linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40
  41#include <trace/events/block.h>
  42
  43#include "md.h"
  44#include "raid1.h"
  45#include "md-bitmap.h"
  46
  47#define UNSUPPORTED_MDDEV_FLAGS         \
  48        ((1L << MD_HAS_JOURNAL) |       \
  49         (1L << MD_JOURNAL_CLEAN) |     \
  50         (1L << MD_HAS_PPL) |           \
  51         (1L << MD_HAS_MULTIPLE_PPLS))
  52
  53/*
  54 * Number of guaranteed r1bios in case of extreme VM load:
  55 */
  56#define NR_RAID1_BIOS 256
  57
  58/* when we get a read error on a read-only array, we redirect to another
  59 * device without failing the first device, or trying to over-write to
  60 * correct the read error.  To keep track of bad blocks on a per-bio
  61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  62 */
  63#define IO_BLOCKED ((struct bio *)1)
  64/* When we successfully write to a known bad-block, we need to remove the
  65 * bad-block marking which must be done from process context.  So we record
  66 * the success by setting devs[n].bio to IO_MADE_GOOD
  67 */
  68#define IO_MADE_GOOD ((struct bio *)2)
  69
  70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  71
  72/* When there are this many requests queue to be written by
  73 * the raid1 thread, we become 'congested' to provide back-pressure
  74 * for writeback.
  75 */
  76static int max_queued_requests = 1024;
  77
  78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  80
  81#define raid1_log(md, fmt, args...)                             \
  82        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  83
  84#include "raid1-10.c"
  85
  86/*
  87 * for resync bio, r1bio pointer can be retrieved from the per-bio
  88 * 'struct resync_pages'.
  89 */
  90static inline struct r1bio *get_resync_r1bio(struct bio *bio)
  91{
  92        return get_resync_pages(bio)->raid_bio;
  93}
  94
  95static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97        struct pool_info *pi = data;
  98        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  99
 100        /* allocate a r1bio with room for raid_disks entries in the bios array */
 101        return kzalloc(size, gfp_flags);
 102}
 103
 104static void r1bio_pool_free(void *r1_bio, void *data)
 105{
 106        kfree(r1_bio);
 107}
 108
 109#define RESYNC_DEPTH 32
 110#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 111#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 112#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 113#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 114#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 115
 116static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118        struct pool_info *pi = data;
 119        struct r1bio *r1_bio;
 120        struct bio *bio;
 121        int need_pages;
 122        int j;
 123        struct resync_pages *rps;
 124
 125        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 126        if (!r1_bio)
 127                return NULL;
 128
 129        rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 130                            gfp_flags);
 131        if (!rps)
 132                goto out_free_r1bio;
 133
 134        /*
 135         * Allocate bios : 1 for reading, n-1 for writing
 136         */
 137        for (j = pi->raid_disks ; j-- ; ) {
 138                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 139                if (!bio)
 140                        goto out_free_bio;
 141                r1_bio->bios[j] = bio;
 142        }
 143        /*
 144         * Allocate RESYNC_PAGES data pages and attach them to
 145         * the first bio.
 146         * If this is a user-requested check/repair, allocate
 147         * RESYNC_PAGES for each bio.
 148         */
 149        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 150                need_pages = pi->raid_disks;
 151        else
 152                need_pages = 1;
 153        for (j = 0; j < pi->raid_disks; j++) {
 154                struct resync_pages *rp = &rps[j];
 155
 156                bio = r1_bio->bios[j];
 157
 158                if (j < need_pages) {
 159                        if (resync_alloc_pages(rp, gfp_flags))
 160                                goto out_free_pages;
 161                } else {
 162                        memcpy(rp, &rps[0], sizeof(*rp));
 163                        resync_get_all_pages(rp);
 164                }
 165
 166                rp->raid_bio = r1_bio;
 167                bio->bi_private = rp;
 168        }
 169
 170        r1_bio->master_bio = NULL;
 171
 172        return r1_bio;
 173
 174out_free_pages:
 175        while (--j >= 0)
 176                resync_free_pages(&rps[j]);
 177
 178out_free_bio:
 179        while (++j < pi->raid_disks)
 180                bio_put(r1_bio->bios[j]);
 181        kfree(rps);
 182
 183out_free_r1bio:
 184        r1bio_pool_free(r1_bio, data);
 185        return NULL;
 186}
 187
 188static void r1buf_pool_free(void *__r1_bio, void *data)
 189{
 190        struct pool_info *pi = data;
 191        int i;
 192        struct r1bio *r1bio = __r1_bio;
 193        struct resync_pages *rp = NULL;
 194
 195        for (i = pi->raid_disks; i--; ) {
 196                rp = get_resync_pages(r1bio->bios[i]);
 197                resync_free_pages(rp);
 198                bio_put(r1bio->bios[i]);
 199        }
 200
 201        /* resync pages array stored in the 1st bio's .bi_private */
 202        kfree(rp);
 203
 204        r1bio_pool_free(r1bio, data);
 205}
 206
 207static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 208{
 209        int i;
 210
 211        for (i = 0; i < conf->raid_disks * 2; i++) {
 212                struct bio **bio = r1_bio->bios + i;
 213                if (!BIO_SPECIAL(*bio))
 214                        bio_put(*bio);
 215                *bio = NULL;
 216        }
 217}
 218
 219static void free_r1bio(struct r1bio *r1_bio)
 220{
 221        struct r1conf *conf = r1_bio->mddev->private;
 222
 223        put_all_bios(conf, r1_bio);
 224        mempool_free(r1_bio, &conf->r1bio_pool);
 225}
 226
 227static void put_buf(struct r1bio *r1_bio)
 228{
 229        struct r1conf *conf = r1_bio->mddev->private;
 230        sector_t sect = r1_bio->sector;
 231        int i;
 232
 233        for (i = 0; i < conf->raid_disks * 2; i++) {
 234                struct bio *bio = r1_bio->bios[i];
 235                if (bio->bi_end_io)
 236                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 237        }
 238
 239        mempool_free(r1_bio, &conf->r1buf_pool);
 240
 241        lower_barrier(conf, sect);
 242}
 243
 244static void reschedule_retry(struct r1bio *r1_bio)
 245{
 246        unsigned long flags;
 247        struct mddev *mddev = r1_bio->mddev;
 248        struct r1conf *conf = mddev->private;
 249        int idx;
 250
 251        idx = sector_to_idx(r1_bio->sector);
 252        spin_lock_irqsave(&conf->device_lock, flags);
 253        list_add(&r1_bio->retry_list, &conf->retry_list);
 254        atomic_inc(&conf->nr_queued[idx]);
 255        spin_unlock_irqrestore(&conf->device_lock, flags);
 256
 257        wake_up(&conf->wait_barrier);
 258        md_wakeup_thread(mddev->thread);
 259}
 260
 261/*
 262 * raid_end_bio_io() is called when we have finished servicing a mirrored
 263 * operation and are ready to return a success/failure code to the buffer
 264 * cache layer.
 265 */
 266static void call_bio_endio(struct r1bio *r1_bio)
 267{
 268        struct bio *bio = r1_bio->master_bio;
 269        struct r1conf *conf = r1_bio->mddev->private;
 270
 271        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 272                bio->bi_status = BLK_STS_IOERR;
 273
 274        bio_endio(bio);
 275        /*
 276         * Wake up any possible resync thread that waits for the device
 277         * to go idle.
 278         */
 279        allow_barrier(conf, r1_bio->sector);
 280}
 281
 282static void raid_end_bio_io(struct r1bio *r1_bio)
 283{
 284        struct bio *bio = r1_bio->master_bio;
 285
 286        /* if nobody has done the final endio yet, do it now */
 287        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 288                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 289                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 290                         (unsigned long long) bio->bi_iter.bi_sector,
 291                         (unsigned long long) bio_end_sector(bio) - 1);
 292
 293                call_bio_endio(r1_bio);
 294        }
 295        free_r1bio(r1_bio);
 296}
 297
 298/*
 299 * Update disk head position estimator based on IRQ completion info.
 300 */
 301static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 302{
 303        struct r1conf *conf = r1_bio->mddev->private;
 304
 305        conf->mirrors[disk].head_position =
 306                r1_bio->sector + (r1_bio->sectors);
 307}
 308
 309/*
 310 * Find the disk number which triggered given bio
 311 */
 312static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 313{
 314        int mirror;
 315        struct r1conf *conf = r1_bio->mddev->private;
 316        int raid_disks = conf->raid_disks;
 317
 318        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 319                if (r1_bio->bios[mirror] == bio)
 320                        break;
 321
 322        BUG_ON(mirror == raid_disks * 2);
 323        update_head_pos(mirror, r1_bio);
 324
 325        return mirror;
 326}
 327
 328static void raid1_end_read_request(struct bio *bio)
 329{
 330        int uptodate = !bio->bi_status;
 331        struct r1bio *r1_bio = bio->bi_private;
 332        struct r1conf *conf = r1_bio->mddev->private;
 333        struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 334
 335        /*
 336         * this branch is our 'one mirror IO has finished' event handler:
 337         */
 338        update_head_pos(r1_bio->read_disk, r1_bio);
 339
 340        if (uptodate)
 341                set_bit(R1BIO_Uptodate, &r1_bio->state);
 342        else if (test_bit(FailFast, &rdev->flags) &&
 343                 test_bit(R1BIO_FailFast, &r1_bio->state))
 344                /* This was a fail-fast read so we definitely
 345                 * want to retry */
 346                ;
 347        else {
 348                /* If all other devices have failed, we want to return
 349                 * the error upwards rather than fail the last device.
 350                 * Here we redefine "uptodate" to mean "Don't want to retry"
 351                 */
 352                unsigned long flags;
 353                spin_lock_irqsave(&conf->device_lock, flags);
 354                if (r1_bio->mddev->degraded == conf->raid_disks ||
 355                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 356                     test_bit(In_sync, &rdev->flags)))
 357                        uptodate = 1;
 358                spin_unlock_irqrestore(&conf->device_lock, flags);
 359        }
 360
 361        if (uptodate) {
 362                raid_end_bio_io(r1_bio);
 363                rdev_dec_pending(rdev, conf->mddev);
 364        } else {
 365                /*
 366                 * oops, read error:
 367                 */
 368                char b[BDEVNAME_SIZE];
 369                pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 370                                   mdname(conf->mddev),
 371                                   bdevname(rdev->bdev, b),
 372                                   (unsigned long long)r1_bio->sector);
 373                set_bit(R1BIO_ReadError, &r1_bio->state);
 374                reschedule_retry(r1_bio);
 375                /* don't drop the reference on read_disk yet */
 376        }
 377}
 378
 379static void close_write(struct r1bio *r1_bio)
 380{
 381        /* it really is the end of this request */
 382        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 383                bio_free_pages(r1_bio->behind_master_bio);
 384                bio_put(r1_bio->behind_master_bio);
 385                r1_bio->behind_master_bio = NULL;
 386        }
 387        /* clear the bitmap if all writes complete successfully */
 388        md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 389                           r1_bio->sectors,
 390                           !test_bit(R1BIO_Degraded, &r1_bio->state),
 391                           test_bit(R1BIO_BehindIO, &r1_bio->state));
 392        md_write_end(r1_bio->mddev);
 393}
 394
 395static void r1_bio_write_done(struct r1bio *r1_bio)
 396{
 397        if (!atomic_dec_and_test(&r1_bio->remaining))
 398                return;
 399
 400        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 401                reschedule_retry(r1_bio);
 402        else {
 403                close_write(r1_bio);
 404                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 405                        reschedule_retry(r1_bio);
 406                else
 407                        raid_end_bio_io(r1_bio);
 408        }
 409}
 410
 411static void raid1_end_write_request(struct bio *bio)
 412{
 413        struct r1bio *r1_bio = bio->bi_private;
 414        int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 415        struct r1conf *conf = r1_bio->mddev->private;
 416        struct bio *to_put = NULL;
 417        int mirror = find_bio_disk(r1_bio, bio);
 418        struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 419        bool discard_error;
 420
 421        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 422
 423        /*
 424         * 'one mirror IO has finished' event handler:
 425         */
 426        if (bio->bi_status && !discard_error) {
 427                set_bit(WriteErrorSeen, &rdev->flags);
 428                if (!test_and_set_bit(WantReplacement, &rdev->flags))
 429                        set_bit(MD_RECOVERY_NEEDED, &
 430                                conf->mddev->recovery);
 431
 432                if (test_bit(FailFast, &rdev->flags) &&
 433                    (bio->bi_opf & MD_FAILFAST) &&
 434                    /* We never try FailFast to WriteMostly devices */
 435                    !test_bit(WriteMostly, &rdev->flags)) {
 436                        md_error(r1_bio->mddev, rdev);
 437                        if (!test_bit(Faulty, &rdev->flags))
 438                                /* This is the only remaining device,
 439                                 * We need to retry the write without
 440                                 * FailFast
 441                                 */
 442                                set_bit(R1BIO_WriteError, &r1_bio->state);
 443                        else {
 444                                /* Finished with this branch */
 445                                r1_bio->bios[mirror] = NULL;
 446                                to_put = bio;
 447                        }
 448                } else
 449                        set_bit(R1BIO_WriteError, &r1_bio->state);
 450        } else {
 451                /*
 452                 * Set R1BIO_Uptodate in our master bio, so that we
 453                 * will return a good error code for to the higher
 454                 * levels even if IO on some other mirrored buffer
 455                 * fails.
 456                 *
 457                 * The 'master' represents the composite IO operation
 458                 * to user-side. So if something waits for IO, then it
 459                 * will wait for the 'master' bio.
 460                 */
 461                sector_t first_bad;
 462                int bad_sectors;
 463
 464                r1_bio->bios[mirror] = NULL;
 465                to_put = bio;
 466                /*
 467                 * Do not set R1BIO_Uptodate if the current device is
 468                 * rebuilding or Faulty. This is because we cannot use
 469                 * such device for properly reading the data back (we could
 470                 * potentially use it, if the current write would have felt
 471                 * before rdev->recovery_offset, but for simplicity we don't
 472                 * check this here.
 473                 */
 474                if (test_bit(In_sync, &rdev->flags) &&
 475                    !test_bit(Faulty, &rdev->flags))
 476                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 477
 478                /* Maybe we can clear some bad blocks. */
 479                if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 480                                &first_bad, &bad_sectors) && !discard_error) {
 481                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 482                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 483                }
 484        }
 485
 486        if (behind) {
 487                if (test_bit(WriteMostly, &rdev->flags))
 488                        atomic_dec(&r1_bio->behind_remaining);
 489
 490                /*
 491                 * In behind mode, we ACK the master bio once the I/O
 492                 * has safely reached all non-writemostly
 493                 * disks. Setting the Returned bit ensures that this
 494                 * gets done only once -- we don't ever want to return
 495                 * -EIO here, instead we'll wait
 496                 */
 497                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 498                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 499                        /* Maybe we can return now */
 500                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 501                                struct bio *mbio = r1_bio->master_bio;
 502                                pr_debug("raid1: behind end write sectors"
 503                                         " %llu-%llu\n",
 504                                         (unsigned long long) mbio->bi_iter.bi_sector,
 505                                         (unsigned long long) bio_end_sector(mbio) - 1);
 506                                call_bio_endio(r1_bio);
 507                        }
 508                }
 509        }
 510        if (r1_bio->bios[mirror] == NULL)
 511                rdev_dec_pending(rdev, conf->mddev);
 512
 513        /*
 514         * Let's see if all mirrored write operations have finished
 515         * already.
 516         */
 517        r1_bio_write_done(r1_bio);
 518
 519        if (to_put)
 520                bio_put(to_put);
 521}
 522
 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
 524                                          sector_t sectors)
 525{
 526        sector_t len;
 527
 528        WARN_ON(sectors == 0);
 529        /*
 530         * len is the number of sectors from start_sector to end of the
 531         * barrier unit which start_sector belongs to.
 532         */
 533        len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 534              start_sector;
 535
 536        if (len > sectors)
 537                len = sectors;
 538
 539        return len;
 540}
 541
 542/*
 543 * This routine returns the disk from which the requested read should
 544 * be done. There is a per-array 'next expected sequential IO' sector
 545 * number - if this matches on the next IO then we use the last disk.
 546 * There is also a per-disk 'last know head position' sector that is
 547 * maintained from IRQ contexts, both the normal and the resync IO
 548 * completion handlers update this position correctly. If there is no
 549 * perfect sequential match then we pick the disk whose head is closest.
 550 *
 551 * If there are 2 mirrors in the same 2 devices, performance degrades
 552 * because position is mirror, not device based.
 553 *
 554 * The rdev for the device selected will have nr_pending incremented.
 555 */
 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 557{
 558        const sector_t this_sector = r1_bio->sector;
 559        int sectors;
 560        int best_good_sectors;
 561        int best_disk, best_dist_disk, best_pending_disk;
 562        int has_nonrot_disk;
 563        int disk;
 564        sector_t best_dist;
 565        unsigned int min_pending;
 566        struct md_rdev *rdev;
 567        int choose_first;
 568        int choose_next_idle;
 569
 570        rcu_read_lock();
 571        /*
 572         * Check if we can balance. We can balance on the whole
 573         * device if no resync is going on, or below the resync window.
 574         * We take the first readable disk when above the resync window.
 575         */
 576 retry:
 577        sectors = r1_bio->sectors;
 578        best_disk = -1;
 579        best_dist_disk = -1;
 580        best_dist = MaxSector;
 581        best_pending_disk = -1;
 582        min_pending = UINT_MAX;
 583        best_good_sectors = 0;
 584        has_nonrot_disk = 0;
 585        choose_next_idle = 0;
 586        clear_bit(R1BIO_FailFast, &r1_bio->state);
 587
 588        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 589            (mddev_is_clustered(conf->mddev) &&
 590            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 591                    this_sector + sectors)))
 592                choose_first = 1;
 593        else
 594                choose_first = 0;
 595
 596        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 597                sector_t dist;
 598                sector_t first_bad;
 599                int bad_sectors;
 600                unsigned int pending;
 601                bool nonrot;
 602
 603                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 604                if (r1_bio->bios[disk] == IO_BLOCKED
 605                    || rdev == NULL
 606                    || test_bit(Faulty, &rdev->flags))
 607                        continue;
 608                if (!test_bit(In_sync, &rdev->flags) &&
 609                    rdev->recovery_offset < this_sector + sectors)
 610                        continue;
 611                if (test_bit(WriteMostly, &rdev->flags)) {
 612                        /* Don't balance among write-mostly, just
 613                         * use the first as a last resort */
 614                        if (best_dist_disk < 0) {
 615                                if (is_badblock(rdev, this_sector, sectors,
 616                                                &first_bad, &bad_sectors)) {
 617                                        if (first_bad <= this_sector)
 618                                                /* Cannot use this */
 619                                                continue;
 620                                        best_good_sectors = first_bad - this_sector;
 621                                } else
 622                                        best_good_sectors = sectors;
 623                                best_dist_disk = disk;
 624                                best_pending_disk = disk;
 625                        }
 626                        continue;
 627                }
 628                /* This is a reasonable device to use.  It might
 629                 * even be best.
 630                 */
 631                if (is_badblock(rdev, this_sector, sectors,
 632                                &first_bad, &bad_sectors)) {
 633                        if (best_dist < MaxSector)
 634                                /* already have a better device */
 635                                continue;
 636                        if (first_bad <= this_sector) {
 637                                /* cannot read here. If this is the 'primary'
 638                                 * device, then we must not read beyond
 639                                 * bad_sectors from another device..
 640                                 */
 641                                bad_sectors -= (this_sector - first_bad);
 642                                if (choose_first && sectors > bad_sectors)
 643                                        sectors = bad_sectors;
 644                                if (best_good_sectors > sectors)
 645                                        best_good_sectors = sectors;
 646
 647                        } else {
 648                                sector_t good_sectors = first_bad - this_sector;
 649                                if (good_sectors > best_good_sectors) {
 650                                        best_good_sectors = good_sectors;
 651                                        best_disk = disk;
 652                                }
 653                                if (choose_first)
 654                                        break;
 655                        }
 656                        continue;
 657                } else {
 658                        if ((sectors > best_good_sectors) && (best_disk >= 0))
 659                                best_disk = -1;
 660                        best_good_sectors = sectors;
 661                }
 662
 663                if (best_disk >= 0)
 664                        /* At least two disks to choose from so failfast is OK */
 665                        set_bit(R1BIO_FailFast, &r1_bio->state);
 666
 667                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 668                has_nonrot_disk |= nonrot;
 669                pending = atomic_read(&rdev->nr_pending);
 670                dist = abs(this_sector - conf->mirrors[disk].head_position);
 671                if (choose_first) {
 672                        best_disk = disk;
 673                        break;
 674                }
 675                /* Don't change to another disk for sequential reads */
 676                if (conf->mirrors[disk].next_seq_sect == this_sector
 677                    || dist == 0) {
 678                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 679                        struct raid1_info *mirror = &conf->mirrors[disk];
 680
 681                        best_disk = disk;
 682                        /*
 683                         * If buffered sequential IO size exceeds optimal
 684                         * iosize, check if there is idle disk. If yes, choose
 685                         * the idle disk. read_balance could already choose an
 686                         * idle disk before noticing it's a sequential IO in
 687                         * this disk. This doesn't matter because this disk
 688                         * will idle, next time it will be utilized after the
 689                         * first disk has IO size exceeds optimal iosize. In
 690                         * this way, iosize of the first disk will be optimal
 691                         * iosize at least. iosize of the second disk might be
 692                         * small, but not a big deal since when the second disk
 693                         * starts IO, the first disk is likely still busy.
 694                         */
 695                        if (nonrot && opt_iosize > 0 &&
 696                            mirror->seq_start != MaxSector &&
 697                            mirror->next_seq_sect > opt_iosize &&
 698                            mirror->next_seq_sect - opt_iosize >=
 699                            mirror->seq_start) {
 700                                choose_next_idle = 1;
 701                                continue;
 702                        }
 703                        break;
 704                }
 705
 706                if (choose_next_idle)
 707                        continue;
 708
 709                if (min_pending > pending) {
 710                        min_pending = pending;
 711                        best_pending_disk = disk;
 712                }
 713
 714                if (dist < best_dist) {
 715                        best_dist = dist;
 716                        best_dist_disk = disk;
 717                }
 718        }
 719
 720        /*
 721         * If all disks are rotational, choose the closest disk. If any disk is
 722         * non-rotational, choose the disk with less pending request even the
 723         * disk is rotational, which might/might not be optimal for raids with
 724         * mixed ratation/non-rotational disks depending on workload.
 725         */
 726        if (best_disk == -1) {
 727                if (has_nonrot_disk || min_pending == 0)
 728                        best_disk = best_pending_disk;
 729                else
 730                        best_disk = best_dist_disk;
 731        }
 732
 733        if (best_disk >= 0) {
 734                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 735                if (!rdev)
 736                        goto retry;
 737                atomic_inc(&rdev->nr_pending);
 738                sectors = best_good_sectors;
 739
 740                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 741                        conf->mirrors[best_disk].seq_start = this_sector;
 742
 743                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 744        }
 745        rcu_read_unlock();
 746        *max_sectors = sectors;
 747
 748        return best_disk;
 749}
 750
 751static int raid1_congested(struct mddev *mddev, int bits)
 752{
 753        struct r1conf *conf = mddev->private;
 754        int i, ret = 0;
 755
 756        if ((bits & (1 << WB_async_congested)) &&
 757            conf->pending_count >= max_queued_requests)
 758                return 1;
 759
 760        rcu_read_lock();
 761        for (i = 0; i < conf->raid_disks * 2; i++) {
 762                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 763                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 764                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 765
 766                        BUG_ON(!q);
 767
 768                        /* Note the '|| 1' - when read_balance prefers
 769                         * non-congested targets, it can be removed
 770                         */
 771                        if ((bits & (1 << WB_async_congested)) || 1)
 772                                ret |= bdi_congested(q->backing_dev_info, bits);
 773                        else
 774                                ret &= bdi_congested(q->backing_dev_info, bits);
 775                }
 776        }
 777        rcu_read_unlock();
 778        return ret;
 779}
 780
 781static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 782{
 783        /* flush any pending bitmap writes to disk before proceeding w/ I/O */
 784        md_bitmap_unplug(conf->mddev->bitmap);
 785        wake_up(&conf->wait_barrier);
 786
 787        while (bio) { /* submit pending writes */
 788                struct bio *next = bio->bi_next;
 789                struct md_rdev *rdev = (void *)bio->bi_disk;
 790                bio->bi_next = NULL;
 791                bio_set_dev(bio, rdev->bdev);
 792                if (test_bit(Faulty, &rdev->flags)) {
 793                        bio_io_error(bio);
 794                } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 795                                    !blk_queue_discard(bio->bi_disk->queue)))
 796                        /* Just ignore it */
 797                        bio_endio(bio);
 798                else
 799                        generic_make_request(bio);
 800                bio = next;
 801        }
 802}
 803
 804static void flush_pending_writes(struct r1conf *conf)
 805{
 806        /* Any writes that have been queued but are awaiting
 807         * bitmap updates get flushed here.
 808         */
 809        spin_lock_irq(&conf->device_lock);
 810
 811        if (conf->pending_bio_list.head) {
 812                struct blk_plug plug;
 813                struct bio *bio;
 814
 815                bio = bio_list_get(&conf->pending_bio_list);
 816                conf->pending_count = 0;
 817                spin_unlock_irq(&conf->device_lock);
 818
 819                /*
 820                 * As this is called in a wait_event() loop (see freeze_array),
 821                 * current->state might be TASK_UNINTERRUPTIBLE which will
 822                 * cause a warning when we prepare to wait again.  As it is
 823                 * rare that this path is taken, it is perfectly safe to force
 824                 * us to go around the wait_event() loop again, so the warning
 825                 * is a false-positive.  Silence the warning by resetting
 826                 * thread state
 827                 */
 828                __set_current_state(TASK_RUNNING);
 829                blk_start_plug(&plug);
 830                flush_bio_list(conf, bio);
 831                blk_finish_plug(&plug);
 832        } else
 833                spin_unlock_irq(&conf->device_lock);
 834}
 835
 836/* Barriers....
 837 * Sometimes we need to suspend IO while we do something else,
 838 * either some resync/recovery, or reconfigure the array.
 839 * To do this we raise a 'barrier'.
 840 * The 'barrier' is a counter that can be raised multiple times
 841 * to count how many activities are happening which preclude
 842 * normal IO.
 843 * We can only raise the barrier if there is no pending IO.
 844 * i.e. if nr_pending == 0.
 845 * We choose only to raise the barrier if no-one is waiting for the
 846 * barrier to go down.  This means that as soon as an IO request
 847 * is ready, no other operations which require a barrier will start
 848 * until the IO request has had a chance.
 849 *
 850 * So: regular IO calls 'wait_barrier'.  When that returns there
 851 *    is no backgroup IO happening,  It must arrange to call
 852 *    allow_barrier when it has finished its IO.
 853 * backgroup IO calls must call raise_barrier.  Once that returns
 854 *    there is no normal IO happeing.  It must arrange to call
 855 *    lower_barrier when the particular background IO completes.
 856 */
 857static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
 858{
 859        int idx = sector_to_idx(sector_nr);
 860
 861        spin_lock_irq(&conf->resync_lock);
 862
 863        /* Wait until no block IO is waiting */
 864        wait_event_lock_irq(conf->wait_barrier,
 865                            !atomic_read(&conf->nr_waiting[idx]),
 866                            conf->resync_lock);
 867
 868        /* block any new IO from starting */
 869        atomic_inc(&conf->barrier[idx]);
 870        /*
 871         * In raise_barrier() we firstly increase conf->barrier[idx] then
 872         * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 873         * increase conf->nr_pending[idx] then check conf->barrier[idx].
 874         * A memory barrier here to make sure conf->nr_pending[idx] won't
 875         * be fetched before conf->barrier[idx] is increased. Otherwise
 876         * there will be a race between raise_barrier() and _wait_barrier().
 877         */
 878        smp_mb__after_atomic();
 879
 880        /* For these conditions we must wait:
 881         * A: while the array is in frozen state
 882         * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 883         *    existing in corresponding I/O barrier bucket.
 884         * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 885         *    max resync count which allowed on current I/O barrier bucket.
 886         */
 887        wait_event_lock_irq(conf->wait_barrier,
 888                            (!conf->array_frozen &&
 889                             !atomic_read(&conf->nr_pending[idx]) &&
 890                             atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 891                                test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 892                            conf->resync_lock);
 893
 894        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 895                atomic_dec(&conf->barrier[idx]);
 896                spin_unlock_irq(&conf->resync_lock);
 897                wake_up(&conf->wait_barrier);
 898                return -EINTR;
 899        }
 900
 901        atomic_inc(&conf->nr_sync_pending);
 902        spin_unlock_irq(&conf->resync_lock);
 903
 904        return 0;
 905}
 906
 907static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 908{
 909        int idx = sector_to_idx(sector_nr);
 910
 911        BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 912
 913        atomic_dec(&conf->barrier[idx]);
 914        atomic_dec(&conf->nr_sync_pending);
 915        wake_up(&conf->wait_barrier);
 916}
 917
 918static void _wait_barrier(struct r1conf *conf, int idx)
 919{
 920        /*
 921         * We need to increase conf->nr_pending[idx] very early here,
 922         * then raise_barrier() can be blocked when it waits for
 923         * conf->nr_pending[idx] to be 0. Then we can avoid holding
 924         * conf->resync_lock when there is no barrier raised in same
 925         * barrier unit bucket. Also if the array is frozen, I/O
 926         * should be blocked until array is unfrozen.
 927         */
 928        atomic_inc(&conf->nr_pending[idx]);
 929        /*
 930         * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 931         * check conf->barrier[idx]. In raise_barrier() we firstly increase
 932         * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 933         * barrier is necessary here to make sure conf->barrier[idx] won't be
 934         * fetched before conf->nr_pending[idx] is increased. Otherwise there
 935         * will be a race between _wait_barrier() and raise_barrier().
 936         */
 937        smp_mb__after_atomic();
 938
 939        /*
 940         * Don't worry about checking two atomic_t variables at same time
 941         * here. If during we check conf->barrier[idx], the array is
 942         * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 943         * 0, it is safe to return and make the I/O continue. Because the
 944         * array is frozen, all I/O returned here will eventually complete
 945         * or be queued, no race will happen. See code comment in
 946         * frozen_array().
 947         */
 948        if (!READ_ONCE(conf->array_frozen) &&
 949            !atomic_read(&conf->barrier[idx]))
 950                return;
 951
 952        /*
 953         * After holding conf->resync_lock, conf->nr_pending[idx]
 954         * should be decreased before waiting for barrier to drop.
 955         * Otherwise, we may encounter a race condition because
 956         * raise_barrer() might be waiting for conf->nr_pending[idx]
 957         * to be 0 at same time.
 958         */
 959        spin_lock_irq(&conf->resync_lock);
 960        atomic_inc(&conf->nr_waiting[idx]);
 961        atomic_dec(&conf->nr_pending[idx]);
 962        /*
 963         * In case freeze_array() is waiting for
 964         * get_unqueued_pending() == extra
 965         */
 966        wake_up(&conf->wait_barrier);
 967        /* Wait for the barrier in same barrier unit bucket to drop. */
 968        wait_event_lock_irq(conf->wait_barrier,
 969                            !conf->array_frozen &&
 970                             !atomic_read(&conf->barrier[idx]),
 971                            conf->resync_lock);
 972        atomic_inc(&conf->nr_pending[idx]);
 973        atomic_dec(&conf->nr_waiting[idx]);
 974        spin_unlock_irq(&conf->resync_lock);
 975}
 976
 977static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 978{
 979        int idx = sector_to_idx(sector_nr);
 980
 981        /*
 982         * Very similar to _wait_barrier(). The difference is, for read
 983         * I/O we don't need wait for sync I/O, but if the whole array
 984         * is frozen, the read I/O still has to wait until the array is
 985         * unfrozen. Since there is no ordering requirement with
 986         * conf->barrier[idx] here, memory barrier is unnecessary as well.
 987         */
 988        atomic_inc(&conf->nr_pending[idx]);
 989
 990        if (!READ_ONCE(conf->array_frozen))
 991                return;
 992
 993        spin_lock_irq(&conf->resync_lock);
 994        atomic_inc(&conf->nr_waiting[idx]);
 995        atomic_dec(&conf->nr_pending[idx]);
 996        /*
 997         * In case freeze_array() is waiting for
 998         * get_unqueued_pending() == extra
 999         */
1000        wake_up(&conf->wait_barrier);
1001        /* Wait for array to be unfrozen */
1002        wait_event_lock_irq(conf->wait_barrier,
1003                            !conf->array_frozen,
1004                            conf->resync_lock);
1005        atomic_inc(&conf->nr_pending[idx]);
1006        atomic_dec(&conf->nr_waiting[idx]);
1007        spin_unlock_irq(&conf->resync_lock);
1008}
1009
1010static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1011{
1012        int idx = sector_to_idx(sector_nr);
1013
1014        _wait_barrier(conf, idx);
1015}
1016
1017static void _allow_barrier(struct r1conf *conf, int idx)
1018{
1019        atomic_dec(&conf->nr_pending[idx]);
1020        wake_up(&conf->wait_barrier);
1021}
1022
1023static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1024{
1025        int idx = sector_to_idx(sector_nr);
1026
1027        _allow_barrier(conf, idx);
1028}
1029
1030/* conf->resync_lock should be held */
1031static int get_unqueued_pending(struct r1conf *conf)
1032{
1033        int idx, ret;
1034
1035        ret = atomic_read(&conf->nr_sync_pending);
1036        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1037                ret += atomic_read(&conf->nr_pending[idx]) -
1038                        atomic_read(&conf->nr_queued[idx]);
1039
1040        return ret;
1041}
1042
1043static void freeze_array(struct r1conf *conf, int extra)
1044{
1045        /* Stop sync I/O and normal I/O and wait for everything to
1046         * go quiet.
1047         * This is called in two situations:
1048         * 1) management command handlers (reshape, remove disk, quiesce).
1049         * 2) one normal I/O request failed.
1050
1051         * After array_frozen is set to 1, new sync IO will be blocked at
1052         * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1053         * or wait_read_barrier(). The flying I/Os will either complete or be
1054         * queued. When everything goes quite, there are only queued I/Os left.
1055
1056         * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1057         * barrier bucket index which this I/O request hits. When all sync and
1058         * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1059         * of all conf->nr_queued[]. But normal I/O failure is an exception,
1060         * in handle_read_error(), we may call freeze_array() before trying to
1061         * fix the read error. In this case, the error read I/O is not queued,
1062         * so get_unqueued_pending() == 1.
1063         *
1064         * Therefore before this function returns, we need to wait until
1065         * get_unqueued_pendings(conf) gets equal to extra. For
1066         * normal I/O context, extra is 1, in rested situations extra is 0.
1067         */
1068        spin_lock_irq(&conf->resync_lock);
1069        conf->array_frozen = 1;
1070        raid1_log(conf->mddev, "wait freeze");
1071        wait_event_lock_irq_cmd(
1072                conf->wait_barrier,
1073                get_unqueued_pending(conf) == extra,
1074                conf->resync_lock,
1075                flush_pending_writes(conf));
1076        spin_unlock_irq(&conf->resync_lock);
1077}
1078static void unfreeze_array(struct r1conf *conf)
1079{
1080        /* reverse the effect of the freeze */
1081        spin_lock_irq(&conf->resync_lock);
1082        conf->array_frozen = 0;
1083        spin_unlock_irq(&conf->resync_lock);
1084        wake_up(&conf->wait_barrier);
1085}
1086
1087static void alloc_behind_master_bio(struct r1bio *r1_bio,
1088                                           struct bio *bio)
1089{
1090        int size = bio->bi_iter.bi_size;
1091        unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092        int i = 0;
1093        struct bio *behind_bio = NULL;
1094
1095        behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1096        if (!behind_bio)
1097                return;
1098
1099        /* discard op, we don't support writezero/writesame yet */
1100        if (!bio_has_data(bio)) {
1101                behind_bio->bi_iter.bi_size = size;
1102                goto skip_copy;
1103        }
1104
1105        behind_bio->bi_write_hint = bio->bi_write_hint;
1106
1107        while (i < vcnt && size) {
1108                struct page *page;
1109                int len = min_t(int, PAGE_SIZE, size);
1110
1111                page = alloc_page(GFP_NOIO);
1112                if (unlikely(!page))
1113                        goto free_pages;
1114
1115                bio_add_page(behind_bio, page, len, 0);
1116
1117                size -= len;
1118                i++;
1119        }
1120
1121        bio_copy_data(behind_bio, bio);
1122skip_copy:
1123        r1_bio->behind_master_bio = behind_bio;
1124        set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126        return;
1127
1128free_pages:
1129        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130                 bio->bi_iter.bi_size);
1131        bio_free_pages(behind_bio);
1132        bio_put(behind_bio);
1133}
1134
1135struct raid1_plug_cb {
1136        struct blk_plug_cb      cb;
1137        struct bio_list         pending;
1138        int                     pending_cnt;
1139};
1140
1141static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1142{
1143        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1144                                                  cb);
1145        struct mddev *mddev = plug->cb.data;
1146        struct r1conf *conf = mddev->private;
1147        struct bio *bio;
1148
1149        if (from_schedule || current->bio_list) {
1150                spin_lock_irq(&conf->device_lock);
1151                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1152                conf->pending_count += plug->pending_cnt;
1153                spin_unlock_irq(&conf->device_lock);
1154                wake_up(&conf->wait_barrier);
1155                md_wakeup_thread(mddev->thread);
1156                kfree(plug);
1157                return;
1158        }
1159
1160        /* we aren't scheduling, so we can do the write-out directly. */
1161        bio = bio_list_get(&plug->pending);
1162        flush_bio_list(conf, bio);
1163        kfree(plug);
1164}
1165
1166static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1167{
1168        r1_bio->master_bio = bio;
1169        r1_bio->sectors = bio_sectors(bio);
1170        r1_bio->state = 0;
1171        r1_bio->mddev = mddev;
1172        r1_bio->sector = bio->bi_iter.bi_sector;
1173}
1174
1175static inline struct r1bio *
1176alloc_r1bio(struct mddev *mddev, struct bio *bio)
1177{
1178        struct r1conf *conf = mddev->private;
1179        struct r1bio *r1_bio;
1180
1181        r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1182        /* Ensure no bio records IO_BLOCKED */
1183        memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1184        init_r1bio(r1_bio, mddev, bio);
1185        return r1_bio;
1186}
1187
1188static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1189                               int max_read_sectors, struct r1bio *r1_bio)
1190{
1191        struct r1conf *conf = mddev->private;
1192        struct raid1_info *mirror;
1193        struct bio *read_bio;
1194        struct bitmap *bitmap = mddev->bitmap;
1195        const int op = bio_op(bio);
1196        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1197        int max_sectors;
1198        int rdisk;
1199        bool print_msg = !!r1_bio;
1200        char b[BDEVNAME_SIZE];
1201
1202        /*
1203         * If r1_bio is set, we are blocking the raid1d thread
1204         * so there is a tiny risk of deadlock.  So ask for
1205         * emergency memory if needed.
1206         */
1207        gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1208
1209        if (print_msg) {
1210                /* Need to get the block device name carefully */
1211                struct md_rdev *rdev;
1212                rcu_read_lock();
1213                rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1214                if (rdev)
1215                        bdevname(rdev->bdev, b);
1216                else
1217                        strcpy(b, "???");
1218                rcu_read_unlock();
1219        }
1220
1221        /*
1222         * Still need barrier for READ in case that whole
1223         * array is frozen.
1224         */
1225        wait_read_barrier(conf, bio->bi_iter.bi_sector);
1226
1227        if (!r1_bio)
1228                r1_bio = alloc_r1bio(mddev, bio);
1229        else
1230                init_r1bio(r1_bio, mddev, bio);
1231        r1_bio->sectors = max_read_sectors;
1232
1233        /*
1234         * make_request() can abort the operation when read-ahead is being
1235         * used and no empty request is available.
1236         */
1237        rdisk = read_balance(conf, r1_bio, &max_sectors);
1238
1239        if (rdisk < 0) {
1240                /* couldn't find anywhere to read from */
1241                if (print_msg) {
1242                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1243                                            mdname(mddev),
1244                                            b,
1245                                            (unsigned long long)r1_bio->sector);
1246                }
1247                raid_end_bio_io(r1_bio);
1248                return;
1249        }
1250        mirror = conf->mirrors + rdisk;
1251
1252        if (print_msg)
1253                pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1254                                    mdname(mddev),
1255                                    (unsigned long long)r1_bio->sector,
1256                                    bdevname(mirror->rdev->bdev, b));
1257
1258        if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1259            bitmap) {
1260                /*
1261                 * Reading from a write-mostly device must take care not to
1262                 * over-take any writes that are 'behind'
1263                 */
1264                raid1_log(mddev, "wait behind writes");
1265                wait_event(bitmap->behind_wait,
1266                           atomic_read(&bitmap->behind_writes) == 0);
1267        }
1268
1269        if (max_sectors < bio_sectors(bio)) {
1270                struct bio *split = bio_split(bio, max_sectors,
1271                                              gfp, &conf->bio_split);
1272                bio_chain(split, bio);
1273                generic_make_request(bio);
1274                bio = split;
1275                r1_bio->master_bio = bio;
1276                r1_bio->sectors = max_sectors;
1277        }
1278
1279        r1_bio->read_disk = rdisk;
1280
1281        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1282
1283        r1_bio->bios[rdisk] = read_bio;
1284
1285        read_bio->bi_iter.bi_sector = r1_bio->sector +
1286                mirror->rdev->data_offset;
1287        bio_set_dev(read_bio, mirror->rdev->bdev);
1288        read_bio->bi_end_io = raid1_end_read_request;
1289        bio_set_op_attrs(read_bio, op, do_sync);
1290        if (test_bit(FailFast, &mirror->rdev->flags) &&
1291            test_bit(R1BIO_FailFast, &r1_bio->state))
1292                read_bio->bi_opf |= MD_FAILFAST;
1293        read_bio->bi_private = r1_bio;
1294
1295        if (mddev->gendisk)
1296                trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1297                                disk_devt(mddev->gendisk), r1_bio->sector);
1298
1299        generic_make_request(read_bio);
1300}
1301
1302static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1303                                int max_write_sectors)
1304{
1305        struct r1conf *conf = mddev->private;
1306        struct r1bio *r1_bio;
1307        int i, disks;
1308        struct bitmap *bitmap = mddev->bitmap;
1309        unsigned long flags;
1310        struct md_rdev *blocked_rdev;
1311        struct blk_plug_cb *cb;
1312        struct raid1_plug_cb *plug = NULL;
1313        int first_clone;
1314        int max_sectors;
1315
1316        if (mddev_is_clustered(mddev) &&
1317             md_cluster_ops->area_resyncing(mddev, WRITE,
1318                     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1319
1320                DEFINE_WAIT(w);
1321                for (;;) {
1322                        prepare_to_wait(&conf->wait_barrier,
1323                                        &w, TASK_IDLE);
1324                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325                                                        bio->bi_iter.bi_sector,
1326                                                        bio_end_sector(bio)))
1327                                break;
1328                        schedule();
1329                }
1330                finish_wait(&conf->wait_barrier, &w);
1331        }
1332
1333        /*
1334         * Register the new request and wait if the reconstruction
1335         * thread has put up a bar for new requests.
1336         * Continue immediately if no resync is active currently.
1337         */
1338        wait_barrier(conf, bio->bi_iter.bi_sector);
1339
1340        r1_bio = alloc_r1bio(mddev, bio);
1341        r1_bio->sectors = max_write_sectors;
1342
1343        if (conf->pending_count >= max_queued_requests) {
1344                md_wakeup_thread(mddev->thread);
1345                raid1_log(mddev, "wait queued");
1346                wait_event(conf->wait_barrier,
1347                           conf->pending_count < max_queued_requests);
1348        }
1349        /* first select target devices under rcu_lock and
1350         * inc refcount on their rdev.  Record them by setting
1351         * bios[x] to bio
1352         * If there are known/acknowledged bad blocks on any device on
1353         * which we have seen a write error, we want to avoid writing those
1354         * blocks.
1355         * This potentially requires several writes to write around
1356         * the bad blocks.  Each set of writes gets it's own r1bio
1357         * with a set of bios attached.
1358         */
1359
1360        disks = conf->raid_disks * 2;
1361 retry_write:
1362        blocked_rdev = NULL;
1363        rcu_read_lock();
1364        max_sectors = r1_bio->sectors;
1365        for (i = 0;  i < disks; i++) {
1366                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1367                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1368                        atomic_inc(&rdev->nr_pending);
1369                        blocked_rdev = rdev;
1370                        break;
1371                }
1372                r1_bio->bios[i] = NULL;
1373                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1374                        if (i < conf->raid_disks)
1375                                set_bit(R1BIO_Degraded, &r1_bio->state);
1376                        continue;
1377                }
1378
1379                atomic_inc(&rdev->nr_pending);
1380                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1381                        sector_t first_bad;
1382                        int bad_sectors;
1383                        int is_bad;
1384
1385                        is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1386                                             &first_bad, &bad_sectors);
1387                        if (is_bad < 0) {
1388                                /* mustn't write here until the bad block is
1389                                 * acknowledged*/
1390                                set_bit(BlockedBadBlocks, &rdev->flags);
1391                                blocked_rdev = rdev;
1392                                break;
1393                        }
1394                        if (is_bad && first_bad <= r1_bio->sector) {
1395                                /* Cannot write here at all */
1396                                bad_sectors -= (r1_bio->sector - first_bad);
1397                                if (bad_sectors < max_sectors)
1398                                        /* mustn't write more than bad_sectors
1399                                         * to other devices yet
1400                                         */
1401                                        max_sectors = bad_sectors;
1402                                rdev_dec_pending(rdev, mddev);
1403                                /* We don't set R1BIO_Degraded as that
1404                                 * only applies if the disk is
1405                                 * missing, so it might be re-added,
1406                                 * and we want to know to recover this
1407                                 * chunk.
1408                                 * In this case the device is here,
1409                                 * and the fact that this chunk is not
1410                                 * in-sync is recorded in the bad
1411                                 * block log
1412                                 */
1413                                continue;
1414                        }
1415                        if (is_bad) {
1416                                int good_sectors = first_bad - r1_bio->sector;
1417                                if (good_sectors < max_sectors)
1418                                        max_sectors = good_sectors;
1419                        }
1420                }
1421                r1_bio->bios[i] = bio;
1422        }
1423        rcu_read_unlock();
1424
1425        if (unlikely(blocked_rdev)) {
1426                /* Wait for this device to become unblocked */
1427                int j;
1428
1429                for (j = 0; j < i; j++)
1430                        if (r1_bio->bios[j])
1431                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1432                r1_bio->state = 0;
1433                allow_barrier(conf, bio->bi_iter.bi_sector);
1434                raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1435                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1436                wait_barrier(conf, bio->bi_iter.bi_sector);
1437                goto retry_write;
1438        }
1439
1440        if (max_sectors < bio_sectors(bio)) {
1441                struct bio *split = bio_split(bio, max_sectors,
1442                                              GFP_NOIO, &conf->bio_split);
1443                bio_chain(split, bio);
1444                generic_make_request(bio);
1445                bio = split;
1446                r1_bio->master_bio = bio;
1447                r1_bio->sectors = max_sectors;
1448        }
1449
1450        atomic_set(&r1_bio->remaining, 1);
1451        atomic_set(&r1_bio->behind_remaining, 0);
1452
1453        first_clone = 1;
1454
1455        for (i = 0; i < disks; i++) {
1456                struct bio *mbio = NULL;
1457                if (!r1_bio->bios[i])
1458                        continue;
1459
1460
1461                if (first_clone) {
1462                        /* do behind I/O ?
1463                         * Not if there are too many, or cannot
1464                         * allocate memory, or a reader on WriteMostly
1465                         * is waiting for behind writes to flush */
1466                        if (bitmap &&
1467                            (atomic_read(&bitmap->behind_writes)
1468                             < mddev->bitmap_info.max_write_behind) &&
1469                            !waitqueue_active(&bitmap->behind_wait)) {
1470                                alloc_behind_master_bio(r1_bio, bio);
1471                        }
1472
1473                        md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1474                                             test_bit(R1BIO_BehindIO, &r1_bio->state));
1475                        first_clone = 0;
1476                }
1477
1478                if (r1_bio->behind_master_bio)
1479                        mbio = bio_clone_fast(r1_bio->behind_master_bio,
1480                                              GFP_NOIO, &mddev->bio_set);
1481                else
1482                        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1483
1484                if (r1_bio->behind_master_bio) {
1485                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1486                                atomic_inc(&r1_bio->behind_remaining);
1487                }
1488
1489                r1_bio->bios[i] = mbio;
1490
1491                mbio->bi_iter.bi_sector = (r1_bio->sector +
1492                                   conf->mirrors[i].rdev->data_offset);
1493                bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1494                mbio->bi_end_io = raid1_end_write_request;
1495                mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1496                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1497                    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1498                    conf->raid_disks - mddev->degraded > 1)
1499                        mbio->bi_opf |= MD_FAILFAST;
1500                mbio->bi_private = r1_bio;
1501
1502                atomic_inc(&r1_bio->remaining);
1503
1504                if (mddev->gendisk)
1505                        trace_block_bio_remap(mbio->bi_disk->queue,
1506                                              mbio, disk_devt(mddev->gendisk),
1507                                              r1_bio->sector);
1508                /* flush_pending_writes() needs access to the rdev so...*/
1509                mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1510
1511                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1512                if (cb)
1513                        plug = container_of(cb, struct raid1_plug_cb, cb);
1514                else
1515                        plug = NULL;
1516                if (plug) {
1517                        bio_list_add(&plug->pending, mbio);
1518                        plug->pending_cnt++;
1519                } else {
1520                        spin_lock_irqsave(&conf->device_lock, flags);
1521                        bio_list_add(&conf->pending_bio_list, mbio);
1522                        conf->pending_count++;
1523                        spin_unlock_irqrestore(&conf->device_lock, flags);
1524                        md_wakeup_thread(mddev->thread);
1525                }
1526        }
1527
1528        r1_bio_write_done(r1_bio);
1529
1530        /* In case raid1d snuck in to freeze_array */
1531        wake_up(&conf->wait_barrier);
1532}
1533
1534static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1535{
1536        sector_t sectors;
1537
1538        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1539                md_flush_request(mddev, bio);
1540                return true;
1541        }
1542
1543        /*
1544         * There is a limit to the maximum size, but
1545         * the read/write handler might find a lower limit
1546         * due to bad blocks.  To avoid multiple splits,
1547         * we pass the maximum number of sectors down
1548         * and let the lower level perform the split.
1549         */
1550        sectors = align_to_barrier_unit_end(
1551                bio->bi_iter.bi_sector, bio_sectors(bio));
1552
1553        if (bio_data_dir(bio) == READ)
1554                raid1_read_request(mddev, bio, sectors, NULL);
1555        else {
1556                if (!md_write_start(mddev,bio))
1557                        return false;
1558                raid1_write_request(mddev, bio, sectors);
1559        }
1560        return true;
1561}
1562
1563static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1564{
1565        struct r1conf *conf = mddev->private;
1566        int i;
1567
1568        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1569                   conf->raid_disks - mddev->degraded);
1570        rcu_read_lock();
1571        for (i = 0; i < conf->raid_disks; i++) {
1572                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1573                seq_printf(seq, "%s",
1574                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1575        }
1576        rcu_read_unlock();
1577        seq_printf(seq, "]");
1578}
1579
1580static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1581{
1582        char b[BDEVNAME_SIZE];
1583        struct r1conf *conf = mddev->private;
1584        unsigned long flags;
1585
1586        /*
1587         * If it is not operational, then we have already marked it as dead
1588         * else if it is the last working disks, ignore the error, let the
1589         * next level up know.
1590         * else mark the drive as failed
1591         */
1592        spin_lock_irqsave(&conf->device_lock, flags);
1593        if (test_bit(In_sync, &rdev->flags)
1594            && (conf->raid_disks - mddev->degraded) == 1) {
1595                /*
1596                 * Don't fail the drive, act as though we were just a
1597                 * normal single drive.
1598                 * However don't try a recovery from this drive as
1599                 * it is very likely to fail.
1600                 */
1601                conf->recovery_disabled = mddev->recovery_disabled;
1602                spin_unlock_irqrestore(&conf->device_lock, flags);
1603                return;
1604        }
1605        set_bit(Blocked, &rdev->flags);
1606        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1607                mddev->degraded++;
1608                set_bit(Faulty, &rdev->flags);
1609        } else
1610                set_bit(Faulty, &rdev->flags);
1611        spin_unlock_irqrestore(&conf->device_lock, flags);
1612        /*
1613         * if recovery is running, make sure it aborts.
1614         */
1615        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1616        set_mask_bits(&mddev->sb_flags, 0,
1617                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1618        pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1619                "md/raid1:%s: Operation continuing on %d devices.\n",
1620                mdname(mddev), bdevname(rdev->bdev, b),
1621                mdname(mddev), conf->raid_disks - mddev->degraded);
1622}
1623
1624static void print_conf(struct r1conf *conf)
1625{
1626        int i;
1627
1628        pr_debug("RAID1 conf printout:\n");
1629        if (!conf) {
1630                pr_debug("(!conf)\n");
1631                return;
1632        }
1633        pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1634                 conf->raid_disks);
1635
1636        rcu_read_lock();
1637        for (i = 0; i < conf->raid_disks; i++) {
1638                char b[BDEVNAME_SIZE];
1639                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1640                if (rdev)
1641                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1642                                 i, !test_bit(In_sync, &rdev->flags),
1643                                 !test_bit(Faulty, &rdev->flags),
1644                                 bdevname(rdev->bdev,b));
1645        }
1646        rcu_read_unlock();
1647}
1648
1649static void close_sync(struct r1conf *conf)
1650{
1651        int idx;
1652
1653        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1654                _wait_barrier(conf, idx);
1655                _allow_barrier(conf, idx);
1656        }
1657
1658        mempool_exit(&conf->r1buf_pool);
1659}
1660
1661static int raid1_spare_active(struct mddev *mddev)
1662{
1663        int i;
1664        struct r1conf *conf = mddev->private;
1665        int count = 0;
1666        unsigned long flags;
1667
1668        /*
1669         * Find all failed disks within the RAID1 configuration
1670         * and mark them readable.
1671         * Called under mddev lock, so rcu protection not needed.
1672         * device_lock used to avoid races with raid1_end_read_request
1673         * which expects 'In_sync' flags and ->degraded to be consistent.
1674         */
1675        spin_lock_irqsave(&conf->device_lock, flags);
1676        for (i = 0; i < conf->raid_disks; i++) {
1677                struct md_rdev *rdev = conf->mirrors[i].rdev;
1678                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1679                if (repl
1680                    && !test_bit(Candidate, &repl->flags)
1681                    && repl->recovery_offset == MaxSector
1682                    && !test_bit(Faulty, &repl->flags)
1683                    && !test_and_set_bit(In_sync, &repl->flags)) {
1684                        /* replacement has just become active */
1685                        if (!rdev ||
1686                            !test_and_clear_bit(In_sync, &rdev->flags))
1687                                count++;
1688                        if (rdev) {
1689                                /* Replaced device not technically
1690                                 * faulty, but we need to be sure
1691                                 * it gets removed and never re-added
1692                                 */
1693                                set_bit(Faulty, &rdev->flags);
1694                                sysfs_notify_dirent_safe(
1695                                        rdev->sysfs_state);
1696                        }
1697                }
1698                if (rdev
1699                    && rdev->recovery_offset == MaxSector
1700                    && !test_bit(Faulty, &rdev->flags)
1701                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1702                        count++;
1703                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1704                }
1705        }
1706        mddev->degraded -= count;
1707        spin_unlock_irqrestore(&conf->device_lock, flags);
1708
1709        print_conf(conf);
1710        return count;
1711}
1712
1713static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1714{
1715        struct r1conf *conf = mddev->private;
1716        int err = -EEXIST;
1717        int mirror = 0;
1718        struct raid1_info *p;
1719        int first = 0;
1720        int last = conf->raid_disks - 1;
1721
1722        if (mddev->recovery_disabled == conf->recovery_disabled)
1723                return -EBUSY;
1724
1725        if (md_integrity_add_rdev(rdev, mddev))
1726                return -ENXIO;
1727
1728        if (rdev->raid_disk >= 0)
1729                first = last = rdev->raid_disk;
1730
1731        /*
1732         * find the disk ... but prefer rdev->saved_raid_disk
1733         * if possible.
1734         */
1735        if (rdev->saved_raid_disk >= 0 &&
1736            rdev->saved_raid_disk >= first &&
1737            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1738                first = last = rdev->saved_raid_disk;
1739
1740        for (mirror = first; mirror <= last; mirror++) {
1741                p = conf->mirrors+mirror;
1742                if (!p->rdev) {
1743
1744                        if (mddev->gendisk)
1745                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1746                                                  rdev->data_offset << 9);
1747
1748                        p->head_position = 0;
1749                        rdev->raid_disk = mirror;
1750                        err = 0;
1751                        /* As all devices are equivalent, we don't need a full recovery
1752                         * if this was recently any drive of the array
1753                         */
1754                        if (rdev->saved_raid_disk < 0)
1755                                conf->fullsync = 1;
1756                        rcu_assign_pointer(p->rdev, rdev);
1757                        break;
1758                }
1759                if (test_bit(WantReplacement, &p->rdev->flags) &&
1760                    p[conf->raid_disks].rdev == NULL) {
1761                        /* Add this device as a replacement */
1762                        clear_bit(In_sync, &rdev->flags);
1763                        set_bit(Replacement, &rdev->flags);
1764                        rdev->raid_disk = mirror;
1765                        err = 0;
1766                        conf->fullsync = 1;
1767                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1768                        break;
1769                }
1770        }
1771        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1772                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1773        print_conf(conf);
1774        return err;
1775}
1776
1777static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1778{
1779        struct r1conf *conf = mddev->private;
1780        int err = 0;
1781        int number = rdev->raid_disk;
1782        struct raid1_info *p = conf->mirrors + number;
1783
1784        if (rdev != p->rdev)
1785                p = conf->mirrors + conf->raid_disks + number;
1786
1787        print_conf(conf);
1788        if (rdev == p->rdev) {
1789                if (test_bit(In_sync, &rdev->flags) ||
1790                    atomic_read(&rdev->nr_pending)) {
1791                        err = -EBUSY;
1792                        goto abort;
1793                }
1794                /* Only remove non-faulty devices if recovery
1795                 * is not possible.
1796                 */
1797                if (!test_bit(Faulty, &rdev->flags) &&
1798                    mddev->recovery_disabled != conf->recovery_disabled &&
1799                    mddev->degraded < conf->raid_disks) {
1800                        err = -EBUSY;
1801                        goto abort;
1802                }
1803                p->rdev = NULL;
1804                if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1805                        synchronize_rcu();
1806                        if (atomic_read(&rdev->nr_pending)) {
1807                                /* lost the race, try later */
1808                                err = -EBUSY;
1809                                p->rdev = rdev;
1810                                goto abort;
1811                        }
1812                }
1813                if (conf->mirrors[conf->raid_disks + number].rdev) {
1814                        /* We just removed a device that is being replaced.
1815                         * Move down the replacement.  We drain all IO before
1816                         * doing this to avoid confusion.
1817                         */
1818                        struct md_rdev *repl =
1819                                conf->mirrors[conf->raid_disks + number].rdev;
1820                        freeze_array(conf, 0);
1821                        if (atomic_read(&repl->nr_pending)) {
1822                                /* It means that some queued IO of retry_list
1823                                 * hold repl. Thus, we cannot set replacement
1824                                 * as NULL, avoiding rdev NULL pointer
1825                                 * dereference in sync_request_write and
1826                                 * handle_write_finished.
1827                                 */
1828                                err = -EBUSY;
1829                                unfreeze_array(conf);
1830                                goto abort;
1831                        }
1832                        clear_bit(Replacement, &repl->flags);
1833                        p->rdev = repl;
1834                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1835                        unfreeze_array(conf);
1836                }
1837
1838                clear_bit(WantReplacement, &rdev->flags);
1839                err = md_integrity_register(mddev);
1840        }
1841abort:
1842
1843        print_conf(conf);
1844        return err;
1845}
1846
1847static void end_sync_read(struct bio *bio)
1848{
1849        struct r1bio *r1_bio = get_resync_r1bio(bio);
1850
1851        update_head_pos(r1_bio->read_disk, r1_bio);
1852
1853        /*
1854         * we have read a block, now it needs to be re-written,
1855         * or re-read if the read failed.
1856         * We don't do much here, just schedule handling by raid1d
1857         */
1858        if (!bio->bi_status)
1859                set_bit(R1BIO_Uptodate, &r1_bio->state);
1860
1861        if (atomic_dec_and_test(&r1_bio->remaining))
1862                reschedule_retry(r1_bio);
1863}
1864
1865static void end_sync_write(struct bio *bio)
1866{
1867        int uptodate = !bio->bi_status;
1868        struct r1bio *r1_bio = get_resync_r1bio(bio);
1869        struct mddev *mddev = r1_bio->mddev;
1870        struct r1conf *conf = mddev->private;
1871        sector_t first_bad;
1872        int bad_sectors;
1873        struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1874
1875        if (!uptodate) {
1876                sector_t sync_blocks = 0;
1877                sector_t s = r1_bio->sector;
1878                long sectors_to_go = r1_bio->sectors;
1879                /* make sure these bits doesn't get cleared. */
1880                do {
1881                        md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1882                        s += sync_blocks;
1883                        sectors_to_go -= sync_blocks;
1884                } while (sectors_to_go > 0);
1885                set_bit(WriteErrorSeen, &rdev->flags);
1886                if (!test_and_set_bit(WantReplacement, &rdev->flags))
1887                        set_bit(MD_RECOVERY_NEEDED, &
1888                                mddev->recovery);
1889                set_bit(R1BIO_WriteError, &r1_bio->state);
1890        } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1891                               &first_bad, &bad_sectors) &&
1892                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1893                                r1_bio->sector,
1894                                r1_bio->sectors,
1895                                &first_bad, &bad_sectors)
1896                )
1897                set_bit(R1BIO_MadeGood, &r1_bio->state);
1898
1899        if (atomic_dec_and_test(&r1_bio->remaining)) {
1900                int s = r1_bio->sectors;
1901                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1902                    test_bit(R1BIO_WriteError, &r1_bio->state))
1903                        reschedule_retry(r1_bio);
1904                else {
1905                        put_buf(r1_bio);
1906                        md_done_sync(mddev, s, uptodate);
1907                }
1908        }
1909}
1910
1911static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1912                            int sectors, struct page *page, int rw)
1913{
1914        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1915                /* success */
1916                return 1;
1917        if (rw == WRITE) {
1918                set_bit(WriteErrorSeen, &rdev->flags);
1919                if (!test_and_set_bit(WantReplacement,
1920                                      &rdev->flags))
1921                        set_bit(MD_RECOVERY_NEEDED, &
1922                                rdev->mddev->recovery);
1923        }
1924        /* need to record an error - either for the block or the device */
1925        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1926                md_error(rdev->mddev, rdev);
1927        return 0;
1928}
1929
1930static int fix_sync_read_error(struct r1bio *r1_bio)
1931{
1932        /* Try some synchronous reads of other devices to get
1933         * good data, much like with normal read errors.  Only
1934         * read into the pages we already have so we don't
1935         * need to re-issue the read request.
1936         * We don't need to freeze the array, because being in an
1937         * active sync request, there is no normal IO, and
1938         * no overlapping syncs.
1939         * We don't need to check is_badblock() again as we
1940         * made sure that anything with a bad block in range
1941         * will have bi_end_io clear.
1942         */
1943        struct mddev *mddev = r1_bio->mddev;
1944        struct r1conf *conf = mddev->private;
1945        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1946        struct page **pages = get_resync_pages(bio)->pages;
1947        sector_t sect = r1_bio->sector;
1948        int sectors = r1_bio->sectors;
1949        int idx = 0;
1950        struct md_rdev *rdev;
1951
1952        rdev = conf->mirrors[r1_bio->read_disk].rdev;
1953        if (test_bit(FailFast, &rdev->flags)) {
1954                /* Don't try recovering from here - just fail it
1955                 * ... unless it is the last working device of course */
1956                md_error(mddev, rdev);
1957                if (test_bit(Faulty, &rdev->flags))
1958                        /* Don't try to read from here, but make sure
1959                         * put_buf does it's thing
1960                         */
1961                        bio->bi_end_io = end_sync_write;
1962        }
1963
1964        while(sectors) {
1965                int s = sectors;
1966                int d = r1_bio->read_disk;
1967                int success = 0;
1968                int start;
1969
1970                if (s > (PAGE_SIZE>>9))
1971                        s = PAGE_SIZE >> 9;
1972                do {
1973                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1974                                /* No rcu protection needed here devices
1975                                 * can only be removed when no resync is
1976                                 * active, and resync is currently active
1977                                 */
1978                                rdev = conf->mirrors[d].rdev;
1979                                if (sync_page_io(rdev, sect, s<<9,
1980                                                 pages[idx],
1981                                                 REQ_OP_READ, 0, false)) {
1982                                        success = 1;
1983                                        break;
1984                                }
1985                        }
1986                        d++;
1987                        if (d == conf->raid_disks * 2)
1988                                d = 0;
1989                } while (!success && d != r1_bio->read_disk);
1990
1991                if (!success) {
1992                        char b[BDEVNAME_SIZE];
1993                        int abort = 0;
1994                        /* Cannot read from anywhere, this block is lost.
1995                         * Record a bad block on each device.  If that doesn't
1996                         * work just disable and interrupt the recovery.
1997                         * Don't fail devices as that won't really help.
1998                         */
1999                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2000                                            mdname(mddev), bio_devname(bio, b),
2001                                            (unsigned long long)r1_bio->sector);
2002                        for (d = 0; d < conf->raid_disks * 2; d++) {
2003                                rdev = conf->mirrors[d].rdev;
2004                                if (!rdev || test_bit(Faulty, &rdev->flags))
2005                                        continue;
2006                                if (!rdev_set_badblocks(rdev, sect, s, 0))
2007                                        abort = 1;
2008                        }
2009                        if (abort) {
2010                                conf->recovery_disabled =
2011                                        mddev->recovery_disabled;
2012                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2013                                md_done_sync(mddev, r1_bio->sectors, 0);
2014                                put_buf(r1_bio);
2015                                return 0;
2016                        }
2017                        /* Try next page */
2018                        sectors -= s;
2019                        sect += s;
2020                        idx++;
2021                        continue;
2022                }
2023
2024                start = d;
2025                /* write it back and re-read */
2026                while (d != r1_bio->read_disk) {
2027                        if (d == 0)
2028                                d = conf->raid_disks * 2;
2029                        d--;
2030                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2031                                continue;
2032                        rdev = conf->mirrors[d].rdev;
2033                        if (r1_sync_page_io(rdev, sect, s,
2034                                            pages[idx],
2035                                            WRITE) == 0) {
2036                                r1_bio->bios[d]->bi_end_io = NULL;
2037                                rdev_dec_pending(rdev, mddev);
2038                        }
2039                }
2040                d = start;
2041                while (d != r1_bio->read_disk) {
2042                        if (d == 0)
2043                                d = conf->raid_disks * 2;
2044                        d--;
2045                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2046                                continue;
2047                        rdev = conf->mirrors[d].rdev;
2048                        if (r1_sync_page_io(rdev, sect, s,
2049                                            pages[idx],
2050                                            READ) != 0)
2051                                atomic_add(s, &rdev->corrected_errors);
2052                }
2053                sectors -= s;
2054                sect += s;
2055                idx ++;
2056        }
2057        set_bit(R1BIO_Uptodate, &r1_bio->state);
2058        bio->bi_status = 0;
2059        return 1;
2060}
2061
2062static void process_checks(struct r1bio *r1_bio)
2063{
2064        /* We have read all readable devices.  If we haven't
2065         * got the block, then there is no hope left.
2066         * If we have, then we want to do a comparison
2067         * and skip the write if everything is the same.
2068         * If any blocks failed to read, then we need to
2069         * attempt an over-write
2070         */
2071        struct mddev *mddev = r1_bio->mddev;
2072        struct r1conf *conf = mddev->private;
2073        int primary;
2074        int i;
2075        int vcnt;
2076
2077        /* Fix variable parts of all bios */
2078        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2079        for (i = 0; i < conf->raid_disks * 2; i++) {
2080                blk_status_t status;
2081                struct bio *b = r1_bio->bios[i];
2082                struct resync_pages *rp = get_resync_pages(b);
2083                if (b->bi_end_io != end_sync_read)
2084                        continue;
2085                /* fixup the bio for reuse, but preserve errno */
2086                status = b->bi_status;
2087                bio_reset(b);
2088                b->bi_status = status;
2089                b->bi_iter.bi_sector = r1_bio->sector +
2090                        conf->mirrors[i].rdev->data_offset;
2091                bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2092                b->bi_end_io = end_sync_read;
2093                rp->raid_bio = r1_bio;
2094                b->bi_private = rp;
2095
2096                /* initialize bvec table again */
2097                md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2098        }
2099        for (primary = 0; primary < conf->raid_disks * 2; primary++)
2100                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2101                    !r1_bio->bios[primary]->bi_status) {
2102                        r1_bio->bios[primary]->bi_end_io = NULL;
2103                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2104                        break;
2105                }
2106        r1_bio->read_disk = primary;
2107        for (i = 0; i < conf->raid_disks * 2; i++) {
2108                int j;
2109                struct bio *pbio = r1_bio->bios[primary];
2110                struct bio *sbio = r1_bio->bios[i];
2111                blk_status_t status = sbio->bi_status;
2112                struct page **ppages = get_resync_pages(pbio)->pages;
2113                struct page **spages = get_resync_pages(sbio)->pages;
2114                struct bio_vec *bi;
2115                int page_len[RESYNC_PAGES] = { 0 };
2116
2117                if (sbio->bi_end_io != end_sync_read)
2118                        continue;
2119                /* Now we can 'fixup' the error value */
2120                sbio->bi_status = 0;
2121
2122                bio_for_each_segment_all(bi, sbio, j)
2123                        page_len[j] = bi->bv_len;
2124
2125                if (!status) {
2126                        for (j = vcnt; j-- ; ) {
2127                                if (memcmp(page_address(ppages[j]),
2128                                           page_address(spages[j]),
2129                                           page_len[j]))
2130                                        break;
2131                        }
2132                } else
2133                        j = 0;
2134                if (j >= 0)
2135                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2136                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2137                              && !status)) {
2138                        /* No need to write to this device. */
2139                        sbio->bi_end_io = NULL;
2140                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2141                        continue;
2142                }
2143
2144                bio_copy_data(sbio, pbio);
2145        }
2146}
2147
2148static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2149{
2150        struct r1conf *conf = mddev->private;
2151        int i;
2152        int disks = conf->raid_disks * 2;
2153        struct bio *wbio;
2154
2155        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2156                /* ouch - failed to read all of that. */
2157                if (!fix_sync_read_error(r1_bio))
2158                        return;
2159
2160        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2161                process_checks(r1_bio);
2162
2163        /*
2164         * schedule writes
2165         */
2166        atomic_set(&r1_bio->remaining, 1);
2167        for (i = 0; i < disks ; i++) {
2168                wbio = r1_bio->bios[i];
2169                if (wbio->bi_end_io == NULL ||
2170                    (wbio->bi_end_io == end_sync_read &&
2171                     (i == r1_bio->read_disk ||
2172                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2173                        continue;
2174                if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2175                        continue;
2176
2177                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2178                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2179                        wbio->bi_opf |= MD_FAILFAST;
2180
2181                wbio->bi_end_io = end_sync_write;
2182                atomic_inc(&r1_bio->remaining);
2183                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2184
2185                generic_make_request(wbio);
2186        }
2187
2188        if (atomic_dec_and_test(&r1_bio->remaining)) {
2189                /* if we're here, all write(s) have completed, so clean up */
2190                int s = r1_bio->sectors;
2191                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2192                    test_bit(R1BIO_WriteError, &r1_bio->state))
2193                        reschedule_retry(r1_bio);
2194                else {
2195                        put_buf(r1_bio);
2196                        md_done_sync(mddev, s, 1);
2197                }
2198        }
2199}
2200
2201/*
2202 * This is a kernel thread which:
2203 *
2204 *      1.      Retries failed read operations on working mirrors.
2205 *      2.      Updates the raid superblock when problems encounter.
2206 *      3.      Performs writes following reads for array synchronising.
2207 */
2208
2209static void fix_read_error(struct r1conf *conf, int read_disk,
2210                           sector_t sect, int sectors)
2211{
2212        struct mddev *mddev = conf->mddev;
2213        while(sectors) {
2214                int s = sectors;
2215                int d = read_disk;
2216                int success = 0;
2217                int start;
2218                struct md_rdev *rdev;
2219
2220                if (s > (PAGE_SIZE>>9))
2221                        s = PAGE_SIZE >> 9;
2222
2223                do {
2224                        sector_t first_bad;
2225                        int bad_sectors;
2226
2227                        rcu_read_lock();
2228                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2229                        if (rdev &&
2230                            (test_bit(In_sync, &rdev->flags) ||
2231                             (!test_bit(Faulty, &rdev->flags) &&
2232                              rdev->recovery_offset >= sect + s)) &&
2233                            is_badblock(rdev, sect, s,
2234                                        &first_bad, &bad_sectors) == 0) {
2235                                atomic_inc(&rdev->nr_pending);
2236                                rcu_read_unlock();
2237                                if (sync_page_io(rdev, sect, s<<9,
2238                                         conf->tmppage, REQ_OP_READ, 0, false))
2239                                        success = 1;
2240                                rdev_dec_pending(rdev, mddev);
2241                                if (success)
2242                                        break;
2243                        } else
2244                                rcu_read_unlock();
2245                        d++;
2246                        if (d == conf->raid_disks * 2)
2247                                d = 0;
2248                } while (!success && d != read_disk);
2249
2250                if (!success) {
2251                        /* Cannot read from anywhere - mark it bad */
2252                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2253                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2254                                md_error(mddev, rdev);
2255                        break;
2256                }
2257                /* write it back and re-read */
2258                start = d;
2259                while (d != read_disk) {
2260                        if (d==0)
2261                                d = conf->raid_disks * 2;
2262                        d--;
2263                        rcu_read_lock();
2264                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2265                        if (rdev &&
2266                            !test_bit(Faulty, &rdev->flags)) {
2267                                atomic_inc(&rdev->nr_pending);
2268                                rcu_read_unlock();
2269                                r1_sync_page_io(rdev, sect, s,
2270                                                conf->tmppage, WRITE);
2271                                rdev_dec_pending(rdev, mddev);
2272                        } else
2273                                rcu_read_unlock();
2274                }
2275                d = start;
2276                while (d != read_disk) {
2277                        char b[BDEVNAME_SIZE];
2278                        if (d==0)
2279                                d = conf->raid_disks * 2;
2280                        d--;
2281                        rcu_read_lock();
2282                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2283                        if (rdev &&
2284                            !test_bit(Faulty, &rdev->flags)) {
2285                                atomic_inc(&rdev->nr_pending);
2286                                rcu_read_unlock();
2287                                if (r1_sync_page_io(rdev, sect, s,
2288                                                    conf->tmppage, READ)) {
2289                                        atomic_add(s, &rdev->corrected_errors);
2290                                        pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2291                                                mdname(mddev), s,
2292                                                (unsigned long long)(sect +
2293                                                                     rdev->data_offset),
2294                                                bdevname(rdev->bdev, b));
2295                                }
2296                                rdev_dec_pending(rdev, mddev);
2297                        } else
2298                                rcu_read_unlock();
2299                }
2300                sectors -= s;
2301                sect += s;
2302        }
2303}
2304
2305static int narrow_write_error(struct r1bio *r1_bio, int i)
2306{
2307        struct mddev *mddev = r1_bio->mddev;
2308        struct r1conf *conf = mddev->private;
2309        struct md_rdev *rdev = conf->mirrors[i].rdev;
2310
2311        /* bio has the data to be written to device 'i' where
2312         * we just recently had a write error.
2313         * We repeatedly clone the bio and trim down to one block,
2314         * then try the write.  Where the write fails we record
2315         * a bad block.
2316         * It is conceivable that the bio doesn't exactly align with
2317         * blocks.  We must handle this somehow.
2318         *
2319         * We currently own a reference on the rdev.
2320         */
2321
2322        int block_sectors;
2323        sector_t sector;
2324        int sectors;
2325        int sect_to_write = r1_bio->sectors;
2326        int ok = 1;
2327
2328        if (rdev->badblocks.shift < 0)
2329                return 0;
2330
2331        block_sectors = roundup(1 << rdev->badblocks.shift,
2332                                bdev_logical_block_size(rdev->bdev) >> 9);
2333        sector = r1_bio->sector;
2334        sectors = ((sector + block_sectors)
2335                   & ~(sector_t)(block_sectors - 1))
2336                - sector;
2337
2338        while (sect_to_write) {
2339                struct bio *wbio;
2340                if (sectors > sect_to_write)
2341                        sectors = sect_to_write;
2342                /* Write at 'sector' for 'sectors'*/
2343
2344                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2345                        wbio = bio_clone_fast(r1_bio->behind_master_bio,
2346                                              GFP_NOIO,
2347                                              &mddev->bio_set);
2348                } else {
2349                        wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2350                                              &mddev->bio_set);
2351                }
2352
2353                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2354                wbio->bi_iter.bi_sector = r1_bio->sector;
2355                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2356
2357                bio_trim(wbio, sector - r1_bio->sector, sectors);
2358                wbio->bi_iter.bi_sector += rdev->data_offset;
2359                bio_set_dev(wbio, rdev->bdev);
2360
2361                if (submit_bio_wait(wbio) < 0)
2362                        /* failure! */
2363                        ok = rdev_set_badblocks(rdev, sector,
2364                                                sectors, 0)
2365                                && ok;
2366
2367                bio_put(wbio);
2368                sect_to_write -= sectors;
2369                sector += sectors;
2370                sectors = block_sectors;
2371        }
2372        return ok;
2373}
2374
2375static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2376{
2377        int m;
2378        int s = r1_bio->sectors;
2379        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2380                struct md_rdev *rdev = conf->mirrors[m].rdev;
2381                struct bio *bio = r1_bio->bios[m];
2382                if (bio->bi_end_io == NULL)
2383                        continue;
2384                if (!bio->bi_status &&
2385                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2386                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2387                }
2388                if (bio->bi_status &&
2389                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2390                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2391                                md_error(conf->mddev, rdev);
2392                }
2393        }
2394        put_buf(r1_bio);
2395        md_done_sync(conf->mddev, s, 1);
2396}
2397
2398static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2399{
2400        int m, idx;
2401        bool fail = false;
2402
2403        for (m = 0; m < conf->raid_disks * 2 ; m++)
2404                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2405                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2406                        rdev_clear_badblocks(rdev,
2407                                             r1_bio->sector,
2408                                             r1_bio->sectors, 0);
2409                        rdev_dec_pending(rdev, conf->mddev);
2410                } else if (r1_bio->bios[m] != NULL) {
2411                        /* This drive got a write error.  We need to
2412                         * narrow down and record precise write
2413                         * errors.
2414                         */
2415                        fail = true;
2416                        if (!narrow_write_error(r1_bio, m)) {
2417                                md_error(conf->mddev,
2418                                         conf->mirrors[m].rdev);
2419                                /* an I/O failed, we can't clear the bitmap */
2420                                set_bit(R1BIO_Degraded, &r1_bio->state);
2421                        }
2422                        rdev_dec_pending(conf->mirrors[m].rdev,
2423                                         conf->mddev);
2424                }
2425        if (fail) {
2426                spin_lock_irq(&conf->device_lock);
2427                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2428                idx = sector_to_idx(r1_bio->sector);
2429                atomic_inc(&conf->nr_queued[idx]);
2430                spin_unlock_irq(&conf->device_lock);
2431                /*
2432                 * In case freeze_array() is waiting for condition
2433                 * get_unqueued_pending() == extra to be true.
2434                 */
2435                wake_up(&conf->wait_barrier);
2436                md_wakeup_thread(conf->mddev->thread);
2437        } else {
2438                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2439                        close_write(r1_bio);
2440                raid_end_bio_io(r1_bio);
2441        }
2442}
2443
2444static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2445{
2446        struct mddev *mddev = conf->mddev;
2447        struct bio *bio;
2448        struct md_rdev *rdev;
2449
2450        clear_bit(R1BIO_ReadError, &r1_bio->state);
2451        /* we got a read error. Maybe the drive is bad.  Maybe just
2452         * the block and we can fix it.
2453         * We freeze all other IO, and try reading the block from
2454         * other devices.  When we find one, we re-write
2455         * and check it that fixes the read error.
2456         * This is all done synchronously while the array is
2457         * frozen
2458         */
2459
2460        bio = r1_bio->bios[r1_bio->read_disk];
2461        bio_put(bio);
2462        r1_bio->bios[r1_bio->read_disk] = NULL;
2463
2464        rdev = conf->mirrors[r1_bio->read_disk].rdev;
2465        if (mddev->ro == 0
2466            && !test_bit(FailFast, &rdev->flags)) {
2467                freeze_array(conf, 1);
2468                fix_read_error(conf, r1_bio->read_disk,
2469                               r1_bio->sector, r1_bio->sectors);
2470                unfreeze_array(conf);
2471        } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2472                md_error(mddev, rdev);
2473        } else {
2474                r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2475        }
2476
2477        rdev_dec_pending(rdev, conf->mddev);
2478        allow_barrier(conf, r1_bio->sector);
2479        bio = r1_bio->master_bio;
2480
2481        /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2482        r1_bio->state = 0;
2483        raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2484}
2485
2486static void raid1d(struct md_thread *thread)
2487{
2488        struct mddev *mddev = thread->mddev;
2489        struct r1bio *r1_bio;
2490        unsigned long flags;
2491        struct r1conf *conf = mddev->private;
2492        struct list_head *head = &conf->retry_list;
2493        struct blk_plug plug;
2494        int idx;
2495
2496        md_check_recovery(mddev);
2497
2498        if (!list_empty_careful(&conf->bio_end_io_list) &&
2499            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2500                LIST_HEAD(tmp);
2501                spin_lock_irqsave(&conf->device_lock, flags);
2502                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2503                        list_splice_init(&conf->bio_end_io_list, &tmp);
2504                spin_unlock_irqrestore(&conf->device_lock, flags);
2505                while (!list_empty(&tmp)) {
2506                        r1_bio = list_first_entry(&tmp, struct r1bio,
2507                                                  retry_list);
2508                        list_del(&r1_bio->retry_list);
2509                        idx = sector_to_idx(r1_bio->sector);
2510                        atomic_dec(&conf->nr_queued[idx]);
2511                        if (mddev->degraded)
2512                                set_bit(R1BIO_Degraded, &r1_bio->state);
2513                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2514                                close_write(r1_bio);
2515                        raid_end_bio_io(r1_bio);
2516                }
2517        }
2518
2519        blk_start_plug(&plug);
2520        for (;;) {
2521
2522                flush_pending_writes(conf);
2523
2524                spin_lock_irqsave(&conf->device_lock, flags);
2525                if (list_empty(head)) {
2526                        spin_unlock_irqrestore(&conf->device_lock, flags);
2527                        break;
2528                }
2529                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2530                list_del(head->prev);
2531                idx = sector_to_idx(r1_bio->sector);
2532                atomic_dec(&conf->nr_queued[idx]);
2533                spin_unlock_irqrestore(&conf->device_lock, flags);
2534
2535                mddev = r1_bio->mddev;
2536                conf = mddev->private;
2537                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2538                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2539                            test_bit(R1BIO_WriteError, &r1_bio->state))
2540                                handle_sync_write_finished(conf, r1_bio);
2541                        else
2542                                sync_request_write(mddev, r1_bio);
2543                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2544                           test_bit(R1BIO_WriteError, &r1_bio->state))
2545                        handle_write_finished(conf, r1_bio);
2546                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2547                        handle_read_error(conf, r1_bio);
2548                else
2549                        WARN_ON_ONCE(1);
2550
2551                cond_resched();
2552                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2553                        md_check_recovery(mddev);
2554        }
2555        blk_finish_plug(&plug);
2556}
2557
2558static int init_resync(struct r1conf *conf)
2559{
2560        int buffs;
2561
2562        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2563        BUG_ON(mempool_initialized(&conf->r1buf_pool));
2564
2565        return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2566                            r1buf_pool_free, conf->poolinfo);
2567}
2568
2569static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2570{
2571        struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2572        struct resync_pages *rps;
2573        struct bio *bio;
2574        int i;
2575
2576        for (i = conf->poolinfo->raid_disks; i--; ) {
2577                bio = r1bio->bios[i];
2578                rps = bio->bi_private;
2579                bio_reset(bio);
2580                bio->bi_private = rps;
2581        }
2582        r1bio->master_bio = NULL;
2583        return r1bio;
2584}
2585
2586/*
2587 * perform a "sync" on one "block"
2588 *
2589 * We need to make sure that no normal I/O request - particularly write
2590 * requests - conflict with active sync requests.
2591 *
2592 * This is achieved by tracking pending requests and a 'barrier' concept
2593 * that can be installed to exclude normal IO requests.
2594 */
2595
2596static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2597                                   int *skipped)
2598{
2599        struct r1conf *conf = mddev->private;
2600        struct r1bio *r1_bio;
2601        struct bio *bio;
2602        sector_t max_sector, nr_sectors;
2603        int disk = -1;
2604        int i;
2605        int wonly = -1;
2606        int write_targets = 0, read_targets = 0;
2607        sector_t sync_blocks;
2608        int still_degraded = 0;
2609        int good_sectors = RESYNC_SECTORS;
2610        int min_bad = 0; /* number of sectors that are bad in all devices */
2611        int idx = sector_to_idx(sector_nr);
2612        int page_idx = 0;
2613
2614        if (!mempool_initialized(&conf->r1buf_pool))
2615                if (init_resync(conf))
2616                        return 0;
2617
2618        max_sector = mddev->dev_sectors;
2619        if (sector_nr >= max_sector) {
2620                /* If we aborted, we need to abort the
2621                 * sync on the 'current' bitmap chunk (there will
2622                 * only be one in raid1 resync.
2623                 * We can find the current addess in mddev->curr_resync
2624                 */
2625                if (mddev->curr_resync < max_sector) /* aborted */
2626                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2627                                           &sync_blocks, 1);
2628                else /* completed sync */
2629                        conf->fullsync = 0;
2630
2631                md_bitmap_close_sync(mddev->bitmap);
2632                close_sync(conf);
2633
2634                if (mddev_is_clustered(mddev)) {
2635                        conf->cluster_sync_low = 0;
2636                        conf->cluster_sync_high = 0;
2637                }
2638                return 0;
2639        }
2640
2641        if (mddev->bitmap == NULL &&
2642            mddev->recovery_cp == MaxSector &&
2643            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2644            conf->fullsync == 0) {
2645                *skipped = 1;
2646                return max_sector - sector_nr;
2647        }
2648        /* before building a request, check if we can skip these blocks..
2649         * This call the bitmap_start_sync doesn't actually record anything
2650         */
2651        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2652            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2653                /* We can skip this block, and probably several more */
2654                *skipped = 1;
2655                return sync_blocks;
2656        }
2657
2658        /*
2659         * If there is non-resync activity waiting for a turn, then let it
2660         * though before starting on this new sync request.
2661         */
2662        if (atomic_read(&conf->nr_waiting[idx]))
2663                schedule_timeout_uninterruptible(1);
2664
2665        /* we are incrementing sector_nr below. To be safe, we check against
2666         * sector_nr + two times RESYNC_SECTORS
2667         */
2668
2669        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2670                mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2671
2672
2673        if (raise_barrier(conf, sector_nr))
2674                return 0;
2675
2676        r1_bio = raid1_alloc_init_r1buf(conf);
2677
2678        rcu_read_lock();
2679        /*
2680         * If we get a correctably read error during resync or recovery,
2681         * we might want to read from a different device.  So we
2682         * flag all drives that could conceivably be read from for READ,
2683         * and any others (which will be non-In_sync devices) for WRITE.
2684         * If a read fails, we try reading from something else for which READ
2685         * is OK.
2686         */
2687
2688        r1_bio->mddev = mddev;
2689        r1_bio->sector = sector_nr;
2690        r1_bio->state = 0;
2691        set_bit(R1BIO_IsSync, &r1_bio->state);
2692        /* make sure good_sectors won't go across barrier unit boundary */
2693        good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2694
2695        for (i = 0; i < conf->raid_disks * 2; i++) {
2696                struct md_rdev *rdev;
2697                bio = r1_bio->bios[i];
2698
2699                rdev = rcu_dereference(conf->mirrors[i].rdev);
2700                if (rdev == NULL ||
2701                    test_bit(Faulty, &rdev->flags)) {
2702                        if (i < conf->raid_disks)
2703                                still_degraded = 1;
2704                } else if (!test_bit(In_sync, &rdev->flags)) {
2705                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2706                        bio->bi_end_io = end_sync_write;
2707                        write_targets ++;
2708                } else {
2709                        /* may need to read from here */
2710                        sector_t first_bad = MaxSector;
2711                        int bad_sectors;
2712
2713                        if (is_badblock(rdev, sector_nr, good_sectors,
2714                                        &first_bad, &bad_sectors)) {
2715                                if (first_bad > sector_nr)
2716                                        good_sectors = first_bad - sector_nr;
2717                                else {
2718                                        bad_sectors -= (sector_nr - first_bad);
2719                                        if (min_bad == 0 ||
2720                                            min_bad > bad_sectors)
2721                                                min_bad = bad_sectors;
2722                                }
2723                        }
2724                        if (sector_nr < first_bad) {
2725                                if (test_bit(WriteMostly, &rdev->flags)) {
2726                                        if (wonly < 0)
2727                                                wonly = i;
2728                                } else {
2729                                        if (disk < 0)
2730                                                disk = i;
2731                                }
2732                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2733                                bio->bi_end_io = end_sync_read;
2734                                read_targets++;
2735                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2736                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2737                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2738                                /*
2739                                 * The device is suitable for reading (InSync),
2740                                 * but has bad block(s) here. Let's try to correct them,
2741                                 * if we are doing resync or repair. Otherwise, leave
2742                                 * this device alone for this sync request.
2743                                 */
2744                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2745                                bio->bi_end_io = end_sync_write;
2746                                write_targets++;
2747                        }
2748                }
2749                if (bio->bi_end_io) {
2750                        atomic_inc(&rdev->nr_pending);
2751                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2752                        bio_set_dev(bio, rdev->bdev);
2753                        if (test_bit(FailFast, &rdev->flags))
2754                                bio->bi_opf |= MD_FAILFAST;
2755                }
2756        }
2757        rcu_read_unlock();
2758        if (disk < 0)
2759                disk = wonly;
2760        r1_bio->read_disk = disk;
2761
2762        if (read_targets == 0 && min_bad > 0) {
2763                /* These sectors are bad on all InSync devices, so we
2764                 * need to mark them bad on all write targets
2765                 */
2766                int ok = 1;
2767                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2768                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2769                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2770                                ok = rdev_set_badblocks(rdev, sector_nr,
2771                                                        min_bad, 0
2772                                        ) && ok;
2773                        }
2774                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2775                *skipped = 1;
2776                put_buf(r1_bio);
2777
2778                if (!ok) {
2779                        /* Cannot record the badblocks, so need to
2780                         * abort the resync.
2781                         * If there are multiple read targets, could just
2782                         * fail the really bad ones ???
2783                         */
2784                        conf->recovery_disabled = mddev->recovery_disabled;
2785                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2786                        return 0;
2787                } else
2788                        return min_bad;
2789
2790        }
2791        if (min_bad > 0 && min_bad < good_sectors) {
2792                /* only resync enough to reach the next bad->good
2793                 * transition */
2794                good_sectors = min_bad;
2795        }
2796
2797        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2798                /* extra read targets are also write targets */
2799                write_targets += read_targets-1;
2800
2801        if (write_targets == 0 || read_targets == 0) {
2802                /* There is nowhere to write, so all non-sync
2803                 * drives must be failed - so we are finished
2804                 */
2805                sector_t rv;
2806                if (min_bad > 0)
2807                        max_sector = sector_nr + min_bad;
2808                rv = max_sector - sector_nr;
2809                *skipped = 1;
2810                put_buf(r1_bio);
2811                return rv;
2812        }
2813
2814        if (max_sector > mddev->resync_max)
2815                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2816        if (max_sector > sector_nr + good_sectors)
2817                max_sector = sector_nr + good_sectors;
2818        nr_sectors = 0;
2819        sync_blocks = 0;
2820        do {
2821                struct page *page;
2822                int len = PAGE_SIZE;
2823                if (sector_nr + (len>>9) > max_sector)
2824                        len = (max_sector - sector_nr) << 9;
2825                if (len == 0)
2826                        break;
2827                if (sync_blocks == 0) {
2828                        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2829                                                  &sync_blocks, still_degraded) &&
2830                            !conf->fullsync &&
2831                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2832                                break;
2833                        if ((len >> 9) > sync_blocks)
2834                                len = sync_blocks<<9;
2835                }
2836
2837                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2838                        struct resync_pages *rp;
2839
2840                        bio = r1_bio->bios[i];
2841                        rp = get_resync_pages(bio);
2842                        if (bio->bi_end_io) {
2843                                page = resync_fetch_page(rp, page_idx);
2844
2845                                /*
2846                                 * won't fail because the vec table is big
2847                                 * enough to hold all these pages
2848                                 */
2849                                bio_add_page(bio, page, len, 0);
2850                        }
2851                }
2852                nr_sectors += len>>9;
2853                sector_nr += len>>9;
2854                sync_blocks -= (len>>9);
2855        } while (++page_idx < RESYNC_PAGES);
2856
2857        r1_bio->sectors = nr_sectors;
2858
2859        if (mddev_is_clustered(mddev) &&
2860                        conf->cluster_sync_high < sector_nr + nr_sectors) {
2861                conf->cluster_sync_low = mddev->curr_resync_completed;
2862                conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2863                /* Send resync message */
2864                md_cluster_ops->resync_info_update(mddev,
2865                                conf->cluster_sync_low,
2866                                conf->cluster_sync_high);
2867        }
2868
2869        /* For a user-requested sync, we read all readable devices and do a
2870         * compare
2871         */
2872        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2873                atomic_set(&r1_bio->remaining, read_targets);
2874                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2875                        bio = r1_bio->bios[i];
2876                        if (bio->bi_end_io == end_sync_read) {
2877                                read_targets--;
2878                                md_sync_acct_bio(bio, nr_sectors);
2879                                if (read_targets == 1)
2880                                        bio->bi_opf &= ~MD_FAILFAST;
2881                                generic_make_request(bio);
2882                        }
2883                }
2884        } else {
2885                atomic_set(&r1_bio->remaining, 1);
2886                bio = r1_bio->bios[r1_bio->read_disk];
2887                md_sync_acct_bio(bio, nr_sectors);
2888                if (read_targets == 1)
2889                        bio->bi_opf &= ~MD_FAILFAST;
2890                generic_make_request(bio);
2891
2892        }
2893        return nr_sectors;
2894}
2895
2896static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2897{
2898        if (sectors)
2899                return sectors;
2900
2901        return mddev->dev_sectors;
2902}
2903
2904static struct r1conf *setup_conf(struct mddev *mddev)
2905{
2906        struct r1conf *conf;
2907        int i;
2908        struct raid1_info *disk;
2909        struct md_rdev *rdev;
2910        int err = -ENOMEM;
2911
2912        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2913        if (!conf)
2914                goto abort;
2915
2916        conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2917                                   sizeof(atomic_t), GFP_KERNEL);
2918        if (!conf->nr_pending)
2919                goto abort;
2920
2921        conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2922                                   sizeof(atomic_t), GFP_KERNEL);
2923        if (!conf->nr_waiting)
2924                goto abort;
2925
2926        conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2927                                  sizeof(atomic_t), GFP_KERNEL);
2928        if (!conf->nr_queued)
2929                goto abort;
2930
2931        conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2932                                sizeof(atomic_t), GFP_KERNEL);
2933        if (!conf->barrier)
2934                goto abort;
2935
2936        conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2937                                            mddev->raid_disks, 2),
2938                                GFP_KERNEL);
2939        if (!conf->mirrors)
2940                goto abort;
2941
2942        conf->tmppage = alloc_page(GFP_KERNEL);
2943        if (!conf->tmppage)
2944                goto abort;
2945
2946        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2947        if (!conf->poolinfo)
2948                goto abort;
2949        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2950        err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2951                           r1bio_pool_free, conf->poolinfo);
2952        if (err)
2953                goto abort;
2954
2955        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2956        if (err)
2957                goto abort;
2958
2959        conf->poolinfo->mddev = mddev;
2960
2961        err = -EINVAL;
2962        spin_lock_init(&conf->device_lock);
2963        rdev_for_each(rdev, mddev) {
2964                int disk_idx = rdev->raid_disk;
2965                if (disk_idx >= mddev->raid_disks
2966                    || disk_idx < 0)
2967                        continue;
2968                if (test_bit(Replacement, &rdev->flags))
2969                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
2970                else
2971                        disk = conf->mirrors + disk_idx;
2972
2973                if (disk->rdev)
2974                        goto abort;
2975                disk->rdev = rdev;
2976                disk->head_position = 0;
2977                disk->seq_start = MaxSector;
2978        }
2979        conf->raid_disks = mddev->raid_disks;
2980        conf->mddev = mddev;
2981        INIT_LIST_HEAD(&conf->retry_list);
2982        INIT_LIST_HEAD(&conf->bio_end_io_list);
2983
2984        spin_lock_init(&conf->resync_lock);
2985        init_waitqueue_head(&conf->wait_barrier);
2986
2987        bio_list_init(&conf->pending_bio_list);
2988        conf->pending_count = 0;
2989        conf->recovery_disabled = mddev->recovery_disabled - 1;
2990
2991        err = -EIO;
2992        for (i = 0; i < conf->raid_disks * 2; i++) {
2993
2994                disk = conf->mirrors + i;
2995
2996                if (i < conf->raid_disks &&
2997                    disk[conf->raid_disks].rdev) {
2998                        /* This slot has a replacement. */
2999                        if (!disk->rdev) {
3000                                /* No original, just make the replacement
3001                                 * a recovering spare
3002                                 */
3003                                disk->rdev =
3004                                        disk[conf->raid_disks].rdev;
3005                                disk[conf->raid_disks].rdev = NULL;
3006                        } else if (!test_bit(In_sync, &disk->rdev->flags))
3007                                /* Original is not in_sync - bad */
3008                                goto abort;
3009                }
3010
3011                if (!disk->rdev ||
3012                    !test_bit(In_sync, &disk->rdev->flags)) {
3013                        disk->head_position = 0;
3014                        if (disk->rdev &&
3015                            (disk->rdev->saved_raid_disk < 0))
3016                                conf->fullsync = 1;
3017                }
3018        }
3019
3020        err = -ENOMEM;
3021        conf->thread = md_register_thread(raid1d, mddev, "raid1");
3022        if (!conf->thread)
3023                goto abort;
3024
3025        return conf;
3026
3027 abort:
3028        if (conf) {
3029                mempool_exit(&conf->r1bio_pool);
3030                kfree(conf->mirrors);
3031                safe_put_page(conf->tmppage);
3032                kfree(conf->poolinfo);
3033                kfree(conf->nr_pending);
3034                kfree(conf->nr_waiting);
3035                kfree(conf->nr_queued);
3036                kfree(conf->barrier);
3037                bioset_exit(&conf->bio_split);
3038                kfree(conf);
3039        }
3040        return ERR_PTR(err);
3041}
3042
3043static void raid1_free(struct mddev *mddev, void *priv);
3044static int raid1_run(struct mddev *mddev)
3045{
3046        struct r1conf *conf;
3047        int i;
3048        struct md_rdev *rdev;
3049        int ret;
3050        bool discard_supported = false;
3051
3052        if (mddev->level != 1) {
3053                pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3054                        mdname(mddev), mddev->level);
3055                return -EIO;
3056        }
3057        if (mddev->reshape_position != MaxSector) {
3058                pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3059                        mdname(mddev));
3060                return -EIO;
3061        }
3062        if (mddev_init_writes_pending(mddev) < 0)
3063                return -ENOMEM;
3064        /*
3065         * copy the already verified devices into our private RAID1
3066         * bookkeeping area. [whatever we allocate in run(),
3067         * should be freed in raid1_free()]
3068         */
3069        if (mddev->private == NULL)
3070                conf = setup_conf(mddev);
3071        else
3072                conf = mddev->private;
3073
3074        if (IS_ERR(conf))
3075                return PTR_ERR(conf);
3076
3077        if (mddev->queue) {
3078                blk_queue_max_write_same_sectors(mddev->queue, 0);
3079                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3080        }
3081
3082        rdev_for_each(rdev, mddev) {
3083                if (!mddev->gendisk)
3084                        continue;
3085                disk_stack_limits(mddev->gendisk, rdev->bdev,
3086                                  rdev->data_offset << 9);
3087                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3088                        discard_supported = true;
3089        }
3090
3091        mddev->degraded = 0;
3092        for (i=0; i < conf->raid_disks; i++)
3093                if (conf->mirrors[i].rdev == NULL ||
3094                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3095                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3096                        mddev->degraded++;
3097
3098        if (conf->raid_disks - mddev->degraded == 1)
3099                mddev->recovery_cp = MaxSector;
3100
3101        if (mddev->recovery_cp != MaxSector)
3102                pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3103                        mdname(mddev));
3104        pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3105                mdname(mddev), mddev->raid_disks - mddev->degraded,
3106                mddev->raid_disks);
3107
3108        /*
3109         * Ok, everything is just fine now
3110         */
3111        mddev->thread = conf->thread;
3112        conf->thread = NULL;
3113        mddev->private = conf;
3114        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3115
3116        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3117
3118        if (mddev->queue) {
3119                if (discard_supported)
3120                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3121                                                mddev->queue);
3122                else
3123                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3124                                                  mddev->queue);
3125        }
3126
3127        ret =  md_integrity_register(mddev);
3128        if (ret) {
3129                md_unregister_thread(&mddev->thread);
3130                raid1_free(mddev, conf);
3131        }
3132        return ret;
3133}
3134
3135static void raid1_free(struct mddev *mddev, void *priv)
3136{
3137        struct r1conf *conf = priv;
3138
3139        mempool_exit(&conf->r1bio_pool);
3140        kfree(conf->mirrors);
3141        safe_put_page(conf->tmppage);
3142        kfree(conf->poolinfo);
3143        kfree(conf->nr_pending);
3144        kfree(conf->nr_waiting);
3145        kfree(conf->nr_queued);
3146        kfree(conf->barrier);
3147        bioset_exit(&conf->bio_split);
3148        kfree(conf);
3149}
3150
3151static int raid1_resize(struct mddev *mddev, sector_t sectors)
3152{
3153        /* no resync is happening, and there is enough space
3154         * on all devices, so we can resize.
3155         * We need to make sure resync covers any new space.
3156         * If the array is shrinking we should possibly wait until
3157         * any io in the removed space completes, but it hardly seems
3158         * worth it.
3159         */
3160        sector_t newsize = raid1_size(mddev, sectors, 0);
3161        if (mddev->external_size &&
3162            mddev->array_sectors > newsize)
3163                return -EINVAL;
3164        if (mddev->bitmap) {
3165                int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3166                if (ret)
3167                        return ret;
3168        }
3169        md_set_array_sectors(mddev, newsize);
3170        if (sectors > mddev->dev_sectors &&
3171            mddev->recovery_cp > mddev->dev_sectors) {
3172                mddev->recovery_cp = mddev->dev_sectors;
3173                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3174        }
3175        mddev->dev_sectors = sectors;
3176        mddev->resync_max_sectors = sectors;
3177        return 0;
3178}
3179
3180static int raid1_reshape(struct mddev *mddev)
3181{
3182        /* We need to:
3183         * 1/ resize the r1bio_pool
3184         * 2/ resize conf->mirrors
3185         *
3186         * We allocate a new r1bio_pool if we can.
3187         * Then raise a device barrier and wait until all IO stops.
3188         * Then resize conf->mirrors and swap in the new r1bio pool.
3189         *
3190         * At the same time, we "pack" the devices so that all the missing
3191         * devices have the higher raid_disk numbers.
3192         */
3193        mempool_t newpool, oldpool;
3194        struct pool_info *newpoolinfo;
3195        struct raid1_info *newmirrors;
3196        struct r1conf *conf = mddev->private;
3197        int cnt, raid_disks;
3198        unsigned long flags;
3199        int d, d2;
3200        int ret;
3201
3202        memset(&newpool, 0, sizeof(newpool));
3203        memset(&oldpool, 0, sizeof(oldpool));
3204
3205        /* Cannot change chunk_size, layout, or level */
3206        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3207            mddev->layout != mddev->new_layout ||
3208            mddev->level != mddev->new_level) {
3209                mddev->new_chunk_sectors = mddev->chunk_sectors;
3210                mddev->new_layout = mddev->layout;
3211                mddev->new_level = mddev->level;
3212                return -EINVAL;
3213        }
3214
3215        if (!mddev_is_clustered(mddev))
3216                md_allow_write(mddev);
3217
3218        raid_disks = mddev->raid_disks + mddev->delta_disks;
3219
3220        if (raid_disks < conf->raid_disks) {
3221                cnt=0;
3222                for (d= 0; d < conf->raid_disks; d++)
3223                        if (conf->mirrors[d].rdev)
3224                                cnt++;
3225                if (cnt > raid_disks)
3226                        return -EBUSY;
3227        }
3228
3229        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3230        if (!newpoolinfo)
3231                return -ENOMEM;
3232        newpoolinfo->mddev = mddev;
3233        newpoolinfo->raid_disks = raid_disks * 2;
3234
3235        ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3236                           r1bio_pool_free, newpoolinfo);
3237        if (ret) {
3238                kfree(newpoolinfo);
3239                return ret;
3240        }
3241        newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3242                                         raid_disks, 2),
3243                             GFP_KERNEL);
3244        if (!newmirrors) {
3245                kfree(newpoolinfo);
3246                mempool_exit(&newpool);
3247                return -ENOMEM;
3248        }
3249
3250        freeze_array(conf, 0);
3251
3252        /* ok, everything is stopped */
3253        oldpool = conf->r1bio_pool;
3254        conf->r1bio_pool = newpool;
3255
3256        for (d = d2 = 0; d < conf->raid_disks; d++) {
3257                struct md_rdev *rdev = conf->mirrors[d].rdev;
3258                if (rdev && rdev->raid_disk != d2) {
3259                        sysfs_unlink_rdev(mddev, rdev);
3260                        rdev->raid_disk = d2;
3261                        sysfs_unlink_rdev(mddev, rdev);
3262                        if (sysfs_link_rdev(mddev, rdev))
3263                                pr_warn("md/raid1:%s: cannot register rd%d\n",
3264                                        mdname(mddev), rdev->raid_disk);
3265                }
3266                if (rdev)
3267                        newmirrors[d2++].rdev = rdev;
3268        }
3269        kfree(conf->mirrors);
3270        conf->mirrors = newmirrors;
3271        kfree(conf->poolinfo);
3272        conf->poolinfo = newpoolinfo;
3273
3274        spin_lock_irqsave(&conf->device_lock, flags);
3275        mddev->degraded += (raid_disks - conf->raid_disks);
3276        spin_unlock_irqrestore(&conf->device_lock, flags);
3277        conf->raid_disks = mddev->raid_disks = raid_disks;
3278        mddev->delta_disks = 0;
3279
3280        unfreeze_array(conf);
3281
3282        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3283        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3284        md_wakeup_thread(mddev->thread);
3285
3286        mempool_exit(&oldpool);
3287        return 0;
3288}
3289
3290static void raid1_quiesce(struct mddev *mddev, int quiesce)
3291{
3292        struct r1conf *conf = mddev->private;
3293
3294        if (quiesce)
3295                freeze_array(conf, 0);
3296        else
3297                unfreeze_array(conf);
3298}
3299
3300static void *raid1_takeover(struct mddev *mddev)
3301{
3302        /* raid1 can take over:
3303         *  raid5 with 2 devices, any layout or chunk size
3304         */
3305        if (mddev->level == 5 && mddev->raid_disks == 2) {
3306                struct r1conf *conf;
3307                mddev->new_level = 1;
3308                mddev->new_layout = 0;
3309                mddev->new_chunk_sectors = 0;
3310                conf = setup_conf(mddev);
3311                if (!IS_ERR(conf)) {
3312                        /* Array must appear to be quiesced */
3313                        conf->array_frozen = 1;
3314                        mddev_clear_unsupported_flags(mddev,
3315                                UNSUPPORTED_MDDEV_FLAGS);
3316                }
3317                return conf;
3318        }
3319        return ERR_PTR(-EINVAL);
3320}
3321
3322static struct md_personality raid1_personality =
3323{
3324        .name           = "raid1",
3325        .level          = 1,
3326        .owner          = THIS_MODULE,
3327        .make_request   = raid1_make_request,
3328        .run            = raid1_run,
3329        .free           = raid1_free,
3330        .status         = raid1_status,
3331        .error_handler  = raid1_error,
3332        .hot_add_disk   = raid1_add_disk,
3333        .hot_remove_disk= raid1_remove_disk,
3334        .spare_active   = raid1_spare_active,
3335        .sync_request   = raid1_sync_request,
3336        .resize         = raid1_resize,
3337        .size           = raid1_size,
3338        .check_reshape  = raid1_reshape,
3339        .quiesce        = raid1_quiesce,
3340        .takeover       = raid1_takeover,
3341        .congested      = raid1_congested,
3342};
3343
3344static int __init raid_init(void)
3345{
3346        return register_md_personality(&raid1_personality);
3347}
3348
3349static void raid_exit(void)
3350{
3351        unregister_md_personality(&raid1_personality);
3352}
3353
3354module_init(raid_init);
3355module_exit(raid_exit);
3356MODULE_LICENSE("GPL");
3357MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3358MODULE_ALIAS("md-personality-3"); /* RAID1 */
3359MODULE_ALIAS("md-raid1");
3360MODULE_ALIAS("md-level-1");
3361
3362module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3363