linux/drivers/net/ethernet/chelsio/cxgb4vf/cxgb4vf_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  37
  38#include <linux/module.h>
  39#include <linux/moduleparam.h>
  40#include <linux/init.h>
  41#include <linux/pci.h>
  42#include <linux/dma-mapping.h>
  43#include <linux/netdevice.h>
  44#include <linux/etherdevice.h>
  45#include <linux/debugfs.h>
  46#include <linux/ethtool.h>
  47#include <linux/mdio.h>
  48
  49#include "t4vf_common.h"
  50#include "t4vf_defs.h"
  51
  52#include "../cxgb4/t4_regs.h"
  53#include "../cxgb4/t4_msg.h"
  54
  55/*
  56 * Generic information about the driver.
  57 */
  58#define DRV_VERSION "2.0.0-ko"
  59#define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
  60
  61/*
  62 * Module Parameters.
  63 * ==================
  64 */
  65
  66/*
  67 * Default ethtool "message level" for adapters.
  68 */
  69#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  70                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  71                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
  72
  73/*
  74 * The driver uses the best interrupt scheme available on a platform in the
  75 * order MSI-X then MSI.  This parameter determines which of these schemes the
  76 * driver may consider as follows:
  77 *
  78 *     msi = 2: choose from among MSI-X and MSI
  79 *     msi = 1: only consider MSI interrupts
  80 *
  81 * Note that unlike the Physical Function driver, this Virtual Function driver
  82 * does _not_ support legacy INTx interrupts (this limitation is mandated by
  83 * the PCI-E SR-IOV standard).
  84 */
  85#define MSI_MSIX        2
  86#define MSI_MSI         1
  87#define MSI_DEFAULT     MSI_MSIX
  88
  89static int msi = MSI_DEFAULT;
  90
  91module_param(msi, int, 0644);
  92MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
  93
  94/*
  95 * Fundamental constants.
  96 * ======================
  97 */
  98
  99enum {
 100        MAX_TXQ_ENTRIES         = 16384,
 101        MAX_RSPQ_ENTRIES        = 16384,
 102        MAX_RX_BUFFERS          = 16384,
 103
 104        MIN_TXQ_ENTRIES         = 32,
 105        MIN_RSPQ_ENTRIES        = 128,
 106        MIN_FL_ENTRIES          = 16,
 107
 108        /*
 109         * For purposes of manipulating the Free List size we need to
 110         * recognize that Free Lists are actually Egress Queues (the host
 111         * produces free buffers which the hardware consumes), Egress Queues
 112         * indices are all in units of Egress Context Units bytes, and free
 113         * list entries are 64-bit PCI DMA addresses.  And since the state of
 114         * the Producer Index == the Consumer Index implies an EMPTY list, we
 115         * always have at least one Egress Unit's worth of Free List entries
 116         * unused.  See sge.c for more details ...
 117         */
 118        EQ_UNIT = SGE_EQ_IDXSIZE,
 119        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
 120        MIN_FL_RESID = FL_PER_EQ_UNIT,
 121};
 122
 123/*
 124 * Global driver state.
 125 * ====================
 126 */
 127
 128static struct dentry *cxgb4vf_debugfs_root;
 129
 130/*
 131 * OS "Callback" functions.
 132 * ========================
 133 */
 134
 135/*
 136 * The link status has changed on the indicated "port" (Virtual Interface).
 137 */
 138void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
 139{
 140        struct net_device *dev = adapter->port[pidx];
 141
 142        /*
 143         * If the port is disabled or the current recorded "link up"
 144         * status matches the new status, just return.
 145         */
 146        if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
 147                return;
 148
 149        /*
 150         * Tell the OS that the link status has changed and print a short
 151         * informative message on the console about the event.
 152         */
 153        if (link_ok) {
 154                const char *s;
 155                const char *fc;
 156                const struct port_info *pi = netdev_priv(dev);
 157
 158                switch (pi->link_cfg.speed) {
 159                case 100:
 160                        s = "100Mbps";
 161                        break;
 162                case 1000:
 163                        s = "1Gbps";
 164                        break;
 165                case 10000:
 166                        s = "10Gbps";
 167                        break;
 168                case 25000:
 169                        s = "25Gbps";
 170                        break;
 171                case 40000:
 172                        s = "40Gbps";
 173                        break;
 174                case 100000:
 175                        s = "100Gbps";
 176                        break;
 177
 178                default:
 179                        s = "unknown";
 180                        break;
 181                }
 182
 183                switch ((int)pi->link_cfg.fc) {
 184                case PAUSE_RX:
 185                        fc = "RX";
 186                        break;
 187
 188                case PAUSE_TX:
 189                        fc = "TX";
 190                        break;
 191
 192                case PAUSE_RX | PAUSE_TX:
 193                        fc = "RX/TX";
 194                        break;
 195
 196                default:
 197                        fc = "no";
 198                        break;
 199                }
 200
 201                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
 202        } else {
 203                netdev_info(dev, "link down\n");
 204        }
 205}
 206
 207/*
 208 * THe port module type has changed on the indicated "port" (Virtual
 209 * Interface).
 210 */
 211void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
 212{
 213        static const char * const mod_str[] = {
 214                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 215        };
 216        const struct net_device *dev = adapter->port[pidx];
 217        const struct port_info *pi = netdev_priv(dev);
 218
 219        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 220                dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
 221                         dev->name);
 222        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 223                dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
 224                         dev->name, mod_str[pi->mod_type]);
 225        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 226                dev_info(adapter->pdev_dev, "%s: unsupported optical port "
 227                         "module inserted\n", dev->name);
 228        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 229                dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
 230                         "forcing TWINAX\n", dev->name);
 231        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 232                dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
 233                         dev->name);
 234        else
 235                dev_info(adapter->pdev_dev, "%s: unknown module type %d "
 236                         "inserted\n", dev->name, pi->mod_type);
 237}
 238
 239/*
 240 * Net device operations.
 241 * ======================
 242 */
 243
 244
 245
 246
 247/*
 248 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
 249 * Interface).
 250 */
 251static int link_start(struct net_device *dev)
 252{
 253        int ret;
 254        struct port_info *pi = netdev_priv(dev);
 255
 256        /*
 257         * We do not set address filters and promiscuity here, the stack does
 258         * that step explicitly. Enable vlan accel.
 259         */
 260        ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
 261                              true);
 262        if (ret == 0) {
 263                ret = t4vf_change_mac(pi->adapter, pi->viid,
 264                                      pi->xact_addr_filt, dev->dev_addr, true);
 265                if (ret >= 0) {
 266                        pi->xact_addr_filt = ret;
 267                        ret = 0;
 268                }
 269        }
 270
 271        /*
 272         * We don't need to actually "start the link" itself since the
 273         * firmware will do that for us when the first Virtual Interface
 274         * is enabled on a port.
 275         */
 276        if (ret == 0)
 277                ret = t4vf_enable_pi(pi->adapter, pi, true, true);
 278
 279        /* The Virtual Interfaces are connected to an internal switch on the
 280         * chip which allows VIs attached to the same port to talk to each
 281         * other even when the port link is down.  As a result, we generally
 282         * want to always report a VI's link as being "up", provided there are
 283         * no errors in enabling vi.
 284         */
 285
 286        if (ret == 0)
 287                netif_carrier_on(dev);
 288
 289        return ret;
 290}
 291
 292/*
 293 * Name the MSI-X interrupts.
 294 */
 295static void name_msix_vecs(struct adapter *adapter)
 296{
 297        int namelen = sizeof(adapter->msix_info[0].desc) - 1;
 298        int pidx;
 299
 300        /*
 301         * Firmware events.
 302         */
 303        snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
 304                 "%s-FWeventq", adapter->name);
 305        adapter->msix_info[MSIX_FW].desc[namelen] = 0;
 306
 307        /*
 308         * Ethernet queues.
 309         */
 310        for_each_port(adapter, pidx) {
 311                struct net_device *dev = adapter->port[pidx];
 312                const struct port_info *pi = netdev_priv(dev);
 313                int qs, msi;
 314
 315                for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
 316                        snprintf(adapter->msix_info[msi].desc, namelen,
 317                                 "%s-%d", dev->name, qs);
 318                        adapter->msix_info[msi].desc[namelen] = 0;
 319                }
 320        }
 321}
 322
 323/*
 324 * Request all of our MSI-X resources.
 325 */
 326static int request_msix_queue_irqs(struct adapter *adapter)
 327{
 328        struct sge *s = &adapter->sge;
 329        int rxq, msi, err;
 330
 331        /*
 332         * Firmware events.
 333         */
 334        err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
 335                          0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
 336        if (err)
 337                return err;
 338
 339        /*
 340         * Ethernet queues.
 341         */
 342        msi = MSIX_IQFLINT;
 343        for_each_ethrxq(s, rxq) {
 344                err = request_irq(adapter->msix_info[msi].vec,
 345                                  t4vf_sge_intr_msix, 0,
 346                                  adapter->msix_info[msi].desc,
 347                                  &s->ethrxq[rxq].rspq);
 348                if (err)
 349                        goto err_free_irqs;
 350                msi++;
 351        }
 352        return 0;
 353
 354err_free_irqs:
 355        while (--rxq >= 0)
 356                free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
 357        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 358        return err;
 359}
 360
 361/*
 362 * Free our MSI-X resources.
 363 */
 364static void free_msix_queue_irqs(struct adapter *adapter)
 365{
 366        struct sge *s = &adapter->sge;
 367        int rxq, msi;
 368
 369        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 370        msi = MSIX_IQFLINT;
 371        for_each_ethrxq(s, rxq)
 372                free_irq(adapter->msix_info[msi++].vec,
 373                         &s->ethrxq[rxq].rspq);
 374}
 375
 376/*
 377 * Turn on NAPI and start up interrupts on a response queue.
 378 */
 379static void qenable(struct sge_rspq *rspq)
 380{
 381        napi_enable(&rspq->napi);
 382
 383        /*
 384         * 0-increment the Going To Sleep register to start the timer and
 385         * enable interrupts.
 386         */
 387        t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 388                     CIDXINC_V(0) |
 389                     SEINTARM_V(rspq->intr_params) |
 390                     INGRESSQID_V(rspq->cntxt_id));
 391}
 392
 393/*
 394 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
 395 */
 396static void enable_rx(struct adapter *adapter)
 397{
 398        int rxq;
 399        struct sge *s = &adapter->sge;
 400
 401        for_each_ethrxq(s, rxq)
 402                qenable(&s->ethrxq[rxq].rspq);
 403        qenable(&s->fw_evtq);
 404
 405        /*
 406         * The interrupt queue doesn't use NAPI so we do the 0-increment of
 407         * its Going To Sleep register here to get it started.
 408         */
 409        if (adapter->flags & USING_MSI)
 410                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 411                             CIDXINC_V(0) |
 412                             SEINTARM_V(s->intrq.intr_params) |
 413                             INGRESSQID_V(s->intrq.cntxt_id));
 414
 415}
 416
 417/*
 418 * Wait until all NAPI handlers are descheduled.
 419 */
 420static void quiesce_rx(struct adapter *adapter)
 421{
 422        struct sge *s = &adapter->sge;
 423        int rxq;
 424
 425        for_each_ethrxq(s, rxq)
 426                napi_disable(&s->ethrxq[rxq].rspq.napi);
 427        napi_disable(&s->fw_evtq.napi);
 428}
 429
 430/*
 431 * Response queue handler for the firmware event queue.
 432 */
 433static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
 434                          const struct pkt_gl *gl)
 435{
 436        /*
 437         * Extract response opcode and get pointer to CPL message body.
 438         */
 439        struct adapter *adapter = rspq->adapter;
 440        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 441        void *cpl = (void *)(rsp + 1);
 442
 443        switch (opcode) {
 444        case CPL_FW6_MSG: {
 445                /*
 446                 * We've received an asynchronous message from the firmware.
 447                 */
 448                const struct cpl_fw6_msg *fw_msg = cpl;
 449                if (fw_msg->type == FW6_TYPE_CMD_RPL)
 450                        t4vf_handle_fw_rpl(adapter, fw_msg->data);
 451                break;
 452        }
 453
 454        case CPL_FW4_MSG: {
 455                /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 456                 */
 457                const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
 458                opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
 459                if (opcode != CPL_SGE_EGR_UPDATE) {
 460                        dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 461                                , opcode);
 462                        break;
 463                }
 464                cpl = (void *)p;
 465                /*FALLTHROUGH*/
 466        }
 467
 468        case CPL_SGE_EGR_UPDATE: {
 469                /*
 470                 * We've received an Egress Queue Status Update message.  We
 471                 * get these, if the SGE is configured to send these when the
 472                 * firmware passes certain points in processing our TX
 473                 * Ethernet Queue or if we make an explicit request for one.
 474                 * We use these updates to determine when we may need to
 475                 * restart a TX Ethernet Queue which was stopped for lack of
 476                 * free TX Queue Descriptors ...
 477                 */
 478                const struct cpl_sge_egr_update *p = cpl;
 479                unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
 480                struct sge *s = &adapter->sge;
 481                struct sge_txq *tq;
 482                struct sge_eth_txq *txq;
 483                unsigned int eq_idx;
 484
 485                /*
 486                 * Perform sanity checking on the Queue ID to make sure it
 487                 * really refers to one of our TX Ethernet Egress Queues which
 488                 * is active and matches the queue's ID.  None of these error
 489                 * conditions should ever happen so we may want to either make
 490                 * them fatal and/or conditionalized under DEBUG.
 491                 */
 492                eq_idx = EQ_IDX(s, qid);
 493                if (unlikely(eq_idx >= MAX_EGRQ)) {
 494                        dev_err(adapter->pdev_dev,
 495                                "Egress Update QID %d out of range\n", qid);
 496                        break;
 497                }
 498                tq = s->egr_map[eq_idx];
 499                if (unlikely(tq == NULL)) {
 500                        dev_err(adapter->pdev_dev,
 501                                "Egress Update QID %d TXQ=NULL\n", qid);
 502                        break;
 503                }
 504                txq = container_of(tq, struct sge_eth_txq, q);
 505                if (unlikely(tq->abs_id != qid)) {
 506                        dev_err(adapter->pdev_dev,
 507                                "Egress Update QID %d refers to TXQ %d\n",
 508                                qid, tq->abs_id);
 509                        break;
 510                }
 511
 512                /*
 513                 * Restart a stopped TX Queue which has less than half of its
 514                 * TX ring in use ...
 515                 */
 516                txq->q.restarts++;
 517                netif_tx_wake_queue(txq->txq);
 518                break;
 519        }
 520
 521        default:
 522                dev_err(adapter->pdev_dev,
 523                        "unexpected CPL %#x on FW event queue\n", opcode);
 524        }
 525
 526        return 0;
 527}
 528
 529/*
 530 * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
 531 * to use and initializes them.  We support multiple "Queue Sets" per port if
 532 * we have MSI-X, otherwise just one queue set per port.
 533 */
 534static int setup_sge_queues(struct adapter *adapter)
 535{
 536        struct sge *s = &adapter->sge;
 537        int err, pidx, msix;
 538
 539        /*
 540         * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
 541         * state.
 542         */
 543        bitmap_zero(s->starving_fl, MAX_EGRQ);
 544
 545        /*
 546         * If we're using MSI interrupt mode we need to set up a "forwarded
 547         * interrupt" queue which we'll set up with our MSI vector.  The rest
 548         * of the ingress queues will be set up to forward their interrupts to
 549         * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
 550         * the intrq's queue ID as the interrupt forwarding queue for the
 551         * subsequent calls ...
 552         */
 553        if (adapter->flags & USING_MSI) {
 554                err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
 555                                         adapter->port[0], 0, NULL, NULL);
 556                if (err)
 557                        goto err_free_queues;
 558        }
 559
 560        /*
 561         * Allocate our ingress queue for asynchronous firmware messages.
 562         */
 563        err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
 564                                 MSIX_FW, NULL, fwevtq_handler);
 565        if (err)
 566                goto err_free_queues;
 567
 568        /*
 569         * Allocate each "port"'s initial Queue Sets.  These can be changed
 570         * later on ... up to the point where any interface on the adapter is
 571         * brought up at which point lots of things get nailed down
 572         * permanently ...
 573         */
 574        msix = MSIX_IQFLINT;
 575        for_each_port(adapter, pidx) {
 576                struct net_device *dev = adapter->port[pidx];
 577                struct port_info *pi = netdev_priv(dev);
 578                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 579                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 580                int qs;
 581
 582                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 583                        err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
 584                                                 dev, msix++,
 585                                                 &rxq->fl, t4vf_ethrx_handler);
 586                        if (err)
 587                                goto err_free_queues;
 588
 589                        err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
 590                                             netdev_get_tx_queue(dev, qs),
 591                                             s->fw_evtq.cntxt_id);
 592                        if (err)
 593                                goto err_free_queues;
 594
 595                        rxq->rspq.idx = qs;
 596                        memset(&rxq->stats, 0, sizeof(rxq->stats));
 597                }
 598        }
 599
 600        /*
 601         * Create the reverse mappings for the queues.
 602         */
 603        s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
 604        s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
 605        IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
 606        for_each_port(adapter, pidx) {
 607                struct net_device *dev = adapter->port[pidx];
 608                struct port_info *pi = netdev_priv(dev);
 609                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 610                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 611                int qs;
 612
 613                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 614                        IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
 615                        EQ_MAP(s, txq->q.abs_id) = &txq->q;
 616
 617                        /*
 618                         * The FW_IQ_CMD doesn't return the Absolute Queue IDs
 619                         * for Free Lists but since all of the Egress Queues
 620                         * (including Free Lists) have Relative Queue IDs
 621                         * which are computed as Absolute - Base Queue ID, we
 622                         * can synthesize the Absolute Queue IDs for the Free
 623                         * Lists.  This is useful for debugging purposes when
 624                         * we want to dump Queue Contexts via the PF Driver.
 625                         */
 626                        rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
 627                        EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
 628                }
 629        }
 630        return 0;
 631
 632err_free_queues:
 633        t4vf_free_sge_resources(adapter);
 634        return err;
 635}
 636
 637/*
 638 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
 639 * queues.  We configure the RSS CPU lookup table to distribute to the number
 640 * of HW receive queues, and the response queue lookup table to narrow that
 641 * down to the response queues actually configured for each "port" (Virtual
 642 * Interface).  We always configure the RSS mapping for all ports since the
 643 * mapping table has plenty of entries.
 644 */
 645static int setup_rss(struct adapter *adapter)
 646{
 647        int pidx;
 648
 649        for_each_port(adapter, pidx) {
 650                struct port_info *pi = adap2pinfo(adapter, pidx);
 651                struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
 652                u16 rss[MAX_PORT_QSETS];
 653                int qs, err;
 654
 655                for (qs = 0; qs < pi->nqsets; qs++)
 656                        rss[qs] = rxq[qs].rspq.abs_id;
 657
 658                err = t4vf_config_rss_range(adapter, pi->viid,
 659                                            0, pi->rss_size, rss, pi->nqsets);
 660                if (err)
 661                        return err;
 662
 663                /*
 664                 * Perform Global RSS Mode-specific initialization.
 665                 */
 666                switch (adapter->params.rss.mode) {
 667                case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
 668                        /*
 669                         * If Tunnel All Lookup isn't specified in the global
 670                         * RSS Configuration, then we need to specify a
 671                         * default Ingress Queue for any ingress packets which
 672                         * aren't hashed.  We'll use our first ingress queue
 673                         * ...
 674                         */
 675                        if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
 676                                union rss_vi_config config;
 677                                err = t4vf_read_rss_vi_config(adapter,
 678                                                              pi->viid,
 679                                                              &config);
 680                                if (err)
 681                                        return err;
 682                                config.basicvirtual.defaultq =
 683                                        rxq[0].rspq.abs_id;
 684                                err = t4vf_write_rss_vi_config(adapter,
 685                                                               pi->viid,
 686                                                               &config);
 687                                if (err)
 688                                        return err;
 689                        }
 690                        break;
 691                }
 692        }
 693
 694        return 0;
 695}
 696
 697/*
 698 * Bring the adapter up.  Called whenever we go from no "ports" open to having
 699 * one open.  This function performs the actions necessary to make an adapter
 700 * operational, such as completing the initialization of HW modules, and
 701 * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
 702 * this is called "cxgb_up" in the PF Driver.)
 703 */
 704static int adapter_up(struct adapter *adapter)
 705{
 706        int err;
 707
 708        /*
 709         * If this is the first time we've been called, perform basic
 710         * adapter setup.  Once we've done this, many of our adapter
 711         * parameters can no longer be changed ...
 712         */
 713        if ((adapter->flags & FULL_INIT_DONE) == 0) {
 714                err = setup_sge_queues(adapter);
 715                if (err)
 716                        return err;
 717                err = setup_rss(adapter);
 718                if (err) {
 719                        t4vf_free_sge_resources(adapter);
 720                        return err;
 721                }
 722
 723                if (adapter->flags & USING_MSIX)
 724                        name_msix_vecs(adapter);
 725                adapter->flags |= FULL_INIT_DONE;
 726        }
 727
 728        /*
 729         * Acquire our interrupt resources.  We only support MSI-X and MSI.
 730         */
 731        BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
 732        if (adapter->flags & USING_MSIX)
 733                err = request_msix_queue_irqs(adapter);
 734        else
 735                err = request_irq(adapter->pdev->irq,
 736                                  t4vf_intr_handler(adapter), 0,
 737                                  adapter->name, adapter);
 738        if (err) {
 739                dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
 740                        err);
 741                return err;
 742        }
 743
 744        /*
 745         * Enable NAPI ingress processing and return success.
 746         */
 747        enable_rx(adapter);
 748        t4vf_sge_start(adapter);
 749
 750        /* Initialize hash mac addr list*/
 751        INIT_LIST_HEAD(&adapter->mac_hlist);
 752        return 0;
 753}
 754
 755/*
 756 * Bring the adapter down.  Called whenever the last "port" (Virtual
 757 * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
 758 * Driver.)
 759 */
 760static void adapter_down(struct adapter *adapter)
 761{
 762        /*
 763         * Free interrupt resources.
 764         */
 765        if (adapter->flags & USING_MSIX)
 766                free_msix_queue_irqs(adapter);
 767        else
 768                free_irq(adapter->pdev->irq, adapter);
 769
 770        /*
 771         * Wait for NAPI handlers to finish.
 772         */
 773        quiesce_rx(adapter);
 774}
 775
 776/*
 777 * Start up a net device.
 778 */
 779static int cxgb4vf_open(struct net_device *dev)
 780{
 781        int err;
 782        struct port_info *pi = netdev_priv(dev);
 783        struct adapter *adapter = pi->adapter;
 784
 785        /*
 786         * If this is the first interface that we're opening on the "adapter",
 787         * bring the "adapter" up now.
 788         */
 789        if (adapter->open_device_map == 0) {
 790                err = adapter_up(adapter);
 791                if (err)
 792                        return err;
 793        }
 794
 795        /*
 796         * Note that this interface is up and start everything up ...
 797         */
 798        err = link_start(dev);
 799        if (err)
 800                goto err_unwind;
 801
 802        pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
 803
 804        netif_tx_start_all_queues(dev);
 805        set_bit(pi->port_id, &adapter->open_device_map);
 806        return 0;
 807
 808err_unwind:
 809        if (adapter->open_device_map == 0)
 810                adapter_down(adapter);
 811        return err;
 812}
 813
 814/*
 815 * Shut down a net device.  This routine is called "cxgb_close" in the PF
 816 * Driver ...
 817 */
 818static int cxgb4vf_stop(struct net_device *dev)
 819{
 820        struct port_info *pi = netdev_priv(dev);
 821        struct adapter *adapter = pi->adapter;
 822
 823        netif_tx_stop_all_queues(dev);
 824        netif_carrier_off(dev);
 825        t4vf_enable_pi(adapter, pi, false, false);
 826
 827        clear_bit(pi->port_id, &adapter->open_device_map);
 828        if (adapter->open_device_map == 0)
 829                adapter_down(adapter);
 830        return 0;
 831}
 832
 833/*
 834 * Translate our basic statistics into the standard "ifconfig" statistics.
 835 */
 836static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
 837{
 838        struct t4vf_port_stats stats;
 839        struct port_info *pi = netdev2pinfo(dev);
 840        struct adapter *adapter = pi->adapter;
 841        struct net_device_stats *ns = &dev->stats;
 842        int err;
 843
 844        spin_lock(&adapter->stats_lock);
 845        err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
 846        spin_unlock(&adapter->stats_lock);
 847
 848        memset(ns, 0, sizeof(*ns));
 849        if (err)
 850                return ns;
 851
 852        ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
 853                        stats.tx_ucast_bytes + stats.tx_offload_bytes);
 854        ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
 855                          stats.tx_ucast_frames + stats.tx_offload_frames);
 856        ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
 857                        stats.rx_ucast_bytes);
 858        ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
 859                          stats.rx_ucast_frames);
 860        ns->multicast = stats.rx_mcast_frames;
 861        ns->tx_errors = stats.tx_drop_frames;
 862        ns->rx_errors = stats.rx_err_frames;
 863
 864        return ns;
 865}
 866
 867static inline int cxgb4vf_set_addr_hash(struct port_info *pi)
 868{
 869        struct adapter *adapter = pi->adapter;
 870        u64 vec = 0;
 871        bool ucast = false;
 872        struct hash_mac_addr *entry;
 873
 874        /* Calculate the hash vector for the updated list and program it */
 875        list_for_each_entry(entry, &adapter->mac_hlist, list) {
 876                ucast |= is_unicast_ether_addr(entry->addr);
 877                vec |= (1ULL << hash_mac_addr(entry->addr));
 878        }
 879        return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
 880}
 881
 882static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 883{
 884        struct port_info *pi = netdev_priv(netdev);
 885        struct adapter *adapter = pi->adapter;
 886        int ret;
 887        u64 mhash = 0;
 888        u64 uhash = 0;
 889        bool free = false;
 890        bool ucast = is_unicast_ether_addr(mac_addr);
 891        const u8 *maclist[1] = {mac_addr};
 892        struct hash_mac_addr *new_entry;
 893
 894        ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
 895                                  NULL, ucast ? &uhash : &mhash, false);
 896        if (ret < 0)
 897                goto out;
 898        /* if hash != 0, then add the addr to hash addr list
 899         * so on the end we will calculate the hash for the
 900         * list and program it
 901         */
 902        if (uhash || mhash) {
 903                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 904                if (!new_entry)
 905                        return -ENOMEM;
 906                ether_addr_copy(new_entry->addr, mac_addr);
 907                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 908                ret = cxgb4vf_set_addr_hash(pi);
 909        }
 910out:
 911        return ret < 0 ? ret : 0;
 912}
 913
 914static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 915{
 916        struct port_info *pi = netdev_priv(netdev);
 917        struct adapter *adapter = pi->adapter;
 918        int ret;
 919        const u8 *maclist[1] = {mac_addr};
 920        struct hash_mac_addr *entry, *tmp;
 921
 922        /* If the MAC address to be removed is in the hash addr
 923         * list, delete it from the list and update hash vector
 924         */
 925        list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
 926                if (ether_addr_equal(entry->addr, mac_addr)) {
 927                        list_del(&entry->list);
 928                        kfree(entry);
 929                        return cxgb4vf_set_addr_hash(pi);
 930                }
 931        }
 932
 933        ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
 934        return ret < 0 ? -EINVAL : 0;
 935}
 936
 937/*
 938 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
 939 * If @mtu is -1 it is left unchanged.
 940 */
 941static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 942{
 943        struct port_info *pi = netdev_priv(dev);
 944
 945        __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
 946        __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
 947        return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
 948                               (dev->flags & IFF_PROMISC) != 0,
 949                               (dev->flags & IFF_ALLMULTI) != 0,
 950                               1, -1, sleep_ok);
 951}
 952
 953/*
 954 * Set the current receive modes on the device.
 955 */
 956static void cxgb4vf_set_rxmode(struct net_device *dev)
 957{
 958        /* unfortunately we can't return errors to the stack */
 959        set_rxmode(dev, -1, false);
 960}
 961
 962/*
 963 * Find the entry in the interrupt holdoff timer value array which comes
 964 * closest to the specified interrupt holdoff value.
 965 */
 966static int closest_timer(const struct sge *s, int us)
 967{
 968        int i, timer_idx = 0, min_delta = INT_MAX;
 969
 970        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
 971                int delta = us - s->timer_val[i];
 972                if (delta < 0)
 973                        delta = -delta;
 974                if (delta < min_delta) {
 975                        min_delta = delta;
 976                        timer_idx = i;
 977                }
 978        }
 979        return timer_idx;
 980}
 981
 982static int closest_thres(const struct sge *s, int thres)
 983{
 984        int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
 985
 986        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
 987                delta = thres - s->counter_val[i];
 988                if (delta < 0)
 989                        delta = -delta;
 990                if (delta < min_delta) {
 991                        min_delta = delta;
 992                        pktcnt_idx = i;
 993                }
 994        }
 995        return pktcnt_idx;
 996}
 997
 998/*
 999 * Return a queue's interrupt hold-off time in us.  0 means no timer.
1000 */
1001static unsigned int qtimer_val(const struct adapter *adapter,
1002                               const struct sge_rspq *rspq)
1003{
1004        unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1005
1006        return timer_idx < SGE_NTIMERS
1007                ? adapter->sge.timer_val[timer_idx]
1008                : 0;
1009}
1010
1011/**
1012 *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1013 *      @adapter: the adapter
1014 *      @rspq: the RX response queue
1015 *      @us: the hold-off time in us, or 0 to disable timer
1016 *      @cnt: the hold-off packet count, or 0 to disable counter
1017 *
1018 *      Sets an RX response queue's interrupt hold-off time and packet count.
1019 *      At least one of the two needs to be enabled for the queue to generate
1020 *      interrupts.
1021 */
1022static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1023                               unsigned int us, unsigned int cnt)
1024{
1025        unsigned int timer_idx;
1026
1027        /*
1028         * If both the interrupt holdoff timer and count are specified as
1029         * zero, default to a holdoff count of 1 ...
1030         */
1031        if ((us | cnt) == 0)
1032                cnt = 1;
1033
1034        /*
1035         * If an interrupt holdoff count has been specified, then find the
1036         * closest configured holdoff count and use that.  If the response
1037         * queue has already been created, then update its queue context
1038         * parameters ...
1039         */
1040        if (cnt) {
1041                int err;
1042                u32 v, pktcnt_idx;
1043
1044                pktcnt_idx = closest_thres(&adapter->sge, cnt);
1045                if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1046                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1047                            FW_PARAMS_PARAM_X_V(
1048                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1049                            FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1050                        err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1051                        if (err)
1052                                return err;
1053                }
1054                rspq->pktcnt_idx = pktcnt_idx;
1055        }
1056
1057        /*
1058         * Compute the closest holdoff timer index from the supplied holdoff
1059         * timer value.
1060         */
1061        timer_idx = (us == 0
1062                     ? SGE_TIMER_RSTRT_CNTR
1063                     : closest_timer(&adapter->sge, us));
1064
1065        /*
1066         * Update the response queue's interrupt coalescing parameters and
1067         * return success.
1068         */
1069        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1070                             QINTR_CNT_EN_V(cnt > 0));
1071        return 0;
1072}
1073
1074/*
1075 * Return a version number to identify the type of adapter.  The scheme is:
1076 * - bits 0..9: chip version
1077 * - bits 10..15: chip revision
1078 */
1079static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1080{
1081        /*
1082         * Chip version 4, revision 0x3f (cxgb4vf).
1083         */
1084        return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1085}
1086
1087/*
1088 * Execute the specified ioctl command.
1089 */
1090static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1091{
1092        int ret = 0;
1093
1094        switch (cmd) {
1095            /*
1096             * The VF Driver doesn't have access to any of the other
1097             * common Ethernet device ioctl()'s (like reading/writing
1098             * PHY registers, etc.
1099             */
1100
1101        default:
1102                ret = -EOPNOTSUPP;
1103                break;
1104        }
1105        return ret;
1106}
1107
1108/*
1109 * Change the device's MTU.
1110 */
1111static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1112{
1113        int ret;
1114        struct port_info *pi = netdev_priv(dev);
1115
1116        ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1117                              -1, -1, -1, -1, true);
1118        if (!ret)
1119                dev->mtu = new_mtu;
1120        return ret;
1121}
1122
1123static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1124        netdev_features_t features)
1125{
1126        /*
1127         * Since there is no support for separate rx/tx vlan accel
1128         * enable/disable make sure tx flag is always in same state as rx.
1129         */
1130        if (features & NETIF_F_HW_VLAN_CTAG_RX)
1131                features |= NETIF_F_HW_VLAN_CTAG_TX;
1132        else
1133                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1134
1135        return features;
1136}
1137
1138static int cxgb4vf_set_features(struct net_device *dev,
1139        netdev_features_t features)
1140{
1141        struct port_info *pi = netdev_priv(dev);
1142        netdev_features_t changed = dev->features ^ features;
1143
1144        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1145                t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1146                                features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1147
1148        return 0;
1149}
1150
1151/*
1152 * Change the devices MAC address.
1153 */
1154static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1155{
1156        int ret;
1157        struct sockaddr *addr = _addr;
1158        struct port_info *pi = netdev_priv(dev);
1159
1160        if (!is_valid_ether_addr(addr->sa_data))
1161                return -EADDRNOTAVAIL;
1162
1163        ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1164                              addr->sa_data, true);
1165        if (ret < 0)
1166                return ret;
1167
1168        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1169        pi->xact_addr_filt = ret;
1170        return 0;
1171}
1172
1173#ifdef CONFIG_NET_POLL_CONTROLLER
1174/*
1175 * Poll all of our receive queues.  This is called outside of normal interrupt
1176 * context.
1177 */
1178static void cxgb4vf_poll_controller(struct net_device *dev)
1179{
1180        struct port_info *pi = netdev_priv(dev);
1181        struct adapter *adapter = pi->adapter;
1182
1183        if (adapter->flags & USING_MSIX) {
1184                struct sge_eth_rxq *rxq;
1185                int nqsets;
1186
1187                rxq = &adapter->sge.ethrxq[pi->first_qset];
1188                for (nqsets = pi->nqsets; nqsets; nqsets--) {
1189                        t4vf_sge_intr_msix(0, &rxq->rspq);
1190                        rxq++;
1191                }
1192        } else
1193                t4vf_intr_handler(adapter)(0, adapter);
1194}
1195#endif
1196
1197/*
1198 * Ethtool operations.
1199 * ===================
1200 *
1201 * Note that we don't support any ethtool operations which change the physical
1202 * state of the port to which we're linked.
1203 */
1204
1205/**
1206 *      from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1207 *      @port_type: Firmware Port Type
1208 *      @mod_type: Firmware Module Type
1209 *
1210 *      Translate Firmware Port/Module type to Ethtool Port Type.
1211 */
1212static int from_fw_port_mod_type(enum fw_port_type port_type,
1213                                 enum fw_port_module_type mod_type)
1214{
1215        if (port_type == FW_PORT_TYPE_BT_SGMII ||
1216            port_type == FW_PORT_TYPE_BT_XFI ||
1217            port_type == FW_PORT_TYPE_BT_XAUI) {
1218                return PORT_TP;
1219        } else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1220                   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1221                return PORT_FIBRE;
1222        } else if (port_type == FW_PORT_TYPE_SFP ||
1223                   port_type == FW_PORT_TYPE_QSFP_10G ||
1224                   port_type == FW_PORT_TYPE_QSA ||
1225                   port_type == FW_PORT_TYPE_QSFP ||
1226                   port_type == FW_PORT_TYPE_CR4_QSFP ||
1227                   port_type == FW_PORT_TYPE_CR_QSFP ||
1228                   port_type == FW_PORT_TYPE_CR2_QSFP ||
1229                   port_type == FW_PORT_TYPE_SFP28) {
1230                if (mod_type == FW_PORT_MOD_TYPE_LR ||
1231                    mod_type == FW_PORT_MOD_TYPE_SR ||
1232                    mod_type == FW_PORT_MOD_TYPE_ER ||
1233                    mod_type == FW_PORT_MOD_TYPE_LRM)
1234                        return PORT_FIBRE;
1235                else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1236                         mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1237                        return PORT_DA;
1238                else
1239                        return PORT_OTHER;
1240        } else if (port_type == FW_PORT_TYPE_KR4_100G ||
1241                   port_type == FW_PORT_TYPE_KR_SFP28 ||
1242                   port_type == FW_PORT_TYPE_KR_XLAUI) {
1243                return PORT_NONE;
1244        }
1245
1246        return PORT_OTHER;
1247}
1248
1249/**
1250 *      fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1251 *      @port_type: Firmware Port Type
1252 *      @fw_caps: Firmware Port Capabilities
1253 *      @link_mode_mask: ethtool Link Mode Mask
1254 *
1255 *      Translate a Firmware Port Capabilities specification to an ethtool
1256 *      Link Mode Mask.
1257 */
1258static void fw_caps_to_lmm(enum fw_port_type port_type,
1259                           unsigned int fw_caps,
1260                           unsigned long *link_mode_mask)
1261{
1262        #define SET_LMM(__lmm_name) \
1263                __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1264                          link_mode_mask)
1265
1266        #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1267                do { \
1268                        if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1269                                SET_LMM(__lmm_name); \
1270                } while (0)
1271
1272        switch (port_type) {
1273        case FW_PORT_TYPE_BT_SGMII:
1274        case FW_PORT_TYPE_BT_XFI:
1275        case FW_PORT_TYPE_BT_XAUI:
1276                SET_LMM(TP);
1277                FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1278                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1279                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1280                break;
1281
1282        case FW_PORT_TYPE_KX4:
1283        case FW_PORT_TYPE_KX:
1284                SET_LMM(Backplane);
1285                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1286                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1287                break;
1288
1289        case FW_PORT_TYPE_KR:
1290                SET_LMM(Backplane);
1291                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1292                break;
1293
1294        case FW_PORT_TYPE_BP_AP:
1295                SET_LMM(Backplane);
1296                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1297                FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1298                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1299                break;
1300
1301        case FW_PORT_TYPE_BP4_AP:
1302                SET_LMM(Backplane);
1303                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1304                FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1305                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1306                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1307                break;
1308
1309        case FW_PORT_TYPE_FIBER_XFI:
1310        case FW_PORT_TYPE_FIBER_XAUI:
1311        case FW_PORT_TYPE_SFP:
1312        case FW_PORT_TYPE_QSFP_10G:
1313        case FW_PORT_TYPE_QSA:
1314                SET_LMM(FIBRE);
1315                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1316                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1317                break;
1318
1319        case FW_PORT_TYPE_BP40_BA:
1320        case FW_PORT_TYPE_QSFP:
1321                SET_LMM(FIBRE);
1322                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1323                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1324                FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1325                break;
1326
1327        case FW_PORT_TYPE_CR_QSFP:
1328        case FW_PORT_TYPE_SFP28:
1329                SET_LMM(FIBRE);
1330                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1331                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1332                FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1333                break;
1334
1335        case FW_PORT_TYPE_KR_SFP28:
1336                SET_LMM(Backplane);
1337                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1338                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1339                FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1340                break;
1341
1342        case FW_PORT_TYPE_KR_XLAUI:
1343                SET_LMM(Backplane);
1344                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1345                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1346                FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1347                break;
1348
1349        case FW_PORT_TYPE_CR2_QSFP:
1350                SET_LMM(FIBRE);
1351                FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1352                break;
1353
1354        case FW_PORT_TYPE_KR4_100G:
1355        case FW_PORT_TYPE_CR4_QSFP:
1356                SET_LMM(FIBRE);
1357                FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1358                FW_CAPS_TO_LMM(SPEED_10G, 10000baseSR_Full);
1359                FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1360                FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1361                FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1362                FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1363                break;
1364
1365        default:
1366                break;
1367        }
1368
1369        FW_CAPS_TO_LMM(ANEG, Autoneg);
1370        FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1371        FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1372
1373        #undef FW_CAPS_TO_LMM
1374        #undef SET_LMM
1375}
1376
1377static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1378                                  struct ethtool_link_ksettings *link_ksettings)
1379{
1380        struct port_info *pi = netdev_priv(dev);
1381        struct ethtool_link_settings *base = &link_ksettings->base;
1382
1383        /* For the nonce, the Firmware doesn't send up Port State changes
1384         * when the Virtual Interface attached to the Port is down.  So
1385         * if it's down, let's grab any changes.
1386         */
1387        if (!netif_running(dev))
1388                (void)t4vf_update_port_info(pi);
1389
1390        ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1391        ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1392        ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1393
1394        base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1395
1396        if (pi->mdio_addr >= 0) {
1397                base->phy_address = pi->mdio_addr;
1398                base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1399                                      ? ETH_MDIO_SUPPORTS_C22
1400                                      : ETH_MDIO_SUPPORTS_C45);
1401        } else {
1402                base->phy_address = 255;
1403                base->mdio_support = 0;
1404        }
1405
1406        fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1407                       link_ksettings->link_modes.supported);
1408        fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1409                       link_ksettings->link_modes.advertising);
1410        fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1411                       link_ksettings->link_modes.lp_advertising);
1412
1413        if (netif_carrier_ok(dev)) {
1414                base->speed = pi->link_cfg.speed;
1415                base->duplex = DUPLEX_FULL;
1416        } else {
1417                base->speed = SPEED_UNKNOWN;
1418                base->duplex = DUPLEX_UNKNOWN;
1419        }
1420
1421        if (pi->link_cfg.fc & PAUSE_RX) {
1422                if (pi->link_cfg.fc & PAUSE_TX) {
1423                        ethtool_link_ksettings_add_link_mode(link_ksettings,
1424                                                             advertising,
1425                                                             Pause);
1426                } else {
1427                        ethtool_link_ksettings_add_link_mode(link_ksettings,
1428                                                             advertising,
1429                                                             Asym_Pause);
1430                }
1431        } else if (pi->link_cfg.fc & PAUSE_TX) {
1432                ethtool_link_ksettings_add_link_mode(link_ksettings,
1433                                                     advertising,
1434                                                     Asym_Pause);
1435        }
1436
1437        base->autoneg = pi->link_cfg.autoneg;
1438        if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1439                ethtool_link_ksettings_add_link_mode(link_ksettings,
1440                                                     supported, Autoneg);
1441        if (pi->link_cfg.autoneg)
1442                ethtool_link_ksettings_add_link_mode(link_ksettings,
1443                                                     advertising, Autoneg);
1444
1445        return 0;
1446}
1447
1448/* Translate the Firmware FEC value into the ethtool value. */
1449static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1450{
1451        unsigned int eth_fec = 0;
1452
1453        if (fw_fec & FW_PORT_CAP32_FEC_RS)
1454                eth_fec |= ETHTOOL_FEC_RS;
1455        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1456                eth_fec |= ETHTOOL_FEC_BASER;
1457
1458        /* if nothing is set, then FEC is off */
1459        if (!eth_fec)
1460                eth_fec = ETHTOOL_FEC_OFF;
1461
1462        return eth_fec;
1463}
1464
1465/* Translate Common Code FEC value into ethtool value. */
1466static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1467{
1468        unsigned int eth_fec = 0;
1469
1470        if (cc_fec & FEC_AUTO)
1471                eth_fec |= ETHTOOL_FEC_AUTO;
1472        if (cc_fec & FEC_RS)
1473                eth_fec |= ETHTOOL_FEC_RS;
1474        if (cc_fec & FEC_BASER_RS)
1475                eth_fec |= ETHTOOL_FEC_BASER;
1476
1477        /* if nothing is set, then FEC is off */
1478        if (!eth_fec)
1479                eth_fec = ETHTOOL_FEC_OFF;
1480
1481        return eth_fec;
1482}
1483
1484static int cxgb4vf_get_fecparam(struct net_device *dev,
1485                                struct ethtool_fecparam *fec)
1486{
1487        const struct port_info *pi = netdev_priv(dev);
1488        const struct link_config *lc = &pi->link_cfg;
1489
1490        /* Translate the Firmware FEC Support into the ethtool value.  We
1491         * always support IEEE 802.3 "automatic" selection of Link FEC type if
1492         * any FEC is supported.
1493         */
1494        fec->fec = fwcap_to_eth_fec(lc->pcaps);
1495        if (fec->fec != ETHTOOL_FEC_OFF)
1496                fec->fec |= ETHTOOL_FEC_AUTO;
1497
1498        /* Translate the current internal FEC parameters into the
1499         * ethtool values.
1500         */
1501        fec->active_fec = cc_to_eth_fec(lc->fec);
1502        return 0;
1503}
1504
1505/*
1506 * Return our driver information.
1507 */
1508static void cxgb4vf_get_drvinfo(struct net_device *dev,
1509                                struct ethtool_drvinfo *drvinfo)
1510{
1511        struct adapter *adapter = netdev2adap(dev);
1512
1513        strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1514        strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1515        strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1516                sizeof(drvinfo->bus_info));
1517        snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1518                 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1519                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1520                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1521                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1522                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1523                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1524                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1525                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1526                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1527}
1528
1529/*
1530 * Return current adapter message level.
1531 */
1532static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1533{
1534        return netdev2adap(dev)->msg_enable;
1535}
1536
1537/*
1538 * Set current adapter message level.
1539 */
1540static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1541{
1542        netdev2adap(dev)->msg_enable = msglevel;
1543}
1544
1545/*
1546 * Return the device's current Queue Set ring size parameters along with the
1547 * allowed maximum values.  Since ethtool doesn't understand the concept of
1548 * multi-queue devices, we just return the current values associated with the
1549 * first Queue Set.
1550 */
1551static void cxgb4vf_get_ringparam(struct net_device *dev,
1552                                  struct ethtool_ringparam *rp)
1553{
1554        const struct port_info *pi = netdev_priv(dev);
1555        const struct sge *s = &pi->adapter->sge;
1556
1557        rp->rx_max_pending = MAX_RX_BUFFERS;
1558        rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1559        rp->rx_jumbo_max_pending = 0;
1560        rp->tx_max_pending = MAX_TXQ_ENTRIES;
1561
1562        rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1563        rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1564        rp->rx_jumbo_pending = 0;
1565        rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1566}
1567
1568/*
1569 * Set the Queue Set ring size parameters for the device.  Again, since
1570 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1571 * apply these new values across all of the Queue Sets associated with the
1572 * device -- after vetting them of course!
1573 */
1574static int cxgb4vf_set_ringparam(struct net_device *dev,
1575                                 struct ethtool_ringparam *rp)
1576{
1577        const struct port_info *pi = netdev_priv(dev);
1578        struct adapter *adapter = pi->adapter;
1579        struct sge *s = &adapter->sge;
1580        int qs;
1581
1582        if (rp->rx_pending > MAX_RX_BUFFERS ||
1583            rp->rx_jumbo_pending ||
1584            rp->tx_pending > MAX_TXQ_ENTRIES ||
1585            rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1586            rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1587            rp->rx_pending < MIN_FL_ENTRIES ||
1588            rp->tx_pending < MIN_TXQ_ENTRIES)
1589                return -EINVAL;
1590
1591        if (adapter->flags & FULL_INIT_DONE)
1592                return -EBUSY;
1593
1594        for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1595                s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1596                s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1597                s->ethtxq[qs].q.size = rp->tx_pending;
1598        }
1599        return 0;
1600}
1601
1602/*
1603 * Return the interrupt holdoff timer and count for the first Queue Set on the
1604 * device.  Our extension ioctl() (the cxgbtool interface) allows the
1605 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1606 */
1607static int cxgb4vf_get_coalesce(struct net_device *dev,
1608                                struct ethtool_coalesce *coalesce)
1609{
1610        const struct port_info *pi = netdev_priv(dev);
1611        const struct adapter *adapter = pi->adapter;
1612        const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1613
1614        coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1615        coalesce->rx_max_coalesced_frames =
1616                ((rspq->intr_params & QINTR_CNT_EN_F)
1617                 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1618                 : 0);
1619        return 0;
1620}
1621
1622/*
1623 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1624 * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1625 * the interrupt holdoff timer on any of the device's Queue Sets.
1626 */
1627static int cxgb4vf_set_coalesce(struct net_device *dev,
1628                                struct ethtool_coalesce *coalesce)
1629{
1630        const struct port_info *pi = netdev_priv(dev);
1631        struct adapter *adapter = pi->adapter;
1632
1633        return set_rxq_intr_params(adapter,
1634                                   &adapter->sge.ethrxq[pi->first_qset].rspq,
1635                                   coalesce->rx_coalesce_usecs,
1636                                   coalesce->rx_max_coalesced_frames);
1637}
1638
1639/*
1640 * Report current port link pause parameter settings.
1641 */
1642static void cxgb4vf_get_pauseparam(struct net_device *dev,
1643                                   struct ethtool_pauseparam *pauseparam)
1644{
1645        struct port_info *pi = netdev_priv(dev);
1646
1647        pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1648        pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1649        pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1650}
1651
1652/*
1653 * Identify the port by blinking the port's LED.
1654 */
1655static int cxgb4vf_phys_id(struct net_device *dev,
1656                           enum ethtool_phys_id_state state)
1657{
1658        unsigned int val;
1659        struct port_info *pi = netdev_priv(dev);
1660
1661        if (state == ETHTOOL_ID_ACTIVE)
1662                val = 0xffff;
1663        else if (state == ETHTOOL_ID_INACTIVE)
1664                val = 0;
1665        else
1666                return -EINVAL;
1667
1668        return t4vf_identify_port(pi->adapter, pi->viid, val);
1669}
1670
1671/*
1672 * Port stats maintained per queue of the port.
1673 */
1674struct queue_port_stats {
1675        u64 tso;
1676        u64 tx_csum;
1677        u64 rx_csum;
1678        u64 vlan_ex;
1679        u64 vlan_ins;
1680        u64 lro_pkts;
1681        u64 lro_merged;
1682};
1683
1684/*
1685 * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1686 * these need to match the order of statistics returned by
1687 * t4vf_get_port_stats().
1688 */
1689static const char stats_strings[][ETH_GSTRING_LEN] = {
1690        /*
1691         * These must match the layout of the t4vf_port_stats structure.
1692         */
1693        "TxBroadcastBytes  ",
1694        "TxBroadcastFrames ",
1695        "TxMulticastBytes  ",
1696        "TxMulticastFrames ",
1697        "TxUnicastBytes    ",
1698        "TxUnicastFrames   ",
1699        "TxDroppedFrames   ",
1700        "TxOffloadBytes    ",
1701        "TxOffloadFrames   ",
1702        "RxBroadcastBytes  ",
1703        "RxBroadcastFrames ",
1704        "RxMulticastBytes  ",
1705        "RxMulticastFrames ",
1706        "RxUnicastBytes    ",
1707        "RxUnicastFrames   ",
1708        "RxErrorFrames     ",
1709
1710        /*
1711         * These are accumulated per-queue statistics and must match the
1712         * order of the fields in the queue_port_stats structure.
1713         */
1714        "TSO               ",
1715        "TxCsumOffload     ",
1716        "RxCsumGood        ",
1717        "VLANextractions   ",
1718        "VLANinsertions    ",
1719        "GROPackets        ",
1720        "GROMerged         ",
1721};
1722
1723/*
1724 * Return the number of statistics in the specified statistics set.
1725 */
1726static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1727{
1728        switch (sset) {
1729        case ETH_SS_STATS:
1730                return ARRAY_SIZE(stats_strings);
1731        default:
1732                return -EOPNOTSUPP;
1733        }
1734        /*NOTREACHED*/
1735}
1736
1737/*
1738 * Return the strings for the specified statistics set.
1739 */
1740static void cxgb4vf_get_strings(struct net_device *dev,
1741                                u32 sset,
1742                                u8 *data)
1743{
1744        switch (sset) {
1745        case ETH_SS_STATS:
1746                memcpy(data, stats_strings, sizeof(stats_strings));
1747                break;
1748        }
1749}
1750
1751/*
1752 * Small utility routine to accumulate queue statistics across the queues of
1753 * a "port".
1754 */
1755static void collect_sge_port_stats(const struct adapter *adapter,
1756                                   const struct port_info *pi,
1757                                   struct queue_port_stats *stats)
1758{
1759        const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1760        const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1761        int qs;
1762
1763        memset(stats, 0, sizeof(*stats));
1764        for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1765                stats->tso += txq->tso;
1766                stats->tx_csum += txq->tx_cso;
1767                stats->rx_csum += rxq->stats.rx_cso;
1768                stats->vlan_ex += rxq->stats.vlan_ex;
1769                stats->vlan_ins += txq->vlan_ins;
1770                stats->lro_pkts += rxq->stats.lro_pkts;
1771                stats->lro_merged += rxq->stats.lro_merged;
1772        }
1773}
1774
1775/*
1776 * Return the ETH_SS_STATS statistics set.
1777 */
1778static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1779                                      struct ethtool_stats *stats,
1780                                      u64 *data)
1781{
1782        struct port_info *pi = netdev2pinfo(dev);
1783        struct adapter *adapter = pi->adapter;
1784        int err = t4vf_get_port_stats(adapter, pi->pidx,
1785                                      (struct t4vf_port_stats *)data);
1786        if (err)
1787                memset(data, 0, sizeof(struct t4vf_port_stats));
1788
1789        data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1790        collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1791}
1792
1793/*
1794 * Return the size of our register map.
1795 */
1796static int cxgb4vf_get_regs_len(struct net_device *dev)
1797{
1798        return T4VF_REGMAP_SIZE;
1799}
1800
1801/*
1802 * Dump a block of registers, start to end inclusive, into a buffer.
1803 */
1804static void reg_block_dump(struct adapter *adapter, void *regbuf,
1805                           unsigned int start, unsigned int end)
1806{
1807        u32 *bp = regbuf + start - T4VF_REGMAP_START;
1808
1809        for ( ; start <= end; start += sizeof(u32)) {
1810                /*
1811                 * Avoid reading the Mailbox Control register since that
1812                 * can trigger a Mailbox Ownership Arbitration cycle and
1813                 * interfere with communication with the firmware.
1814                 */
1815                if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1816                        *bp++ = 0xffff;
1817                else
1818                        *bp++ = t4_read_reg(adapter, start);
1819        }
1820}
1821
1822/*
1823 * Copy our entire register map into the provided buffer.
1824 */
1825static void cxgb4vf_get_regs(struct net_device *dev,
1826                             struct ethtool_regs *regs,
1827                             void *regbuf)
1828{
1829        struct adapter *adapter = netdev2adap(dev);
1830
1831        regs->version = mk_adap_vers(adapter);
1832
1833        /*
1834         * Fill in register buffer with our register map.
1835         */
1836        memset(regbuf, 0, T4VF_REGMAP_SIZE);
1837
1838        reg_block_dump(adapter, regbuf,
1839                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1840                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1841        reg_block_dump(adapter, regbuf,
1842                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1843                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1844
1845        /* T5 adds new registers in the PL Register map.
1846         */
1847        reg_block_dump(adapter, regbuf,
1848                       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1849                       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1850                       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1851        reg_block_dump(adapter, regbuf,
1852                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1853                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1854
1855        reg_block_dump(adapter, regbuf,
1856                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1857                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1858}
1859
1860/*
1861 * Report current Wake On LAN settings.
1862 */
1863static void cxgb4vf_get_wol(struct net_device *dev,
1864                            struct ethtool_wolinfo *wol)
1865{
1866        wol->supported = 0;
1867        wol->wolopts = 0;
1868        memset(&wol->sopass, 0, sizeof(wol->sopass));
1869}
1870
1871/*
1872 * TCP Segmentation Offload flags which we support.
1873 */
1874#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1875
1876static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1877        .get_link_ksettings     = cxgb4vf_get_link_ksettings,
1878        .get_fecparam           = cxgb4vf_get_fecparam,
1879        .get_drvinfo            = cxgb4vf_get_drvinfo,
1880        .get_msglevel           = cxgb4vf_get_msglevel,
1881        .set_msglevel           = cxgb4vf_set_msglevel,
1882        .get_ringparam          = cxgb4vf_get_ringparam,
1883        .set_ringparam          = cxgb4vf_set_ringparam,
1884        .get_coalesce           = cxgb4vf_get_coalesce,
1885        .set_coalesce           = cxgb4vf_set_coalesce,
1886        .get_pauseparam         = cxgb4vf_get_pauseparam,
1887        .get_link               = ethtool_op_get_link,
1888        .get_strings            = cxgb4vf_get_strings,
1889        .set_phys_id            = cxgb4vf_phys_id,
1890        .get_sset_count         = cxgb4vf_get_sset_count,
1891        .get_ethtool_stats      = cxgb4vf_get_ethtool_stats,
1892        .get_regs_len           = cxgb4vf_get_regs_len,
1893        .get_regs               = cxgb4vf_get_regs,
1894        .get_wol                = cxgb4vf_get_wol,
1895};
1896
1897/*
1898 * /sys/kernel/debug/cxgb4vf support code and data.
1899 * ================================================
1900 */
1901
1902/*
1903 * Show Firmware Mailbox Command/Reply Log
1904 *
1905 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1906 * it's possible that we can catch things during a log update and therefore
1907 * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1908 * If we ever decide that we want to make sure that we're dumping a coherent
1909 * log, we'd need to perform locking in the mailbox logging and in
1910 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1911 * like we do for the Firmware Device Log.  But as stated above, meh ...
1912 */
1913static int mboxlog_show(struct seq_file *seq, void *v)
1914{
1915        struct adapter *adapter = seq->private;
1916        struct mbox_cmd_log *log = adapter->mbox_log;
1917        struct mbox_cmd *entry;
1918        int entry_idx, i;
1919
1920        if (v == SEQ_START_TOKEN) {
1921                seq_printf(seq,
1922                           "%10s  %15s  %5s  %5s  %s\n",
1923                           "Seq#", "Tstamp", "Atime", "Etime",
1924                           "Command/Reply");
1925                return 0;
1926        }
1927
1928        entry_idx = log->cursor + ((uintptr_t)v - 2);
1929        if (entry_idx >= log->size)
1930                entry_idx -= log->size;
1931        entry = mbox_cmd_log_entry(log, entry_idx);
1932
1933        /* skip over unused entries */
1934        if (entry->timestamp == 0)
1935                return 0;
1936
1937        seq_printf(seq, "%10u  %15llu  %5d  %5d",
1938                   entry->seqno, entry->timestamp,
1939                   entry->access, entry->execute);
1940        for (i = 0; i < MBOX_LEN / 8; i++) {
1941                u64 flit = entry->cmd[i];
1942                u32 hi = (u32)(flit >> 32);
1943                u32 lo = (u32)flit;
1944
1945                seq_printf(seq, "  %08x %08x", hi, lo);
1946        }
1947        seq_puts(seq, "\n");
1948        return 0;
1949}
1950
1951static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1952{
1953        struct adapter *adapter = seq->private;
1954        struct mbox_cmd_log *log = adapter->mbox_log;
1955
1956        return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1957}
1958
1959static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1960{
1961        return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1962}
1963
1964static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1965{
1966        ++*pos;
1967        return mboxlog_get_idx(seq, *pos);
1968}
1969
1970static void mboxlog_stop(struct seq_file *seq, void *v)
1971{
1972}
1973
1974static const struct seq_operations mboxlog_seq_ops = {
1975        .start = mboxlog_start,
1976        .next  = mboxlog_next,
1977        .stop  = mboxlog_stop,
1978        .show  = mboxlog_show
1979};
1980
1981static int mboxlog_open(struct inode *inode, struct file *file)
1982{
1983        int res = seq_open(file, &mboxlog_seq_ops);
1984
1985        if (!res) {
1986                struct seq_file *seq = file->private_data;
1987
1988                seq->private = inode->i_private;
1989        }
1990        return res;
1991}
1992
1993static const struct file_operations mboxlog_fops = {
1994        .owner   = THIS_MODULE,
1995        .open    = mboxlog_open,
1996        .read    = seq_read,
1997        .llseek  = seq_lseek,
1998        .release = seq_release,
1999};
2000
2001/*
2002 * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2003 */
2004#define QPL     4
2005
2006static int sge_qinfo_show(struct seq_file *seq, void *v)
2007{
2008        struct adapter *adapter = seq->private;
2009        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2010        int qs, r = (uintptr_t)v - 1;
2011
2012        if (r)
2013                seq_putc(seq, '\n');
2014
2015        #define S3(fmt_spec, s, v) \
2016                do {\
2017                        seq_printf(seq, "%-12s", s); \
2018                        for (qs = 0; qs < n; ++qs) \
2019                                seq_printf(seq, " %16" fmt_spec, v); \
2020                        seq_putc(seq, '\n'); \
2021                } while (0)
2022        #define S(s, v)         S3("s", s, v)
2023        #define T(s, v)         S3("u", s, txq[qs].v)
2024        #define R(s, v)         S3("u", s, rxq[qs].v)
2025
2026        if (r < eth_entries) {
2027                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2028                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2029                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2030
2031                S("QType:", "Ethernet");
2032                S("Interface:",
2033                  (rxq[qs].rspq.netdev
2034                   ? rxq[qs].rspq.netdev->name
2035                   : "N/A"));
2036                S3("d", "Port:",
2037                   (rxq[qs].rspq.netdev
2038                    ? ((struct port_info *)
2039                       netdev_priv(rxq[qs].rspq.netdev))->port_id
2040                    : -1));
2041                T("TxQ ID:", q.abs_id);
2042                T("TxQ size:", q.size);
2043                T("TxQ inuse:", q.in_use);
2044                T("TxQ PIdx:", q.pidx);
2045                T("TxQ CIdx:", q.cidx);
2046                R("RspQ ID:", rspq.abs_id);
2047                R("RspQ size:", rspq.size);
2048                R("RspQE size:", rspq.iqe_len);
2049                S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2050                S3("u", "Intr pktcnt:",
2051                   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2052                R("RspQ CIdx:", rspq.cidx);
2053                R("RspQ Gen:", rspq.gen);
2054                R("FL ID:", fl.abs_id);
2055                R("FL size:", fl.size - MIN_FL_RESID);
2056                R("FL avail:", fl.avail);
2057                R("FL PIdx:", fl.pidx);
2058                R("FL CIdx:", fl.cidx);
2059                return 0;
2060        }
2061
2062        r -= eth_entries;
2063        if (r == 0) {
2064                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2065
2066                seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2067                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2068                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2069                           qtimer_val(adapter, evtq));
2070                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2071                           adapter->sge.counter_val[evtq->pktcnt_idx]);
2072                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2073                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2074        } else if (r == 1) {
2075                const struct sge_rspq *intrq = &adapter->sge.intrq;
2076
2077                seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2078                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2079                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2080                           qtimer_val(adapter, intrq));
2081                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2082                           adapter->sge.counter_val[intrq->pktcnt_idx]);
2083                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2084                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2085        }
2086
2087        #undef R
2088        #undef T
2089        #undef S
2090        #undef S3
2091
2092        return 0;
2093}
2094
2095/*
2096 * Return the number of "entries" in our "file".  We group the multi-Queue
2097 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2098 *
2099 *     Ethernet RX/TX Queue Sets
2100 *     Firmware Event Queue
2101 *     Forwarded Interrupt Queue (if in MSI mode)
2102 */
2103static int sge_queue_entries(const struct adapter *adapter)
2104{
2105        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2106                ((adapter->flags & USING_MSI) != 0);
2107}
2108
2109static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2110{
2111        int entries = sge_queue_entries(seq->private);
2112
2113        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2114}
2115
2116static void sge_queue_stop(struct seq_file *seq, void *v)
2117{
2118}
2119
2120static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2121{
2122        int entries = sge_queue_entries(seq->private);
2123
2124        ++*pos;
2125        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2126}
2127
2128static const struct seq_operations sge_qinfo_seq_ops = {
2129        .start = sge_queue_start,
2130        .next  = sge_queue_next,
2131        .stop  = sge_queue_stop,
2132        .show  = sge_qinfo_show
2133};
2134
2135static int sge_qinfo_open(struct inode *inode, struct file *file)
2136{
2137        int res = seq_open(file, &sge_qinfo_seq_ops);
2138
2139        if (!res) {
2140                struct seq_file *seq = file->private_data;
2141                seq->private = inode->i_private;
2142        }
2143        return res;
2144}
2145
2146static const struct file_operations sge_qinfo_debugfs_fops = {
2147        .owner   = THIS_MODULE,
2148        .open    = sge_qinfo_open,
2149        .read    = seq_read,
2150        .llseek  = seq_lseek,
2151        .release = seq_release,
2152};
2153
2154/*
2155 * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2156 */
2157#define QPL     4
2158
2159static int sge_qstats_show(struct seq_file *seq, void *v)
2160{
2161        struct adapter *adapter = seq->private;
2162        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2163        int qs, r = (uintptr_t)v - 1;
2164
2165        if (r)
2166                seq_putc(seq, '\n');
2167
2168        #define S3(fmt, s, v) \
2169                do { \
2170                        seq_printf(seq, "%-16s", s); \
2171                        for (qs = 0; qs < n; ++qs) \
2172                                seq_printf(seq, " %8" fmt, v); \
2173                        seq_putc(seq, '\n'); \
2174                } while (0)
2175        #define S(s, v)         S3("s", s, v)
2176
2177        #define T3(fmt, s, v)   S3(fmt, s, txq[qs].v)
2178        #define T(s, v)         T3("lu", s, v)
2179
2180        #define R3(fmt, s, v)   S3(fmt, s, rxq[qs].v)
2181        #define R(s, v)         R3("lu", s, v)
2182
2183        if (r < eth_entries) {
2184                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2185                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2186                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2187
2188                S("QType:", "Ethernet");
2189                S("Interface:",
2190                  (rxq[qs].rspq.netdev
2191                   ? rxq[qs].rspq.netdev->name
2192                   : "N/A"));
2193                R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2194                R("RxPackets:", stats.pkts);
2195                R("RxCSO:", stats.rx_cso);
2196                R("VLANxtract:", stats.vlan_ex);
2197                R("LROmerged:", stats.lro_merged);
2198                R("LROpackets:", stats.lro_pkts);
2199                R("RxDrops:", stats.rx_drops);
2200                T("TSO:", tso);
2201                T("TxCSO:", tx_cso);
2202                T("VLANins:", vlan_ins);
2203                T("TxQFull:", q.stops);
2204                T("TxQRestarts:", q.restarts);
2205                T("TxMapErr:", mapping_err);
2206                R("FLAllocErr:", fl.alloc_failed);
2207                R("FLLrgAlcErr:", fl.large_alloc_failed);
2208                R("FLStarving:", fl.starving);
2209                return 0;
2210        }
2211
2212        r -= eth_entries;
2213        if (r == 0) {
2214                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2215
2216                seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2217                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2218                           evtq->unhandled_irqs);
2219                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2220                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2221        } else if (r == 1) {
2222                const struct sge_rspq *intrq = &adapter->sge.intrq;
2223
2224                seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2225                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2226                           intrq->unhandled_irqs);
2227                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2228                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2229        }
2230
2231        #undef R
2232        #undef T
2233        #undef S
2234        #undef R3
2235        #undef T3
2236        #undef S3
2237
2238        return 0;
2239}
2240
2241/*
2242 * Return the number of "entries" in our "file".  We group the multi-Queue
2243 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2244 *
2245 *     Ethernet RX/TX Queue Sets
2246 *     Firmware Event Queue
2247 *     Forwarded Interrupt Queue (if in MSI mode)
2248 */
2249static int sge_qstats_entries(const struct adapter *adapter)
2250{
2251        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2252                ((adapter->flags & USING_MSI) != 0);
2253}
2254
2255static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2256{
2257        int entries = sge_qstats_entries(seq->private);
2258
2259        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2260}
2261
2262static void sge_qstats_stop(struct seq_file *seq, void *v)
2263{
2264}
2265
2266static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2267{
2268        int entries = sge_qstats_entries(seq->private);
2269
2270        (*pos)++;
2271        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2272}
2273
2274static const struct seq_operations sge_qstats_seq_ops = {
2275        .start = sge_qstats_start,
2276        .next  = sge_qstats_next,
2277        .stop  = sge_qstats_stop,
2278        .show  = sge_qstats_show
2279};
2280
2281static int sge_qstats_open(struct inode *inode, struct file *file)
2282{
2283        int res = seq_open(file, &sge_qstats_seq_ops);
2284
2285        if (res == 0) {
2286                struct seq_file *seq = file->private_data;
2287                seq->private = inode->i_private;
2288        }
2289        return res;
2290}
2291
2292static const struct file_operations sge_qstats_proc_fops = {
2293        .owner   = THIS_MODULE,
2294        .open    = sge_qstats_open,
2295        .read    = seq_read,
2296        .llseek  = seq_lseek,
2297        .release = seq_release,
2298};
2299
2300/*
2301 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2302 */
2303static int resources_show(struct seq_file *seq, void *v)
2304{
2305        struct adapter *adapter = seq->private;
2306        struct vf_resources *vfres = &adapter->params.vfres;
2307
2308        #define S(desc, fmt, var) \
2309                seq_printf(seq, "%-60s " fmt "\n", \
2310                           desc " (" #var "):", vfres->var)
2311
2312        S("Virtual Interfaces", "%d", nvi);
2313        S("Egress Queues", "%d", neq);
2314        S("Ethernet Control", "%d", nethctrl);
2315        S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2316        S("Ingress Queues", "%d", niq);
2317        S("Traffic Class", "%d", tc);
2318        S("Port Access Rights Mask", "%#x", pmask);
2319        S("MAC Address Filters", "%d", nexactf);
2320        S("Firmware Command Read Capabilities", "%#x", r_caps);
2321        S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2322
2323        #undef S
2324
2325        return 0;
2326}
2327
2328static int resources_open(struct inode *inode, struct file *file)
2329{
2330        return single_open(file, resources_show, inode->i_private);
2331}
2332
2333static const struct file_operations resources_proc_fops = {
2334        .owner   = THIS_MODULE,
2335        .open    = resources_open,
2336        .read    = seq_read,
2337        .llseek  = seq_lseek,
2338        .release = single_release,
2339};
2340
2341/*
2342 * Show Virtual Interfaces.
2343 */
2344static int interfaces_show(struct seq_file *seq, void *v)
2345{
2346        if (v == SEQ_START_TOKEN) {
2347                seq_puts(seq, "Interface  Port   VIID\n");
2348        } else {
2349                struct adapter *adapter = seq->private;
2350                int pidx = (uintptr_t)v - 2;
2351                struct net_device *dev = adapter->port[pidx];
2352                struct port_info *pi = netdev_priv(dev);
2353
2354                seq_printf(seq, "%9s  %4d  %#5x\n",
2355                           dev->name, pi->port_id, pi->viid);
2356        }
2357        return 0;
2358}
2359
2360static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2361{
2362        return pos <= adapter->params.nports
2363                ? (void *)(uintptr_t)(pos + 1)
2364                : NULL;
2365}
2366
2367static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2368{
2369        return *pos
2370                ? interfaces_get_idx(seq->private, *pos)
2371                : SEQ_START_TOKEN;
2372}
2373
2374static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2375{
2376        (*pos)++;
2377        return interfaces_get_idx(seq->private, *pos);
2378}
2379
2380static void interfaces_stop(struct seq_file *seq, void *v)
2381{
2382}
2383
2384static const struct seq_operations interfaces_seq_ops = {
2385        .start = interfaces_start,
2386        .next  = interfaces_next,
2387        .stop  = interfaces_stop,
2388        .show  = interfaces_show
2389};
2390
2391static int interfaces_open(struct inode *inode, struct file *file)
2392{
2393        int res = seq_open(file, &interfaces_seq_ops);
2394
2395        if (res == 0) {
2396                struct seq_file *seq = file->private_data;
2397                seq->private = inode->i_private;
2398        }
2399        return res;
2400}
2401
2402static const struct file_operations interfaces_proc_fops = {
2403        .owner   = THIS_MODULE,
2404        .open    = interfaces_open,
2405        .read    = seq_read,
2406        .llseek  = seq_lseek,
2407        .release = seq_release,
2408};
2409
2410/*
2411 * /sys/kernel/debugfs/cxgb4vf/ files list.
2412 */
2413struct cxgb4vf_debugfs_entry {
2414        const char *name;               /* name of debugfs node */
2415        umode_t mode;                   /* file system mode */
2416        const struct file_operations *fops;
2417};
2418
2419static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2420        { "mboxlog",    0444, &mboxlog_fops },
2421        { "sge_qinfo",  0444, &sge_qinfo_debugfs_fops },
2422        { "sge_qstats", 0444, &sge_qstats_proc_fops },
2423        { "resources",  0444, &resources_proc_fops },
2424        { "interfaces", 0444, &interfaces_proc_fops },
2425};
2426
2427/*
2428 * Module and device initialization and cleanup code.
2429 * ==================================================
2430 */
2431
2432/*
2433 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2434 * directory (debugfs_root) has already been set up.
2435 */
2436static int setup_debugfs(struct adapter *adapter)
2437{
2438        int i;
2439
2440        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2441
2442        /*
2443         * Debugfs support is best effort.
2444         */
2445        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2446                (void)debugfs_create_file(debugfs_files[i].name,
2447                                  debugfs_files[i].mode,
2448                                  adapter->debugfs_root,
2449                                  (void *)adapter,
2450                                  debugfs_files[i].fops);
2451
2452        return 0;
2453}
2454
2455/*
2456 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2457 * it to our caller to tear down the directory (debugfs_root).
2458 */
2459static void cleanup_debugfs(struct adapter *adapter)
2460{
2461        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2462
2463        /*
2464         * Unlike our sister routine cleanup_proc(), we don't need to remove
2465         * individual entries because a call will be made to
2466         * debugfs_remove_recursive().  We just need to clean up any ancillary
2467         * persistent state.
2468         */
2469        /* nothing to do */
2470}
2471
2472/* Figure out how many Ports and Queue Sets we can support.  This depends on
2473 * knowing our Virtual Function Resources and may be called a second time if
2474 * we fall back from MSI-X to MSI Interrupt Mode.
2475 */
2476static void size_nports_qsets(struct adapter *adapter)
2477{
2478        struct vf_resources *vfres = &adapter->params.vfres;
2479        unsigned int ethqsets, pmask_nports;
2480
2481        /* The number of "ports" which we support is equal to the number of
2482         * Virtual Interfaces with which we've been provisioned.
2483         */
2484        adapter->params.nports = vfres->nvi;
2485        if (adapter->params.nports > MAX_NPORTS) {
2486                dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2487                         " allowed virtual interfaces\n", MAX_NPORTS,
2488                         adapter->params.nports);
2489                adapter->params.nports = MAX_NPORTS;
2490        }
2491
2492        /* We may have been provisioned with more VIs than the number of
2493         * ports we're allowed to access (our Port Access Rights Mask).
2494         * This is obviously a configuration conflict but we don't want to
2495         * crash the kernel or anything silly just because of that.
2496         */
2497        pmask_nports = hweight32(adapter->params.vfres.pmask);
2498        if (pmask_nports < adapter->params.nports) {
2499                dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2500                         " virtual interfaces; limited by Port Access Rights"
2501                         " mask %#x\n", pmask_nports, adapter->params.nports,
2502                         adapter->params.vfres.pmask);
2503                adapter->params.nports = pmask_nports;
2504        }
2505
2506        /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2507         * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2508         * reserve an Ingress Queue for a Forwarded Interrupts.
2509         *
2510         * The rest of the FL/Intr-capable ingress queues will be matched up
2511         * one-for-one with Ethernet/Control egress queues in order to form
2512         * "Queue Sets" which will be aportioned between the "ports".  For
2513         * each Queue Set, we'll need the ability to allocate two Egress
2514         * Contexts -- one for the Ingress Queue Free List and one for the TX
2515         * Ethernet Queue.
2516         *
2517         * Note that even if we're currently configured to use MSI-X
2518         * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2519         * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2520         * happens we'll need to adjust things later.
2521         */
2522        ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2523        if (vfres->nethctrl != ethqsets)
2524                ethqsets = min(vfres->nethctrl, ethqsets);
2525        if (vfres->neq < ethqsets*2)
2526                ethqsets = vfres->neq/2;
2527        if (ethqsets > MAX_ETH_QSETS)
2528                ethqsets = MAX_ETH_QSETS;
2529        adapter->sge.max_ethqsets = ethqsets;
2530
2531        if (adapter->sge.max_ethqsets < adapter->params.nports) {
2532                dev_warn(adapter->pdev_dev, "only using %d of %d available"
2533                         " virtual interfaces (too few Queue Sets)\n",
2534                         adapter->sge.max_ethqsets, adapter->params.nports);
2535                adapter->params.nports = adapter->sge.max_ethqsets;
2536        }
2537}
2538
2539/*
2540 * Perform early "adapter" initialization.  This is where we discover what
2541 * adapter parameters we're going to be using and initialize basic adapter
2542 * hardware support.
2543 */
2544static int adap_init0(struct adapter *adapter)
2545{
2546        struct sge_params *sge_params = &adapter->params.sge;
2547        struct sge *s = &adapter->sge;
2548        int err;
2549        u32 param, val = 0;
2550
2551        /*
2552         * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2553         * 2.6.31 and later we can't call pci_reset_function() in order to
2554         * issue an FLR because of a self- deadlock on the device semaphore.
2555         * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2556         * cases where they're needed -- for instance, some versions of KVM
2557         * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2558         * use the firmware based reset in order to reset any per function
2559         * state.
2560         */
2561        err = t4vf_fw_reset(adapter);
2562        if (err < 0) {
2563                dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2564                return err;
2565        }
2566
2567        /*
2568         * Grab basic operational parameters.  These will predominantly have
2569         * been set up by the Physical Function Driver or will be hard coded
2570         * into the adapter.  We just have to live with them ...  Note that
2571         * we _must_ get our VPD parameters before our SGE parameters because
2572         * we need to know the adapter's core clock from the VPD in order to
2573         * properly decode the SGE Timer Values.
2574         */
2575        err = t4vf_get_dev_params(adapter);
2576        if (err) {
2577                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2578                        " device parameters: err=%d\n", err);
2579                return err;
2580        }
2581        err = t4vf_get_vpd_params(adapter);
2582        if (err) {
2583                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2584                        " VPD parameters: err=%d\n", err);
2585                return err;
2586        }
2587        err = t4vf_get_sge_params(adapter);
2588        if (err) {
2589                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2590                        " SGE parameters: err=%d\n", err);
2591                return err;
2592        }
2593        err = t4vf_get_rss_glb_config(adapter);
2594        if (err) {
2595                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2596                        " RSS parameters: err=%d\n", err);
2597                return err;
2598        }
2599        if (adapter->params.rss.mode !=
2600            FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2601                dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2602                        " mode %d\n", adapter->params.rss.mode);
2603                return -EINVAL;
2604        }
2605        err = t4vf_sge_init(adapter);
2606        if (err) {
2607                dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2608                        " err=%d\n", err);
2609                return err;
2610        }
2611
2612        /* If we're running on newer firmware, let it know that we're
2613         * prepared to deal with encapsulated CPL messages.  Older
2614         * firmware won't understand this and we'll just get
2615         * unencapsulated messages ...
2616         */
2617        param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2618                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2619        val = 1;
2620        (void) t4vf_set_params(adapter, 1, &param, &val);
2621
2622        /*
2623         * Retrieve our RX interrupt holdoff timer values and counter
2624         * threshold values from the SGE parameters.
2625         */
2626        s->timer_val[0] = core_ticks_to_us(adapter,
2627                TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2628        s->timer_val[1] = core_ticks_to_us(adapter,
2629                TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2630        s->timer_val[2] = core_ticks_to_us(adapter,
2631                TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2632        s->timer_val[3] = core_ticks_to_us(adapter,
2633                TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2634        s->timer_val[4] = core_ticks_to_us(adapter,
2635                TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2636        s->timer_val[5] = core_ticks_to_us(adapter,
2637                TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2638
2639        s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2640        s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2641        s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2642        s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2643
2644        /*
2645         * Grab our Virtual Interface resource allocation, extract the
2646         * features that we're interested in and do a bit of sanity testing on
2647         * what we discover.
2648         */
2649        err = t4vf_get_vfres(adapter);
2650        if (err) {
2651                dev_err(adapter->pdev_dev, "unable to get virtual interface"
2652                        " resources: err=%d\n", err);
2653                return err;
2654        }
2655
2656        /* Check for various parameter sanity issues */
2657        if (adapter->params.vfres.pmask == 0) {
2658                dev_err(adapter->pdev_dev, "no port access configured\n"
2659                        "usable!\n");
2660                return -EINVAL;
2661        }
2662        if (adapter->params.vfres.nvi == 0) {
2663                dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2664                        "usable!\n");
2665                return -EINVAL;
2666        }
2667
2668        /* Initialize nports and max_ethqsets now that we have our Virtual
2669         * Function Resources.
2670         */
2671        size_nports_qsets(adapter);
2672
2673        return 0;
2674}
2675
2676static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2677                             u8 pkt_cnt_idx, unsigned int size,
2678                             unsigned int iqe_size)
2679{
2680        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2681                             (pkt_cnt_idx < SGE_NCOUNTERS ?
2682                              QINTR_CNT_EN_F : 0));
2683        rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2684                            ? pkt_cnt_idx
2685                            : 0);
2686        rspq->iqe_len = iqe_size;
2687        rspq->size = size;
2688}
2689
2690/*
2691 * Perform default configuration of DMA queues depending on the number and
2692 * type of ports we found and the number of available CPUs.  Most settings can
2693 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2694 * being brought up for the first time.
2695 */
2696static void cfg_queues(struct adapter *adapter)
2697{
2698        struct sge *s = &adapter->sge;
2699        int q10g, n10g, qidx, pidx, qs;
2700        size_t iqe_size;
2701
2702        /*
2703         * We should not be called till we know how many Queue Sets we can
2704         * support.  In particular, this means that we need to know what kind
2705         * of interrupts we'll be using ...
2706         */
2707        BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2708
2709        /*
2710         * Count the number of 10GbE Virtual Interfaces that we have.
2711         */
2712        n10g = 0;
2713        for_each_port(adapter, pidx)
2714                n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2715
2716        /*
2717         * We default to 1 queue per non-10G port and up to # of cores queues
2718         * per 10G port.
2719         */
2720        if (n10g == 0)
2721                q10g = 0;
2722        else {
2723                int n1g = (adapter->params.nports - n10g);
2724                q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2725                if (q10g > num_online_cpus())
2726                        q10g = num_online_cpus();
2727        }
2728
2729        /*
2730         * Allocate the "Queue Sets" to the various Virtual Interfaces.
2731         * The layout will be established in setup_sge_queues() when the
2732         * adapter is brough up for the first time.
2733         */
2734        qidx = 0;
2735        for_each_port(adapter, pidx) {
2736                struct port_info *pi = adap2pinfo(adapter, pidx);
2737
2738                pi->first_qset = qidx;
2739                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2740                qidx += pi->nqsets;
2741        }
2742        s->ethqsets = qidx;
2743
2744        /*
2745         * The Ingress Queue Entry Size for our various Response Queues needs
2746         * to be big enough to accommodate the largest message we can receive
2747         * from the chip/firmware; which is 64 bytes ...
2748         */
2749        iqe_size = 64;
2750
2751        /*
2752         * Set up default Queue Set parameters ...  Start off with the
2753         * shortest interrupt holdoff timer.
2754         */
2755        for (qs = 0; qs < s->max_ethqsets; qs++) {
2756                struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2757                struct sge_eth_txq *txq = &s->ethtxq[qs];
2758
2759                init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2760                rxq->fl.size = 72;
2761                txq->q.size = 1024;
2762        }
2763
2764        /*
2765         * The firmware event queue is used for link state changes and
2766         * notifications of TX DMA completions.
2767         */
2768        init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2769
2770        /*
2771         * The forwarded interrupt queue is used when we're in MSI interrupt
2772         * mode.  In this mode all interrupts associated with RX queues will
2773         * be forwarded to a single queue which we'll associate with our MSI
2774         * interrupt vector.  The messages dropped in the forwarded interrupt
2775         * queue will indicate which ingress queue needs servicing ...  This
2776         * queue needs to be large enough to accommodate all of the ingress
2777         * queues which are forwarding their interrupt (+1 to prevent the PIDX
2778         * from equalling the CIDX if every ingress queue has an outstanding
2779         * interrupt).  The queue doesn't need to be any larger because no
2780         * ingress queue will ever have more than one outstanding interrupt at
2781         * any time ...
2782         */
2783        init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2784                  iqe_size);
2785}
2786
2787/*
2788 * Reduce the number of Ethernet queues across all ports to at most n.
2789 * n provides at least one queue per port.
2790 */
2791static void reduce_ethqs(struct adapter *adapter, int n)
2792{
2793        int i;
2794        struct port_info *pi;
2795
2796        /*
2797         * While we have too many active Ether Queue Sets, interate across the
2798         * "ports" and reduce their individual Queue Set allocations.
2799         */
2800        BUG_ON(n < adapter->params.nports);
2801        while (n < adapter->sge.ethqsets)
2802                for_each_port(adapter, i) {
2803                        pi = adap2pinfo(adapter, i);
2804                        if (pi->nqsets > 1) {
2805                                pi->nqsets--;
2806                                adapter->sge.ethqsets--;
2807                                if (adapter->sge.ethqsets <= n)
2808                                        break;
2809                        }
2810                }
2811
2812        /*
2813         * Reassign the starting Queue Sets for each of the "ports" ...
2814         */
2815        n = 0;
2816        for_each_port(adapter, i) {
2817                pi = adap2pinfo(adapter, i);
2818                pi->first_qset = n;
2819                n += pi->nqsets;
2820        }
2821}
2822
2823/*
2824 * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2825 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2826 * need.  Minimally we need one for every Virtual Interface plus those needed
2827 * for our "extras".  Note that this process may lower the maximum number of
2828 * allowed Queue Sets ...
2829 */
2830static int enable_msix(struct adapter *adapter)
2831{
2832        int i, want, need, nqsets;
2833        struct msix_entry entries[MSIX_ENTRIES];
2834        struct sge *s = &adapter->sge;
2835
2836        for (i = 0; i < MSIX_ENTRIES; ++i)
2837                entries[i].entry = i;
2838
2839        /*
2840         * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2841         * plus those needed for our "extras" (for example, the firmware
2842         * message queue).  We _need_ at least one "Queue Set" per Virtual
2843         * Interface plus those needed for our "extras".  So now we get to see
2844         * if the song is right ...
2845         */
2846        want = s->max_ethqsets + MSIX_EXTRAS;
2847        need = adapter->params.nports + MSIX_EXTRAS;
2848
2849        want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2850        if (want < 0)
2851                return want;
2852
2853        nqsets = want - MSIX_EXTRAS;
2854        if (nqsets < s->max_ethqsets) {
2855                dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2856                         " for %d Queue Sets\n", nqsets);
2857                s->max_ethqsets = nqsets;
2858                if (nqsets < s->ethqsets)
2859                        reduce_ethqs(adapter, nqsets);
2860        }
2861        for (i = 0; i < want; ++i)
2862                adapter->msix_info[i].vec = entries[i].vector;
2863
2864        return 0;
2865}
2866
2867static const struct net_device_ops cxgb4vf_netdev_ops   = {
2868        .ndo_open               = cxgb4vf_open,
2869        .ndo_stop               = cxgb4vf_stop,
2870        .ndo_start_xmit         = t4vf_eth_xmit,
2871        .ndo_get_stats          = cxgb4vf_get_stats,
2872        .ndo_set_rx_mode        = cxgb4vf_set_rxmode,
2873        .ndo_set_mac_address    = cxgb4vf_set_mac_addr,
2874        .ndo_validate_addr      = eth_validate_addr,
2875        .ndo_do_ioctl           = cxgb4vf_do_ioctl,
2876        .ndo_change_mtu         = cxgb4vf_change_mtu,
2877        .ndo_fix_features       = cxgb4vf_fix_features,
2878        .ndo_set_features       = cxgb4vf_set_features,
2879#ifdef CONFIG_NET_POLL_CONTROLLER
2880        .ndo_poll_controller    = cxgb4vf_poll_controller,
2881#endif
2882};
2883
2884/*
2885 * "Probe" a device: initialize a device and construct all kernel and driver
2886 * state needed to manage the device.  This routine is called "init_one" in
2887 * the PF Driver ...
2888 */
2889static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2890                             const struct pci_device_id *ent)
2891{
2892        int pci_using_dac;
2893        int err, pidx;
2894        unsigned int pmask;
2895        struct adapter *adapter;
2896        struct port_info *pi;
2897        struct net_device *netdev;
2898        unsigned int pf;
2899
2900        /*
2901         * Print our driver banner the first time we're called to initialize a
2902         * device.
2903         */
2904        pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2905
2906        /*
2907         * Initialize generic PCI device state.
2908         */
2909        err = pci_enable_device(pdev);
2910        if (err) {
2911                dev_err(&pdev->dev, "cannot enable PCI device\n");
2912                return err;
2913        }
2914
2915        /*
2916         * Reserve PCI resources for the device.  If we can't get them some
2917         * other driver may have already claimed the device ...
2918         */
2919        err = pci_request_regions(pdev, KBUILD_MODNAME);
2920        if (err) {
2921                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2922                goto err_disable_device;
2923        }
2924
2925        /*
2926         * Set up our DMA mask: try for 64-bit address masking first and
2927         * fall back to 32-bit if we can't get 64 bits ...
2928         */
2929        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2930        if (err == 0) {
2931                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2932                if (err) {
2933                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2934                                " coherent allocations\n");
2935                        goto err_release_regions;
2936                }
2937                pci_using_dac = 1;
2938        } else {
2939                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2940                if (err != 0) {
2941                        dev_err(&pdev->dev, "no usable DMA configuration\n");
2942                        goto err_release_regions;
2943                }
2944                pci_using_dac = 0;
2945        }
2946
2947        /*
2948         * Enable bus mastering for the device ...
2949         */
2950        pci_set_master(pdev);
2951
2952        /*
2953         * Allocate our adapter data structure and attach it to the device.
2954         */
2955        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2956        if (!adapter) {
2957                err = -ENOMEM;
2958                goto err_release_regions;
2959        }
2960        pci_set_drvdata(pdev, adapter);
2961        adapter->pdev = pdev;
2962        adapter->pdev_dev = &pdev->dev;
2963
2964        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2965                                    (sizeof(struct mbox_cmd) *
2966                                     T4VF_OS_LOG_MBOX_CMDS),
2967                                    GFP_KERNEL);
2968        if (!adapter->mbox_log) {
2969                err = -ENOMEM;
2970                goto err_free_adapter;
2971        }
2972        adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2973
2974        /*
2975         * Initialize SMP data synchronization resources.
2976         */
2977        spin_lock_init(&adapter->stats_lock);
2978        spin_lock_init(&adapter->mbox_lock);
2979        INIT_LIST_HEAD(&adapter->mlist.list);
2980
2981        /*
2982         * Map our I/O registers in BAR0.
2983         */
2984        adapter->regs = pci_ioremap_bar(pdev, 0);
2985        if (!adapter->regs) {
2986                dev_err(&pdev->dev, "cannot map device registers\n");
2987                err = -ENOMEM;
2988                goto err_free_adapter;
2989        }
2990
2991        /* Wait for the device to become ready before proceeding ...
2992         */
2993        err = t4vf_prep_adapter(adapter);
2994        if (err) {
2995                dev_err(adapter->pdev_dev, "device didn't become ready:"
2996                        " err=%d\n", err);
2997                goto err_unmap_bar0;
2998        }
2999
3000        /* For T5 and later we want to use the new BAR-based User Doorbells,
3001         * so we need to map BAR2 here ...
3002         */
3003        if (!is_t4(adapter->params.chip)) {
3004                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
3005                                           pci_resource_len(pdev, 2));
3006                if (!adapter->bar2) {
3007                        dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
3008                        err = -ENOMEM;
3009                        goto err_unmap_bar0;
3010                }
3011        }
3012        /*
3013         * Initialize adapter level features.
3014         */
3015        adapter->name = pci_name(pdev);
3016        adapter->msg_enable = DFLT_MSG_ENABLE;
3017
3018        /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3019         * Ingress Packet Data to Free List Buffers in order to allow for
3020         * chipset performance optimizations between the Root Complex and
3021         * Memory Controllers.  (Messages to the associated Ingress Queue
3022         * notifying new Packet Placement in the Free Lists Buffers will be
3023         * send without the Relaxed Ordering Attribute thus guaranteeing that
3024         * all preceding PCIe Transaction Layer Packets will be processed
3025         * first.)  But some Root Complexes have various issues with Upstream
3026         * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3027         * The PCIe devices which under the Root Complexes will be cleared the
3028         * Relaxed Ordering bit in the configuration space, So we check our
3029         * PCIe configuration space to see if it's flagged with advice against
3030         * using Relaxed Ordering.
3031         */
3032        if (!pcie_relaxed_ordering_enabled(pdev))
3033                adapter->flags |= ROOT_NO_RELAXED_ORDERING;
3034
3035        err = adap_init0(adapter);
3036        if (err)
3037                goto err_unmap_bar;
3038
3039        /*
3040         * Allocate our "adapter ports" and stitch everything together.
3041         */
3042        pmask = adapter->params.vfres.pmask;
3043        pf = t4vf_get_pf_from_vf(adapter);
3044        for_each_port(adapter, pidx) {
3045                int port_id, viid;
3046                u8 mac[ETH_ALEN];
3047                unsigned int naddr = 1;
3048
3049                /*
3050                 * We simplistically allocate our virtual interfaces
3051                 * sequentially across the port numbers to which we have
3052                 * access rights.  This should be configurable in some manner
3053                 * ...
3054                 */
3055                if (pmask == 0)
3056                        break;
3057                port_id = ffs(pmask) - 1;
3058                pmask &= ~(1 << port_id);
3059                viid = t4vf_alloc_vi(adapter, port_id);
3060                if (viid < 0) {
3061                        dev_err(&pdev->dev, "cannot allocate VI for port %d:"
3062                                " err=%d\n", port_id, viid);
3063                        err = viid;
3064                        goto err_free_dev;
3065                }
3066
3067                /*
3068                 * Allocate our network device and stitch things together.
3069                 */
3070                netdev = alloc_etherdev_mq(sizeof(struct port_info),
3071                                           MAX_PORT_QSETS);
3072                if (netdev == NULL) {
3073                        t4vf_free_vi(adapter, viid);
3074                        err = -ENOMEM;
3075                        goto err_free_dev;
3076                }
3077                adapter->port[pidx] = netdev;
3078                SET_NETDEV_DEV(netdev, &pdev->dev);
3079                pi = netdev_priv(netdev);
3080                pi->adapter = adapter;
3081                pi->pidx = pidx;
3082                pi->port_id = port_id;
3083                pi->viid = viid;
3084
3085                /*
3086                 * Initialize the starting state of our "port" and register
3087                 * it.
3088                 */
3089                pi->xact_addr_filt = -1;
3090                netif_carrier_off(netdev);
3091                netdev->irq = pdev->irq;
3092
3093                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
3094                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3095                        NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
3096                netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
3097                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3098                        NETIF_F_HIGHDMA;
3099                netdev->features = netdev->hw_features |
3100                                   NETIF_F_HW_VLAN_CTAG_TX;
3101                if (pci_using_dac)
3102                        netdev->features |= NETIF_F_HIGHDMA;
3103
3104                netdev->priv_flags |= IFF_UNICAST_FLT;
3105                netdev->min_mtu = 81;
3106                netdev->max_mtu = ETH_MAX_MTU;
3107
3108                netdev->netdev_ops = &cxgb4vf_netdev_ops;
3109                netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3110                netdev->dev_port = pi->port_id;
3111
3112                /*
3113                 * Initialize the hardware/software state for the port.
3114                 */
3115                err = t4vf_port_init(adapter, pidx);
3116                if (err) {
3117                        dev_err(&pdev->dev, "cannot initialize port %d\n",
3118                                pidx);
3119                        goto err_free_dev;
3120                }
3121
3122                err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac);
3123                if (err) {
3124                        dev_err(&pdev->dev,
3125                                "unable to determine MAC ACL address, "
3126                                "continuing anyway.. (status %d)\n", err);
3127                } else if (naddr && adapter->params.vfres.nvi == 1) {
3128                        struct sockaddr addr;
3129
3130                        ether_addr_copy(addr.sa_data, mac);
3131                        err = cxgb4vf_set_mac_addr(netdev, &addr);
3132                        if (err) {
3133                                dev_err(&pdev->dev,
3134                                        "unable to set MAC address %pM\n",
3135                                        mac);
3136                                goto err_free_dev;
3137                        }
3138                        dev_info(&pdev->dev,
3139                                 "Using assigned MAC ACL: %pM\n", mac);
3140                }
3141        }
3142
3143        /* See what interrupts we'll be using.  If we've been configured to
3144         * use MSI-X interrupts, try to enable them but fall back to using
3145         * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3146         * get MSI interrupts we bail with the error.
3147         */
3148        if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3149                adapter->flags |= USING_MSIX;
3150        else {
3151                if (msi == MSI_MSIX) {
3152                        dev_info(adapter->pdev_dev,
3153                                 "Unable to use MSI-X Interrupts; falling "
3154                                 "back to MSI Interrupts\n");
3155
3156                        /* We're going to need a Forwarded Interrupt Queue so
3157                         * that may cut into how many Queue Sets we can
3158                         * support.
3159                         */
3160                        msi = MSI_MSI;
3161                        size_nports_qsets(adapter);
3162                }
3163                err = pci_enable_msi(pdev);
3164                if (err) {
3165                        dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3166                                " err=%d\n", err);
3167                        goto err_free_dev;
3168                }
3169                adapter->flags |= USING_MSI;
3170        }
3171
3172        /* Now that we know how many "ports" we have and what interrupt
3173         * mechanism we're going to use, we can configure our queue resources.
3174         */
3175        cfg_queues(adapter);
3176
3177        /*
3178         * The "card" is now ready to go.  If any errors occur during device
3179         * registration we do not fail the whole "card" but rather proceed
3180         * only with the ports we manage to register successfully.  However we
3181         * must register at least one net device.
3182         */
3183        for_each_port(adapter, pidx) {
3184                struct port_info *pi = netdev_priv(adapter->port[pidx]);
3185                netdev = adapter->port[pidx];
3186                if (netdev == NULL)
3187                        continue;
3188
3189                netif_set_real_num_tx_queues(netdev, pi->nqsets);
3190                netif_set_real_num_rx_queues(netdev, pi->nqsets);
3191
3192                err = register_netdev(netdev);
3193                if (err) {
3194                        dev_warn(&pdev->dev, "cannot register net device %s,"
3195                                 " skipping\n", netdev->name);
3196                        continue;
3197                }
3198
3199                set_bit(pidx, &adapter->registered_device_map);
3200        }
3201        if (adapter->registered_device_map == 0) {
3202                dev_err(&pdev->dev, "could not register any net devices\n");
3203                goto err_disable_interrupts;
3204        }
3205
3206        /*
3207         * Set up our debugfs entries.
3208         */
3209        if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3210                adapter->debugfs_root =
3211                        debugfs_create_dir(pci_name(pdev),
3212                                           cxgb4vf_debugfs_root);
3213                if (IS_ERR_OR_NULL(adapter->debugfs_root))
3214                        dev_warn(&pdev->dev, "could not create debugfs"
3215                                 " directory");
3216                else
3217                        setup_debugfs(adapter);
3218        }
3219
3220        /*
3221         * Print a short notice on the existence and configuration of the new
3222         * VF network device ...
3223         */
3224        for_each_port(adapter, pidx) {
3225                dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3226                         adapter->port[pidx]->name,
3227                         (adapter->flags & USING_MSIX) ? "MSI-X" :
3228                         (adapter->flags & USING_MSI)  ? "MSI" : "");
3229        }
3230
3231        /*
3232         * Return success!
3233         */
3234        return 0;
3235
3236        /*
3237         * Error recovery and exit code.  Unwind state that's been created
3238         * so far and return the error.
3239         */
3240err_disable_interrupts:
3241        if (adapter->flags & USING_MSIX) {
3242                pci_disable_msix(adapter->pdev);
3243                adapter->flags &= ~USING_MSIX;
3244        } else if (adapter->flags & USING_MSI) {
3245                pci_disable_msi(adapter->pdev);
3246                adapter->flags &= ~USING_MSI;
3247        }
3248
3249err_free_dev:
3250        for_each_port(adapter, pidx) {
3251                netdev = adapter->port[pidx];
3252                if (netdev == NULL)
3253                        continue;
3254                pi = netdev_priv(netdev);
3255                t4vf_free_vi(adapter, pi->viid);
3256                if (test_bit(pidx, &adapter->registered_device_map))
3257                        unregister_netdev(netdev);
3258                free_netdev(netdev);
3259        }
3260
3261err_unmap_bar:
3262        if (!is_t4(adapter->params.chip))
3263                iounmap(adapter->bar2);
3264
3265err_unmap_bar0:
3266        iounmap(adapter->regs);
3267
3268err_free_adapter:
3269        kfree(adapter->mbox_log);
3270        kfree(adapter);
3271
3272err_release_regions:
3273        pci_release_regions(pdev);
3274        pci_clear_master(pdev);
3275
3276err_disable_device:
3277        pci_disable_device(pdev);
3278
3279        return err;
3280}
3281
3282/*
3283 * "Remove" a device: tear down all kernel and driver state created in the
3284 * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3285 * that this is called "remove_one" in the PF Driver.)
3286 */
3287static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3288{
3289        struct adapter *adapter = pci_get_drvdata(pdev);
3290
3291        /*
3292         * Tear down driver state associated with device.
3293         */
3294        if (adapter) {
3295                int pidx;
3296
3297                /*
3298                 * Stop all of our activity.  Unregister network port,
3299                 * disable interrupts, etc.
3300                 */
3301                for_each_port(adapter, pidx)
3302                        if (test_bit(pidx, &adapter->registered_device_map))
3303                                unregister_netdev(adapter->port[pidx]);
3304                t4vf_sge_stop(adapter);
3305                if (adapter->flags & USING_MSIX) {
3306                        pci_disable_msix(adapter->pdev);
3307                        adapter->flags &= ~USING_MSIX;
3308                } else if (adapter->flags & USING_MSI) {
3309                        pci_disable_msi(adapter->pdev);
3310                        adapter->flags &= ~USING_MSI;
3311                }
3312
3313                /*
3314                 * Tear down our debugfs entries.
3315                 */
3316                if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3317                        cleanup_debugfs(adapter);
3318                        debugfs_remove_recursive(adapter->debugfs_root);
3319                }
3320
3321                /*
3322                 * Free all of the various resources which we've acquired ...
3323                 */
3324                t4vf_free_sge_resources(adapter);
3325                for_each_port(adapter, pidx) {
3326                        struct net_device *netdev = adapter->port[pidx];
3327                        struct port_info *pi;
3328
3329                        if (netdev == NULL)
3330                                continue;
3331
3332                        pi = netdev_priv(netdev);
3333                        t4vf_free_vi(adapter, pi->viid);
3334                        free_netdev(netdev);
3335                }
3336                iounmap(adapter->regs);
3337                if (!is_t4(adapter->params.chip))
3338                        iounmap(adapter->bar2);
3339                kfree(adapter->mbox_log);
3340                kfree(adapter);
3341        }
3342
3343        /*
3344         * Disable the device and release its PCI resources.
3345         */
3346        pci_disable_device(pdev);
3347        pci_clear_master(pdev);
3348        pci_release_regions(pdev);
3349}
3350
3351/*
3352 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3353 * delivery.
3354 */
3355static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3356{
3357        struct adapter *adapter;
3358        int pidx;
3359
3360        adapter = pci_get_drvdata(pdev);
3361        if (!adapter)
3362                return;
3363
3364        /* Disable all Virtual Interfaces.  This will shut down the
3365         * delivery of all ingress packets into the chip for these
3366         * Virtual Interfaces.
3367         */
3368        for_each_port(adapter, pidx)
3369                if (test_bit(pidx, &adapter->registered_device_map))
3370                        unregister_netdev(adapter->port[pidx]);
3371
3372        /* Free up all Queues which will prevent further DMA and
3373         * Interrupts allowing various internal pathways to drain.
3374         */
3375        t4vf_sge_stop(adapter);
3376        if (adapter->flags & USING_MSIX) {
3377                pci_disable_msix(adapter->pdev);
3378                adapter->flags &= ~USING_MSIX;
3379        } else if (adapter->flags & USING_MSI) {
3380                pci_disable_msi(adapter->pdev);
3381                adapter->flags &= ~USING_MSI;
3382        }
3383
3384        /*
3385         * Free up all Queues which will prevent further DMA and
3386         * Interrupts allowing various internal pathways to drain.
3387         */
3388        t4vf_free_sge_resources(adapter);
3389        pci_set_drvdata(pdev, NULL);
3390}
3391
3392/* Macros needed to support the PCI Device ID Table ...
3393 */
3394#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3395        static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3396#define CH_PCI_DEVICE_ID_FUNCTION       0x8
3397
3398#define CH_PCI_ID_TABLE_ENTRY(devid) \
3399                { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3400
3401#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3402
3403#include "../cxgb4/t4_pci_id_tbl.h"
3404
3405MODULE_DESCRIPTION(DRV_DESC);
3406MODULE_AUTHOR("Chelsio Communications");
3407MODULE_LICENSE("Dual BSD/GPL");
3408MODULE_VERSION(DRV_VERSION);
3409MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3410
3411static struct pci_driver cxgb4vf_driver = {
3412        .name           = KBUILD_MODNAME,
3413        .id_table       = cxgb4vf_pci_tbl,
3414        .probe          = cxgb4vf_pci_probe,
3415        .remove         = cxgb4vf_pci_remove,
3416        .shutdown       = cxgb4vf_pci_shutdown,
3417};
3418
3419/*
3420 * Initialize global driver state.
3421 */
3422static int __init cxgb4vf_module_init(void)
3423{
3424        int ret;
3425
3426        /*
3427         * Vet our module parameters.
3428         */
3429        if (msi != MSI_MSIX && msi != MSI_MSI) {
3430                pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3431                        msi, MSI_MSIX, MSI_MSI);
3432                return -EINVAL;
3433        }
3434
3435        /* Debugfs support is optional, just warn if this fails */
3436        cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3437        if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3438                pr_warn("could not create debugfs entry, continuing\n");
3439
3440        ret = pci_register_driver(&cxgb4vf_driver);
3441        if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3442                debugfs_remove(cxgb4vf_debugfs_root);
3443        return ret;
3444}
3445
3446/*
3447 * Tear down global driver state.
3448 */
3449static void __exit cxgb4vf_module_exit(void)
3450{
3451        pci_unregister_driver(&cxgb4vf_driver);
3452        debugfs_remove(cxgb4vf_debugfs_root);
3453}
3454
3455module_init(cxgb4vf_module_init);
3456module_exit(cxgb4vf_module_exit);
3457