linux/drivers/mtd/nand/raw/cafe_nand.c
<<
>>
Prefs
   1/*
   2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
   3 *
   4 * The data sheet for this device can be found at:
   5 *    http://wiki.laptop.org/go/Datasheets 
   6 *
   7 * Copyright © 2006 Red Hat, Inc.
   8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
   9 */
  10
  11#define DEBUG
  12
  13#include <linux/device.h>
  14#undef DEBUG
  15#include <linux/mtd/mtd.h>
  16#include <linux/mtd/rawnand.h>
  17#include <linux/mtd/partitions.h>
  18#include <linux/rslib.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/interrupt.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/slab.h>
  24#include <linux/module.h>
  25#include <asm/io.h>
  26
  27#define CAFE_NAND_CTRL1         0x00
  28#define CAFE_NAND_CTRL2         0x04
  29#define CAFE_NAND_CTRL3         0x08
  30#define CAFE_NAND_STATUS        0x0c
  31#define CAFE_NAND_IRQ           0x10
  32#define CAFE_NAND_IRQ_MASK      0x14
  33#define CAFE_NAND_DATA_LEN      0x18
  34#define CAFE_NAND_ADDR1         0x1c
  35#define CAFE_NAND_ADDR2         0x20
  36#define CAFE_NAND_TIMING1       0x24
  37#define CAFE_NAND_TIMING2       0x28
  38#define CAFE_NAND_TIMING3       0x2c
  39#define CAFE_NAND_NONMEM        0x30
  40#define CAFE_NAND_ECC_RESULT    0x3C
  41#define CAFE_NAND_DMA_CTRL      0x40
  42#define CAFE_NAND_DMA_ADDR0     0x44
  43#define CAFE_NAND_DMA_ADDR1     0x48
  44#define CAFE_NAND_ECC_SYN01     0x50
  45#define CAFE_NAND_ECC_SYN23     0x54
  46#define CAFE_NAND_ECC_SYN45     0x58
  47#define CAFE_NAND_ECC_SYN67     0x5c
  48#define CAFE_NAND_READ_DATA     0x1000
  49#define CAFE_NAND_WRITE_DATA    0x2000
  50
  51#define CAFE_GLOBAL_CTRL        0x3004
  52#define CAFE_GLOBAL_IRQ         0x3008
  53#define CAFE_GLOBAL_IRQ_MASK    0x300c
  54#define CAFE_NAND_RESET         0x3034
  55
  56/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  57#define CTRL1_CHIPSELECT        (1<<19)
  58
  59struct cafe_priv {
  60        struct nand_chip nand;
  61        struct pci_dev *pdev;
  62        void __iomem *mmio;
  63        struct rs_control *rs;
  64        uint32_t ctl1;
  65        uint32_t ctl2;
  66        int datalen;
  67        int nr_data;
  68        int data_pos;
  69        int page_addr;
  70        bool usedma;
  71        dma_addr_t dmaaddr;
  72        unsigned char *dmabuf;
  73};
  74
  75static int usedma = 1;
  76module_param(usedma, int, 0644);
  77
  78static int skipbbt = 0;
  79module_param(skipbbt, int, 0644);
  80
  81static int debug = 0;
  82module_param(debug, int, 0644);
  83
  84static int regdebug = 0;
  85module_param(regdebug, int, 0644);
  86
  87static int checkecc = 1;
  88module_param(checkecc, int, 0644);
  89
  90static unsigned int numtimings;
  91static int timing[3];
  92module_param_array(timing, int, &numtimings, 0644);
  93
  94static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  95
  96/* Hrm. Why isn't this already conditional on something in the struct device? */
  97#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  98
  99/* Make it easier to switch to PIO if we need to */
 100#define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
 101#define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
 102
 103static int cafe_device_ready(struct mtd_info *mtd)
 104{
 105        struct nand_chip *chip = mtd_to_nand(mtd);
 106        struct cafe_priv *cafe = nand_get_controller_data(chip);
 107        int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
 108        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 109
 110        cafe_writel(cafe, irqs, NAND_IRQ);
 111
 112        cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
 113                result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
 114                cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 115
 116        return result;
 117}
 118
 119
 120static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 121{
 122        struct nand_chip *chip = mtd_to_nand(mtd);
 123        struct cafe_priv *cafe = nand_get_controller_data(chip);
 124
 125        if (cafe->usedma)
 126                memcpy(cafe->dmabuf + cafe->datalen, buf, len);
 127        else
 128                memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
 129
 130        cafe->datalen += len;
 131
 132        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
 133                len, cafe->datalen);
 134}
 135
 136static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 137{
 138        struct nand_chip *chip = mtd_to_nand(mtd);
 139        struct cafe_priv *cafe = nand_get_controller_data(chip);
 140
 141        if (cafe->usedma)
 142                memcpy(buf, cafe->dmabuf + cafe->datalen, len);
 143        else
 144                memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
 145
 146        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
 147                  len, cafe->datalen);
 148        cafe->datalen += len;
 149}
 150
 151static uint8_t cafe_read_byte(struct mtd_info *mtd)
 152{
 153        struct nand_chip *chip = mtd_to_nand(mtd);
 154        struct cafe_priv *cafe = nand_get_controller_data(chip);
 155        uint8_t d;
 156
 157        cafe_read_buf(mtd, &d, 1);
 158        cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
 159
 160        return d;
 161}
 162
 163static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
 164                              int column, int page_addr)
 165{
 166        struct nand_chip *chip = mtd_to_nand(mtd);
 167        struct cafe_priv *cafe = nand_get_controller_data(chip);
 168        int adrbytes = 0;
 169        uint32_t ctl1;
 170        uint32_t doneint = 0x80000000;
 171
 172        cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
 173                command, column, page_addr);
 174
 175        if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
 176                /* Second half of a command we already calculated */
 177                cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
 178                ctl1 = cafe->ctl1;
 179                cafe->ctl2 &= ~(1<<30);
 180                cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
 181                          cafe->ctl1, cafe->nr_data);
 182                goto do_command;
 183        }
 184        /* Reset ECC engine */
 185        cafe_writel(cafe, 0, NAND_CTRL2);
 186
 187        /* Emulate NAND_CMD_READOOB on large-page chips */
 188        if (mtd->writesize > 512 &&
 189            command == NAND_CMD_READOOB) {
 190                column += mtd->writesize;
 191                command = NAND_CMD_READ0;
 192        }
 193
 194        /* FIXME: Do we need to send read command before sending data
 195           for small-page chips, to position the buffer correctly? */
 196
 197        if (column != -1) {
 198                cafe_writel(cafe, column, NAND_ADDR1);
 199                adrbytes = 2;
 200                if (page_addr != -1)
 201                        goto write_adr2;
 202        } else if (page_addr != -1) {
 203                cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
 204                page_addr >>= 16;
 205        write_adr2:
 206                cafe_writel(cafe, page_addr, NAND_ADDR2);
 207                adrbytes += 2;
 208                if (mtd->size > mtd->writesize << 16)
 209                        adrbytes++;
 210        }
 211
 212        cafe->data_pos = cafe->datalen = 0;
 213
 214        /* Set command valid bit, mask in the chip select bit  */
 215        ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
 216
 217        /* Set RD or WR bits as appropriate */
 218        if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
 219                ctl1 |= (1<<26); /* rd */
 220                /* Always 5 bytes, for now */
 221                cafe->datalen = 4;
 222                /* And one address cycle -- even for STATUS, since the controller doesn't work without */
 223                adrbytes = 1;
 224        } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 225                   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
 226                ctl1 |= 1<<26; /* rd */
 227                /* For now, assume just read to end of page */
 228                cafe->datalen = mtd->writesize + mtd->oobsize - column;
 229        } else if (command == NAND_CMD_SEQIN)
 230                ctl1 |= 1<<25; /* wr */
 231
 232        /* Set number of address bytes */
 233        if (adrbytes)
 234                ctl1 |= ((adrbytes-1)|8) << 27;
 235
 236        if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
 237                /* Ignore the first command of a pair; the hardware
 238                   deals with them both at once, later */
 239                cafe->ctl1 = ctl1;
 240                cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
 241                          cafe->ctl1, cafe->datalen);
 242                return;
 243        }
 244        /* RNDOUT and READ0 commands need a following byte */
 245        if (command == NAND_CMD_RNDOUT)
 246                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
 247        else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
 248                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
 249
 250 do_command:
 251        cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
 252                cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
 253
 254        /* NB: The datasheet lies -- we really should be subtracting 1 here */
 255        cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
 256        cafe_writel(cafe, 0x90000000, NAND_IRQ);
 257        if (cafe->usedma && (ctl1 & (3<<25))) {
 258                uint32_t dmactl = 0xc0000000 + cafe->datalen;
 259                /* If WR or RD bits set, set up DMA */
 260                if (ctl1 & (1<<26)) {
 261                        /* It's a read */
 262                        dmactl |= (1<<29);
 263                        /* ... so it's done when the DMA is done, not just
 264                           the command. */
 265                        doneint = 0x10000000;
 266                }
 267                cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
 268        }
 269        cafe->datalen = 0;
 270
 271        if (unlikely(regdebug)) {
 272                int i;
 273                printk("About to write command %08x to register 0\n", ctl1);
 274                for (i=4; i< 0x5c; i+=4)
 275                        printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 276        }
 277
 278        cafe_writel(cafe, ctl1, NAND_CTRL1);
 279        /* Apply this short delay always to ensure that we do wait tWB in
 280         * any case on any machine. */
 281        ndelay(100);
 282
 283        if (1) {
 284                int c;
 285                uint32_t irqs;
 286
 287                for (c = 500000; c != 0; c--) {
 288                        irqs = cafe_readl(cafe, NAND_IRQ);
 289                        if (irqs & doneint)
 290                                break;
 291                        udelay(1);
 292                        if (!(c % 100000))
 293                                cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
 294                        cpu_relax();
 295                }
 296                cafe_writel(cafe, doneint, NAND_IRQ);
 297                cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
 298                             command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
 299        }
 300
 301        WARN_ON(cafe->ctl2 & (1<<30));
 302
 303        switch (command) {
 304
 305        case NAND_CMD_CACHEDPROG:
 306        case NAND_CMD_PAGEPROG:
 307        case NAND_CMD_ERASE1:
 308        case NAND_CMD_ERASE2:
 309        case NAND_CMD_SEQIN:
 310        case NAND_CMD_RNDIN:
 311        case NAND_CMD_STATUS:
 312        case NAND_CMD_RNDOUT:
 313                cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 314                return;
 315        }
 316        nand_wait_ready(mtd);
 317        cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 318}
 319
 320static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
 321{
 322        struct nand_chip *chip = mtd_to_nand(mtd);
 323        struct cafe_priv *cafe = nand_get_controller_data(chip);
 324
 325        cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
 326
 327        /* Mask the appropriate bit into the stored value of ctl1
 328           which will be used by cafe_nand_cmdfunc() */
 329        if (chipnr)
 330                cafe->ctl1 |= CTRL1_CHIPSELECT;
 331        else
 332                cafe->ctl1 &= ~CTRL1_CHIPSELECT;
 333}
 334
 335static irqreturn_t cafe_nand_interrupt(int irq, void *id)
 336{
 337        struct mtd_info *mtd = id;
 338        struct nand_chip *chip = mtd_to_nand(mtd);
 339        struct cafe_priv *cafe = nand_get_controller_data(chip);
 340        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 341        cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
 342        if (!irqs)
 343                return IRQ_NONE;
 344
 345        cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
 346        return IRQ_HANDLED;
 347}
 348
 349static int cafe_nand_write_oob(struct mtd_info *mtd,
 350                               struct nand_chip *chip, int page)
 351{
 352        return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 353                                 mtd->oobsize);
 354}
 355
 356/* Don't use -- use nand_read_oob_std for now */
 357static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 358                              int page)
 359{
 360        return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 361}
 362/**
 363 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
 364 * @mtd:        mtd info structure
 365 * @chip:       nand chip info structure
 366 * @buf:        buffer to store read data
 367 * @oob_required:       caller expects OOB data read to chip->oob_poi
 368 *
 369 * The hw generator calculates the error syndrome automatically. Therefore
 370 * we need a special oob layout and handling.
 371 */
 372static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 373                               uint8_t *buf, int oob_required, int page)
 374{
 375        struct cafe_priv *cafe = nand_get_controller_data(chip);
 376        unsigned int max_bitflips = 0;
 377
 378        cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
 379                     cafe_readl(cafe, NAND_ECC_RESULT),
 380                     cafe_readl(cafe, NAND_ECC_SYN01));
 381
 382        nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 383        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 384
 385        if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
 386                unsigned short syn[8], pat[4];
 387                int pos[4];
 388                u8 *oob = chip->oob_poi;
 389                int i, n;
 390
 391                for (i=0; i<8; i+=2) {
 392                        uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
 393
 394                        syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
 395                        syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
 396                }
 397
 398                n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
 399                                pat);
 400
 401                for (i = 0; i < n; i++) {
 402                        int p = pos[i];
 403
 404                        /* The 12-bit symbols are mapped to bytes here */
 405
 406                        if (p > 1374) {
 407                                /* out of range */
 408                                n = -1374;
 409                        } else if (p == 0) {
 410                                /* high four bits do not correspond to data */
 411                                if (pat[i] > 0xff)
 412                                        n = -2048;
 413                                else
 414                                        buf[0] ^= pat[i];
 415                        } else if (p == 1365) {
 416                                buf[2047] ^= pat[i] >> 4;
 417                                oob[0] ^= pat[i] << 4;
 418                        } else if (p > 1365) {
 419                                if ((p & 1) == 1) {
 420                                        oob[3*p/2 - 2048] ^= pat[i] >> 4;
 421                                        oob[3*p/2 - 2047] ^= pat[i] << 4;
 422                                } else {
 423                                        oob[3*p/2 - 2049] ^= pat[i] >> 8;
 424                                        oob[3*p/2 - 2048] ^= pat[i];
 425                                }
 426                        } else if ((p & 1) == 1) {
 427                                buf[3*p/2] ^= pat[i] >> 4;
 428                                buf[3*p/2 + 1] ^= pat[i] << 4;
 429                        } else {
 430                                buf[3*p/2 - 1] ^= pat[i] >> 8;
 431                                buf[3*p/2] ^= pat[i];
 432                        }
 433                }
 434
 435                if (n < 0) {
 436                        dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
 437                                cafe_readl(cafe, NAND_ADDR2) * 2048);
 438                        for (i = 0; i < 0x5c; i += 4)
 439                                printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 440                        mtd->ecc_stats.failed++;
 441                } else {
 442                        dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
 443                        mtd->ecc_stats.corrected += n;
 444                        max_bitflips = max_t(unsigned int, max_bitflips, n);
 445                }
 446        }
 447
 448        return max_bitflips;
 449}
 450
 451static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
 452                              struct mtd_oob_region *oobregion)
 453{
 454        struct nand_chip *chip = mtd_to_nand(mtd);
 455
 456        if (section)
 457                return -ERANGE;
 458
 459        oobregion->offset = 0;
 460        oobregion->length = chip->ecc.total;
 461
 462        return 0;
 463}
 464
 465static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
 466                               struct mtd_oob_region *oobregion)
 467{
 468        struct nand_chip *chip = mtd_to_nand(mtd);
 469
 470        if (section)
 471                return -ERANGE;
 472
 473        oobregion->offset = chip->ecc.total;
 474        oobregion->length = mtd->oobsize - chip->ecc.total;
 475
 476        return 0;
 477}
 478
 479static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
 480        .ecc = cafe_ooblayout_ecc,
 481        .free = cafe_ooblayout_free,
 482};
 483
 484/* Ick. The BBT code really ought to be able to work this bit out
 485   for itself from the above, at least for the 2KiB case */
 486static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
 487static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
 488
 489static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
 490static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
 491
 492
 493static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
 494        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 495                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 496        .offs = 14,
 497        .len = 4,
 498        .veroffs = 18,
 499        .maxblocks = 4,
 500        .pattern = cafe_bbt_pattern_2048
 501};
 502
 503static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
 504        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 505                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 506        .offs = 14,
 507        .len = 4,
 508        .veroffs = 18,
 509        .maxblocks = 4,
 510        .pattern = cafe_mirror_pattern_2048
 511};
 512
 513static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
 514        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 515                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 516        .offs = 14,
 517        .len = 1,
 518        .veroffs = 15,
 519        .maxblocks = 4,
 520        .pattern = cafe_bbt_pattern_512
 521};
 522
 523static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
 524        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 525                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 526        .offs = 14,
 527        .len = 1,
 528        .veroffs = 15,
 529        .maxblocks = 4,
 530        .pattern = cafe_mirror_pattern_512
 531};
 532
 533
 534static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
 535                                          struct nand_chip *chip,
 536                                          const uint8_t *buf, int oob_required,
 537                                          int page)
 538{
 539        struct cafe_priv *cafe = nand_get_controller_data(chip);
 540
 541        nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 542        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 543
 544        /* Set up ECC autogeneration */
 545        cafe->ctl2 |= (1<<30);
 546
 547        return nand_prog_page_end_op(chip);
 548}
 549
 550static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 551{
 552        return 0;
 553}
 554
 555/* F_2[X]/(X**6+X+1)  */
 556static unsigned short gf64_mul(u8 a, u8 b)
 557{
 558        u8 c;
 559        unsigned int i;
 560
 561        c = 0;
 562        for (i = 0; i < 6; i++) {
 563                if (a & 1)
 564                        c ^= b;
 565                a >>= 1;
 566                b <<= 1;
 567                if ((b & 0x40) != 0)
 568                        b ^= 0x43;
 569        }
 570
 571        return c;
 572}
 573
 574/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
 575static u16 gf4096_mul(u16 a, u16 b)
 576{
 577        u8 ah, al, bh, bl, ch, cl;
 578
 579        ah = a >> 6;
 580        al = a & 0x3f;
 581        bh = b >> 6;
 582        bl = b & 0x3f;
 583
 584        ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
 585        cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
 586
 587        return (ch << 6) ^ cl;
 588}
 589
 590static int cafe_mul(int x)
 591{
 592        if (x == 0)
 593                return 1;
 594        return gf4096_mul(x, 0xe01);
 595}
 596
 597static int cafe_nand_attach_chip(struct nand_chip *chip)
 598{
 599        struct mtd_info *mtd = nand_to_mtd(chip);
 600        struct cafe_priv *cafe = nand_get_controller_data(chip);
 601        int err = 0;
 602
 603        cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
 604                                          &cafe->dmaaddr, GFP_KERNEL);
 605        if (!cafe->dmabuf)
 606                return -ENOMEM;
 607
 608        /* Set up DMA address */
 609        cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
 610        cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
 611
 612        cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
 613                     cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
 614
 615        /* Restore the DMA flag */
 616        cafe->usedma = usedma;
 617
 618        cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
 619        if (mtd->writesize == 2048)
 620                cafe->ctl2 |= BIT(29); /* 2KiB page size */
 621
 622        /* Set up ECC according to the type of chip we found */
 623        mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
 624        if (mtd->writesize == 2048) {
 625                cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
 626                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
 627        } else if (mtd->writesize == 512) {
 628                cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
 629                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
 630        } else {
 631                dev_warn(&cafe->pdev->dev,
 632                         "Unexpected NAND flash writesize %d. Aborting\n",
 633                         mtd->writesize);
 634                err = -ENOTSUPP;
 635                goto out_free_dma;
 636        }
 637
 638        cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
 639        cafe->nand.ecc.size = mtd->writesize;
 640        cafe->nand.ecc.bytes = 14;
 641        cafe->nand.ecc.strength = 4;
 642        cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
 643        cafe->nand.ecc.write_oob = cafe_nand_write_oob;
 644        cafe->nand.ecc.read_page = cafe_nand_read_page;
 645        cafe->nand.ecc.read_oob = cafe_nand_read_oob;
 646
 647        return 0;
 648
 649 out_free_dma:
 650        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 651
 652        return err;
 653}
 654
 655static void cafe_nand_detach_chip(struct nand_chip *chip)
 656{
 657        struct cafe_priv *cafe = nand_get_controller_data(chip);
 658
 659        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 660}
 661
 662static const struct nand_controller_ops cafe_nand_controller_ops = {
 663        .attach_chip = cafe_nand_attach_chip,
 664        .detach_chip = cafe_nand_detach_chip,
 665};
 666
 667static int cafe_nand_probe(struct pci_dev *pdev,
 668                                     const struct pci_device_id *ent)
 669{
 670        struct mtd_info *mtd;
 671        struct cafe_priv *cafe;
 672        uint32_t ctrl;
 673        int err = 0;
 674
 675        /* Very old versions shared the same PCI ident for all three
 676           functions on the chip. Verify the class too... */
 677        if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
 678                return -ENODEV;
 679
 680        err = pci_enable_device(pdev);
 681        if (err)
 682                return err;
 683
 684        pci_set_master(pdev);
 685
 686        cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
 687        if (!cafe)
 688                return  -ENOMEM;
 689
 690        mtd = nand_to_mtd(&cafe->nand);
 691        mtd->dev.parent = &pdev->dev;
 692        nand_set_controller_data(&cafe->nand, cafe);
 693
 694        cafe->pdev = pdev;
 695        cafe->mmio = pci_iomap(pdev, 0, 0);
 696        if (!cafe->mmio) {
 697                dev_warn(&pdev->dev, "failed to iomap\n");
 698                err = -ENOMEM;
 699                goto out_free_mtd;
 700        }
 701
 702        cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
 703        if (!cafe->rs) {
 704                err = -ENOMEM;
 705                goto out_ior;
 706        }
 707
 708        cafe->nand.cmdfunc = cafe_nand_cmdfunc;
 709        cafe->nand.dev_ready = cafe_device_ready;
 710        cafe->nand.read_byte = cafe_read_byte;
 711        cafe->nand.read_buf = cafe_read_buf;
 712        cafe->nand.write_buf = cafe_write_buf;
 713        cafe->nand.select_chip = cafe_select_chip;
 714        cafe->nand.set_features = nand_get_set_features_notsupp;
 715        cafe->nand.get_features = nand_get_set_features_notsupp;
 716
 717        cafe->nand.chip_delay = 0;
 718
 719        /* Enable the following for a flash based bad block table */
 720        cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
 721
 722        if (skipbbt) {
 723                cafe->nand.options |= NAND_SKIP_BBTSCAN;
 724                cafe->nand.block_bad = cafe_nand_block_bad;
 725        }
 726
 727        if (numtimings && numtimings != 3) {
 728                dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
 729        }
 730
 731        if (numtimings == 3) {
 732                cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
 733                             timing[0], timing[1], timing[2]);
 734        } else {
 735                timing[0] = cafe_readl(cafe, NAND_TIMING1);
 736                timing[1] = cafe_readl(cafe, NAND_TIMING2);
 737                timing[2] = cafe_readl(cafe, NAND_TIMING3);
 738
 739                if (timing[0] | timing[1] | timing[2]) {
 740                        cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
 741                                     timing[0], timing[1], timing[2]);
 742                } else {
 743                        dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
 744                        timing[0] = timing[1] = timing[2] = 0xffffffff;
 745                }
 746        }
 747
 748        /* Start off by resetting the NAND controller completely */
 749        cafe_writel(cafe, 1, NAND_RESET);
 750        cafe_writel(cafe, 0, NAND_RESET);
 751
 752        cafe_writel(cafe, timing[0], NAND_TIMING1);
 753        cafe_writel(cafe, timing[1], NAND_TIMING2);
 754        cafe_writel(cafe, timing[2], NAND_TIMING3);
 755
 756        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 757        err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
 758                          "CAFE NAND", mtd);
 759        if (err) {
 760                dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
 761                goto out_ior;
 762        }
 763
 764        /* Disable master reset, enable NAND clock */
 765        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 766        ctrl &= 0xffffeff0;
 767        ctrl |= 0x00007000;
 768        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 769        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 770        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 771
 772        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 773        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 774
 775        /* Enable NAND IRQ in global IRQ mask register */
 776        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 777        cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
 778                cafe_readl(cafe, GLOBAL_CTRL),
 779                cafe_readl(cafe, GLOBAL_IRQ_MASK));
 780
 781        /* Do not use the DMA during the NAND identification */
 782        cafe->usedma = 0;
 783
 784        /* Scan to find existence of the device */
 785        cafe->nand.dummy_controller.ops = &cafe_nand_controller_ops;
 786        err = nand_scan(mtd, 2);
 787        if (err)
 788                goto out_irq;
 789
 790        pci_set_drvdata(pdev, mtd);
 791
 792        mtd->name = "cafe_nand";
 793        err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
 794        if (err)
 795                goto out_cleanup_nand;
 796
 797        goto out;
 798
 799 out_cleanup_nand:
 800        nand_cleanup(&cafe->nand);
 801 out_irq:
 802        /* Disable NAND IRQ in global IRQ mask register */
 803        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 804        free_irq(pdev->irq, mtd);
 805 out_ior:
 806        pci_iounmap(pdev, cafe->mmio);
 807 out_free_mtd:
 808        kfree(cafe);
 809 out:
 810        return err;
 811}
 812
 813static void cafe_nand_remove(struct pci_dev *pdev)
 814{
 815        struct mtd_info *mtd = pci_get_drvdata(pdev);
 816        struct nand_chip *chip = mtd_to_nand(mtd);
 817        struct cafe_priv *cafe = nand_get_controller_data(chip);
 818
 819        /* Disable NAND IRQ in global IRQ mask register */
 820        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 821        free_irq(pdev->irq, mtd);
 822        nand_release(mtd);
 823        free_rs(cafe->rs);
 824        pci_iounmap(pdev, cafe->mmio);
 825        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 826        kfree(cafe);
 827}
 828
 829static const struct pci_device_id cafe_nand_tbl[] = {
 830        { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
 831          PCI_ANY_ID, PCI_ANY_ID },
 832        { }
 833};
 834
 835MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
 836
 837static int cafe_nand_resume(struct pci_dev *pdev)
 838{
 839        uint32_t ctrl;
 840        struct mtd_info *mtd = pci_get_drvdata(pdev);
 841        struct nand_chip *chip = mtd_to_nand(mtd);
 842        struct cafe_priv *cafe = nand_get_controller_data(chip);
 843
 844       /* Start off by resetting the NAND controller completely */
 845        cafe_writel(cafe, 1, NAND_RESET);
 846        cafe_writel(cafe, 0, NAND_RESET);
 847        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 848
 849        /* Restore timing configuration */
 850        cafe_writel(cafe, timing[0], NAND_TIMING1);
 851        cafe_writel(cafe, timing[1], NAND_TIMING2);
 852        cafe_writel(cafe, timing[2], NAND_TIMING3);
 853
 854        /* Disable master reset, enable NAND clock */
 855        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 856        ctrl &= 0xffffeff0;
 857        ctrl |= 0x00007000;
 858        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 859        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 860        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 861        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 862        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 863
 864        /* Set up DMA address */
 865        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 866        if (sizeof(cafe->dmaaddr) > 4)
 867        /* Shift in two parts to shut the compiler up */
 868                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 869        else
 870                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 871
 872        /* Enable NAND IRQ in global IRQ mask register */
 873        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 874        return 0;
 875}
 876
 877static struct pci_driver cafe_nand_pci_driver = {
 878        .name = "CAFÉ NAND",
 879        .id_table = cafe_nand_tbl,
 880        .probe = cafe_nand_probe,
 881        .remove = cafe_nand_remove,
 882        .resume = cafe_nand_resume,
 883};
 884
 885module_pci_driver(cafe_nand_pci_driver);
 886
 887MODULE_LICENSE("GPL");
 888MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
 889MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
 890