1975
1976                if (nexus)
1977                        break;
1978                tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
1979                if (!tmp_nexus) {
1980                        nexus = ERR_PTR(-ENOMEM);
1981                        break;
1982                }
1983                INIT_LIST_HEAD(&tmp_nexus->ch_list);
1984                memcpy(tmp_nexus->i_port_id, i_port_id, 16);
1985                memcpy(tmp_nexus->t_port_id, t_port_id, 16);
1986        }
1987
1988        kfree(tmp_nexus);
1989
1990        return nexus;
1991}
1992
1993static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
1994        __must_hold(&sport->mutex)
1995{
1996        lockdep_assert_held(&sport->mutex);
1997
1998        if (sport->enabled == enabled)
1999                return;
2000        sport->enabled = enabled;
2001        if (!enabled)
2002                __srpt_close_all_ch(sport);
2003}
2004
2005static void srpt_free_ch(struct kref *kref)
2006{
2007        struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2008
2009        kfree_rcu(ch, rcu);
2010}
2011
2012static void srpt_release_channel_work(struct work_struct *w)
2013{
2014        struct srpt_rdma_ch *ch;
2015        struct srpt_device *sdev;
2016        struct srpt_port *sport;
2017        struct se_session *se_sess;
2018
2019        ch = container_of(w, struct srpt_rdma_ch, release_work);
2020        pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2021
2022        sdev = ch->sport->sdev;
2023        BUG_ON(!sdev);
2024
2025        se_sess = ch->sess;
2026        BUG_ON(!se_sess);
2027
2028        target_sess_cmd_list_set_waiting(se_sess);
2029        target_wait_for_sess_cmds(se_sess);
2030
2031        target_remove_session(se_sess);
2032        ch->sess = NULL;
2033
2034        if (ch->using_rdma_cm)
2035                rdma_destroy_id(ch->rdma_cm.cm_id);
2036        else
2037                ib_destroy_cm_id(ch->ib_cm.cm_id);
2038
2039        srpt_destroy_ch_ib(ch);
2040
2041        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2042                             ch->sport->sdev, ch->rq_size,
2043                             ch->max_rsp_size, DMA_TO_DEVICE);
2044
2045        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2046                             sdev, ch->rq_size,
2047                             srp_max_req_size, DMA_FROM_DEVICE);
2048
2049        sport = ch->sport;
2050        mutex_lock(&sport->mutex);
2051        list_del_rcu(&ch->list);
2052        mutex_unlock(&sport->mutex);
2053
2054        wake_up(&sport->ch_releaseQ);
2055
2056        kref_put(&ch->kref, srpt_free_ch);
2057}
2058
2059/**
2060 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2061 * @sdev: HCA through which the login request was received.
2062 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2063 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2064 * @port_num: Port through which the REQ message was received.
2065 * @pkey: P_Key of the incoming connection.
2066 * @req: SRP login request.
2067 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2068 * the login request.
2069 *
2070 * Ownership of the cm_id is transferred to the target session if this
2071 * function returns zero. Otherwise the caller remains the owner of cm_id.
2072 */
2073static int srpt_cm_req_recv(struct srpt_device *const sdev,
2074                            struct ib_cm_id *ib_cm_id,
2075                            struct rdma_cm_id *rdma_cm_id,
2076                            u8 port_num, __be16 pkey,
2077                            const struct srp_login_req *req,
2078                            const char *src_addr)
2079{
2080        struct srpt_port *sport = &sdev->port[port_num - 1];
2081        struct srpt_nexus *nexus;
2082        struct srp_login_rsp *rsp = NULL;
2083        struct srp_login_rej *rej = NULL;
2084        union {
2085                struct rdma_conn_param rdma_cm;
2086                struct ib_cm_rep_param ib_cm;
2087        } *rep_param = NULL;
2088        struct srpt_rdma_ch *ch = NULL;
2089        char i_port_id[36];
2090        u32 it_iu_len;
2091        int i, ret;
2092
2093        WARN_ON_ONCE(irqs_disabled());
2094
2095        if (WARN_ON(!sdev || !req))
2096                return -EINVAL;
2097
2098        it_iu_len = be32_to_cpu(req->req_it_iu_len);
2099
2100        pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2101                req->initiator_port_id, req->target_port_id, it_iu_len,
2102                port_num, &sport->gid, be16_to_cpu(pkey));
2103
2104        nexus = srpt_get_nexus(sport, req->initiator_port_id,
2105                               req->target_port_id);
2106        if (IS_ERR(nexus)) {
2107                ret = PTR_ERR(nexus);
2108                goto out;
2109        }
2110
2111        ret = -ENOMEM;
2112        rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2113        rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2114        rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2115        if (!rsp || !rej || !rep_param)
2116                goto out;
2117
2118        ret = -EINVAL;
2119        if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2120                rej->reason = cpu_to_be32(
2121                                SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2122                pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2123                       it_iu_len, 64, srp_max_req_size);
2124                goto reject;
2125        }
2126
2127        if (!sport->enabled) {
2128                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2129                pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2130                        sport->sdev->device->name, port_num);
2131                goto reject;
2132        }
2133
2134        if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2135            || *(__be64 *)(req->target_port_id + 8) !=
2136               cpu_to_be64(srpt_service_guid)) {
2137                rej->reason = cpu_to_be32(
2138                                SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2139                pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2140                goto reject;
2141        }
2142
2143        ret = -ENOMEM;
2144        ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2145        if (!ch) {
2146                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2147                pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2148                goto reject;
2149        }
2150
2151        kref_init(&ch->kref);
2152        ch->pkey = be16_to_cpu(pkey);
2153        ch->nexus = nexus;
2154        ch->zw_cqe.done = srpt_zerolength_write_done;
2155        INIT_WORK(&ch->release_work, srpt_release_channel_work);
2156        ch->sport = sport;
2157        if (ib_cm_id) {
2158                ch->ib_cm.cm_id = ib_cm_id;
2159                ib_cm_id->context = ch;
2160        } else {
2161                ch->using_rdma_cm = true;
2162                ch->rdma_cm.cm_id = rdma_cm_id;
2163                rdma_cm_id->context = ch;
2164        }
2165        /*
2166         * ch->rq_size should be at least as large as the initiator queue
2167         * depth to avoid that the initiator driver has to report QUEUE_FULL
2168         * to the SCSI mid-layer.
2169         */
2170        ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2171        spin_lock_init(&ch->spinlock);
2172        ch->state = CH_CONNECTING;
2173        INIT_LIST_HEAD(&ch->cmd_wait_list);
2174        ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2175
2176        ch->ioctx_ring = (struct srpt_send_ioctx **)
2177                srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2178                                      sizeof(*ch->ioctx_ring[0]),
2179                                      ch->max_rsp_size, DMA_TO_DEVICE);
2180        if (!ch->ioctx_ring) {
2181                pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2182                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2183                goto free_ch;
2184        }
2185
2186        INIT_LIST_HEAD(&ch->free_list);
2187        for (i = 0; i < ch->rq_size; i++) {
2188                ch->ioctx_ring[i]->ch = ch;
2189                list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2190        }
2191        if (!sdev->use_srq) {
2192                ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2193                        srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2194                                              sizeof(*ch->ioctx_recv_ring[0]),
2195                                              srp_max_req_size,
2196                                              DMA_FROM_DEVICE);
2197                if (!ch->ioctx_recv_ring) {
2198                        pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2199                        rej->reason =
2200                            cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2201                        goto free_ring;
2202                }
2203                for (i = 0; i < ch->rq_size; i++)
2204                        INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2205        }
2206
2207        ret = srpt_create_ch_ib(ch);
2208        if (ret) {
2209                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2210                pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2211                goto free_recv_ring;
2212        }
2213
2214        strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2215        snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2216                        be64_to_cpu(*(__be64 *)nexus->i_port_id),
2217                        be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2218
2219        pr_debug("registering session %s\n", ch->sess_name);
2220
2221        if (sport->port_guid_tpg.se_tpg_wwn)
2222                ch->sess = target_setup_session(&sport->port_guid_tpg, 0, 0,
2223                                                TARGET_PROT_NORMAL,
2224                                                ch->sess_name, ch, NULL);
2225        if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2226                ch->sess = target_setup_session(&sport->port_gid_tpg, 0, 0,
2227                                        TARGET_PROT_NORMAL, i_port_id, ch,
2228                                        NULL);
2229        /* Retry without leading "0x" */
2230        if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2231                ch->sess = target_setup_session(&sport->port_gid_tpg, 0, 0,
2232                                                TARGET_PROT_NORMAL,
2233                                                i_port_id + 2, ch, NULL);
2234        if (IS_ERR_OR_NULL(ch->sess)) {
2235                WARN_ON_ONCE(ch->sess == NULL);
2236                ret = PTR_ERR(ch->sess);
2237                ch->sess = NULL;
2238                pr_info("Rejected login for initiator %s: ret = %d.\n",
2239                        ch->sess_name, ret);
2240                rej->reason = cpu_to_be32(ret == -ENOMEM ?
2241                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2242                                SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2243                goto destroy_ib;
2244        }
2245
2246        mutex_lock(&sport->mutex);
2247
2248        if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2249                struct srpt_rdma_ch *ch2;
2250
2251                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2252
2253                list_for_each_entry(ch2, &nexus->ch_list, list) {
2254                        if (srpt_disconnect_ch(ch2) < 0)
2255                                continue;
2256                        pr_info("Relogin - closed existing channel %s\n",
2257                                ch2->sess_name);
2258                        rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2259                }
2260        } else {
2261                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2262        }
2263
2264        list_add_tail_rcu(&ch->list, &nexus->ch_list);
2265
2266        if (!sport->enabled) {
2267                rej->reason = cpu_to_be32(
2268                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2269                pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2270                        sdev->device->name, port_num);
2271                mutex_unlock(&sport->mutex);
2272                goto reject;
2273        }
2274
2275        mutex_unlock(&sport->mutex);
2276
2277        ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2278        if (ret) {
2279                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2280                pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2281                       ret);
2282                goto reject;
2283        }
2284
2285        pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2286                 ch->sess_name, ch);
2287
2288        /* create srp_login_response */
2289        rsp->opcode = SRP_LOGIN_RSP;
2290        rsp->tag = req->tag;
2291        rsp->max_it_iu_len = req->req_it_iu_len;
2292        rsp->max_ti_iu_len = req->req_it_iu_len;
2293        ch->max_ti_iu_len = it_iu_len;
2294        rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2295                                   SRP_BUF_FORMAT_INDIRECT);
2296        rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2297        atomic_set(&ch->req_lim, ch->rq_size);
2298        atomic_set(&ch->req_lim_delta, 0);
2299
2300        /* create cm reply */
2301        if (ch->using_rdma_cm) {
2302                rep_param->rdma_cm.private_data = (void *)rsp;
2303                rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2304                rep_param->rdma_cm.rnr_retry_count = 7;
2305                rep_param->rdma_cm.flow_control = 1;
2306                rep_param->rdma_cm.responder_resources = 4;
2307                rep_param->rdma_cm.initiator_depth = 4;
2308        } else {
2309                rep_param->ib_cm.qp_num = ch->qp->qp_num;
2310                rep_param->ib_cm.private_data = (void *)rsp;
2311                rep_param->ib_cm.private_data_len = sizeof(*rsp);
2312                rep_param->ib_cm.rnr_retry_count = 7;
2313                rep_param->ib_cm.flow_control = 1;
2314                rep_param->ib_cm.failover_accepted = 0;
2315                rep_param->ib_cm.srq = 1;
2316                rep_param->ib_cm.responder_resources = 4;
2317                rep_param->ib_cm.initiator_depth = 4;
2318        }
2319
2320        /*
2321         * Hold the sport mutex while accepting a connection to avoid that
2322         * srpt_disconnect_ch() is invoked concurrently with this code.
2323         */
2324        mutex_lock(&sport->mutex);
2325        if (sport->enabled && ch->state == CH_CONNECTING) {
2326                if (ch->using_rdma_cm)
2327                        ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2328                else
2329                        ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2330        } else {
2331                ret = -EINVAL;
2332        }
2333        mutex_unlock(&sport->mutex);
2334
2335        switch (ret) {
2336        case 0:
2337                break;
2338        case -EINVAL:
2339                goto reject;
2340        default:
2341                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2342                pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2343                       ret);
2344                goto reject;
2345        }
2346
2347        goto out;
2348
2349destroy_ib:
2350        srpt_destroy_ch_ib(ch);
2351
2352free_recv_ring:
2353        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2354                             ch->sport->sdev, ch->rq_size,
2355                             srp_max_req_size, DMA_FROM_DEVICE);
2356
2357free_ring:
2358        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2359                             ch->sport->sdev, ch->rq_size,
2360                             ch->max_rsp_size, DMA_TO_DEVICE);
2361
2362free_ch:
2363        if (rdma_cm_id)
2364                rdma_cm_id->context = NULL;
2365        else
2366                ib_cm_id->context = NULL;
2367        kfree(ch);
2368        ch = NULL;
2369
2370        WARN_ON_ONCE(ret == 0);
2371
2372reject:
2373        pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2374        rej->opcode = SRP_LOGIN_REJ;
2375        rej->tag = req->tag;
2376        rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2377                                   SRP_BUF_FORMAT_INDIRECT);
2378
2379        if (rdma_cm_id)
2380                rdma_reject(rdma_cm_id, rej, sizeof(*rej));
2381        else
2382                ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2383                               rej, sizeof(*rej));
2384
2385        if (ch && ch->sess) {
2386                srpt_close_ch(ch);
2387                /*
2388                 * Tell the caller not to free cm_id since
2389                 * srpt_release_channel_work() will do that.
2390                 */
2391                ret = 0;
2392        }
2393
2394out:
2395        kfree(rep_param);
2396        kfree(rsp);
2397        kfree(rej);
2398
2399        return ret;
2400}
2401
2402static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2403                               const struct ib_cm_req_event_param *param,
2404                               void *private_data)
2405{
2406        char sguid[40];
2407
2408        srpt_format_guid(sguid, sizeof(sguid),
2409                         &param->primary_path->dgid.global.interface_id);
2410
2411        return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2412                                param->primary_path->pkey,
2413                                private_data, sguid);
2414}
2415
2416static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2417                                 struct rdma_cm_event *event)
2418{
2419        struct srpt_device *sdev;
2420        struct srp_login_req req;
2421        const struct srp_login_req_rdma *req_rdma;
2422        char src_addr[40];
2423
2424        sdev = ib_get_client_data(cm_id->device, &srpt_client);
2425        if (!sdev)
2426                return -ECONNREFUSED;
2427
2428        if (event->param.conn.private_data_len < sizeof(*req_rdma))
2429                return -EINVAL;
2430
2431        /* Transform srp_login_req_rdma into srp_login_req. */
2432        req_rdma = event->param.conn.private_data;
2433        memset(&req, 0, sizeof(req));
2434        req.opcode              = req_rdma->opcode;
2435        req.tag                 = req_rdma->tag;
2436        req.req_it_iu_len       = req_rdma->req_it_iu_len;
2437        req.req_buf_fmt         = req_rdma->req_buf_fmt;
2438        req.req_flags           = req_rdma->req_flags;
2439        memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2440        memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2441
2442        snprintf(src_addr, sizeof(src_addr), "%pIS",
2443                 &cm_id->route.addr.src_addr);
2444
2445        return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2446                                cm_id->route.path_rec->pkey, &req, src_addr);
2447}
2448
2449static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2450                             enum ib_cm_rej_reason reason,
2451                             const u8 *private_data,
2452                             u8 private_data_len)
2453{
2454        char *priv = NULL;
2455        int i;
2456
2457        if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2458                                                GFP_KERNEL))) {
2459                for (i = 0; i < private_data_len; i++)
2460                        sprintf(priv + 3 * i, " %02x", private_data[i]);
2461        }
2462        pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2463                ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2464                "; private data" : "", priv ? priv : " (?)");
2465        kfree(priv);
2466}
2467
2468/**
2469 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2470 * @ch: SRPT RDMA channel.
2471 *
2472 * An RTU (ready to use) message indicates that the connection has been
2473 * established and that the recipient may begin transmitting.
2474 */
2475static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2476{
2477        int ret;
2478
2479        ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2480        if (ret < 0) {
2481                pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2482                       ch->qp->qp_num);
2483                srpt_close_ch(ch);
2484                return;
2485        }
2486
2487        /*
2488         * Note: calling srpt_close_ch() if the transition to the LIVE state
2489         * fails is not necessary since that means that that function has
2490         * already been invoked from another thread.
2491         */
2492        if (!srpt_set_ch_state(ch, CH_LIVE)) {
2493                pr_err("%s-%d: channel transition to LIVE state failed\n",
2494                       ch->sess_name, ch->qp->qp_num);
2495                return;
2496        }
2497
2498        /* Trigger wait list processing. */
2499        ret = srpt_zerolength_write(ch);
2500        WARN_ONCE(ret < 0, "%d\n", ret);
2501}
2502
2503/**
2504 * srpt_cm_handler - IB connection manager callback function
2505 * @cm_id: IB/CM connection identifier.
2506 * @event: IB/CM event.
2507 *
2508 * A non-zero return value will cause the caller destroy the CM ID.
2509 *
2510 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2511 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2512 * a non-zero value in any other case will trigger a race with the
2513 * ib_destroy_cm_id() call in srpt_release_channel().
2514 */
2515static int srpt_cm_handler(struct ib_cm_id *cm_id,
2516                           const struct ib_cm_event *event)
2517{
2518        struct srpt_rdma_ch *ch = cm_id->context;
2519        int ret;
2520
2521        ret = 0;
2522        switch (event->event) {
2523        case IB_CM_REQ_RECEIVED:
2524                ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2525                                          event->private_data);
2526                break;
2527        case IB_CM_REJ_RECEIVED:
2528                srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2529                                 event->private_data,
2530                                 IB_CM_REJ_PRIVATE_DATA_SIZE);
2531                break;
2532        case IB_CM_RTU_RECEIVED:
2533        case IB_CM_USER_ESTABLISHED:
2534                srpt_cm_rtu_recv(ch);
2535                break;
2536        case IB_CM_DREQ_RECEIVED:
2537                srpt_disconnect_ch(ch);
2538                break;
2539        case IB_CM_DREP_RECEIVED:
2540                pr_info("Received CM DREP message for ch %s-%d.\n",
2541                        ch->sess_name, ch->qp->qp_num);
2542                srpt_close_ch(ch);
2543                break;
2544        case IB_CM_TIMEWAIT_EXIT:
2545                pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2546                        ch->sess_name, ch->qp->qp_num);
2547                srpt_close_ch(ch);
2548                break;
2549        case IB_CM_REP_ERROR:
2550                pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2551                        ch->qp->qp_num);
2552                break;
2553        case IB_CM_DREQ_ERROR:
2554                pr_info("Received CM DREQ ERROR event.\n");
2555                break;
2556        case IB_CM_MRA_RECEIVED:
2557                pr_info("Received CM MRA event\n");
2558                break;
2559        default:
2560                pr_err("received unrecognized CM event %d\n", event->event);
2561                break;
2562        }
2563
2564        return ret;
2565}
2566
2567static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2568                                struct rdma_cm_event *event)
2569{
2570        struct srpt_rdma_ch *ch = cm_id->context;
2571        int ret = 0;
2572
2573        switch (event->event) {
2574        case RDMA_CM_EVENT_CONNECT_REQUEST:
2575                ret = srpt_rdma_cm_req_recv(cm_id, event);
2576                break;
2577        case RDMA_CM_EVENT_REJECTED:
2578                srpt_cm_rej_recv(ch, event->status,
2579                                 event->param.conn.private_data,
2580                                 event->param.conn.private_data_len);
2581                break;
2582        case RDMA_CM_EVENT_ESTABLISHED:
2583                srpt_cm_rtu_recv(ch);
2584                break;
2585        case RDMA_CM_EVENT_DISCONNECTED:
2586                if (ch->state < CH_DISCONNECTING)
2587                        srpt_disconnect_ch(ch);
2588                else
2589                        srpt_close_ch(ch);
2590                break;
2591        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2592                srpt_close_ch(ch);
2593                break;
2594        case RDMA_CM_EVENT_UNREACHABLE:
2595                pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2596                        ch->qp->qp_num);
2597                break;
2598        case RDMA_CM_EVENT_DEVICE_REMOVAL:
2599        case RDMA_CM_EVENT_ADDR_CHANGE:
2600                break;
2601        default:
2602                pr_err("received unrecognized RDMA CM event %d\n",
2603                       event->event);
2604                break;
2605        }
2606
2607        return ret;
2608}
2609
2610static int srpt_write_pending_status(struct se_cmd *se_cmd)
2611{
2612        struct srpt_send_ioctx *ioctx;
2613
2614        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2615        return ioctx->state == SRPT_STATE_NEED_DATA;
2616}
2617
2618/*
2619 * srpt_write_pending - Start data transfer from initiator to target (write).
2620 */
2621static int srpt_write_pending(struct se_cmd *se_cmd)
2622{
2623        struct srpt_send_ioctx *ioctx =
2624                container_of(se_cmd, struct srpt_send_ioctx, cmd);
2625        struct srpt_rdma_ch *ch = ioctx->ch;
2626        struct ib_send_wr *first_wr = NULL;
2627        struct ib_cqe *cqe = &ioctx->rdma_cqe;
2628        enum srpt_command_state new_state;
2629        int ret, i;
2630
2631        new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2632        WARN_ON(new_state == SRPT_STATE_DONE);
2633
2634        if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2635                pr_warn("%s: IB send queue full (needed %d)\n",
2636                                __func__, ioctx->n_rdma);
2637                ret = -ENOMEM;
2638                goto out_undo;
2639        }
2640
2641        cqe->done = srpt_rdma_read_done;
2642        for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2643                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2644
2645                first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2646                                cqe, first_wr);
2647                cqe = NULL;
2648        }
2649
2650        ret = ib_post_send(ch->qp, first_wr, NULL);
2651        if (ret) {
2652                pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2653                         __func__, ret, ioctx->n_rdma,
2654                         atomic_read(&ch->sq_wr_avail));
2655                goto out_undo;
2656        }
2657
2658        return 0;
2659out_undo:
2660        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2661        return ret;
2662}
2663
2664static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2665{
2666        switch (tcm_mgmt_status) {
2667        case TMR_FUNCTION_COMPLETE:
2668                return SRP_TSK_MGMT_SUCCESS;
2669        case TMR_FUNCTION_REJECTED:
2670                return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2671        }
2672        return SRP_TSK_MGMT_FAILED;
2673}
2674
2675/**
2676 * srpt_queue_response - transmit the response to a SCSI command
2677 * @cmd: SCSI target command.
2678 *
2679 * Callback function called by the TCM core. Must not block since it can be
2680 * invoked on the context of the IB completion handler.
2681 */
2682static void srpt_queue_response(struct se_cmd *cmd)
2683{
2684        struct srpt_send_ioctx *ioctx =
2685                container_of(cmd, struct srpt_send_ioctx, cmd);
2686        struct srpt_rdma_ch *ch = ioctx->ch;
2687        struct srpt_device *sdev = ch->sport->sdev;
2688        struct ib_send_wr send_wr, *first_wr = &send_wr;
2689        struct ib_sge sge;
2690        enum srpt_command_state state;
2691        int resp_len, ret, i;
2692        u8 srp_tm_status;
2693
2694        BUG_ON(!ch);
2695
2696        state = ioctx->state;
2697        switch (state) {
2698        case SRPT_STATE_NEW:
2699        case SRPT_STATE_DATA_IN:
2700                ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2701                break;
2702        case SRPT_STATE_MGMT:
2703                ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2704                break;
2705        default:
2706                WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2707                        ch, ioctx->ioctx.index, ioctx->state);
2708                break;
2709        }
2710
2711        if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2712                return;
2713
2714        /* For read commands, transfer the data to the initiator. */
2715        if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2716            ioctx->cmd.data_length &&
2717            !ioctx->queue_status_only) {
2718                for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2719                        struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2720
2721                        first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2722                                        ch->sport->port, NULL, first_wr);
2723                }
2724        }
2725
2726        if (state != SRPT_STATE_MGMT)
2727                resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2728                                              cmd->scsi_status);
2729        else {
2730                srp_tm_status
2731                        = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2732                resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2733                                                 ioctx->cmd.tag);
2734        }
2735
2736        atomic_inc(&ch->req_lim);
2737
2738        if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2739                        &ch->sq_wr_avail) < 0)) {
2740                pr_warn("%s: IB send queue full (needed %d)\n",
2741                                __func__, ioctx->n_rdma);
2742                ret = -ENOMEM;
2743                goto out;
2744        }
2745
2746        ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2747                                      DMA_TO_DEVICE);
2748
2749        sge.addr = ioctx->ioctx.dma;
2750        sge.length = resp_len;
2751        sge.lkey = sdev->lkey;
2752
2753        ioctx->ioctx.cqe.done = srpt_send_done;
2754        send_wr.next = NULL;
2755        send_wr.wr_cqe = &ioctx->ioctx.cqe;
2756        send_wr.sg_list = &sge;
2757        send_wr.num_sge = 1;
2758        send_wr.opcode = IB_WR_SEND;
2759        send_wr.send_flags = IB_SEND_SIGNALED;
2760
2761        ret = ib_post_send(ch->qp, first_wr, NULL);
2762        if (ret < 0) {
2763                pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2764                        __func__, ioctx->cmd.tag, ret);
2765                goto out;
2766        }
2767
2768        return;
2769
2770out:
2771        atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2772        atomic_dec(&ch->req_lim);
2773        srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2774        target_put_sess_cmd(&ioctx->cmd);
2775}
2776
2777static int srpt_queue_data_in(struct se_cmd *cmd)
2778{
2779        srpt_queue_response(cmd);
2780        return 0;
2781}
2782
2783static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2784{
2785        srpt_queue_response(cmd);
2786}
2787
2788static void srpt_aborted_task(struct se_cmd *cmd)
2789{
2790}
2791
2792static int srpt_queue_status(struct se_cmd *cmd)
2793{
2794        struct srpt_send_ioctx *ioctx;
2795
2796        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2797        BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2798        if (cmd->se_cmd_flags &
2799            (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2800                WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2801        ioctx->queue_status_only = true;
2802        srpt_queue_response(cmd);
2803        return 0;
2804}
2805
2806static void srpt_refresh_port_work(struct work_struct *work)
2807{
2808        struct srpt_port *sport = container_of(work, struct srpt_port, work);
2809
2810        srpt_refresh_port(sport);
2811}
2812
2813static bool srpt_ch_list_empty(struct srpt_port *sport)
2814{
2815        struct srpt_nexus *nexus;
2816        bool res = true;
2817
2818        rcu_read_lock();
2819        list_for_each_entry(nexus, &sport->nexus_list, entry)
2820                if (!list_empty(&nexus->ch_list))
2821                        res = false;
2822        rcu_read_unlock();
2823
2824        return res;
2825}
2826
2827/**
2828 * srpt_release_sport - disable login and wait for associated channels
2829 * @sport: SRPT HCA port.
2830 */
2831static int srpt_release_sport(struct srpt_port *sport)
2832{
2833        struct srpt_nexus *nexus, *next_n;
2834        struct srpt_rdma_ch *ch;
2835
2836        WARN_ON_ONCE(irqs_disabled());
2837
2838        mutex_lock(&sport->mutex);
2839        srpt_set_enabled(sport, false);
2840        mutex_unlock(&sport->mutex);
2841
2842        while (wait_event_timeout(sport->ch_releaseQ,
2843                                  srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
2844                pr_info("%s_%d: waiting for session unregistration ...\n",
2845                        sport->sdev->device->name, sport->port);
2846                rcu_read_lock();
2847                list_for_each_entry(nexus, &sport->nexus_list, entry) {
2848                        list_for_each_entry(ch, &nexus->ch_list, list) {
2849                                pr_info("%s-%d: state %s\n",
2850                                        ch->sess_name, ch->qp->qp_num,
2851                                        get_ch_state_name(ch->state));
2852                        }
2853                }
2854                rcu_read_unlock();
2855        }
2856
2857        mutex_lock(&sport->mutex);
2858        list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2859                list_del(&nexus->entry);
2860                kfree_rcu(nexus, rcu);
2861        }
2862        mutex_unlock(&sport->mutex);
2863
2864        return 0;
2865}
2866
2867static struct se_wwn *__srpt_lookup_wwn(const char *name)
2868{
2869        struct ib_device *dev;
2870        struct srpt_device *sdev;
2871        struct srpt_port *sport;
2872        int i;
2873
2874        list_for_each_entry(sdev, &srpt_dev_list, list) {
2875                dev = sdev->device;
2876                if (!dev)
2877                        continue;
2878
2879                for (i = 0; i < dev->phys_port_cnt; i++) {
2880                        sport = &sdev->port[i];
2881
2882                        if (strcmp(sport->port_guid, name) == 0)
2883                                return &sport->port_guid_wwn;
2884                        if (strcmp(sport->port_gid, name) == 0)
2885                                return &sport->port_gid_wwn;
2886                }
2887        }
2888
2889        return NULL;
2890}
2891
2892static struct se_wwn *srpt_lookup_wwn(const char *name)
2893{
2894        struct se_wwn *wwn;
2895
2896        spin_lock(&srpt_dev_lock);
2897        wwn = __srpt_lookup_wwn(name);
2898        spin_unlock(&srpt_dev_lock);
2899
2900        return wwn;
2901}
2902
2903static void srpt_free_srq(struct srpt_device *sdev)
2904{
2905        if (!sdev->srq)
2906                return;
2907
2908        ib_destroy_srq(sdev->srq);
2909        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2910                             sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2911        sdev->srq = NULL;
2912}
2913
2914static int srpt_alloc_srq(struct srpt_device *sdev)
2915{
2916        struct ib_srq_init_attr srq_attr = {
2917                .event_handler = srpt_srq_event,
2918                .srq_context = (void *)sdev,
2919                .attr.max_wr = sdev->srq_size,
2920                .attr.max_sge = 1,
2921                .srq_type = IB_SRQT_BASIC,
2922        };
2923        struct ib_device *device = sdev->device;
2924        struct ib_srq *srq;
2925        int i;
2926
2927        WARN_ON_ONCE(sdev->srq);
2928        srq = ib_create_srq(sdev->pd, &srq_attr);
2929        if (IS_ERR(srq)) {
2930                pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
2931                return PTR_ERR(srq);
2932        }
2933
2934        pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
2935                 sdev->device->attrs.max_srq_wr, device->name);
2936
2937        sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2938                srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2939                                      sizeof(*sdev->ioctx_ring[0]),
2940                                      srp_max_req_size, DMA_FROM_DEVICE);
2941        if (!sdev->ioctx_ring) {
2942                ib_destroy_srq(srq);
2943                return -ENOMEM;
2944        }
2945
2946        sdev->use_srq = true;
2947        sdev->srq = srq;
2948
2949        for (i = 0; i < sdev->srq_size; ++i) {
2950                INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
2951                srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
2952        }
2953
2954        return 0;
2955}
2956
2957static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
2958{
2959        struct ib_device *device = sdev->device;
2960        int ret = 0;
2961
2962        if (!use_srq) {
2963                srpt_free_srq(sdev);
2964                sdev->use_srq = false;
2965        } else if (use_srq && !sdev->srq) {
2966                ret = srpt_alloc_srq(sdev);
2967        }
2968        pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
2969                 sdev->use_srq, ret);
2970        return ret;
2971}
2972
2973/**
2974 * srpt_add_one - InfiniBand device addition callback function
2975 * @device: Describes a HCA.
2976 */
2977static void srpt_add_one(struct ib_device *device)
2978{
2979        struct srpt_device *sdev;
2980        struct srpt_port *sport;
2981        int i, ret;
2982
2983        pr_debug("device = %p\n", device);
2984
2985        sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
2986                       GFP_KERNEL);
2987        if (!sdev)
2988                goto err;
2989
2990        sdev->device = device;
2991        mutex_init(&sdev->sdev_mutex);
2992
2993        sdev->pd = ib_alloc_pd(device, 0);
2994        if (IS_ERR(sdev->pd))
2995                goto free_dev;
2996
2997        sdev->lkey = sdev->pd->local_dma_lkey;
2998
2999        sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3000
3001        srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3002
3003        if (!srpt_service_guid)
3004                srpt_service_guid = be64_to_cpu(device->node_guid);
3005
3006        if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3007                sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3008        if (IS_ERR(sdev->cm_id)) {
3009                pr_info("ib_create_cm_id() failed: %ld\n",
3010                        PTR_ERR(sdev->cm_id));
3011                sdev->cm_id = NULL;
3012                if (!rdma_cm_id)
3013                        goto err_ring;
3014        }
3015
3016        /* print out target login information */
3017        pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3018                 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3019                 srpt_service_guid, srpt_service_guid);
3020
3021        /*
3022         * We do not have a consistent service_id (ie. also id_ext of target_id)
3023         * to identify this target. We currently use the guid of the first HCA
3024         * in the system as service_id; therefore, the target_id will change
3025         * if this HCA is gone bad and replaced by different HCA
3026         */
3027        ret = sdev->cm_id ?
3028                ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3029                0;
3030        if (ret < 0) {
3031                pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3032                       sdev->cm_id->state);
3033                goto err_cm;
3034        }
3035
3036        INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3037                              srpt_event_handler);
3038        ib_register_event_handler(&sdev->event_handler);
3039
3040        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3041                sport = &sdev->port[i - 1];
3042                INIT_LIST_HEAD(&sport->nexus_list);
3043                init_waitqueue_head(&sport->ch_releaseQ);
3044                mutex_init(&sport->mutex);
3045                sport->sdev = sdev;
3046                sport->port = i;
3047                sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3048                sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3049                sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3050                sport->port_attrib.use_srq = false;
3051                INIT_WORK(&sport->work, srpt_refresh_port_work);
3052
3053                if (srpt_refresh_port(sport)) {
3054                        pr_err("MAD registration failed for %s-%d.\n",
3055                               sdev->device->name, i);
3056                        goto err_event;
3057                }
3058        }
3059
3060        spin_lock(&srpt_dev_lock);
3061        list_add_tail(&sdev->list, &srpt_dev_list);
3062        spin_unlock(&srpt_dev_lock);
3063
3064out:
3065        ib_set_client_data(device, &srpt_client, sdev);
3066        pr_debug("added %s.\n", device->name);
3067        return;
3068
3069err_event:
3070        ib_unregister_event_handler(&sdev->event_handler);
3071err_cm:
3072        if (sdev->cm_id)
3073                ib_destroy_cm_id(sdev->cm_id);
3074err_ring:
3075        srpt_free_srq(sdev);
3076        ib_dealloc_pd(sdev->pd);
3077free_dev:
3078        kfree(sdev);
3079err:
3080        sdev = NULL;
3081        pr_info("%s(%s) failed.\n", __func__, device->name);
3082        goto out;
3083}
3084
3085/**
3086 * srpt_remove_one - InfiniBand device removal callback function
3087 * @device: Describes a HCA.
3088 * @client_data: The value passed as the third argument to ib_set_client_data().
3089 */
3090static void srpt_remove_one(struct ib_device *device, void *client_data)
3091{
3092        struct srpt_device *sdev = client_data;
3093        int i;
3094
3095        if (!sdev) {
3096                pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3097                return;
3098        }
3099
3100        srpt_unregister_mad_agent(sdev);
3101
3102        ib_unregister_event_handler(&sdev->event_handler);
3103
3104        /* Cancel any work queued by the just unregistered IB event handler. */
3105        for (i = 0; i < sdev->device->phys_port_cnt; i++)
3106                cancel_work_sync(&sdev->port[i].work);
3107
3108        if (sdev->cm_id)
3109                ib_destroy_cm_id(sdev->cm_id);
3110
3111        ib_set_client_data(device, &srpt_client, NULL);
3112
3113        /*
3114         * Unregistering a target must happen after destroying sdev->cm_id
3115         * such that no new SRP_LOGIN_REQ information units can arrive while
3116         * destroying the target.
3117         */
3118        spin_lock(&srpt_dev_lock);
3119        list_del(&sdev->list);
3120        spin_unlock(&srpt_dev_lock);
3121
3122        for (i = 0; i < sdev->device->phys_port_cnt; i++)
3123                srpt_release_sport(&sdev->port[i]);
3124
3125        srpt_free_srq(sdev);
3126
3127        ib_dealloc_pd(sdev->pd);
3128
3129        kfree(sdev);
3130}
3131
3132static struct ib_client srpt_client = {
3133        .name = DRV_NAME,
3134        .add = srpt_add_one,
3135        .remove = srpt_remove_one
3136};
3137
3138static int srpt_check_true(struct se_portal_group *se_tpg)
3139{
3140        return 1;
3141}
3142
3143static int srpt_check_false(struct se_portal_group *se_tpg)
3144{
3145        return 0;
3146}
3147
3148static char *srpt_get_fabric_name(void)
3149{
3150        return "srpt";
3151}
3152
3153static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3154{
3155        return tpg->se_tpg_wwn->priv;
3156}
3157
3158static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3159{
3160        struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3161
3162        WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
3163                     tpg != &sport->port_gid_tpg);
3164        return tpg == &sport->port_guid_tpg ? sport->port_guid :
3165                sport->port_gid;
3166}
3167
3168static u16 srpt_get_tag(struct se_portal_group *tpg)
3169{
3170        return 1;
3171}
3172
3173static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3174{
3175        return 1;
3176}
3177
3178static void srpt_release_cmd(struct se_cmd *se_cmd)
3179{
3180        struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3181                                struct srpt_send_ioctx, cmd);
3182        struct srpt_rdma_ch *ch = ioctx->ch;
3183        unsigned long flags;
3184
3185        WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3186                     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3187
3188        if (ioctx->n_rw_ctx) {
3189                srpt_free_rw_ctxs(ch, ioctx);
3190                ioctx->n_rw_ctx = 0;
3191        }
3192
3193        spin_lock_irqsave(&ch->spinlock, flags);
3194        list_add(&ioctx->free_list, &ch->free_list);
3195        spin_unlock_irqrestore(&ch->spinlock, flags);
3196}
3197
3198/**
3199 * srpt_close_session - forcibly close a session
3200 * @se_sess: SCSI target session.
3201 *
3202 * Callback function invoked by the TCM core to clean up sessions associated
3203 * with a node ACL when the user invokes
3204 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3205 */
3206static void srpt_close_session(struct se_session *se_sess)
3207{
3208        struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3209
3210        srpt_disconnect_ch_sync(ch);
3211}
3212
3213/**
3214 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3215 * @se_sess: SCSI target session.
3216 *
3217 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3218 * This object represents an arbitrary integer used to uniquely identify a
3219 * particular attached remote initiator port to a particular SCSI target port
3220 * within a particular SCSI target device within a particular SCSI instance.
3221 */
3222static u32 srpt_sess_get_index(struct se_session *se_sess)
3223{
3224        return 0;
3225}
3226
3227static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3228{
3229}
3230
3231/* Note: only used from inside debug printk's by the TCM core. */
3232static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3233{
3234        struct srpt_send_ioctx *ioctx;
3235
3236        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3237        return ioctx->state;
3238}
3239
3240static int srpt_parse_guid(u64 *guid, const char *name)
3241{
3242        u16 w[4];
3243        int ret = -EINVAL;
3244
3245        if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3246                goto out;
3247        *guid = get_unaligned_be64(w);
3248        ret = 0;
3249out:
3250        return ret;
3251}
3252
3253/**
3254 * srpt_parse_i_port_id - parse an initiator port ID
3255 * @name: ASCII representation of a 128-bit initiator port ID.
3256 * @i_port_id: Binary 128-bit port ID.
3257 */
3258static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3259{
3260        const char *p;
3261        unsigned len, count, leading_zero_bytes;
3262        int ret;
3263
3264        p = name;
3265        if (strncasecmp(p, "0x", 2) == 0)
3266                p += 2;
3267        ret = -EINVAL;
3268        len = strlen(p);
3269        if (len % 2)
3270                goto out;
3271        count = min(len / 2, 16U);
3272        leading_zero_bytes = 16 - count;
3273        memset(i_port_id, 0, leading_zero_bytes);
3274        ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3275
3276out:
3277        return ret;
3278}
3279
3280/*
3281 * configfs callback function invoked for mkdir
3282 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3283 *
3284 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3285 * target_alloc_session() calls in this driver. Examples of valid initiator
3286 * port IDs:
3287 * 0x0000000000000000505400fffe4a0b7b
3288 * 0000000000000000505400fffe4a0b7b
3289 * 5054:00ff:fe4a:0b7b
3290 * 192.168.122.76
3291 */
3292static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3293{
3294        struct sockaddr_storage sa;
3295        u64 guid;
3296        u8 i_port_id[16];
3297        int ret;
3298
3299        ret = srpt_parse_guid(&guid, name);
3300        if (ret < 0)
3301                ret = srpt_parse_i_port_id(i_port_id, name);
3302        if (ret < 0)
3303                ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3304                                           &sa);
3305        if (ret < 0)
3306                pr_err("invalid initiator port ID %s\n", name);
3307        return ret;
3308}
3309
3310static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3311                char *page)
3312{
3313        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3314        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3315
3316        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3317}
3318
3319static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3320                const char *page, size_t count)
3321{
3322        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3323        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3324        unsigned long val;
3325        int ret;
3326
3327        ret = kstrtoul(page, 0, &val);
3328        if (ret < 0) {
3329                pr_err("kstrtoul() failed with ret: %d\n", ret);
3330                return -EINVAL;
3331        }
3332        if (val > MAX_SRPT_RDMA_SIZE) {
3333                pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3334                        MAX_SRPT_RDMA_SIZE);
3335                return -EINVAL;
3336        }
3337        if (val < DEFAULT_MAX_RDMA_SIZE) {
3338                pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3339                        val, DEFAULT_MAX_RDMA_SIZE);
3340                return -EINVAL;
3341        }
3342        sport->port_attrib.srp_max_rdma_size = val;
3343
3344        return count;
3345}
3346
3347static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3348                char *page)
3349{
3350        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3351        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3352
3353        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3354}
3355
3356static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3357                const char *page, size_t count)
3358{
3359        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3360        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3361        unsigned long val;
3362        int ret;
3363
3364        ret = kstrtoul(page, 0, &val);
3365        if (ret < 0) {
3366                pr_err("kstrtoul() failed with ret: %d\n", ret);
3367                return -EINVAL;
3368        }
3369        if (val > MAX_SRPT_RSP_SIZE) {
3370                pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3371                        MAX_SRPT_RSP_SIZE);
3372                return -EINVAL;
3373        }
3374        if (val < MIN_MAX_RSP_SIZE) {
3375                pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3376                        MIN_MAX_RSP_SIZE);
3377                return -EINVAL;
3378        }
3379        sport->port_attrib.srp_max_rsp_size = val;
3380
3381        return count;
3382}
3383
3384static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3385                char *page)
3386{
3387        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3388        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3389
3390        return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3391}
3392
3393static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3394                const char *page, size_t count)
3395{
3396        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3397        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3398        unsigned long val;
3399        int ret;
3400
3401        ret = kstrtoul(page, 0, &val);
3402        if (ret < 0) {
3403                pr_err("kstrtoul() failed with ret: %d\n", ret);
3404                return -EINVAL;
3405        }
3406        if (val > MAX_SRPT_SRQ_SIZE) {
3407                pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3408                        MAX_SRPT_SRQ_SIZE);
3409                return -EINVAL;
3410        }
3411        if (val < MIN_SRPT_SRQ_SIZE) {
3412                pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3413                        MIN_SRPT_SRQ_SIZE);
3414                return -EINVAL;
3415        }
3416        sport->port_attrib.srp_sq_size = val;
3417
3418        return count;
3419}
3420
3421static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3422                                            char *page)
3423{
3424        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3425        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3426
3427        return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3428}
3429
3430static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3431                                             const char *page, size_t count)
3432{
3433        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3434        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3435        struct srpt_device *sdev = sport->sdev;
3436        unsigned long val;
3437        bool enabled;
3438        int ret;
3439
3440        ret = kstrtoul(page, 0, &val);
3441        if (ret < 0)
3442                return ret;
3443        if (val != !!val)
3444                return -EINVAL;
3445
3446        ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3447        if (ret < 0)
3448                return ret;
3449        ret = mutex_lock_interruptible(&sport->mutex);
3450        if (ret < 0)
3451                goto unlock_sdev;
3452        enabled = sport->enabled;
3453        /* Log out all initiator systems before changing 'use_srq'. */
3454        srpt_set_enabled(sport, false);
3455        sport->port_attrib.use_srq = val;
3456        srpt_use_srq(sdev, sport->port_attrib.use_srq);
3457        srpt_set_enabled(sport, enabled);
3458        ret = count;
3459        mutex_unlock(&sport->mutex);
3460unlock_sdev:
3461        mutex_unlock(&sdev->sdev_mutex);
3462
3463        return ret;
3464}
3465
3466CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3467CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3468CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3469CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3470
3471static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3472        &srpt_tpg_attrib_attr_srp_max_rdma_size,
3473        &srpt_tpg_attrib_attr_srp_max_rsp_size,
3474        &srpt_tpg_attrib_attr_srp_sq_size,
3475        &srpt_tpg_attrib_attr_use_srq,
3476        NULL,
3477};
3478
3479static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3480{
3481        struct rdma_cm_id *rdma_cm_id;
3482        int ret;
3483
3484        rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3485                                    NULL, RDMA_PS_TCP, IB_QPT_RC);
3486        if (IS_ERR(rdma_cm_id)) {
3487                pr_err("RDMA/CM ID creation failed: %ld\n",
3488                       PTR_ERR(rdma_cm_id));
3489                goto out;
3490        }
3491
3492        ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3493        if (ret) {
3494                char addr_str[64];
3495
3496                snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3497                pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3498                       addr_str, ret);
3499                rdma_destroy_id(rdma_cm_id);
3500                rdma_cm_id = ERR_PTR(ret);
3501                goto out;
3502        }
3503
3504        ret = rdma_listen(rdma_cm_id, 128);
3505        if (ret) {
3506                pr_err("rdma_listen() failed: %d\n", ret);
3507                rdma_destroy_id(rdma_cm_id);
3508                rdma_cm_id = ERR_PTR(ret);
3509        }
3510
3511out:
3512        return rdma_cm_id;
3513}
3514
3515static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3516{
3517        return sprintf(page, "%d\n", rdma_cm_port);
3518}
3519
3520static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3521                                       const char *page, size_t count)
3522{
3523        struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3524        struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3525        struct rdma_cm_id *new_id = NULL;
3526        u16 val;
3527        int ret;
3528
3529        ret = kstrtou16(page, 0, &val);
3530        if (ret < 0)
3531                return ret;
3532        ret = count;
3533        if (rdma_cm_port == val)
3534                goto out;
3535
3536        if (val) {
3537                addr6.sin6_port = cpu_to_be16(val);
3538                new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3539                if (IS_ERR(new_id)) {
3540                        addr4.sin_port = cpu_to_be16(val);
3541                        new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3542                        if (IS_ERR(new_id)) {
3543                                ret = PTR_ERR(new_id);
3544                                goto out;
3545                        }
3546                }
3547        }
3548
3549        mutex_lock(&rdma_cm_mutex);
3550        rdma_cm_port = val;
3551        swap(rdma_cm_id, new_id);
3552        mutex_unlock(&rdma_cm_mutex);
3553
3554        if (new_id)
3555                rdma_destroy_id(new_id);
3556        ret = count;
3557out:
3558        return ret;
3559}
3560
3561CONFIGFS_ATTR(srpt_, rdma_cm_port);
3562
3563static struct configfs_attribute *srpt_da_attrs[] = {
3564        &srpt_attr_rdma_cm_port,
3565        NULL,
3566};
3567
3568static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3569{
3570        struct se_portal_group *se_tpg = to_tpg(item);
3571        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3572
3573        return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3574}
3575
3576static ssize_t srpt_tpg_enable_store(struct config_item *item,
3577                const char *page, size_t count)
3578{
3579        struct se_portal_group *se_tpg = to_tpg(item);
3580        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3581        unsigned long tmp;
3582        int ret;
3583
3584        ret = kstrtoul(page, 0, &tmp);
3585        if (ret < 0) {
3586                pr_err("Unable to extract srpt_tpg_store_enable\n");
3587                return -EINVAL;
3588        }
3589
3590        if ((tmp != 0) && (tmp != 1)) {
3591                pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3592                return -EINVAL;
3593        }
3594
3595        mutex_lock(&sport->mutex);
3596        srpt_set_enabled(sport, tmp);
3597        mutex_unlock(&sport->mutex);
3598
3599        return count;
3600}
3601
3602CONFIGFS_ATTR(srpt_tpg_, enable);
3603
3604static struct configfs_attribute *srpt_tpg_attrs[] = {
3605        &srpt_tpg_attr_enable,
3606        NULL,
3607};
3608
3609/**
3610 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3611 * @wwn: Corresponds to $driver/$port.
3612 * @name: $tpg.
3613 */
3614static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3615                                             const char *name)
3616{
3617        struct srpt_port *sport = wwn->priv;
3618        static struct se_portal_group *tpg;
3619        int res;
3620
3621        WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
3622                     wwn != &sport->port_gid_wwn);
3623        tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
3624                &sport->port_gid_tpg;
3625        res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3626        if (res)
3627                return ERR_PTR(res);
3628
3629        return tpg;
3630}
3631
3632/**
3633 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3634 * @tpg: Target portal group to deregister.
3635 */
3636static void srpt_drop_tpg(struct se_portal_group *tpg)
3637{
3638        struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3639
3640        sport->enabled = false;
3641        core_tpg_deregister(tpg);
3642}
3643
3644/**
3645 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3646 * @tf: Not used.
3647 * @group: Not used.
3648 * @name: $port.
3649 */
3650static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3651                                      struct config_group *group,
3652                                      const char *name)
3653{
3654        return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3655}
3656
3657/**
3658 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3659 * @wwn: $port.
3660 */
3661static void srpt_drop_tport(struct se_wwn *wwn)
3662{
3663}
3664
3665static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3666{
3667        return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3668}
3669
3670CONFIGFS_ATTR_RO(srpt_wwn_, version);
3671
3672static struct configfs_attribute *srpt_wwn_attrs[] = {
3673        &srpt_wwn_attr_version,
3674        NULL,
3675};
3676
3677static const struct target_core_fabric_ops srpt_template = {
3678        .module                         = THIS_MODULE,
3679        .name                           = "srpt",
3680        .get_fabric_name                = srpt_get_fabric_name,
3681        .tpg_get_wwn                    = srpt_get_fabric_wwn,
3682        .tpg_get_tag                    = srpt_get_tag,
3683        .tpg_check_demo_mode            = srpt_check_false,
3684        .tpg_check_demo_mode_cache      = srpt_check_true,
3685        .tpg_check_demo_mode_write_protect = srpt_check_true,
3686        .tpg_check_prod_mode_write_protect = srpt_check_false,
3687        .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3688        .release_cmd                    = srpt_release_cmd,
3689        .check_stop_free                = srpt_check_stop_free,
3690        .close_session                  = srpt_close_session,
3691        .sess_get_index                 = srpt_sess_get_index,
3692        .sess_get_initiator_sid         = NULL,
3693        .write_pending                  = srpt_write_pending,
3694        .write_pending_status           = srpt_write_pending_status,
3695        .set_default_node_attributes    = srpt_set_default_node_attrs,
3696        .get_cmd_state                  = srpt_get_tcm_cmd_state,
3697        .queue_data_in                  = srpt_queue_data_in,
3698        .queue_status                   = srpt_queue_status,
3699        .queue_tm_rsp                   = srpt_queue_tm_rsp,
3700        .aborted_task                   = srpt_aborted_task,
3701        /*
3702         * Setup function pointers for generic logic in
3703         * target_core_fabric_configfs.c
3704         */
3705        .fabric_make_wwn                = srpt_make_tport,
3706        .fabric_drop_wwn                = srpt_drop_tport,
3707        .fabric_make_tpg                = srpt_make_tpg,
3708        .fabric_drop_tpg                = srpt_drop_tpg,
3709        .fabric_init_nodeacl            = srpt_init_nodeacl,
3710
3711        .tfc_discovery_attrs            = srpt_da_attrs,
3712        .tfc_wwn_attrs                  = srpt_wwn_attrs,
3713        .tfc_tpg_base_attrs             = srpt_tpg_attrs,
3714        .tfc_tpg_attrib_attrs           = srpt_tpg_attrib_attrs,
3715};
3716
3717/**
3718 * srpt_init_module - kernel module initialization
3719 *
3720 * Note: Since ib_register_client() registers callback functions, and since at
3721 * least one of these callback functions (srpt_add_one()) calls target core
3722 * functions, this driver must be registered with the target core before
3723 * ib_register_client() is called.
3724 */
3725static int __init srpt_init_module(void)
3726{
3727        int ret;
3728
3729        ret = -EINVAL;
3730        if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3731                pr_err("invalid value %d for kernel module parameter"
3732                       " srp_max_req_size -- must be at least %d.\n",
3733                       srp_max_req_size, MIN_MAX_REQ_SIZE);
3734                goto out;
3735        }
3736
3737        if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3738            || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3739                pr_err("invalid value %d for kernel module parameter"
3740                       " srpt_srq_size -- must be in the range [%d..%d].\n",
3741                       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3742                goto out;
3743        }
3744
3745        ret = target_register_template(&srpt_template);
3746        if (ret)
3747                goto out;
3748
3749        ret = ib_register_client(&srpt_client);
3750        if (ret) {
3751                pr_err("couldn't register IB client\n");
3752                goto out_unregister_target;
3753        }
3754
3755        return 0;
3756
3757out_unregister_target:
3758        target_unregister_template(&srpt_template);
3759out:
3760        return ret;
3761}
3762
3763static void __exit srpt_cleanup_module(void)
3764{
3765        if (rdma_cm_id)
3766                rdma_destroy_id(rdma_cm_id);
3767        ib_unregister_client(&srpt_client);
3768        target_unregister_template(&srpt_template);
3769}
3770
3771module_init(srpt_init_module);
3772module_exit(srpt_cleanup_module);
3773