linux/drivers/mmc/core/mmc_test.c
<<
>>
Prefs
   1/*
   2 *  Copyright 2007-2008 Pierre Ossman
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or (at
   7 * your option) any later version.
   8 */
   9
  10#include <linux/mmc/core.h>
  11#include <linux/mmc/card.h>
  12#include <linux/mmc/host.h>
  13#include <linux/mmc/mmc.h>
  14#include <linux/slab.h>
  15
  16#include <linux/scatterlist.h>
  17#include <linux/swap.h>         /* For nr_free_buffer_pages() */
  18#include <linux/list.h>
  19
  20#include <linux/debugfs.h>
  21#include <linux/uaccess.h>
  22#include <linux/seq_file.h>
  23#include <linux/module.h>
  24
  25#include "core.h"
  26#include "card.h"
  27#include "host.h"
  28#include "bus.h"
  29#include "mmc_ops.h"
  30
  31#define RESULT_OK               0
  32#define RESULT_FAIL             1
  33#define RESULT_UNSUP_HOST       2
  34#define RESULT_UNSUP_CARD       3
  35
  36#define BUFFER_ORDER            2
  37#define BUFFER_SIZE             (PAGE_SIZE << BUFFER_ORDER)
  38
  39#define TEST_ALIGN_END          8
  40
  41/*
  42 * Limit the test area size to the maximum MMC HC erase group size.  Note that
  43 * the maximum SD allocation unit size is just 4MiB.
  44 */
  45#define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
  46
  47/**
  48 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
  49 * @page: first page in the allocation
  50 * @order: order of the number of pages allocated
  51 */
  52struct mmc_test_pages {
  53        struct page *page;
  54        unsigned int order;
  55};
  56
  57/**
  58 * struct mmc_test_mem - allocated memory.
  59 * @arr: array of allocations
  60 * @cnt: number of allocations
  61 */
  62struct mmc_test_mem {
  63        struct mmc_test_pages *arr;
  64        unsigned int cnt;
  65};
  66
  67/**
  68 * struct mmc_test_area - information for performance tests.
  69 * @max_sz: test area size (in bytes)
  70 * @dev_addr: address on card at which to do performance tests
  71 * @max_tfr: maximum transfer size allowed by driver (in bytes)
  72 * @max_segs: maximum segments allowed by driver in scatterlist @sg
  73 * @max_seg_sz: maximum segment size allowed by driver
  74 * @blocks: number of (512 byte) blocks currently mapped by @sg
  75 * @sg_len: length of currently mapped scatterlist @sg
  76 * @mem: allocated memory
  77 * @sg: scatterlist
  78 */
  79struct mmc_test_area {
  80        unsigned long max_sz;
  81        unsigned int dev_addr;
  82        unsigned int max_tfr;
  83        unsigned int max_segs;
  84        unsigned int max_seg_sz;
  85        unsigned int blocks;
  86        unsigned int sg_len;
  87        struct mmc_test_mem *mem;
  88        struct scatterlist *sg;
  89};
  90
  91/**
  92 * struct mmc_test_transfer_result - transfer results for performance tests.
  93 * @link: double-linked list
  94 * @count: amount of group of sectors to check
  95 * @sectors: amount of sectors to check in one group
  96 * @ts: time values of transfer
  97 * @rate: calculated transfer rate
  98 * @iops: I/O operations per second (times 100)
  99 */
 100struct mmc_test_transfer_result {
 101        struct list_head link;
 102        unsigned int count;
 103        unsigned int sectors;
 104        struct timespec64 ts;
 105        unsigned int rate;
 106        unsigned int iops;
 107};
 108
 109/**
 110 * struct mmc_test_general_result - results for tests.
 111 * @link: double-linked list
 112 * @card: card under test
 113 * @testcase: number of test case
 114 * @result: result of test run
 115 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
 116 */
 117struct mmc_test_general_result {
 118        struct list_head link;
 119        struct mmc_card *card;
 120        int testcase;
 121        int result;
 122        struct list_head tr_lst;
 123};
 124
 125/**
 126 * struct mmc_test_dbgfs_file - debugfs related file.
 127 * @link: double-linked list
 128 * @card: card under test
 129 * @file: file created under debugfs
 130 */
 131struct mmc_test_dbgfs_file {
 132        struct list_head link;
 133        struct mmc_card *card;
 134        struct dentry *file;
 135};
 136
 137/**
 138 * struct mmc_test_card - test information.
 139 * @card: card under test
 140 * @scratch: transfer buffer
 141 * @buffer: transfer buffer
 142 * @highmem: buffer for highmem tests
 143 * @area: information for performance tests
 144 * @gr: pointer to results of current testcase
 145 */
 146struct mmc_test_card {
 147        struct mmc_card *card;
 148
 149        u8              scratch[BUFFER_SIZE];
 150        u8              *buffer;
 151#ifdef CONFIG_HIGHMEM
 152        struct page     *highmem;
 153#endif
 154        struct mmc_test_area            area;
 155        struct mmc_test_general_result  *gr;
 156};
 157
 158enum mmc_test_prep_media {
 159        MMC_TEST_PREP_NONE = 0,
 160        MMC_TEST_PREP_WRITE_FULL = 1 << 0,
 161        MMC_TEST_PREP_ERASE = 1 << 1,
 162};
 163
 164struct mmc_test_multiple_rw {
 165        unsigned int *sg_len;
 166        unsigned int *bs;
 167        unsigned int len;
 168        unsigned int size;
 169        bool do_write;
 170        bool do_nonblock_req;
 171        enum mmc_test_prep_media prepare;
 172};
 173
 174/*******************************************************************/
 175/*  General helper functions                                       */
 176/*******************************************************************/
 177
 178/*
 179 * Configure correct block size in card
 180 */
 181static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
 182{
 183        return mmc_set_blocklen(test->card, size);
 184}
 185
 186static bool mmc_test_card_cmd23(struct mmc_card *card)
 187{
 188        return mmc_card_mmc(card) ||
 189               (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
 190}
 191
 192static void mmc_test_prepare_sbc(struct mmc_test_card *test,
 193                                 struct mmc_request *mrq, unsigned int blocks)
 194{
 195        struct mmc_card *card = test->card;
 196
 197        if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
 198            !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
 199            (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
 200                mrq->sbc = NULL;
 201                return;
 202        }
 203
 204        mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
 205        mrq->sbc->arg = blocks;
 206        mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
 207}
 208
 209/*
 210 * Fill in the mmc_request structure given a set of transfer parameters.
 211 */
 212static void mmc_test_prepare_mrq(struct mmc_test_card *test,
 213        struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
 214        unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
 215{
 216        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
 217                return;
 218
 219        if (blocks > 1) {
 220                mrq->cmd->opcode = write ?
 221                        MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
 222        } else {
 223                mrq->cmd->opcode = write ?
 224                        MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 225        }
 226
 227        mrq->cmd->arg = dev_addr;
 228        if (!mmc_card_blockaddr(test->card))
 229                mrq->cmd->arg <<= 9;
 230
 231        mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 232
 233        if (blocks == 1)
 234                mrq->stop = NULL;
 235        else {
 236                mrq->stop->opcode = MMC_STOP_TRANSMISSION;
 237                mrq->stop->arg = 0;
 238                mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
 239        }
 240
 241        mrq->data->blksz = blksz;
 242        mrq->data->blocks = blocks;
 243        mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
 244        mrq->data->sg = sg;
 245        mrq->data->sg_len = sg_len;
 246
 247        mmc_test_prepare_sbc(test, mrq, blocks);
 248
 249        mmc_set_data_timeout(mrq->data, test->card);
 250}
 251
 252static int mmc_test_busy(struct mmc_command *cmd)
 253{
 254        return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
 255                (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
 256}
 257
 258/*
 259 * Wait for the card to finish the busy state
 260 */
 261static int mmc_test_wait_busy(struct mmc_test_card *test)
 262{
 263        int ret, busy;
 264        struct mmc_command cmd = {};
 265
 266        busy = 0;
 267        do {
 268                memset(&cmd, 0, sizeof(struct mmc_command));
 269
 270                cmd.opcode = MMC_SEND_STATUS;
 271                cmd.arg = test->card->rca << 16;
 272                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 273
 274                ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
 275                if (ret)
 276                        break;
 277
 278                if (!busy && mmc_test_busy(&cmd)) {
 279                        busy = 1;
 280                        if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
 281                                pr_info("%s: Warning: Host did not wait for busy state to end.\n",
 282                                        mmc_hostname(test->card->host));
 283                }
 284        } while (mmc_test_busy(&cmd));
 285
 286        return ret;
 287}
 288
 289/*
 290 * Transfer a single sector of kernel addressable data
 291 */
 292static int mmc_test_buffer_transfer(struct mmc_test_card *test,
 293        u8 *buffer, unsigned addr, unsigned blksz, int write)
 294{
 295        struct mmc_request mrq = {};
 296        struct mmc_command cmd = {};
 297        struct mmc_command stop = {};
 298        struct mmc_data data = {};
 299
 300        struct scatterlist sg;
 301
 302        mrq.cmd = &cmd;
 303        mrq.data = &data;
 304        mrq.stop = &stop;
 305
 306        sg_init_one(&sg, buffer, blksz);
 307
 308        mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
 309
 310        mmc_wait_for_req(test->card->host, &mrq);
 311
 312        if (cmd.error)
 313                return cmd.error;
 314        if (data.error)
 315                return data.error;
 316
 317        return mmc_test_wait_busy(test);
 318}
 319
 320static void mmc_test_free_mem(struct mmc_test_mem *mem)
 321{
 322        if (!mem)
 323                return;
 324        while (mem->cnt--)
 325                __free_pages(mem->arr[mem->cnt].page,
 326                             mem->arr[mem->cnt].order);
 327        kfree(mem->arr);
 328        kfree(mem);
 329}
 330
 331/*
 332 * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
 333 * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
 334 * not exceed a maximum number of segments and try not to make segments much
 335 * bigger than maximum segment size.
 336 */
 337static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
 338                                               unsigned long max_sz,
 339                                               unsigned int max_segs,
 340                                               unsigned int max_seg_sz)
 341{
 342        unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
 343        unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
 344        unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
 345        unsigned long page_cnt = 0;
 346        unsigned long limit = nr_free_buffer_pages() >> 4;
 347        struct mmc_test_mem *mem;
 348
 349        if (max_page_cnt > limit)
 350                max_page_cnt = limit;
 351        if (min_page_cnt > max_page_cnt)
 352                min_page_cnt = max_page_cnt;
 353
 354        if (max_seg_page_cnt > max_page_cnt)
 355                max_seg_page_cnt = max_page_cnt;
 356
 357        if (max_segs > max_page_cnt)
 358                max_segs = max_page_cnt;
 359
 360        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 361        if (!mem)
 362                return NULL;
 363
 364        mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
 365        if (!mem->arr)
 366                goto out_free;
 367
 368        while (max_page_cnt) {
 369                struct page *page;
 370                unsigned int order;
 371                gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
 372                                __GFP_NORETRY;
 373
 374                order = get_order(max_seg_page_cnt << PAGE_SHIFT);
 375                while (1) {
 376                        page = alloc_pages(flags, order);
 377                        if (page || !order)
 378                                break;
 379                        order -= 1;
 380                }
 381                if (!page) {
 382                        if (page_cnt < min_page_cnt)
 383                                goto out_free;
 384                        break;
 385                }
 386                mem->arr[mem->cnt].page = page;
 387                mem->arr[mem->cnt].order = order;
 388                mem->cnt += 1;
 389                if (max_page_cnt <= (1UL << order))
 390                        break;
 391                max_page_cnt -= 1UL << order;
 392                page_cnt += 1UL << order;
 393                if (mem->cnt >= max_segs) {
 394                        if (page_cnt < min_page_cnt)
 395                                goto out_free;
 396                        break;
 397                }
 398        }
 399
 400        return mem;
 401
 402out_free:
 403        mmc_test_free_mem(mem);
 404        return NULL;
 405}
 406
 407/*
 408 * Map memory into a scatterlist.  Optionally allow the same memory to be
 409 * mapped more than once.
 410 */
 411static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
 412                           struct scatterlist *sglist, int repeat,
 413                           unsigned int max_segs, unsigned int max_seg_sz,
 414                           unsigned int *sg_len, int min_sg_len)
 415{
 416        struct scatterlist *sg = NULL;
 417        unsigned int i;
 418        unsigned long sz = size;
 419
 420        sg_init_table(sglist, max_segs);
 421        if (min_sg_len > max_segs)
 422                min_sg_len = max_segs;
 423
 424        *sg_len = 0;
 425        do {
 426                for (i = 0; i < mem->cnt; i++) {
 427                        unsigned long len = PAGE_SIZE << mem->arr[i].order;
 428
 429                        if (min_sg_len && (size / min_sg_len < len))
 430                                len = ALIGN(size / min_sg_len, 512);
 431                        if (len > sz)
 432                                len = sz;
 433                        if (len > max_seg_sz)
 434                                len = max_seg_sz;
 435                        if (sg)
 436                                sg = sg_next(sg);
 437                        else
 438                                sg = sglist;
 439                        if (!sg)
 440                                return -EINVAL;
 441                        sg_set_page(sg, mem->arr[i].page, len, 0);
 442                        sz -= len;
 443                        *sg_len += 1;
 444                        if (!sz)
 445                                break;
 446                }
 447        } while (sz && repeat);
 448
 449        if (sz)
 450                return -EINVAL;
 451
 452        if (sg)
 453                sg_mark_end(sg);
 454
 455        return 0;
 456}
 457
 458/*
 459 * Map memory into a scatterlist so that no pages are contiguous.  Allow the
 460 * same memory to be mapped more than once.
 461 */
 462static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
 463                                       unsigned long sz,
 464                                       struct scatterlist *sglist,
 465                                       unsigned int max_segs,
 466                                       unsigned int max_seg_sz,
 467                                       unsigned int *sg_len)
 468{
 469        struct scatterlist *sg = NULL;
 470        unsigned int i = mem->cnt, cnt;
 471        unsigned long len;
 472        void *base, *addr, *last_addr = NULL;
 473
 474        sg_init_table(sglist, max_segs);
 475
 476        *sg_len = 0;
 477        while (sz) {
 478                base = page_address(mem->arr[--i].page);
 479                cnt = 1 << mem->arr[i].order;
 480                while (sz && cnt) {
 481                        addr = base + PAGE_SIZE * --cnt;
 482                        if (last_addr && last_addr + PAGE_SIZE == addr)
 483                                continue;
 484                        last_addr = addr;
 485                        len = PAGE_SIZE;
 486                        if (len > max_seg_sz)
 487                                len = max_seg_sz;
 488                        if (len > sz)
 489                                len = sz;
 490                        if (sg)
 491                                sg = sg_next(sg);
 492                        else
 493                                sg = sglist;
 494                        if (!sg)
 495                                return -EINVAL;
 496                        sg_set_page(sg, virt_to_page(addr), len, 0);
 497                        sz -= len;
 498                        *sg_len += 1;
 499                }
 500                if (i == 0)
 501                        i = mem->cnt;
 502        }
 503
 504        if (sg)
 505                sg_mark_end(sg);
 506
 507        return 0;
 508}
 509
 510/*
 511 * Calculate transfer rate in bytes per second.
 512 */
 513static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
 514{
 515        uint64_t ns;
 516
 517        ns = timespec64_to_ns(ts);
 518        bytes *= 1000000000;
 519
 520        while (ns > UINT_MAX) {
 521                bytes >>= 1;
 522                ns >>= 1;
 523        }
 524
 525        if (!ns)
 526                return 0;
 527
 528        do_div(bytes, (uint32_t)ns);
 529
 530        return bytes;
 531}
 532
 533/*
 534 * Save transfer results for future usage
 535 */
 536static void mmc_test_save_transfer_result(struct mmc_test_card *test,
 537        unsigned int count, unsigned int sectors, struct timespec64 ts,
 538        unsigned int rate, unsigned int iops)
 539{
 540        struct mmc_test_transfer_result *tr;
 541
 542        if (!test->gr)
 543                return;
 544
 545        tr = kmalloc(sizeof(*tr), GFP_KERNEL);
 546        if (!tr)
 547                return;
 548
 549        tr->count = count;
 550        tr->sectors = sectors;
 551        tr->ts = ts;
 552        tr->rate = rate;
 553        tr->iops = iops;
 554
 555        list_add_tail(&tr->link, &test->gr->tr_lst);
 556}
 557
 558/*
 559 * Print the transfer rate.
 560 */
 561static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
 562                                struct timespec64 *ts1, struct timespec64 *ts2)
 563{
 564        unsigned int rate, iops, sectors = bytes >> 9;
 565        struct timespec64 ts;
 566
 567        ts = timespec64_sub(*ts2, *ts1);
 568
 569        rate = mmc_test_rate(bytes, &ts);
 570        iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
 571
 572        pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
 573                         "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
 574                         mmc_hostname(test->card->host), sectors, sectors >> 1,
 575                         (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
 576                         (u32)ts.tv_nsec, rate / 1000, rate / 1024,
 577                         iops / 100, iops % 100);
 578
 579        mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
 580}
 581
 582/*
 583 * Print the average transfer rate.
 584 */
 585static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
 586                                    unsigned int count, struct timespec64 *ts1,
 587                                    struct timespec64 *ts2)
 588{
 589        unsigned int rate, iops, sectors = bytes >> 9;
 590        uint64_t tot = bytes * count;
 591        struct timespec64 ts;
 592
 593        ts = timespec64_sub(*ts2, *ts1);
 594
 595        rate = mmc_test_rate(tot, &ts);
 596        iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
 597
 598        pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
 599                         "%llu.%09u seconds (%u kB/s, %u KiB/s, "
 600                         "%u.%02u IOPS, sg_len %d)\n",
 601                         mmc_hostname(test->card->host), count, sectors, count,
 602                         sectors >> 1, (sectors & 1 ? ".5" : ""),
 603                         (u64)ts.tv_sec, (u32)ts.tv_nsec,
 604                         rate / 1000, rate / 1024, iops / 100, iops % 100,
 605                         test->area.sg_len);
 606
 607        mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
 608}
 609
 610/*
 611 * Return the card size in sectors.
 612 */
 613static unsigned int mmc_test_capacity(struct mmc_card *card)
 614{
 615        if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
 616                return card->ext_csd.sectors;
 617        else
 618                return card->csd.capacity << (card->csd.read_blkbits - 9);
 619}
 620
 621/*******************************************************************/
 622/*  Test preparation and cleanup                                   */
 623/*******************************************************************/
 624
 625/*
 626 * Fill the first couple of sectors of the card with known data
 627 * so that bad reads/writes can be detected
 628 */
 629static int __mmc_test_prepare(struct mmc_test_card *test, int write)
 630{
 631        int ret, i;
 632
 633        ret = mmc_test_set_blksize(test, 512);
 634        if (ret)
 635                return ret;
 636
 637        if (write)
 638                memset(test->buffer, 0xDF, 512);
 639        else {
 640                for (i = 0; i < 512; i++)
 641                        test->buffer[i] = i;
 642        }
 643
 644        for (i = 0; i < BUFFER_SIZE / 512; i++) {
 645                ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 646                if (ret)
 647                        return ret;
 648        }
 649
 650        return 0;
 651}
 652
 653static int mmc_test_prepare_write(struct mmc_test_card *test)
 654{
 655        return __mmc_test_prepare(test, 1);
 656}
 657
 658static int mmc_test_prepare_read(struct mmc_test_card *test)
 659{
 660        return __mmc_test_prepare(test, 0);
 661}
 662
 663static int mmc_test_cleanup(struct mmc_test_card *test)
 664{
 665        int ret, i;
 666
 667        ret = mmc_test_set_blksize(test, 512);
 668        if (ret)
 669                return ret;
 670
 671        memset(test->buffer, 0, 512);
 672
 673        for (i = 0; i < BUFFER_SIZE / 512; i++) {
 674                ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 675                if (ret)
 676                        return ret;
 677        }
 678
 679        return 0;
 680}
 681
 682/*******************************************************************/
 683/*  Test execution helpers                                         */
 684/*******************************************************************/
 685
 686/*
 687 * Modifies the mmc_request to perform the "short transfer" tests
 688 */
 689static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
 690        struct mmc_request *mrq, int write)
 691{
 692        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 693                return;
 694
 695        if (mrq->data->blocks > 1) {
 696                mrq->cmd->opcode = write ?
 697                        MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 698                mrq->stop = NULL;
 699        } else {
 700                mrq->cmd->opcode = MMC_SEND_STATUS;
 701                mrq->cmd->arg = test->card->rca << 16;
 702        }
 703}
 704
 705/*
 706 * Checks that a normal transfer didn't have any errors
 707 */
 708static int mmc_test_check_result(struct mmc_test_card *test,
 709                                 struct mmc_request *mrq)
 710{
 711        int ret;
 712
 713        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 714                return -EINVAL;
 715
 716        ret = 0;
 717
 718        if (mrq->sbc && mrq->sbc->error)
 719                ret = mrq->sbc->error;
 720        if (!ret && mrq->cmd->error)
 721                ret = mrq->cmd->error;
 722        if (!ret && mrq->data->error)
 723                ret = mrq->data->error;
 724        if (!ret && mrq->stop && mrq->stop->error)
 725                ret = mrq->stop->error;
 726        if (!ret && mrq->data->bytes_xfered !=
 727                mrq->data->blocks * mrq->data->blksz)
 728                ret = RESULT_FAIL;
 729
 730        if (ret == -EINVAL)
 731                ret = RESULT_UNSUP_HOST;
 732
 733        return ret;
 734}
 735
 736/*
 737 * Checks that a "short transfer" behaved as expected
 738 */
 739static int mmc_test_check_broken_result(struct mmc_test_card *test,
 740        struct mmc_request *mrq)
 741{
 742        int ret;
 743
 744        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 745                return -EINVAL;
 746
 747        ret = 0;
 748
 749        if (!ret && mrq->cmd->error)
 750                ret = mrq->cmd->error;
 751        if (!ret && mrq->data->error == 0)
 752                ret = RESULT_FAIL;
 753        if (!ret && mrq->data->error != -ETIMEDOUT)
 754                ret = mrq->data->error;
 755        if (!ret && mrq->stop && mrq->stop->error)
 756                ret = mrq->stop->error;
 757        if (mrq->data->blocks > 1) {
 758                if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
 759                        ret = RESULT_FAIL;
 760        } else {
 761                if (!ret && mrq->data->bytes_xfered > 0)
 762                        ret = RESULT_FAIL;
 763        }
 764
 765        if (ret == -EINVAL)
 766                ret = RESULT_UNSUP_HOST;
 767
 768        return ret;
 769}
 770
 771struct mmc_test_req {
 772        struct mmc_request mrq;
 773        struct mmc_command sbc;
 774        struct mmc_command cmd;
 775        struct mmc_command stop;
 776        struct mmc_command status;
 777        struct mmc_data data;
 778};
 779
 780/*
 781 * Tests nonblock transfer with certain parameters
 782 */
 783static void mmc_test_req_reset(struct mmc_test_req *rq)
 784{
 785        memset(rq, 0, sizeof(struct mmc_test_req));
 786
 787        rq->mrq.cmd = &rq->cmd;
 788        rq->mrq.data = &rq->data;
 789        rq->mrq.stop = &rq->stop;
 790}
 791
 792static struct mmc_test_req *mmc_test_req_alloc(void)
 793{
 794        struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
 795
 796        if (rq)
 797                mmc_test_req_reset(rq);
 798
 799        return rq;
 800}
 801
 802static void mmc_test_wait_done(struct mmc_request *mrq)
 803{
 804        complete(&mrq->completion);
 805}
 806
 807static int mmc_test_start_areq(struct mmc_test_card *test,
 808                               struct mmc_request *mrq,
 809                               struct mmc_request *prev_mrq)
 810{
 811        struct mmc_host *host = test->card->host;
 812        int err = 0;
 813
 814        if (mrq) {
 815                init_completion(&mrq->completion);
 816                mrq->done = mmc_test_wait_done;
 817                mmc_pre_req(host, mrq);
 818        }
 819
 820        if (prev_mrq) {
 821                wait_for_completion(&prev_mrq->completion);
 822                err = mmc_test_wait_busy(test);
 823                if (!err)
 824                        err = mmc_test_check_result(test, prev_mrq);
 825        }
 826
 827        if (!err && mrq) {
 828                err = mmc_start_request(host, mrq);
 829                if (err)
 830                        mmc_retune_release(host);
 831        }
 832
 833        if (prev_mrq)
 834                mmc_post_req(host, prev_mrq, 0);
 835
 836        if (err && mrq)
 837                mmc_post_req(host, mrq, err);
 838
 839        return err;
 840}
 841
 842static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
 843                                      struct scatterlist *sg, unsigned sg_len,
 844                                      unsigned dev_addr, unsigned blocks,
 845                                      unsigned blksz, int write, int count)
 846{
 847        struct mmc_test_req *rq1, *rq2;
 848        struct mmc_request *mrq, *prev_mrq;
 849        int i;
 850        int ret = RESULT_OK;
 851
 852        rq1 = mmc_test_req_alloc();
 853        rq2 = mmc_test_req_alloc();
 854        if (!rq1 || !rq2) {
 855                ret = RESULT_FAIL;
 856                goto err;
 857        }
 858
 859        mrq = &rq1->mrq;
 860        prev_mrq = NULL;
 861
 862        for (i = 0; i < count; i++) {
 863                mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
 864                mmc_test_prepare_mrq(test, mrq, sg, sg_len, dev_addr, blocks,
 865                                     blksz, write);
 866                ret = mmc_test_start_areq(test, mrq, prev_mrq);
 867                if (ret)
 868                        goto err;
 869
 870                if (!prev_mrq)
 871                        prev_mrq = &rq2->mrq;
 872
 873                swap(mrq, prev_mrq);
 874                dev_addr += blocks;
 875        }
 876
 877        ret = mmc_test_start_areq(test, NULL, prev_mrq);
 878err:
 879        kfree(rq1);
 880        kfree(rq2);
 881        return ret;
 882}
 883
 884/*
 885 * Tests a basic transfer with certain parameters
 886 */
 887static int mmc_test_simple_transfer(struct mmc_test_card *test,
 888        struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 889        unsigned blocks, unsigned blksz, int write)
 890{
 891        struct mmc_request mrq = {};
 892        struct mmc_command cmd = {};
 893        struct mmc_command stop = {};
 894        struct mmc_data data = {};
 895
 896        mrq.cmd = &cmd;
 897        mrq.data = &data;
 898        mrq.stop = &stop;
 899
 900        mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
 901                blocks, blksz, write);
 902
 903        mmc_wait_for_req(test->card->host, &mrq);
 904
 905        mmc_test_wait_busy(test);
 906
 907        return mmc_test_check_result(test, &mrq);
 908}
 909
 910/*
 911 * Tests a transfer where the card will fail completely or partly
 912 */
 913static int mmc_test_broken_transfer(struct mmc_test_card *test,
 914        unsigned blocks, unsigned blksz, int write)
 915{
 916        struct mmc_request mrq = {};
 917        struct mmc_command cmd = {};
 918        struct mmc_command stop = {};
 919        struct mmc_data data = {};
 920
 921        struct scatterlist sg;
 922
 923        mrq.cmd = &cmd;
 924        mrq.data = &data;
 925        mrq.stop = &stop;
 926
 927        sg_init_one(&sg, test->buffer, blocks * blksz);
 928
 929        mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
 930        mmc_test_prepare_broken_mrq(test, &mrq, write);
 931
 932        mmc_wait_for_req(test->card->host, &mrq);
 933
 934        mmc_test_wait_busy(test);
 935
 936        return mmc_test_check_broken_result(test, &mrq);
 937}
 938
 939/*
 940 * Does a complete transfer test where data is also validated
 941 *
 942 * Note: mmc_test_prepare() must have been done before this call
 943 */
 944static int mmc_test_transfer(struct mmc_test_card *test,
 945        struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 946        unsigned blocks, unsigned blksz, int write)
 947{
 948        int ret, i;
 949        unsigned long flags;
 950
 951        if (write) {
 952                for (i = 0; i < blocks * blksz; i++)
 953                        test->scratch[i] = i;
 954        } else {
 955                memset(test->scratch, 0, BUFFER_SIZE);
 956        }
 957        local_irq_save(flags);
 958        sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
 959        local_irq_restore(flags);
 960
 961        ret = mmc_test_set_blksize(test, blksz);
 962        if (ret)
 963                return ret;
 964
 965        ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
 966                blocks, blksz, write);
 967        if (ret)
 968                return ret;
 969
 970        if (write) {
 971                int sectors;
 972
 973                ret = mmc_test_set_blksize(test, 512);
 974                if (ret)
 975                        return ret;
 976
 977                sectors = (blocks * blksz + 511) / 512;
 978                if ((sectors * 512) == (blocks * blksz))
 979                        sectors++;
 980
 981                if ((sectors * 512) > BUFFER_SIZE)
 982                        return -EINVAL;
 983
 984                memset(test->buffer, 0, sectors * 512);
 985
 986                for (i = 0; i < sectors; i++) {
 987                        ret = mmc_test_buffer_transfer(test,
 988                                test->buffer + i * 512,
 989                                dev_addr + i, 512, 0);
 990                        if (ret)
 991                                return ret;
 992                }
 993
 994                for (i = 0; i < blocks * blksz; i++) {
 995                        if (test->buffer[i] != (u8)i)
 996                                return RESULT_FAIL;
 997                }
 998
 999                for (; i < sectors * 512; i++) {
1000                        if (test->buffer[i] != 0xDF)
1001                                return RESULT_FAIL;
1002                }
1003        } else {
1004                local_irq_save(flags);
1005                sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1006                local_irq_restore(flags);
1007                for (i = 0; i < blocks * blksz; i++) {
1008                        if (test->scratch[i] != (u8)i)
1009                                return RESULT_FAIL;
1010                }
1011        }
1012
1013        return 0;
1014}
1015
1016/*******************************************************************/
1017/*  Tests                                                          */
1018/*******************************************************************/
1019
1020struct mmc_test_case {
1021        const char *name;
1022
1023        int (*prepare)(struct mmc_test_card *);
1024        int (*run)(struct mmc_test_card *);
1025        int (*cleanup)(struct mmc_test_card *);
1026};
1027
1028static int mmc_test_basic_write(struct mmc_test_card *test)
1029{
1030        int ret;
1031        struct scatterlist sg;
1032
1033        ret = mmc_test_set_blksize(test, 512);
1034        if (ret)
1035                return ret;
1036
1037        sg_init_one(&sg, test->buffer, 512);
1038
1039        return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1040}
1041
1042static int mmc_test_basic_read(struct mmc_test_card *test)
1043{
1044        int ret;
1045        struct scatterlist sg;
1046
1047        ret = mmc_test_set_blksize(test, 512);
1048        if (ret)
1049                return ret;
1050
1051        sg_init_one(&sg, test->buffer, 512);
1052
1053        return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1054}
1055
1056static int mmc_test_verify_write(struct mmc_test_card *test)
1057{
1058        struct scatterlist sg;
1059
1060        sg_init_one(&sg, test->buffer, 512);
1061
1062        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1063}
1064
1065static int mmc_test_verify_read(struct mmc_test_card *test)
1066{
1067        struct scatterlist sg;
1068
1069        sg_init_one(&sg, test->buffer, 512);
1070
1071        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1072}
1073
1074static int mmc_test_multi_write(struct mmc_test_card *test)
1075{
1076        unsigned int size;
1077        struct scatterlist sg;
1078
1079        if (test->card->host->max_blk_count == 1)
1080                return RESULT_UNSUP_HOST;
1081
1082        size = PAGE_SIZE * 2;
1083        size = min(size, test->card->host->max_req_size);
1084        size = min(size, test->card->host->max_seg_size);
1085        size = min(size, test->card->host->max_blk_count * 512);
1086
1087        if (size < 1024)
1088                return RESULT_UNSUP_HOST;
1089
1090        sg_init_one(&sg, test->buffer, size);
1091
1092        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1093}
1094
1095static int mmc_test_multi_read(struct mmc_test_card *test)
1096{
1097        unsigned int size;
1098        struct scatterlist sg;
1099
1100        if (test->card->host->max_blk_count == 1)
1101                return RESULT_UNSUP_HOST;
1102
1103        size = PAGE_SIZE * 2;
1104        size = min(size, test->card->host->max_req_size);
1105        size = min(size, test->card->host->max_seg_size);
1106        size = min(size, test->card->host->max_blk_count * 512);
1107
1108        if (size < 1024)
1109                return RESULT_UNSUP_HOST;
1110
1111        sg_init_one(&sg, test->buffer, size);
1112
1113        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1114}
1115
1116static int mmc_test_pow2_write(struct mmc_test_card *test)
1117{
1118        int ret, i;
1119        struct scatterlist sg;
1120
1121        if (!test->card->csd.write_partial)
1122                return RESULT_UNSUP_CARD;
1123
1124        for (i = 1; i < 512; i <<= 1) {
1125                sg_init_one(&sg, test->buffer, i);
1126                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1127                if (ret)
1128                        return ret;
1129        }
1130
1131        return 0;
1132}
1133
1134static int mmc_test_pow2_read(struct mmc_test_card *test)
1135{
1136        int ret, i;
1137        struct scatterlist sg;
1138
1139        if (!test->card->csd.read_partial)
1140                return RESULT_UNSUP_CARD;
1141
1142        for (i = 1; i < 512; i <<= 1) {
1143                sg_init_one(&sg, test->buffer, i);
1144                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1145                if (ret)
1146                        return ret;
1147        }
1148
1149        return 0;
1150}
1151
1152static int mmc_test_weird_write(struct mmc_test_card *test)
1153{
1154        int ret, i;
1155        struct scatterlist sg;
1156
1157        if (!test->card->csd.write_partial)
1158                return RESULT_UNSUP_CARD;
1159
1160        for (i = 3; i < 512; i += 7) {
1161                sg_init_one(&sg, test->buffer, i);
1162                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1163                if (ret)
1164                        return ret;
1165        }
1166
1167        return 0;
1168}
1169
1170static int mmc_test_weird_read(struct mmc_test_card *test)
1171{
1172        int ret, i;
1173        struct scatterlist sg;
1174
1175        if (!test->card->csd.read_partial)
1176                return RESULT_UNSUP_CARD;
1177
1178        for (i = 3; i < 512; i += 7) {
1179                sg_init_one(&sg, test->buffer, i);
1180                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1181                if (ret)
1182                        return ret;
1183        }
1184
1185        return 0;
1186}
1187
1188static int mmc_test_align_write(struct mmc_test_card *test)
1189{
1190        int ret, i;
1191        struct scatterlist sg;
1192
1193        for (i = 1; i < TEST_ALIGN_END; i++) {
1194                sg_init_one(&sg, test->buffer + i, 512);
1195                ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1196                if (ret)
1197                        return ret;
1198        }
1199
1200        return 0;
1201}
1202
1203static int mmc_test_align_read(struct mmc_test_card *test)
1204{
1205        int ret, i;
1206        struct scatterlist sg;
1207
1208        for (i = 1; i < TEST_ALIGN_END; i++) {
1209                sg_init_one(&sg, test->buffer + i, 512);
1210                ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1211                if (ret)
1212                        return ret;
1213        }
1214
1215        return 0;
1216}
1217
1218static int mmc_test_align_multi_write(struct mmc_test_card *test)
1219{
1220        int ret, i;
1221        unsigned int size;
1222        struct scatterlist sg;
1223
1224        if (test->card->host->max_blk_count == 1)
1225                return RESULT_UNSUP_HOST;
1226
1227        size = PAGE_SIZE * 2;
1228        size = min(size, test->card->host->max_req_size);
1229        size = min(size, test->card->host->max_seg_size);
1230        size = min(size, test->card->host->max_blk_count * 512);
1231
1232        if (size < 1024)
1233                return RESULT_UNSUP_HOST;
1234
1235        for (i = 1; i < TEST_ALIGN_END; i++) {
1236                sg_init_one(&sg, test->buffer + i, size);
1237                ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1238                if (ret)
1239                        return ret;
1240        }
1241
1242        return 0;
1243}
1244
1245static int mmc_test_align_multi_read(struct mmc_test_card *test)
1246{
1247        int ret, i;
1248        unsigned int size;
1249        struct scatterlist sg;
1250
1251        if (test->card->host->max_blk_count == 1)
1252                return RESULT_UNSUP_HOST;
1253
1254        size = PAGE_SIZE * 2;
1255        size = min(size, test->card->host->max_req_size);
1256        size = min(size, test->card->host->max_seg_size);
1257        size = min(size, test->card->host->max_blk_count * 512);
1258
1259        if (size < 1024)
1260                return RESULT_UNSUP_HOST;
1261
1262        for (i = 1; i < TEST_ALIGN_END; i++) {
1263                sg_init_one(&sg, test->buffer + i, size);
1264                ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1265                if (ret)
1266                        return ret;
1267        }
1268
1269        return 0;
1270}
1271
1272static int mmc_test_xfersize_write(struct mmc_test_card *test)
1273{
1274        int ret;
1275
1276        ret = mmc_test_set_blksize(test, 512);
1277        if (ret)
1278                return ret;
1279
1280        return mmc_test_broken_transfer(test, 1, 512, 1);
1281}
1282
1283static int mmc_test_xfersize_read(struct mmc_test_card *test)
1284{
1285        int ret;
1286
1287        ret = mmc_test_set_blksize(test, 512);
1288        if (ret)
1289                return ret;
1290
1291        return mmc_test_broken_transfer(test, 1, 512, 0);
1292}
1293
1294static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1295{
1296        int ret;
1297
1298        if (test->card->host->max_blk_count == 1)
1299                return RESULT_UNSUP_HOST;
1300
1301        ret = mmc_test_set_blksize(test, 512);
1302        if (ret)
1303                return ret;
1304
1305        return mmc_test_broken_transfer(test, 2, 512, 1);
1306}
1307
1308static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1309{
1310        int ret;
1311
1312        if (test->card->host->max_blk_count == 1)
1313                return RESULT_UNSUP_HOST;
1314
1315        ret = mmc_test_set_blksize(test, 512);
1316        if (ret)
1317                return ret;
1318
1319        return mmc_test_broken_transfer(test, 2, 512, 0);
1320}
1321
1322#ifdef CONFIG_HIGHMEM
1323
1324static int mmc_test_write_high(struct mmc_test_card *test)
1325{
1326        struct scatterlist sg;
1327
1328        sg_init_table(&sg, 1);
1329        sg_set_page(&sg, test->highmem, 512, 0);
1330
1331        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1332}
1333
1334static int mmc_test_read_high(struct mmc_test_card *test)
1335{
1336        struct scatterlist sg;
1337
1338        sg_init_table(&sg, 1);
1339        sg_set_page(&sg, test->highmem, 512, 0);
1340
1341        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1342}
1343
1344static int mmc_test_multi_write_high(struct mmc_test_card *test)
1345{
1346        unsigned int size;
1347        struct scatterlist sg;
1348
1349        if (test->card->host->max_blk_count == 1)
1350                return RESULT_UNSUP_HOST;
1351
1352        size = PAGE_SIZE * 2;
1353        size = min(size, test->card->host->max_req_size);
1354        size = min(size, test->card->host->max_seg_size);
1355        size = min(size, test->card->host->max_blk_count * 512);
1356
1357        if (size < 1024)
1358                return RESULT_UNSUP_HOST;
1359
1360        sg_init_table(&sg, 1);
1361        sg_set_page(&sg, test->highmem, size, 0);
1362
1363        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1364}
1365
1366static int mmc_test_multi_read_high(struct mmc_test_card *test)
1367{
1368        unsigned int size;
1369        struct scatterlist sg;
1370
1371        if (test->card->host->max_blk_count == 1)
1372                return RESULT_UNSUP_HOST;
1373
1374        size = PAGE_SIZE * 2;
1375        size = min(size, test->card->host->max_req_size);
1376        size = min(size, test->card->host->max_seg_size);
1377        size = min(size, test->card->host->max_blk_count * 512);
1378
1379        if (size < 1024)
1380                return RESULT_UNSUP_HOST;
1381
1382        sg_init_table(&sg, 1);
1383        sg_set_page(&sg, test->highmem, size, 0);
1384
1385        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1386}
1387
1388#else
1389
1390static int mmc_test_no_highmem(struct mmc_test_card *test)
1391{
1392        pr_info("%s: Highmem not configured - test skipped\n",
1393               mmc_hostname(test->card->host));
1394        return 0;
1395}
1396
1397#endif /* CONFIG_HIGHMEM */
1398
1399/*
1400 * Map sz bytes so that it can be transferred.
1401 */
1402static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1403                             int max_scatter, int min_sg_len)
1404{
1405        struct mmc_test_area *t = &test->area;
1406        int err;
1407
1408        t->blocks = sz >> 9;
1409
1410        if (max_scatter) {
1411                err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1412                                                  t->max_segs, t->max_seg_sz,
1413                                       &t->sg_len);
1414        } else {
1415                err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1416                                      t->max_seg_sz, &t->sg_len, min_sg_len);
1417        }
1418        if (err)
1419                pr_info("%s: Failed to map sg list\n",
1420                       mmc_hostname(test->card->host));
1421        return err;
1422}
1423
1424/*
1425 * Transfer bytes mapped by mmc_test_area_map().
1426 */
1427static int mmc_test_area_transfer(struct mmc_test_card *test,
1428                                  unsigned int dev_addr, int write)
1429{
1430        struct mmc_test_area *t = &test->area;
1431
1432        return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1433                                        t->blocks, 512, write);
1434}
1435
1436/*
1437 * Map and transfer bytes for multiple transfers.
1438 */
1439static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1440                                unsigned int dev_addr, int write,
1441                                int max_scatter, int timed, int count,
1442                                bool nonblock, int min_sg_len)
1443{
1444        struct timespec64 ts1, ts2;
1445        int ret = 0;
1446        int i;
1447        struct mmc_test_area *t = &test->area;
1448
1449        /*
1450         * In the case of a maximally scattered transfer, the maximum transfer
1451         * size is further limited by using PAGE_SIZE segments.
1452         */
1453        if (max_scatter) {
1454                struct mmc_test_area *t = &test->area;
1455                unsigned long max_tfr;
1456
1457                if (t->max_seg_sz >= PAGE_SIZE)
1458                        max_tfr = t->max_segs * PAGE_SIZE;
1459                else
1460                        max_tfr = t->max_segs * t->max_seg_sz;
1461                if (sz > max_tfr)
1462                        sz = max_tfr;
1463        }
1464
1465        ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1466        if (ret)
1467                return ret;
1468
1469        if (timed)
1470                ktime_get_ts64(&ts1);
1471        if (nonblock)
1472                ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1473                                 dev_addr, t->blocks, 512, write, count);
1474        else
1475                for (i = 0; i < count && ret == 0; i++) {
1476                        ret = mmc_test_area_transfer(test, dev_addr, write);
1477                        dev_addr += sz >> 9;
1478                }
1479
1480        if (ret)
1481                return ret;
1482
1483        if (timed)
1484                ktime_get_ts64(&ts2);
1485
1486        if (timed)
1487                mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1488
1489        return 0;
1490}
1491
1492static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1493                            unsigned int dev_addr, int write, int max_scatter,
1494                            int timed)
1495{
1496        return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1497                                    timed, 1, false, 0);
1498}
1499
1500/*
1501 * Write the test area entirely.
1502 */
1503static int mmc_test_area_fill(struct mmc_test_card *test)
1504{
1505        struct mmc_test_area *t = &test->area;
1506
1507        return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1508}
1509
1510/*
1511 * Erase the test area entirely.
1512 */
1513static int mmc_test_area_erase(struct mmc_test_card *test)
1514{
1515        struct mmc_test_area *t = &test->area;
1516
1517        if (!mmc_can_erase(test->card))
1518                return 0;
1519
1520        return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1521                         MMC_ERASE_ARG);
1522}
1523
1524/*
1525 * Cleanup struct mmc_test_area.
1526 */
1527static int mmc_test_area_cleanup(struct mmc_test_card *test)
1528{
1529        struct mmc_test_area *t = &test->area;
1530
1531        kfree(t->sg);
1532        mmc_test_free_mem(t->mem);
1533
1534        return 0;
1535}
1536
1537/*
1538 * Initialize an area for testing large transfers.  The test area is set to the
1539 * middle of the card because cards may have different characteristics at the
1540 * front (for FAT file system optimization).  Optionally, the area is erased
1541 * (if the card supports it) which may improve write performance.  Optionally,
1542 * the area is filled with data for subsequent read tests.
1543 */
1544static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1545{
1546        struct mmc_test_area *t = &test->area;
1547        unsigned long min_sz = 64 * 1024, sz;
1548        int ret;
1549
1550        ret = mmc_test_set_blksize(test, 512);
1551        if (ret)
1552                return ret;
1553
1554        /* Make the test area size about 4MiB */
1555        sz = (unsigned long)test->card->pref_erase << 9;
1556        t->max_sz = sz;
1557        while (t->max_sz < 4 * 1024 * 1024)
1558                t->max_sz += sz;
1559        while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1560                t->max_sz -= sz;
1561
1562        t->max_segs = test->card->host->max_segs;
1563        t->max_seg_sz = test->card->host->max_seg_size;
1564        t->max_seg_sz -= t->max_seg_sz % 512;
1565
1566        t->max_tfr = t->max_sz;
1567        if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1568                t->max_tfr = test->card->host->max_blk_count << 9;
1569        if (t->max_tfr > test->card->host->max_req_size)
1570                t->max_tfr = test->card->host->max_req_size;
1571        if (t->max_tfr / t->max_seg_sz > t->max_segs)
1572                t->max_tfr = t->max_segs * t->max_seg_sz;
1573
1574        /*
1575         * Try to allocate enough memory for a max. sized transfer.  Less is OK
1576         * because the same memory can be mapped into the scatterlist more than
1577         * once.  Also, take into account the limits imposed on scatterlist
1578         * segments by the host driver.
1579         */
1580        t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1581                                    t->max_seg_sz);
1582        if (!t->mem)
1583                return -ENOMEM;
1584
1585        t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1586        if (!t->sg) {
1587                ret = -ENOMEM;
1588                goto out_free;
1589        }
1590
1591        t->dev_addr = mmc_test_capacity(test->card) / 2;
1592        t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1593
1594        if (erase) {
1595                ret = mmc_test_area_erase(test);
1596                if (ret)
1597                        goto out_free;
1598        }
1599
1600        if (fill) {
1601                ret = mmc_test_area_fill(test);
1602                if (ret)
1603                        goto out_free;
1604        }
1605
1606        return 0;
1607
1608out_free:
1609        mmc_test_area_cleanup(test);
1610        return ret;
1611}
1612
1613/*
1614 * Prepare for large transfers.  Do not erase the test area.
1615 */
1616static int mmc_test_area_prepare(struct mmc_test_card *test)
1617{
1618        return mmc_test_area_init(test, 0, 0);
1619}
1620
1621/*
1622 * Prepare for large transfers.  Do erase the test area.
1623 */
1624static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1625{
1626        return mmc_test_area_init(test, 1, 0);
1627}
1628
1629/*
1630 * Prepare for large transfers.  Erase and fill the test area.
1631 */
1632static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1633{
1634        return mmc_test_area_init(test, 1, 1);
1635}
1636
1637/*
1638 * Test best-case performance.  Best-case performance is expected from
1639 * a single large transfer.
1640 *
1641 * An additional option (max_scatter) allows the measurement of the same
1642 * transfer but with no contiguous pages in the scatter list.  This tests
1643 * the efficiency of DMA to handle scattered pages.
1644 */
1645static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1646                                     int max_scatter)
1647{
1648        struct mmc_test_area *t = &test->area;
1649
1650        return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1651                                max_scatter, 1);
1652}
1653
1654/*
1655 * Best-case read performance.
1656 */
1657static int mmc_test_best_read_performance(struct mmc_test_card *test)
1658{
1659        return mmc_test_best_performance(test, 0, 0);
1660}
1661
1662/*
1663 * Best-case write performance.
1664 */
1665static int mmc_test_best_write_performance(struct mmc_test_card *test)
1666{
1667        return mmc_test_best_performance(test, 1, 0);
1668}
1669
1670/*
1671 * Best-case read performance into scattered pages.
1672 */
1673static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1674{
1675        return mmc_test_best_performance(test, 0, 1);
1676}
1677
1678/*
1679 * Best-case write performance from scattered pages.
1680 */
1681static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1682{
1683        return mmc_test_best_performance(test, 1, 1);
1684}
1685
1686/*
1687 * Single read performance by transfer size.
1688 */
1689static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1690{
1691        struct mmc_test_area *t = &test->area;
1692        unsigned long sz;
1693        unsigned int dev_addr;
1694        int ret;
1695
1696        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1697                dev_addr = t->dev_addr + (sz >> 9);
1698                ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1699                if (ret)
1700                        return ret;
1701        }
1702        sz = t->max_tfr;
1703        dev_addr = t->dev_addr;
1704        return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1705}
1706
1707/*
1708 * Single write performance by transfer size.
1709 */
1710static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1711{
1712        struct mmc_test_area *t = &test->area;
1713        unsigned long sz;
1714        unsigned int dev_addr;
1715        int ret;
1716
1717        ret = mmc_test_area_erase(test);
1718        if (ret)
1719                return ret;
1720        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1721                dev_addr = t->dev_addr + (sz >> 9);
1722                ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1723                if (ret)
1724                        return ret;
1725        }
1726        ret = mmc_test_area_erase(test);
1727        if (ret)
1728                return ret;
1729        sz = t->max_tfr;
1730        dev_addr = t->dev_addr;
1731        return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1732}
1733
1734/*
1735 * Single trim performance by transfer size.
1736 */
1737static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1738{
1739        struct mmc_test_area *t = &test->area;
1740        unsigned long sz;
1741        unsigned int dev_addr;
1742        struct timespec64 ts1, ts2;
1743        int ret;
1744
1745        if (!mmc_can_trim(test->card))
1746                return RESULT_UNSUP_CARD;
1747
1748        if (!mmc_can_erase(test->card))
1749                return RESULT_UNSUP_HOST;
1750
1751        for (sz = 512; sz < t->max_sz; sz <<= 1) {
1752                dev_addr = t->dev_addr + (sz >> 9);
1753                ktime_get_ts64(&ts1);
1754                ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1755                if (ret)
1756                        return ret;
1757                ktime_get_ts64(&ts2);
1758                mmc_test_print_rate(test, sz, &ts1, &ts2);
1759        }
1760        dev_addr = t->dev_addr;
1761        ktime_get_ts64(&ts1);
1762        ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1763        if (ret)
1764                return ret;
1765        ktime_get_ts64(&ts2);
1766        mmc_test_print_rate(test, sz, &ts1, &ts2);
1767        return 0;
1768}
1769
1770static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1771{
1772        struct mmc_test_area *t = &test->area;
1773        unsigned int dev_addr, i, cnt;
1774        struct timespec64 ts1, ts2;
1775        int ret;
1776
1777        cnt = t->max_sz / sz;
1778        dev_addr = t->dev_addr;
1779        ktime_get_ts64(&ts1);
1780        for (i = 0; i < cnt; i++) {
1781                ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1782                if (ret)
1783                        return ret;
1784                dev_addr += (sz >> 9);
1785        }
1786        ktime_get_ts64(&ts2);
1787        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1788        return 0;
1789}
1790
1791/*
1792 * Consecutive read performance by transfer size.
1793 */
1794static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1795{
1796        struct mmc_test_area *t = &test->area;
1797        unsigned long sz;
1798        int ret;
1799
1800        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1801                ret = mmc_test_seq_read_perf(test, sz);
1802                if (ret)
1803                        return ret;
1804        }
1805        sz = t->max_tfr;
1806        return mmc_test_seq_read_perf(test, sz);
1807}
1808
1809static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1810{
1811        struct mmc_test_area *t = &test->area;
1812        unsigned int dev_addr, i, cnt;
1813        struct timespec64 ts1, ts2;
1814        int ret;
1815
1816        ret = mmc_test_area_erase(test);
1817        if (ret)
1818                return ret;
1819        cnt = t->max_sz / sz;
1820        dev_addr = t->dev_addr;
1821        ktime_get_ts64(&ts1);
1822        for (i = 0; i < cnt; i++) {
1823                ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1824                if (ret)
1825                        return ret;
1826                dev_addr += (sz >> 9);
1827        }
1828        ktime_get_ts64(&ts2);
1829        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1830        return 0;
1831}
1832
1833/*
1834 * Consecutive write performance by transfer size.
1835 */
1836static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1837{
1838        struct mmc_test_area *t = &test->area;
1839        unsigned long sz;
1840        int ret;
1841
1842        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1843                ret = mmc_test_seq_write_perf(test, sz);
1844                if (ret)
1845                        return ret;
1846        }
1847        sz = t->max_tfr;
1848        return mmc_test_seq_write_perf(test, sz);
1849}
1850
1851/*
1852 * Consecutive trim performance by transfer size.
1853 */
1854static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1855{
1856        struct mmc_test_area *t = &test->area;
1857        unsigned long sz;
1858        unsigned int dev_addr, i, cnt;
1859        struct timespec64 ts1, ts2;
1860        int ret;
1861
1862        if (!mmc_can_trim(test->card))
1863                return RESULT_UNSUP_CARD;
1864
1865        if (!mmc_can_erase(test->card))
1866                return RESULT_UNSUP_HOST;
1867
1868        for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1869                ret = mmc_test_area_erase(test);
1870                if (ret)
1871                        return ret;
1872                ret = mmc_test_area_fill(test);
1873                if (ret)
1874                        return ret;
1875                cnt = t->max_sz / sz;
1876                dev_addr = t->dev_addr;
1877                ktime_get_ts64(&ts1);
1878                for (i = 0; i < cnt; i++) {
1879                        ret = mmc_erase(test->card, dev_addr, sz >> 9,
1880                                        MMC_TRIM_ARG);
1881                        if (ret)
1882                                return ret;
1883                        dev_addr += (sz >> 9);
1884                }
1885                ktime_get_ts64(&ts2);
1886                mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1887        }
1888        return 0;
1889}
1890
1891static unsigned int rnd_next = 1;
1892
1893static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1894{
1895        uint64_t r;
1896
1897        rnd_next = rnd_next * 1103515245 + 12345;
1898        r = (rnd_next >> 16) & 0x7fff;
1899        return (r * rnd_cnt) >> 15;
1900}
1901
1902static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1903                             unsigned long sz)
1904{
1905        unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1906        unsigned int ssz;
1907        struct timespec64 ts1, ts2, ts;
1908        int ret;
1909
1910        ssz = sz >> 9;
1911
1912        rnd_addr = mmc_test_capacity(test->card) / 4;
1913        range1 = rnd_addr / test->card->pref_erase;
1914        range2 = range1 / ssz;
1915
1916        ktime_get_ts64(&ts1);
1917        for (cnt = 0; cnt < UINT_MAX; cnt++) {
1918                ktime_get_ts64(&ts2);
1919                ts = timespec64_sub(ts2, ts1);
1920                if (ts.tv_sec >= 10)
1921                        break;
1922                ea = mmc_test_rnd_num(range1);
1923                if (ea == last_ea)
1924                        ea -= 1;
1925                last_ea = ea;
1926                dev_addr = rnd_addr + test->card->pref_erase * ea +
1927                           ssz * mmc_test_rnd_num(range2);
1928                ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1929                if (ret)
1930                        return ret;
1931        }
1932        if (print)
1933                mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1934        return 0;
1935}
1936
1937static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1938{
1939        struct mmc_test_area *t = &test->area;
1940        unsigned int next;
1941        unsigned long sz;
1942        int ret;
1943
1944        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1945                /*
1946                 * When writing, try to get more consistent results by running
1947                 * the test twice with exactly the same I/O but outputting the
1948                 * results only for the 2nd run.
1949                 */
1950                if (write) {
1951                        next = rnd_next;
1952                        ret = mmc_test_rnd_perf(test, write, 0, sz);
1953                        if (ret)
1954                                return ret;
1955                        rnd_next = next;
1956                }
1957                ret = mmc_test_rnd_perf(test, write, 1, sz);
1958                if (ret)
1959                        return ret;
1960        }
1961        sz = t->max_tfr;
1962        if (write) {
1963                next = rnd_next;
1964                ret = mmc_test_rnd_perf(test, write, 0, sz);
1965                if (ret)
1966                        return ret;
1967                rnd_next = next;
1968        }
1969        return mmc_test_rnd_perf(test, write, 1, sz);
1970}
1971
1972/*
1973 * Random read performance by transfer size.
1974 */
1975static int mmc_test_random_read_perf(struct mmc_test_card *test)
1976{
1977        return mmc_test_random_perf(test, 0);
1978}
1979
1980/*
1981 * Random write performance by transfer size.
1982 */
1983static int mmc_test_random_write_perf(struct mmc_test_card *test)
1984{
1985        return mmc_test_random_perf(test, 1);
1986}
1987
1988static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1989                             unsigned int tot_sz, int max_scatter)
1990{
1991        struct mmc_test_area *t = &test->area;
1992        unsigned int dev_addr, i, cnt, sz, ssz;
1993        struct timespec64 ts1, ts2;
1994        int ret;
1995
1996        sz = t->max_tfr;
1997
1998        /*
1999         * In the case of a maximally scattered transfer, the maximum transfer
2000         * size is further limited by using PAGE_SIZE segments.
2001         */
2002        if (max_scatter) {
2003                unsigned long max_tfr;
2004
2005                if (t->max_seg_sz >= PAGE_SIZE)
2006                        max_tfr = t->max_segs * PAGE_SIZE;
2007                else
2008                        max_tfr = t->max_segs * t->max_seg_sz;
2009                if (sz > max_tfr)
2010                        sz = max_tfr;
2011        }
2012
2013        ssz = sz >> 9;
2014        dev_addr = mmc_test_capacity(test->card) / 4;
2015        if (tot_sz > dev_addr << 9)
2016                tot_sz = dev_addr << 9;
2017        cnt = tot_sz / sz;
2018        dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2019
2020        ktime_get_ts64(&ts1);
2021        for (i = 0; i < cnt; i++) {
2022                ret = mmc_test_area_io(test, sz, dev_addr, write,
2023                                       max_scatter, 0);
2024                if (ret)
2025                        return ret;
2026                dev_addr += ssz;
2027        }
2028        ktime_get_ts64(&ts2);
2029
2030        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2031
2032        return 0;
2033}
2034
2035static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2036{
2037        int ret, i;
2038
2039        for (i = 0; i < 10; i++) {
2040                ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2041                if (ret)
2042                        return ret;
2043        }
2044        for (i = 0; i < 5; i++) {
2045                ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2046                if (ret)
2047                        return ret;
2048        }
2049        for (i = 0; i < 3; i++) {
2050                ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2051                if (ret)
2052                        return ret;
2053        }
2054
2055        return ret;
2056}
2057
2058/*
2059 * Large sequential read performance.
2060 */
2061static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2062{
2063        return mmc_test_large_seq_perf(test, 0);
2064}
2065
2066/*
2067 * Large sequential write performance.
2068 */
2069static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2070{
2071        return mmc_test_large_seq_perf(test, 1);
2072}
2073
2074static int mmc_test_rw_multiple(struct mmc_test_card *test,
2075                                struct mmc_test_multiple_rw *tdata,
2076                                unsigned int reqsize, unsigned int size,
2077                                int min_sg_len)
2078{
2079        unsigned int dev_addr;
2080        struct mmc_test_area *t = &test->area;
2081        int ret = 0;
2082
2083        /* Set up test area */
2084        if (size > mmc_test_capacity(test->card) / 2 * 512)
2085                size = mmc_test_capacity(test->card) / 2 * 512;
2086        if (reqsize > t->max_tfr)
2087                reqsize = t->max_tfr;
2088        dev_addr = mmc_test_capacity(test->card) / 4;
2089        if ((dev_addr & 0xffff0000))
2090                dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2091        else
2092                dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2093        if (!dev_addr)
2094                goto err;
2095
2096        if (reqsize > size)
2097                return 0;
2098
2099        /* prepare test area */
2100        if (mmc_can_erase(test->card) &&
2101            tdata->prepare & MMC_TEST_PREP_ERASE) {
2102                ret = mmc_erase(test->card, dev_addr,
2103                                size / 512, MMC_SECURE_ERASE_ARG);
2104                if (ret)
2105                        ret = mmc_erase(test->card, dev_addr,
2106                                        size / 512, MMC_ERASE_ARG);
2107                if (ret)
2108                        goto err;
2109        }
2110
2111        /* Run test */
2112        ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2113                                   tdata->do_write, 0, 1, size / reqsize,
2114                                   tdata->do_nonblock_req, min_sg_len);
2115        if (ret)
2116                goto err;
2117
2118        return ret;
2119 err:
2120        pr_info("[%s] error\n", __func__);
2121        return ret;
2122}
2123
2124static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2125                                     struct mmc_test_multiple_rw *rw)
2126{
2127        int ret = 0;
2128        int i;
2129        void *pre_req = test->card->host->ops->pre_req;
2130        void *post_req = test->card->host->ops->post_req;
2131
2132        if (rw->do_nonblock_req &&
2133            ((!pre_req && post_req) || (pre_req && !post_req))) {
2134                pr_info("error: only one of pre/post is defined\n");
2135                return -EINVAL;
2136        }
2137
2138        for (i = 0 ; i < rw->len && ret == 0; i++) {
2139                ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2140                if (ret)
2141                        break;
2142        }
2143        return ret;
2144}
2145
2146static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2147                                       struct mmc_test_multiple_rw *rw)
2148{
2149        int ret = 0;
2150        int i;
2151
2152        for (i = 0 ; i < rw->len && ret == 0; i++) {
2153                ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2154                                           rw->sg_len[i]);
2155                if (ret)
2156                        break;
2157        }
2158        return ret;
2159}
2160
2161/*
2162 * Multiple blocking write 4k to 4 MB chunks
2163 */
2164static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2165{
2166        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2167                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2168        struct mmc_test_multiple_rw test_data = {
2169                .bs = bs,
2170                .size = TEST_AREA_MAX_SIZE,
2171                .len = ARRAY_SIZE(bs),
2172                .do_write = true,
2173                .do_nonblock_req = false,
2174                .prepare = MMC_TEST_PREP_ERASE,
2175        };
2176
2177        return mmc_test_rw_multiple_size(test, &test_data);
2178};
2179
2180/*
2181 * Multiple non-blocking write 4k to 4 MB chunks
2182 */
2183static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2184{
2185        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2186                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2187        struct mmc_test_multiple_rw test_data = {
2188                .bs = bs,
2189                .size = TEST_AREA_MAX_SIZE,
2190                .len = ARRAY_SIZE(bs),
2191                .do_write = true,
2192                .do_nonblock_req = true,
2193                .prepare = MMC_TEST_PREP_ERASE,
2194        };
2195
2196        return mmc_test_rw_multiple_size(test, &test_data);
2197}
2198
2199/*
2200 * Multiple blocking read 4k to 4 MB chunks
2201 */
2202static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2203{
2204        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2205                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2206        struct mmc_test_multiple_rw test_data = {
2207                .bs = bs,
2208                .size = TEST_AREA_MAX_SIZE,
2209                .len = ARRAY_SIZE(bs),
2210                .do_write = false,
2211                .do_nonblock_req = false,
2212                .prepare = MMC_TEST_PREP_NONE,
2213        };
2214
2215        return mmc_test_rw_multiple_size(test, &test_data);
2216}
2217
2218/*
2219 * Multiple non-blocking read 4k to 4 MB chunks
2220 */
2221static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2222{
2223        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2224                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2225        struct mmc_test_multiple_rw test_data = {
2226                .bs = bs,
2227                .size = TEST_AREA_MAX_SIZE,
2228                .len = ARRAY_SIZE(bs),
2229                .do_write = false,
2230                .do_nonblock_req = true,
2231                .prepare = MMC_TEST_PREP_NONE,
2232        };
2233
2234        return mmc_test_rw_multiple_size(test, &test_data);
2235}
2236
2237/*
2238 * Multiple blocking write 1 to 512 sg elements
2239 */
2240static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2241{
2242        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2243                                 1 << 7, 1 << 8, 1 << 9};
2244        struct mmc_test_multiple_rw test_data = {
2245                .sg_len = sg_len,
2246                .size = TEST_AREA_MAX_SIZE,
2247                .len = ARRAY_SIZE(sg_len),
2248                .do_write = true,
2249                .do_nonblock_req = false,
2250                .prepare = MMC_TEST_PREP_ERASE,
2251        };
2252
2253        return mmc_test_rw_multiple_sg_len(test, &test_data);
2254};
2255
2256/*
2257 * Multiple non-blocking write 1 to 512 sg elements
2258 */
2259static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2260{
2261        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2262                                 1 << 7, 1 << 8, 1 << 9};
2263        struct mmc_test_multiple_rw test_data = {
2264                .sg_len = sg_len,
2265                .size = TEST_AREA_MAX_SIZE,
2266                .len = ARRAY_SIZE(sg_len),
2267                .do_write = true,
2268                .do_nonblock_req = true,
2269                .prepare = MMC_TEST_PREP_ERASE,
2270        };
2271
2272        return mmc_test_rw_multiple_sg_len(test, &test_data);
2273}
2274
2275/*
2276 * Multiple blocking read 1 to 512 sg elements
2277 */
2278static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2279{
2280        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2281                                 1 << 7, 1 << 8, 1 << 9};
2282        struct mmc_test_multiple_rw test_data = {
2283                .sg_len = sg_len,
2284                .size = TEST_AREA_MAX_SIZE,
2285                .len = ARRAY_SIZE(sg_len),
2286                .do_write = false,
2287                .do_nonblock_req = false,
2288                .prepare = MMC_TEST_PREP_NONE,
2289        };
2290
2291        return mmc_test_rw_multiple_sg_len(test, &test_data);
2292}
2293
2294/*
2295 * Multiple non-blocking read 1 to 512 sg elements
2296 */
2297static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2298{
2299        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2300                                 1 << 7, 1 << 8, 1 << 9};
2301        struct mmc_test_multiple_rw test_data = {
2302                .sg_len = sg_len,
2303                .size = TEST_AREA_MAX_SIZE,
2304                .len = ARRAY_SIZE(sg_len),
2305                .do_write = false,
2306                .do_nonblock_req = true,
2307                .prepare = MMC_TEST_PREP_NONE,
2308        };
2309
2310        return mmc_test_rw_multiple_sg_len(test, &test_data);
2311}
2312
2313/*
2314 * eMMC hardware reset.
2315 */
2316static int mmc_test_reset(struct mmc_test_card *test)
2317{
2318        struct mmc_card *card = test->card;
2319        struct mmc_host *host = card->host;
2320        int err;
2321
2322        err = mmc_hw_reset(host);
2323        if (!err) {
2324                /*
2325                 * Reset will re-enable the card's command queue, but tests
2326                 * expect it to be disabled.
2327                 */
2328                if (card->ext_csd.cmdq_en)
2329                        mmc_cmdq_disable(card);
2330                return RESULT_OK;
2331        } else if (err == -EOPNOTSUPP) {
2332                return RESULT_UNSUP_HOST;
2333        }
2334
2335        return RESULT_FAIL;
2336}
2337
2338static int mmc_test_send_status(struct mmc_test_card *test,
2339                                struct mmc_command *cmd)
2340{
2341        memset(cmd, 0, sizeof(*cmd));
2342
2343        cmd->opcode = MMC_SEND_STATUS;
2344        if (!mmc_host_is_spi(test->card->host))
2345                cmd->arg = test->card->rca << 16;
2346        cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2347
2348        return mmc_wait_for_cmd(test->card->host, cmd, 0);
2349}
2350
2351static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2352                                     unsigned int dev_addr, int use_sbc,
2353                                     int repeat_cmd, int write, int use_areq)
2354{
2355        struct mmc_test_req *rq = mmc_test_req_alloc();
2356        struct mmc_host *host = test->card->host;
2357        struct mmc_test_area *t = &test->area;
2358        struct mmc_request *mrq;
2359        unsigned long timeout;
2360        bool expired = false;
2361        int ret = 0, cmd_ret;
2362        u32 status = 0;
2363        int count = 0;
2364
2365        if (!rq)
2366                return -ENOMEM;
2367
2368        mrq = &rq->mrq;
2369        if (use_sbc)
2370                mrq->sbc = &rq->sbc;
2371        mrq->cap_cmd_during_tfr = true;
2372
2373        mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2374                             512, write);
2375
2376        if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2377                ret =  mmc_host_cmd23(host) ?
2378                       RESULT_UNSUP_CARD :
2379                       RESULT_UNSUP_HOST;
2380                goto out_free;
2381        }
2382
2383        /* Start ongoing data request */
2384        if (use_areq) {
2385                ret = mmc_test_start_areq(test, mrq, NULL);
2386                if (ret)
2387                        goto out_free;
2388        } else {
2389                mmc_wait_for_req(host, mrq);
2390        }
2391
2392        timeout = jiffies + msecs_to_jiffies(3000);
2393        do {
2394                count += 1;
2395
2396                /* Send status command while data transfer in progress */
2397                cmd_ret = mmc_test_send_status(test, &rq->status);
2398                if (cmd_ret)
2399                        break;
2400
2401                status = rq->status.resp[0];
2402                if (status & R1_ERROR) {
2403                        cmd_ret = -EIO;
2404                        break;
2405                }
2406
2407                if (mmc_is_req_done(host, mrq))
2408                        break;
2409
2410                expired = time_after(jiffies, timeout);
2411                if (expired) {
2412                        pr_info("%s: timeout waiting for Tran state status %#x\n",
2413                                mmc_hostname(host), status);
2414                        cmd_ret = -ETIMEDOUT;
2415                        break;
2416                }
2417        } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2418
2419        /* Wait for data request to complete */
2420        if (use_areq) {
2421                ret = mmc_test_start_areq(test, NULL, mrq);
2422        } else {
2423                mmc_wait_for_req_done(test->card->host, mrq);
2424        }
2425
2426        /*
2427         * For cap_cmd_during_tfr request, upper layer must send stop if
2428         * required.
2429         */
2430        if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2431                if (ret)
2432                        mmc_wait_for_cmd(host, mrq->data->stop, 0);
2433                else
2434                        ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2435        }
2436
2437        if (ret)
2438                goto out_free;
2439
2440        if (cmd_ret) {
2441                pr_info("%s: Send Status failed: status %#x, error %d\n",
2442                        mmc_hostname(test->card->host), status, cmd_ret);
2443        }
2444
2445        ret = mmc_test_check_result(test, mrq);
2446        if (ret)
2447                goto out_free;
2448
2449        ret = mmc_test_wait_busy(test);
2450        if (ret)
2451                goto out_free;
2452
2453        if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2454                pr_info("%s: %d commands completed during transfer of %u blocks\n",
2455                        mmc_hostname(test->card->host), count, t->blocks);
2456
2457        if (cmd_ret)
2458                ret = cmd_ret;
2459out_free:
2460        kfree(rq);
2461
2462        return ret;
2463}
2464
2465static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2466                                      unsigned long sz, int use_sbc, int write,
2467                                      int use_areq)
2468{
2469        struct mmc_test_area *t = &test->area;
2470        int ret;
2471
2472        if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2473                return RESULT_UNSUP_HOST;
2474
2475        ret = mmc_test_area_map(test, sz, 0, 0);
2476        if (ret)
2477                return ret;
2478
2479        ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2480                                        use_areq);
2481        if (ret)
2482                return ret;
2483
2484        return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2485                                         use_areq);
2486}
2487
2488static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2489                                    int write, int use_areq)
2490{
2491        struct mmc_test_area *t = &test->area;
2492        unsigned long sz;
2493        int ret;
2494
2495        for (sz = 512; sz <= t->max_tfr; sz += 512) {
2496                ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2497                                                 use_areq);
2498                if (ret)
2499                        return ret;
2500        }
2501        return 0;
2502}
2503
2504/*
2505 * Commands during read - no Set Block Count (CMD23).
2506 */
2507static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2508{
2509        return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2510}
2511
2512/*
2513 * Commands during write - no Set Block Count (CMD23).
2514 */
2515static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2516{
2517        return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2518}
2519
2520/*
2521 * Commands during read - use Set Block Count (CMD23).
2522 */
2523static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2524{
2525        return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2526}
2527
2528/*
2529 * Commands during write - use Set Block Count (CMD23).
2530 */
2531static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2532{
2533        return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2534}
2535
2536/*
2537 * Commands during non-blocking read - use Set Block Count (CMD23).
2538 */
2539static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2540{
2541        return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2542}
2543
2544/*
2545 * Commands during non-blocking write - use Set Block Count (CMD23).
2546 */
2547static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2548{
2549        return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2550}
2551
2552static const struct mmc_test_case mmc_test_cases[] = {
2553        {
2554                .name = "Basic write (no data verification)",
2555                .run = mmc_test_basic_write,
2556        },
2557
2558        {
2559                .name = "Basic read (no data verification)",
2560                .run = mmc_test_basic_read,
2561        },
2562
2563        {
2564                .name = "Basic write (with data verification)",
2565                .prepare = mmc_test_prepare_write,
2566                .run = mmc_test_verify_write,
2567                .cleanup = mmc_test_cleanup,
2568        },
2569
2570        {
2571                .name = "Basic read (with data verification)",
2572                .prepare = mmc_test_prepare_read,
2573                .run = mmc_test_verify_read,
2574                .cleanup = mmc_test_cleanup,
2575        },
2576
2577        {
2578                .name = "Multi-block write",
2579                .prepare = mmc_test_prepare_write,
2580                .run = mmc_test_multi_write,
2581                .cleanup = mmc_test_cleanup,
2582        },
2583
2584        {
2585                .name = "Multi-block read",
2586                .prepare = mmc_test_prepare_read,
2587                .run = mmc_test_multi_read,
2588                .cleanup = mmc_test_cleanup,
2589        },
2590
2591        {
2592                .name = "Power of two block writes",
2593                .prepare = mmc_test_prepare_write,
2594                .run = mmc_test_pow2_write,
2595                .cleanup = mmc_test_cleanup,
2596        },
2597
2598        {
2599                .name = "Power of two block reads",
2600                .prepare = mmc_test_prepare_read,
2601                .run = mmc_test_pow2_read,
2602                .cleanup = mmc_test_cleanup,
2603        },
2604
2605        {
2606                .name = "Weird sized block writes",
2607                .prepare = mmc_test_prepare_write,
2608                .run = mmc_test_weird_write,
2609                .cleanup = mmc_test_cleanup,
2610        },
2611
2612        {
2613                .name = "Weird sized block reads",
2614                .prepare = mmc_test_prepare_read,
2615                .run = mmc_test_weird_read,
2616                .cleanup = mmc_test_cleanup,
2617        },
2618
2619        {
2620                .name = "Badly aligned write",
2621                .prepare = mmc_test_prepare_write,
2622                .run = mmc_test_align_write,
2623                .cleanup = mmc_test_cleanup,
2624        },
2625
2626        {
2627                .name = "Badly aligned read",
2628                .prepare = mmc_test_prepare_read,
2629                .run = mmc_test_align_read,
2630                .cleanup = mmc_test_cleanup,
2631        },
2632
2633        {
2634                .name = "Badly aligned multi-block write",
2635                .prepare = mmc_test_prepare_write,
2636                .run = mmc_test_align_multi_write,
2637                .cleanup = mmc_test_cleanup,
2638        },
2639
2640        {
2641                .name = "Badly aligned multi-block read",
2642                .prepare = mmc_test_prepare_read,
2643                .run = mmc_test_align_multi_read,
2644                .cleanup = mmc_test_cleanup,
2645        },
2646
2647        {
2648                .name = "Correct xfer_size at write (start failure)",
2649                .run = mmc_test_xfersize_write,
2650        },
2651
2652        {
2653                .name = "Correct xfer_size at read (start failure)",
2654                .run = mmc_test_xfersize_read,
2655        },
2656
2657        {
2658                .name = "Correct xfer_size at write (midway failure)",
2659                .run = mmc_test_multi_xfersize_write,
2660        },
2661
2662        {
2663                .name = "Correct xfer_size at read (midway failure)",
2664                .run = mmc_test_multi_xfersize_read,
2665        },
2666
2667#ifdef CONFIG_HIGHMEM
2668
2669        {
2670                .name = "Highmem write",
2671                .prepare = mmc_test_prepare_write,
2672                .run = mmc_test_write_high,
2673                .cleanup = mmc_test_cleanup,
2674        },
2675
2676        {
2677                .name = "Highmem read",
2678                .prepare = mmc_test_prepare_read,
2679                .run = mmc_test_read_high,
2680                .cleanup = mmc_test_cleanup,
2681        },
2682
2683        {
2684                .name = "Multi-block highmem write",
2685                .prepare = mmc_test_prepare_write,
2686                .run = mmc_test_multi_write_high,
2687                .cleanup = mmc_test_cleanup,
2688        },
2689
2690        {
2691                .name = "Multi-block highmem read",
2692                .prepare = mmc_test_prepare_read,
2693                .run = mmc_test_multi_read_high,
2694                .cleanup = mmc_test_cleanup,
2695        },
2696
2697#else
2698
2699        {
2700                .name = "Highmem write",
2701                .run = mmc_test_no_highmem,
2702        },
2703
2704        {
2705                .name = "Highmem read",
2706                .run = mmc_test_no_highmem,
2707        },
2708
2709        {
2710                .name = "Multi-block highmem write",
2711                .run = mmc_test_no_highmem,
2712        },
2713
2714        {
2715                .name = "Multi-block highmem read",
2716                .run = mmc_test_no_highmem,
2717        },
2718
2719#endif /* CONFIG_HIGHMEM */
2720
2721        {
2722                .name = "Best-case read performance",
2723                .prepare = mmc_test_area_prepare_fill,
2724                .run = mmc_test_best_read_performance,
2725                .cleanup = mmc_test_area_cleanup,
2726        },
2727
2728        {
2729                .name = "Best-case write performance",
2730                .prepare = mmc_test_area_prepare_erase,
2731                .run = mmc_test_best_write_performance,
2732                .cleanup = mmc_test_area_cleanup,
2733        },
2734
2735        {
2736                .name = "Best-case read performance into scattered pages",
2737                .prepare = mmc_test_area_prepare_fill,
2738                .run = mmc_test_best_read_perf_max_scatter,
2739                .cleanup = mmc_test_area_cleanup,
2740        },
2741
2742        {
2743                .name = "Best-case write performance from scattered pages",
2744                .prepare = mmc_test_area_prepare_erase,
2745                .run = mmc_test_best_write_perf_max_scatter,
2746                .cleanup = mmc_test_area_cleanup,
2747        },
2748
2749        {
2750                .name = "Single read performance by transfer size",
2751                .prepare = mmc_test_area_prepare_fill,
2752                .run = mmc_test_profile_read_perf,
2753                .cleanup = mmc_test_area_cleanup,
2754        },
2755
2756        {
2757                .name = "Single write performance by transfer size",
2758                .prepare = mmc_test_area_prepare,
2759                .run = mmc_test_profile_write_perf,
2760                .cleanup = mmc_test_area_cleanup,
2761        },
2762
2763        {
2764                .name = "Single trim performance by transfer size",
2765                .prepare = mmc_test_area_prepare_fill,
2766                .run = mmc_test_profile_trim_perf,
2767                .cleanup = mmc_test_area_cleanup,
2768        },
2769
2770        {
2771                .name = "Consecutive read performance by transfer size",
2772                .prepare = mmc_test_area_prepare_fill,
2773                .run = mmc_test_profile_seq_read_perf,
2774                .cleanup = mmc_test_area_cleanup,
2775        },
2776
2777        {
2778                .name = "Consecutive write performance by transfer size",
2779                .prepare = mmc_test_area_prepare,
2780                .run = mmc_test_profile_seq_write_perf,
2781                .cleanup = mmc_test_area_cleanup,
2782        },
2783
2784        {
2785                .name = "Consecutive trim performance by transfer size",
2786                .prepare = mmc_test_area_prepare,
2787                .run = mmc_test_profile_seq_trim_perf,
2788                .cleanup = mmc_test_area_cleanup,
2789        },
2790
2791        {
2792                .name = "Random read performance by transfer size",
2793                .prepare = mmc_test_area_prepare,
2794                .run = mmc_test_random_read_perf,
2795                .cleanup = mmc_test_area_cleanup,
2796        },
2797
2798        {
2799                .name = "Random write performance by transfer size",
2800                .prepare = mmc_test_area_prepare,
2801                .run = mmc_test_random_write_perf,
2802                .cleanup = mmc_test_area_cleanup,
2803        },
2804
2805        {
2806                .name = "Large sequential read into scattered pages",
2807                .prepare = mmc_test_area_prepare,
2808                .run = mmc_test_large_seq_read_perf,
2809                .cleanup = mmc_test_area_cleanup,
2810        },
2811
2812        {
2813                .name = "Large sequential write from scattered pages",
2814                .prepare = mmc_test_area_prepare,
2815                .run = mmc_test_large_seq_write_perf,
2816                .cleanup = mmc_test_area_cleanup,
2817        },
2818
2819        {
2820                .name = "Write performance with blocking req 4k to 4MB",
2821                .prepare = mmc_test_area_prepare,
2822                .run = mmc_test_profile_mult_write_blocking_perf,
2823                .cleanup = mmc_test_area_cleanup,
2824        },
2825
2826        {
2827                .name = "Write performance with non-blocking req 4k to 4MB",
2828                .prepare = mmc_test_area_prepare,
2829                .run = mmc_test_profile_mult_write_nonblock_perf,
2830                .cleanup = mmc_test_area_cleanup,
2831        },
2832
2833        {
2834                .name = "Read performance with blocking req 4k to 4MB",
2835                .prepare = mmc_test_area_prepare,
2836                .run = mmc_test_profile_mult_read_blocking_perf,
2837                .cleanup = mmc_test_area_cleanup,
2838        },
2839
2840        {
2841                .name = "Read performance with non-blocking req 4k to 4MB",
2842                .prepare = mmc_test_area_prepare,
2843                .run = mmc_test_profile_mult_read_nonblock_perf,
2844                .cleanup = mmc_test_area_cleanup,
2845        },
2846
2847        {
2848                .name = "Write performance blocking req 1 to 512 sg elems",
2849                .prepare = mmc_test_area_prepare,
2850                .run = mmc_test_profile_sglen_wr_blocking_perf,
2851                .cleanup = mmc_test_area_cleanup,
2852        },
2853
2854        {
2855                .name = "Write performance non-blocking req 1 to 512 sg elems",
2856                .prepare = mmc_test_area_prepare,
2857                .run = mmc_test_profile_sglen_wr_nonblock_perf,
2858                .cleanup = mmc_test_area_cleanup,
2859        },
2860
2861        {
2862                .name = "Read performance blocking req 1 to 512 sg elems",
2863                .prepare = mmc_test_area_prepare,
2864                .run = mmc_test_profile_sglen_r_blocking_perf,
2865                .cleanup = mmc_test_area_cleanup,
2866        },
2867
2868        {
2869                .name = "Read performance non-blocking req 1 to 512 sg elems",
2870                .prepare = mmc_test_area_prepare,
2871                .run = mmc_test_profile_sglen_r_nonblock_perf,
2872                .cleanup = mmc_test_area_cleanup,
2873        },
2874
2875        {
2876                .name = "Reset test",
2877                .run = mmc_test_reset,
2878        },
2879
2880        {
2881                .name = "Commands during read - no Set Block Count (CMD23)",
2882                .prepare = mmc_test_area_prepare,
2883                .run = mmc_test_cmds_during_read,
2884                .cleanup = mmc_test_area_cleanup,
2885        },
2886
2887        {
2888                .name = "Commands during write - no Set Block Count (CMD23)",
2889                .prepare = mmc_test_area_prepare,
2890                .run = mmc_test_cmds_during_write,
2891                .cleanup = mmc_test_area_cleanup,
2892        },
2893
2894        {
2895                .name = "Commands during read - use Set Block Count (CMD23)",
2896                .prepare = mmc_test_area_prepare,
2897                .run = mmc_test_cmds_during_read_cmd23,
2898                .cleanup = mmc_test_area_cleanup,
2899        },
2900
2901        {
2902                .name = "Commands during write - use Set Block Count (CMD23)",
2903                .prepare = mmc_test_area_prepare,
2904                .run = mmc_test_cmds_during_write_cmd23,
2905                .cleanup = mmc_test_area_cleanup,
2906        },
2907
2908        {
2909                .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2910                .prepare = mmc_test_area_prepare,
2911                .run = mmc_test_cmds_during_read_cmd23_nonblock,
2912                .cleanup = mmc_test_area_cleanup,
2913        },
2914
2915        {
2916                .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2917                .prepare = mmc_test_area_prepare,
2918                .run = mmc_test_cmds_during_write_cmd23_nonblock,
2919                .cleanup = mmc_test_area_cleanup,
2920        },
2921};
2922
2923static DEFINE_MUTEX(mmc_test_lock);
2924
2925static LIST_HEAD(mmc_test_result);
2926
2927static void mmc_test_run(struct mmc_test_card *test, int testcase)
2928{
2929        int i, ret;
2930
2931        pr_info("%s: Starting tests of card %s...\n",
2932                mmc_hostname(test->card->host), mmc_card_id(test->card));
2933
2934        mmc_claim_host(test->card->host);
2935
2936        for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2937                struct mmc_test_general_result *gr;
2938
2939                if (testcase && ((i + 1) != testcase))
2940                        continue;
2941
2942                pr_info("%s: Test case %d. %s...\n",
2943                        mmc_hostname(test->card->host), i + 1,
2944                        mmc_test_cases[i].name);
2945
2946                if (mmc_test_cases[i].prepare) {
2947                        ret = mmc_test_cases[i].prepare(test);
2948                        if (ret) {
2949                                pr_info("%s: Result: Prepare stage failed! (%d)\n",
2950                                        mmc_hostname(test->card->host),
2951                                        ret);
2952                                continue;
2953                        }
2954                }
2955
2956                gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2957                if (gr) {
2958                        INIT_LIST_HEAD(&gr->tr_lst);
2959
2960                        /* Assign data what we know already */
2961                        gr->card = test->card;
2962                        gr->testcase = i;
2963
2964                        /* Append container to global one */
2965                        list_add_tail(&gr->link, &mmc_test_result);
2966
2967                        /*
2968                         * Save the pointer to created container in our private
2969                         * structure.
2970                         */
2971                        test->gr = gr;
2972                }
2973
2974                ret = mmc_test_cases[i].run(test);
2975                switch (ret) {
2976                case RESULT_OK:
2977                        pr_info("%s: Result: OK\n",
2978                                mmc_hostname(test->card->host));
2979                        break;
2980                case RESULT_FAIL:
2981                        pr_info("%s: Result: FAILED\n",
2982                                mmc_hostname(test->card->host));
2983                        break;
2984                case RESULT_UNSUP_HOST:
2985                        pr_info("%s: Result: UNSUPPORTED (by host)\n",
2986                                mmc_hostname(test->card->host));
2987                        break;
2988                case RESULT_UNSUP_CARD:
2989                        pr_info("%s: Result: UNSUPPORTED (by card)\n",
2990                                mmc_hostname(test->card->host));
2991                        break;
2992                default:
2993                        pr_info("%s: Result: ERROR (%d)\n",
2994                                mmc_hostname(test->card->host), ret);
2995                }
2996
2997                /* Save the result */
2998                if (gr)
2999                        gr->result = ret;
3000
3001                if (mmc_test_cases[i].cleanup) {
3002                        ret = mmc_test_cases[i].cleanup(test);
3003                        if (ret) {
3004                                pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3005                                        mmc_hostname(test->card->host),
3006                                        ret);
3007                        }
3008                }
3009        }
3010
3011        mmc_release_host(test->card->host);
3012
3013        pr_info("%s: Tests completed.\n",
3014                mmc_hostname(test->card->host));
3015}
3016
3017static void mmc_test_free_result(struct mmc_card *card)
3018{
3019        struct mmc_test_general_result *gr, *grs;
3020
3021        mutex_lock(&mmc_test_lock);
3022
3023        list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3024                struct mmc_test_transfer_result *tr, *trs;
3025
3026                if (card && gr->card != card)
3027                        continue;
3028
3029                list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3030                        list_del(&tr->link);
3031                        kfree(tr);
3032                }
3033
3034                list_del(&gr->link);
3035                kfree(gr);
3036        }
3037
3038        mutex_unlock(&mmc_test_lock);
3039}
3040
3041static LIST_HEAD(mmc_test_file_test);
3042
3043static int mtf_test_show(struct seq_file *sf, void *data)
3044{
3045        struct mmc_card *card = (struct mmc_card *)sf->private;
3046        struct mmc_test_general_result *gr;
3047
3048        mutex_lock(&mmc_test_lock);
3049
3050        list_for_each_entry(gr, &mmc_test_result, link) {
3051                struct mmc_test_transfer_result *tr;
3052
3053                if (gr->card != card)
3054                        continue;
3055
3056                seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3057
3058                list_for_each_entry(tr, &gr->tr_lst, link) {
3059                        seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3060                                tr->count, tr->sectors,
3061                                (u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3062                                tr->rate, tr->iops / 100, tr->iops % 100);
3063                }
3064        }
3065
3066        mutex_unlock(&mmc_test_lock);
3067
3068        return 0;
3069}
3070
3071static int mtf_test_open(struct inode *inode, struct file *file)
3072{
3073        return single_open(file, mtf_test_show, inode->i_private);
3074}
3075
3076static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3077        size_t count, loff_t *pos)
3078{
3079        struct seq_file *sf = (struct seq_file *)file->private_data;
3080        struct mmc_card *card = (struct mmc_card *)sf->private;
3081        struct mmc_test_card *test;
3082        long testcase;
3083        int ret;
3084
3085        ret = kstrtol_from_user(buf, count, 10, &testcase);
3086        if (ret)
3087                return ret;
3088
3089        test = kzalloc(sizeof(*test), GFP_KERNEL);
3090        if (!test)
3091                return -ENOMEM;
3092
3093        /*
3094         * Remove all test cases associated with given card. Thus we have only
3095         * actual data of the last run.
3096         */
3097        mmc_test_free_result(card);
3098
3099        test->card = card;
3100
3101        test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3102#ifdef CONFIG_HIGHMEM
3103        test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3104#endif
3105
3106#ifdef CONFIG_HIGHMEM
3107        if (test->buffer && test->highmem) {
3108#else
3109        if (test->buffer) {
3110#endif
3111                mutex_lock(&mmc_test_lock);
3112                mmc_test_run(test, testcase);
3113                mutex_unlock(&mmc_test_lock);
3114        }
3115
3116#ifdef CONFIG_HIGHMEM
3117        __free_pages(test->highmem, BUFFER_ORDER);
3118#endif
3119        kfree(test->buffer);
3120        kfree(test);
3121
3122        return count;
3123}
3124
3125static const struct file_operations mmc_test_fops_test = {
3126        .open           = mtf_test_open,
3127        .read           = seq_read,
3128        .write          = mtf_test_write,
3129        .llseek         = seq_lseek,
3130        .release        = single_release,
3131};
3132
3133static int mtf_testlist_show(struct seq_file *sf, void *data)
3134{
3135        int i;
3136
3137        mutex_lock(&mmc_test_lock);
3138
3139        seq_puts(sf, "0:\tRun all tests\n");
3140        for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3141                seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3142
3143        mutex_unlock(&mmc_test_lock);
3144
3145        return 0;
3146}
3147
3148static int mtf_testlist_open(struct inode *inode, struct file *file)
3149{
3150        return single_open(file, mtf_testlist_show, inode->i_private);
3151}
3152
3153static const struct file_operations mmc_test_fops_testlist = {
3154        .open           = mtf_testlist_open,
3155        .read           = seq_read,
3156        .llseek         = seq_lseek,
3157        .release        = single_release,
3158};
3159
3160static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3161{
3162        struct mmc_test_dbgfs_file *df, *dfs;
3163
3164        mutex_lock(&mmc_test_lock);
3165
3166        list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3167                if (card && df->card != card)
3168                        continue;
3169                debugfs_remove(df->file);
3170                list_del(&df->link);
3171                kfree(df);
3172        }
3173
3174        mutex_unlock(&mmc_test_lock);
3175}
3176
3177static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3178        const char *name, umode_t mode, const struct file_operations *fops)
3179{
3180        struct dentry *file = NULL;
3181        struct mmc_test_dbgfs_file *df;
3182
3183        if (card->debugfs_root)
3184                file = debugfs_create_file(name, mode, card->debugfs_root,
3185                        card, fops);
3186
3187        if (IS_ERR_OR_NULL(file)) {
3188                dev_err(&card->dev,
3189                        "Can't create %s. Perhaps debugfs is disabled.\n",
3190                        name);
3191                return -ENODEV;
3192        }
3193
3194        df = kmalloc(sizeof(*df), GFP_KERNEL);
3195        if (!df) {
3196                debugfs_remove(file);
3197                return -ENOMEM;
3198        }
3199
3200        df->card = card;
3201        df->file = file;
3202
3203        list_add(&df->link, &mmc_test_file_test);
3204        return 0;
3205}
3206
3207static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3208{
3209        int ret;
3210
3211        mutex_lock(&mmc_test_lock);
3212
3213        ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3214                &mmc_test_fops_test);
3215        if (ret)
3216                goto err;
3217
3218        ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3219                &mmc_test_fops_testlist);
3220        if (ret)
3221                goto err;
3222
3223err:
3224        mutex_unlock(&mmc_test_lock);
3225
3226        return ret;
3227}
3228
3229static int mmc_test_probe(struct mmc_card *card)
3230{
3231        int ret;
3232
3233        if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3234                return -ENODEV;
3235
3236        ret = mmc_test_register_dbgfs_file(card);
3237        if (ret)
3238                return ret;
3239
3240        if (card->ext_csd.cmdq_en) {
3241                mmc_claim_host(card->host);
3242                ret = mmc_cmdq_disable(card);
3243                mmc_release_host(card->host);
3244                if (ret)
3245                        return ret;
3246        }
3247
3248        dev_info(&card->dev, "Card claimed for testing.\n");
3249
3250        return 0;
3251}
3252
3253static void mmc_test_remove(struct mmc_card *card)
3254{
3255        if (card->reenable_cmdq) {
3256                mmc_claim_host(card->host);
3257                mmc_cmdq_enable(card);
3258                mmc_release_host(card->host);
3259        }
3260        mmc_test_free_result(card);
3261        mmc_test_free_dbgfs_file(card);
3262}
3263
3264static void mmc_test_shutdown(struct mmc_card *card)
3265{
3266}
3267
3268static struct mmc_driver mmc_driver = {
3269        .drv            = {
3270                .name   = "mmc_test",
3271        },
3272        .probe          = mmc_test_probe,
3273        .remove         = mmc_test_remove,
3274        .shutdown       = mmc_test_shutdown,
3275};
3276
3277static int __init mmc_test_init(void)
3278{
3279        return mmc_register_driver(&mmc_driver);
3280}
3281
3282static void __exit mmc_test_exit(void)
3283{
3284        /* Clear stalled data if card is still plugged */
3285        mmc_test_free_result(NULL);
3286        mmc_test_free_dbgfs_file(NULL);
3287
3288        mmc_unregister_driver(&mmc_driver);
3289}
3290
3291module_init(mmc_test_init);
3292module_exit(mmc_test_exit);
3293
3294MODULE_LICENSE("GPL");
3295MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3296MODULE_AUTHOR("Pierre Ossman");
3297