linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/prefetch.h>
   5#include <net/busy_poll.h>
   6#include <linux/bpf_trace.h>
   7#include <net/xdp.h>
   8#include "i40e.h"
   9#include "i40e_trace.h"
  10#include "i40e_prototype.h"
  11
  12static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  13                                u32 td_tag)
  14{
  15        return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  16                           ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  17                           ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  18                           ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  19                           ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  20}
  21
  22#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  23/**
  24 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  25 * @tx_ring: Tx ring to send buffer on
  26 * @fdata: Flow director filter data
  27 * @add: Indicate if we are adding a rule or deleting one
  28 *
  29 **/
  30static void i40e_fdir(struct i40e_ring *tx_ring,
  31                      struct i40e_fdir_filter *fdata, bool add)
  32{
  33        struct i40e_filter_program_desc *fdir_desc;
  34        struct i40e_pf *pf = tx_ring->vsi->back;
  35        u32 flex_ptype, dtype_cmd;
  36        u16 i;
  37
  38        /* grab the next descriptor */
  39        i = tx_ring->next_to_use;
  40        fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  41
  42        i++;
  43        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  44
  45        flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  46                     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  47
  48        flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  49                      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  50
  51        flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  52                      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  53
  54        flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  55                      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  56
  57        /* Use LAN VSI Id if not programmed by user */
  58        flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  59                      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  60                       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  61
  62        dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  63
  64        dtype_cmd |= add ?
  65                     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  66                     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  67                     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  68                     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  69
  70        dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  71                     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  72
  73        dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  74                     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  75
  76        if (fdata->cnt_index) {
  77                dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  78                dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  79                             ((u32)fdata->cnt_index <<
  80                              I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  81        }
  82
  83        fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  84        fdir_desc->rsvd = cpu_to_le32(0);
  85        fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  86        fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  87}
  88
  89#define I40E_FD_CLEAN_DELAY 10
  90/**
  91 * i40e_program_fdir_filter - Program a Flow Director filter
  92 * @fdir_data: Packet data that will be filter parameters
  93 * @raw_packet: the pre-allocated packet buffer for FDir
  94 * @pf: The PF pointer
  95 * @add: True for add/update, False for remove
  96 **/
  97static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  98                                    u8 *raw_packet, struct i40e_pf *pf,
  99                                    bool add)
 100{
 101        struct i40e_tx_buffer *tx_buf, *first;
 102        struct i40e_tx_desc *tx_desc;
 103        struct i40e_ring *tx_ring;
 104        struct i40e_vsi *vsi;
 105        struct device *dev;
 106        dma_addr_t dma;
 107        u32 td_cmd = 0;
 108        u16 i;
 109
 110        /* find existing FDIR VSI */
 111        vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 112        if (!vsi)
 113                return -ENOENT;
 114
 115        tx_ring = vsi->tx_rings[0];
 116        dev = tx_ring->dev;
 117
 118        /* we need two descriptors to add/del a filter and we can wait */
 119        for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 120                if (!i)
 121                        return -EAGAIN;
 122                msleep_interruptible(1);
 123        }
 124
 125        dma = dma_map_single(dev, raw_packet,
 126                             I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 127        if (dma_mapping_error(dev, dma))
 128                goto dma_fail;
 129
 130        /* grab the next descriptor */
 131        i = tx_ring->next_to_use;
 132        first = &tx_ring->tx_bi[i];
 133        i40e_fdir(tx_ring, fdir_data, add);
 134
 135        /* Now program a dummy descriptor */
 136        i = tx_ring->next_to_use;
 137        tx_desc = I40E_TX_DESC(tx_ring, i);
 138        tx_buf = &tx_ring->tx_bi[i];
 139
 140        tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 141
 142        memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 143
 144        /* record length, and DMA address */
 145        dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 146        dma_unmap_addr_set(tx_buf, dma, dma);
 147
 148        tx_desc->buffer_addr = cpu_to_le64(dma);
 149        td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 150
 151        tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 152        tx_buf->raw_buf = (void *)raw_packet;
 153
 154        tx_desc->cmd_type_offset_bsz =
 155                build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 156
 157        /* Force memory writes to complete before letting h/w
 158         * know there are new descriptors to fetch.
 159         */
 160        wmb();
 161
 162        /* Mark the data descriptor to be watched */
 163        first->next_to_watch = tx_desc;
 164
 165        writel(tx_ring->next_to_use, tx_ring->tail);
 166        return 0;
 167
 168dma_fail:
 169        return -1;
 170}
 171
 172#define IP_HEADER_OFFSET 14
 173#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 174/**
 175 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 176 * @vsi: pointer to the targeted VSI
 177 * @fd_data: the flow director data required for the FDir descriptor
 178 * @add: true adds a filter, false removes it
 179 *
 180 * Returns 0 if the filters were successfully added or removed
 181 **/
 182static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 183                                   struct i40e_fdir_filter *fd_data,
 184                                   bool add)
 185{
 186        struct i40e_pf *pf = vsi->back;
 187        struct udphdr *udp;
 188        struct iphdr *ip;
 189        u8 *raw_packet;
 190        int ret;
 191        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 192                0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 193                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 194
 195        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 196        if (!raw_packet)
 197                return -ENOMEM;
 198        memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 199
 200        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 201        udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 202              + sizeof(struct iphdr));
 203
 204        ip->daddr = fd_data->dst_ip;
 205        udp->dest = fd_data->dst_port;
 206        ip->saddr = fd_data->src_ip;
 207        udp->source = fd_data->src_port;
 208
 209        if (fd_data->flex_filter) {
 210                u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 211                __be16 pattern = fd_data->flex_word;
 212                u16 off = fd_data->flex_offset;
 213
 214                *((__force __be16 *)(payload + off)) = pattern;
 215        }
 216
 217        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 218        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 219        if (ret) {
 220                dev_info(&pf->pdev->dev,
 221                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 222                         fd_data->pctype, fd_data->fd_id, ret);
 223                /* Free the packet buffer since it wasn't added to the ring */
 224                kfree(raw_packet);
 225                return -EOPNOTSUPP;
 226        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 227                if (add)
 228                        dev_info(&pf->pdev->dev,
 229                                 "Filter OK for PCTYPE %d loc = %d\n",
 230                                 fd_data->pctype, fd_data->fd_id);
 231                else
 232                        dev_info(&pf->pdev->dev,
 233                                 "Filter deleted for PCTYPE %d loc = %d\n",
 234                                 fd_data->pctype, fd_data->fd_id);
 235        }
 236
 237        if (add)
 238                pf->fd_udp4_filter_cnt++;
 239        else
 240                pf->fd_udp4_filter_cnt--;
 241
 242        return 0;
 243}
 244
 245#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 246/**
 247 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 248 * @vsi: pointer to the targeted VSI
 249 * @fd_data: the flow director data required for the FDir descriptor
 250 * @add: true adds a filter, false removes it
 251 *
 252 * Returns 0 if the filters were successfully added or removed
 253 **/
 254static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 255                                   struct i40e_fdir_filter *fd_data,
 256                                   bool add)
 257{
 258        struct i40e_pf *pf = vsi->back;
 259        struct tcphdr *tcp;
 260        struct iphdr *ip;
 261        u8 *raw_packet;
 262        int ret;
 263        /* Dummy packet */
 264        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 265                0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 266                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 267                0x0, 0x72, 0, 0, 0, 0};
 268
 269        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 270        if (!raw_packet)
 271                return -ENOMEM;
 272        memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 273
 274        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 275        tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 276              + sizeof(struct iphdr));
 277
 278        ip->daddr = fd_data->dst_ip;
 279        tcp->dest = fd_data->dst_port;
 280        ip->saddr = fd_data->src_ip;
 281        tcp->source = fd_data->src_port;
 282
 283        if (fd_data->flex_filter) {
 284                u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 285                __be16 pattern = fd_data->flex_word;
 286                u16 off = fd_data->flex_offset;
 287
 288                *((__force __be16 *)(payload + off)) = pattern;
 289        }
 290
 291        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 292        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 293        if (ret) {
 294                dev_info(&pf->pdev->dev,
 295                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 296                         fd_data->pctype, fd_data->fd_id, ret);
 297                /* Free the packet buffer since it wasn't added to the ring */
 298                kfree(raw_packet);
 299                return -EOPNOTSUPP;
 300        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 301                if (add)
 302                        dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 303                                 fd_data->pctype, fd_data->fd_id);
 304                else
 305                        dev_info(&pf->pdev->dev,
 306                                 "Filter deleted for PCTYPE %d loc = %d\n",
 307                                 fd_data->pctype, fd_data->fd_id);
 308        }
 309
 310        if (add) {
 311                pf->fd_tcp4_filter_cnt++;
 312                if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 313                    I40E_DEBUG_FD & pf->hw.debug_mask)
 314                        dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 315                set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 316        } else {
 317                pf->fd_tcp4_filter_cnt--;
 318        }
 319
 320        return 0;
 321}
 322
 323#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 324/**
 325 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 326 * a specific flow spec
 327 * @vsi: pointer to the targeted VSI
 328 * @fd_data: the flow director data required for the FDir descriptor
 329 * @add: true adds a filter, false removes it
 330 *
 331 * Returns 0 if the filters were successfully added or removed
 332 **/
 333static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 334                                    struct i40e_fdir_filter *fd_data,
 335                                    bool add)
 336{
 337        struct i40e_pf *pf = vsi->back;
 338        struct sctphdr *sctp;
 339        struct iphdr *ip;
 340        u8 *raw_packet;
 341        int ret;
 342        /* Dummy packet */
 343        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 344                0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 345                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 346
 347        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 348        if (!raw_packet)
 349                return -ENOMEM;
 350        memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 351
 352        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 353        sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 354              + sizeof(struct iphdr));
 355
 356        ip->daddr = fd_data->dst_ip;
 357        sctp->dest = fd_data->dst_port;
 358        ip->saddr = fd_data->src_ip;
 359        sctp->source = fd_data->src_port;
 360
 361        if (fd_data->flex_filter) {
 362                u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 363                __be16 pattern = fd_data->flex_word;
 364                u16 off = fd_data->flex_offset;
 365
 366                *((__force __be16 *)(payload + off)) = pattern;
 367        }
 368
 369        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 370        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 371        if (ret) {
 372                dev_info(&pf->pdev->dev,
 373                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 374                         fd_data->pctype, fd_data->fd_id, ret);
 375                /* Free the packet buffer since it wasn't added to the ring */
 376                kfree(raw_packet);
 377                return -EOPNOTSUPP;
 378        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 379                if (add)
 380                        dev_info(&pf->pdev->dev,
 381                                 "Filter OK for PCTYPE %d loc = %d\n",
 382                                 fd_data->pctype, fd_data->fd_id);
 383                else
 384                        dev_info(&pf->pdev->dev,
 385                                 "Filter deleted for PCTYPE %d loc = %d\n",
 386                                 fd_data->pctype, fd_data->fd_id);
 387        }
 388
 389        if (add)
 390                pf->fd_sctp4_filter_cnt++;
 391        else
 392                pf->fd_sctp4_filter_cnt--;
 393
 394        return 0;
 395}
 396
 397#define I40E_IP_DUMMY_PACKET_LEN 34
 398/**
 399 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 400 * a specific flow spec
 401 * @vsi: pointer to the targeted VSI
 402 * @fd_data: the flow director data required for the FDir descriptor
 403 * @add: true adds a filter, false removes it
 404 *
 405 * Returns 0 if the filters were successfully added or removed
 406 **/
 407static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 408                                  struct i40e_fdir_filter *fd_data,
 409                                  bool add)
 410{
 411        struct i40e_pf *pf = vsi->back;
 412        struct iphdr *ip;
 413        u8 *raw_packet;
 414        int ret;
 415        int i;
 416        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 417                0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 418                0, 0, 0, 0};
 419
 420        for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 421             i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
 422                raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 423                if (!raw_packet)
 424                        return -ENOMEM;
 425                memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 426                ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 427
 428                ip->saddr = fd_data->src_ip;
 429                ip->daddr = fd_data->dst_ip;
 430                ip->protocol = 0;
 431
 432                if (fd_data->flex_filter) {
 433                        u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 434                        __be16 pattern = fd_data->flex_word;
 435                        u16 off = fd_data->flex_offset;
 436
 437                        *((__force __be16 *)(payload + off)) = pattern;
 438                }
 439
 440                fd_data->pctype = i;
 441                ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 442                if (ret) {
 443                        dev_info(&pf->pdev->dev,
 444                                 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 445                                 fd_data->pctype, fd_data->fd_id, ret);
 446                        /* The packet buffer wasn't added to the ring so we
 447                         * need to free it now.
 448                         */
 449                        kfree(raw_packet);
 450                        return -EOPNOTSUPP;
 451                } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 452                        if (add)
 453                                dev_info(&pf->pdev->dev,
 454                                         "Filter OK for PCTYPE %d loc = %d\n",
 455                                         fd_data->pctype, fd_data->fd_id);
 456                        else
 457                                dev_info(&pf->pdev->dev,
 458                                         "Filter deleted for PCTYPE %d loc = %d\n",
 459                                         fd_data->pctype, fd_data->fd_id);
 460                }
 461        }
 462
 463        if (add)
 464                pf->fd_ip4_filter_cnt++;
 465        else
 466                pf->fd_ip4_filter_cnt--;
 467
 468        return 0;
 469}
 470
 471/**
 472 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 473 * @vsi: pointer to the targeted VSI
 474 * @input: filter to add or delete
 475 * @add: true adds a filter, false removes it
 476 *
 477 **/
 478int i40e_add_del_fdir(struct i40e_vsi *vsi,
 479                      struct i40e_fdir_filter *input, bool add)
 480{
 481        struct i40e_pf *pf = vsi->back;
 482        int ret;
 483
 484        switch (input->flow_type & ~FLOW_EXT) {
 485        case TCP_V4_FLOW:
 486                ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 487                break;
 488        case UDP_V4_FLOW:
 489                ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 490                break;
 491        case SCTP_V4_FLOW:
 492                ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 493                break;
 494        case IP_USER_FLOW:
 495                switch (input->ip4_proto) {
 496                case IPPROTO_TCP:
 497                        ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 498                        break;
 499                case IPPROTO_UDP:
 500                        ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 501                        break;
 502                case IPPROTO_SCTP:
 503                        ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 504                        break;
 505                case IPPROTO_IP:
 506                        ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 507                        break;
 508                default:
 509                        /* We cannot support masking based on protocol */
 510                        dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 511                                 input->ip4_proto);
 512                        return -EINVAL;
 513                }
 514                break;
 515        default:
 516                dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 517                         input->flow_type);
 518                return -EINVAL;
 519        }
 520
 521        /* The buffer allocated here will be normally be freed by
 522         * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 523         * completion. In the event of an error adding the buffer to the FDIR
 524         * ring, it will immediately be freed. It may also be freed by
 525         * i40e_clean_tx_ring() when closing the VSI.
 526         */
 527        return ret;
 528}
 529
 530/**
 531 * i40e_fd_handle_status - check the Programming Status for FD
 532 * @rx_ring: the Rx ring for this descriptor
 533 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 534 * @prog_id: the id originally used for programming
 535 *
 536 * This is used to verify if the FD programming or invalidation
 537 * requested by SW to the HW is successful or not and take actions accordingly.
 538 **/
 539static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 540                                  union i40e_rx_desc *rx_desc, u8 prog_id)
 541{
 542        struct i40e_pf *pf = rx_ring->vsi->back;
 543        struct pci_dev *pdev = pf->pdev;
 544        u32 fcnt_prog, fcnt_avail;
 545        u32 error;
 546        u64 qw;
 547
 548        qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 549        error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 550                I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 551
 552        if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 553                pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 554                if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 555                    (I40E_DEBUG_FD & pf->hw.debug_mask))
 556                        dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 557                                 pf->fd_inv);
 558
 559                /* Check if the programming error is for ATR.
 560                 * If so, auto disable ATR and set a state for
 561                 * flush in progress. Next time we come here if flush is in
 562                 * progress do nothing, once flush is complete the state will
 563                 * be cleared.
 564                 */
 565                if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 566                        return;
 567
 568                pf->fd_add_err++;
 569                /* store the current atr filter count */
 570                pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 571
 572                if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 573                    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 574                        /* These set_bit() calls aren't atomic with the
 575                         * test_bit() here, but worse case we potentially
 576                         * disable ATR and queue a flush right after SB
 577                         * support is re-enabled. That shouldn't cause an
 578                         * issue in practice
 579                         */
 580                        set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 581                        set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 582                }
 583
 584                /* filter programming failed most likely due to table full */
 585                fcnt_prog = i40e_get_global_fd_count(pf);
 586                fcnt_avail = pf->fdir_pf_filter_count;
 587                /* If ATR is running fcnt_prog can quickly change,
 588                 * if we are very close to full, it makes sense to disable
 589                 * FD ATR/SB and then re-enable it when there is room.
 590                 */
 591                if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 592                        if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 593                            !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 594                                              pf->state))
 595                                if (I40E_DEBUG_FD & pf->hw.debug_mask)
 596                                        dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 597                }
 598        } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 599                if (I40E_DEBUG_FD & pf->hw.debug_mask)
 600                        dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 601                                 rx_desc->wb.qword0.hi_dword.fd_id);
 602        }
 603}
 604
 605/**
 606 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 607 * @ring:      the ring that owns the buffer
 608 * @tx_buffer: the buffer to free
 609 **/
 610static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 611                                            struct i40e_tx_buffer *tx_buffer)
 612{
 613        if (tx_buffer->skb) {
 614                if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 615                        kfree(tx_buffer->raw_buf);
 616                else if (ring_is_xdp(ring))
 617                        xdp_return_frame(tx_buffer->xdpf);
 618                else
 619                        dev_kfree_skb_any(tx_buffer->skb);
 620                if (dma_unmap_len(tx_buffer, len))
 621                        dma_unmap_single(ring->dev,
 622                                         dma_unmap_addr(tx_buffer, dma),
 623                                         dma_unmap_len(tx_buffer, len),
 624                                         DMA_TO_DEVICE);
 625        } else if (dma_unmap_len(tx_buffer, len)) {
 626                dma_unmap_page(ring->dev,
 627                               dma_unmap_addr(tx_buffer, dma),
 628                               dma_unmap_len(tx_buffer, len),
 629                               DMA_TO_DEVICE);
 630        }
 631
 632        tx_buffer->next_to_watch = NULL;
 633        tx_buffer->skb = NULL;
 634        dma_unmap_len_set(tx_buffer, len, 0);
 635        /* tx_buffer must be completely set up in the transmit path */
 636}
 637
 638/**
 639 * i40e_clean_tx_ring - Free any empty Tx buffers
 640 * @tx_ring: ring to be cleaned
 641 **/
 642void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 643{
 644        unsigned long bi_size;
 645        u16 i;
 646
 647        /* ring already cleared, nothing to do */
 648        if (!tx_ring->tx_bi)
 649                return;
 650
 651        /* Free all the Tx ring sk_buffs */
 652        for (i = 0; i < tx_ring->count; i++)
 653                i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 654
 655        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 656        memset(tx_ring->tx_bi, 0, bi_size);
 657
 658        /* Zero out the descriptor ring */
 659        memset(tx_ring->desc, 0, tx_ring->size);
 660
 661        tx_ring->next_to_use = 0;
 662        tx_ring->next_to_clean = 0;
 663
 664        if (!tx_ring->netdev)
 665                return;
 666
 667        /* cleanup Tx queue statistics */
 668        netdev_tx_reset_queue(txring_txq(tx_ring));
 669}
 670
 671/**
 672 * i40e_free_tx_resources - Free Tx resources per queue
 673 * @tx_ring: Tx descriptor ring for a specific queue
 674 *
 675 * Free all transmit software resources
 676 **/
 677void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 678{
 679        i40e_clean_tx_ring(tx_ring);
 680        kfree(tx_ring->tx_bi);
 681        tx_ring->tx_bi = NULL;
 682
 683        if (tx_ring->desc) {
 684                dma_free_coherent(tx_ring->dev, tx_ring->size,
 685                                  tx_ring->desc, tx_ring->dma);
 686                tx_ring->desc = NULL;
 687        }
 688}
 689
 690/**
 691 * i40e_get_tx_pending - how many tx descriptors not processed
 692 * @ring: the ring of descriptors
 693 * @in_sw: use SW variables
 694 *
 695 * Since there is no access to the ring head register
 696 * in XL710, we need to use our local copies
 697 **/
 698u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 699{
 700        u32 head, tail;
 701
 702        if (!in_sw) {
 703                head = i40e_get_head(ring);
 704                tail = readl(ring->tail);
 705        } else {
 706                head = ring->next_to_clean;
 707                tail = ring->next_to_use;
 708        }
 709
 710        if (head != tail)
 711                return (head < tail) ?
 712                        tail - head : (tail + ring->count - head);
 713
 714        return 0;
 715}
 716
 717/**
 718 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 719 * @vsi:  pointer to vsi struct with tx queues
 720 *
 721 * VSI has netdev and netdev has TX queues. This function is to check each of
 722 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 723 **/
 724void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 725{
 726        struct i40e_ring *tx_ring = NULL;
 727        struct net_device *netdev;
 728        unsigned int i;
 729        int packets;
 730
 731        if (!vsi)
 732                return;
 733
 734        if (test_bit(__I40E_VSI_DOWN, vsi->state))
 735                return;
 736
 737        netdev = vsi->netdev;
 738        if (!netdev)
 739                return;
 740
 741        if (!netif_carrier_ok(netdev))
 742                return;
 743
 744        for (i = 0; i < vsi->num_queue_pairs; i++) {
 745                tx_ring = vsi->tx_rings[i];
 746                if (tx_ring && tx_ring->desc) {
 747                        /* If packet counter has not changed the queue is
 748                         * likely stalled, so force an interrupt for this
 749                         * queue.
 750                         *
 751                         * prev_pkt_ctr would be negative if there was no
 752                         * pending work.
 753                         */
 754                        packets = tx_ring->stats.packets & INT_MAX;
 755                        if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 756                                i40e_force_wb(vsi, tx_ring->q_vector);
 757                                continue;
 758                        }
 759
 760                        /* Memory barrier between read of packet count and call
 761                         * to i40e_get_tx_pending()
 762                         */
 763                        smp_rmb();
 764                        tx_ring->tx_stats.prev_pkt_ctr =
 765                            i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 766                }
 767        }
 768}
 769
 770#define WB_STRIDE 4
 771
 772/**
 773 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 774 * @vsi: the VSI we care about
 775 * @tx_ring: Tx ring to clean
 776 * @napi_budget: Used to determine if we are in netpoll
 777 *
 778 * Returns true if there's any budget left (e.g. the clean is finished)
 779 **/
 780static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 781                              struct i40e_ring *tx_ring, int napi_budget)
 782{
 783        u16 i = tx_ring->next_to_clean;
 784        struct i40e_tx_buffer *tx_buf;
 785        struct i40e_tx_desc *tx_head;
 786        struct i40e_tx_desc *tx_desc;
 787        unsigned int total_bytes = 0, total_packets = 0;
 788        unsigned int budget = vsi->work_limit;
 789
 790        tx_buf = &tx_ring->tx_bi[i];
 791        tx_desc = I40E_TX_DESC(tx_ring, i);
 792        i -= tx_ring->count;
 793
 794        tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 795
 796        do {
 797                struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 798
 799                /* if next_to_watch is not set then there is no work pending */
 800                if (!eop_desc)
 801                        break;
 802
 803                /* prevent any other reads prior to eop_desc */
 804                smp_rmb();
 805
 806                i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 807                /* we have caught up to head, no work left to do */
 808                if (tx_head == tx_desc)
 809                        break;
 810
 811                /* clear next_to_watch to prevent false hangs */
 812                tx_buf->next_to_watch = NULL;
 813
 814                /* update the statistics for this packet */
 815                total_bytes += tx_buf->bytecount;
 816                total_packets += tx_buf->gso_segs;
 817
 818                /* free the skb/XDP data */
 819                if (ring_is_xdp(tx_ring))
 820                        xdp_return_frame(tx_buf->xdpf);
 821                else
 822                        napi_consume_skb(tx_buf->skb, napi_budget);
 823
 824                /* unmap skb header data */
 825                dma_unmap_single(tx_ring->dev,
 826                                 dma_unmap_addr(tx_buf, dma),
 827                                 dma_unmap_len(tx_buf, len),
 828                                 DMA_TO_DEVICE);
 829
 830                /* clear tx_buffer data */
 831                tx_buf->skb = NULL;
 832                dma_unmap_len_set(tx_buf, len, 0);
 833
 834                /* unmap remaining buffers */
 835                while (tx_desc != eop_desc) {
 836                        i40e_trace(clean_tx_irq_unmap,
 837                                   tx_ring, tx_desc, tx_buf);
 838
 839                        tx_buf++;
 840                        tx_desc++;
 841                        i++;
 842                        if (unlikely(!i)) {
 843                                i -= tx_ring->count;
 844                                tx_buf = tx_ring->tx_bi;
 845                                tx_desc = I40E_TX_DESC(tx_ring, 0);
 846                        }
 847
 848                        /* unmap any remaining paged data */
 849                        if (dma_unmap_len(tx_buf, len)) {
 850                                dma_unmap_page(tx_ring->dev,
 851                                               dma_unmap_addr(tx_buf, dma),
 852                                               dma_unmap_len(tx_buf, len),
 853                                               DMA_TO_DEVICE);
 854                                dma_unmap_len_set(tx_buf, len, 0);
 855                        }
 856                }
 857
 858                /* move us one more past the eop_desc for start of next pkt */
 859                tx_buf++;
 860                tx_desc++;
 861                i++;
 862                if (unlikely(!i)) {
 863                        i -= tx_ring->count;
 864                        tx_buf = tx_ring->tx_bi;
 865                        tx_desc = I40E_TX_DESC(tx_ring, 0);
 866                }
 867
 868                prefetch(tx_desc);
 869
 870                /* update budget accounting */
 871                budget--;
 872        } while (likely(budget));
 873
 874        i += tx_ring->count;
 875        tx_ring->next_to_clean = i;
 876        u64_stats_update_begin(&tx_ring->syncp);
 877        tx_ring->stats.bytes += total_bytes;
 878        tx_ring->stats.packets += total_packets;
 879        u64_stats_update_end(&tx_ring->syncp);
 880        tx_ring->q_vector->tx.total_bytes += total_bytes;
 881        tx_ring->q_vector->tx.total_packets += total_packets;
 882
 883        if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 884                /* check to see if there are < 4 descriptors
 885                 * waiting to be written back, then kick the hardware to force
 886                 * them to be written back in case we stay in NAPI.
 887                 * In this mode on X722 we do not enable Interrupt.
 888                 */
 889                unsigned int j = i40e_get_tx_pending(tx_ring, false);
 890
 891                if (budget &&
 892                    ((j / WB_STRIDE) == 0) && (j > 0) &&
 893                    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
 894                    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 895                        tx_ring->arm_wb = true;
 896        }
 897
 898        if (ring_is_xdp(tx_ring))
 899                return !!budget;
 900
 901        /* notify netdev of completed buffers */
 902        netdev_tx_completed_queue(txring_txq(tx_ring),
 903                                  total_packets, total_bytes);
 904
 905#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 906        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 907                     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 908                /* Make sure that anybody stopping the queue after this
 909                 * sees the new next_to_clean.
 910                 */
 911                smp_mb();
 912                if (__netif_subqueue_stopped(tx_ring->netdev,
 913                                             tx_ring->queue_index) &&
 914                   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 915                        netif_wake_subqueue(tx_ring->netdev,
 916                                            tx_ring->queue_index);
 917                        ++tx_ring->tx_stats.restart_queue;
 918                }
 919        }
 920
 921        return !!budget;
 922}
 923
 924/**
 925 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 926 * @vsi: the VSI we care about
 927 * @q_vector: the vector on which to enable writeback
 928 *
 929 **/
 930static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 931                                  struct i40e_q_vector *q_vector)
 932{
 933        u16 flags = q_vector->tx.ring[0].flags;
 934        u32 val;
 935
 936        if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 937                return;
 938
 939        if (q_vector->arm_wb_state)
 940                return;
 941
 942        if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 943                val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 944                      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 945
 946                wr32(&vsi->back->hw,
 947                     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 948                     val);
 949        } else {
 950                val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 951                      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 952
 953                wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 954        }
 955        q_vector->arm_wb_state = true;
 956}
 957
 958/**
 959 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 960 * @vsi: the VSI we care about
 961 * @q_vector: the vector  on which to force writeback
 962 *
 963 **/
 964void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 965{
 966        if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 967                u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 968                          I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 969                          I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 970                          I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 971                          /* allow 00 to be written to the index */
 972
 973                wr32(&vsi->back->hw,
 974                     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 975        } else {
 976                u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 977                          I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 978                          I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 979                          I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 980                        /* allow 00 to be written to the index */
 981
 982                wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 983        }
 984}
 985
 986static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
 987                                        struct i40e_ring_container *rc)
 988{
 989        return &q_vector->rx == rc;
 990}
 991
 992static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
 993{
 994        unsigned int divisor;
 995
 996        switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
 997        case I40E_LINK_SPEED_40GB:
 998                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
 999                break;
1000        case I40E_LINK_SPEED_25GB:
1001        case I40E_LINK_SPEED_20GB:
1002                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1003                break;
1004        default:
1005        case I40E_LINK_SPEED_10GB:
1006                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1007                break;
1008        case I40E_LINK_SPEED_1GB:
1009        case I40E_LINK_SPEED_100MB:
1010                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1011                break;
1012        }
1013
1014        return divisor;
1015}
1016
1017/**
1018 * i40e_update_itr - update the dynamic ITR value based on statistics
1019 * @q_vector: structure containing interrupt and ring information
1020 * @rc: structure containing ring performance data
1021 *
1022 * Stores a new ITR value based on packets and byte
1023 * counts during the last interrupt.  The advantage of per interrupt
1024 * computation is faster updates and more accurate ITR for the current
1025 * traffic pattern.  Constants in this function were computed
1026 * based on theoretical maximum wire speed and thresholds were set based
1027 * on testing data as well as attempting to minimize response time
1028 * while increasing bulk throughput.
1029 **/
1030static void i40e_update_itr(struct i40e_q_vector *q_vector,
1031                            struct i40e_ring_container *rc)
1032{
1033        unsigned int avg_wire_size, packets, bytes, itr;
1034        unsigned long next_update = jiffies;
1035
1036        /* If we don't have any rings just leave ourselves set for maximum
1037         * possible latency so we take ourselves out of the equation.
1038         */
1039        if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1040                return;
1041
1042        /* For Rx we want to push the delay up and default to low latency.
1043         * for Tx we want to pull the delay down and default to high latency.
1044         */
1045        itr = i40e_container_is_rx(q_vector, rc) ?
1046              I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1047              I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1048
1049        /* If we didn't update within up to 1 - 2 jiffies we can assume
1050         * that either packets are coming in so slow there hasn't been
1051         * any work, or that there is so much work that NAPI is dealing
1052         * with interrupt moderation and we don't need to do anything.
1053         */
1054        if (time_after(next_update, rc->next_update))
1055                goto clear_counts;
1056
1057        /* If itr_countdown is set it means we programmed an ITR within
1058         * the last 4 interrupt cycles. This has a side effect of us
1059         * potentially firing an early interrupt. In order to work around
1060         * this we need to throw out any data received for a few
1061         * interrupts following the update.
1062         */
1063        if (q_vector->itr_countdown) {
1064                itr = rc->target_itr;
1065                goto clear_counts;
1066        }
1067
1068        packets = rc->total_packets;
1069        bytes = rc->total_bytes;
1070
1071        if (i40e_container_is_rx(q_vector, rc)) {
1072                /* If Rx there are 1 to 4 packets and bytes are less than
1073                 * 9000 assume insufficient data to use bulk rate limiting
1074                 * approach unless Tx is already in bulk rate limiting. We
1075                 * are likely latency driven.
1076                 */
1077                if (packets && packets < 4 && bytes < 9000 &&
1078                    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1079                        itr = I40E_ITR_ADAPTIVE_LATENCY;
1080                        goto adjust_by_size;
1081                }
1082        } else if (packets < 4) {
1083                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1084                 * bulk mode and we are receiving 4 or fewer packets just
1085                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1086                 * that the Rx can relax.
1087                 */
1088                if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1089                    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1090                     I40E_ITR_ADAPTIVE_MAX_USECS)
1091                        goto clear_counts;
1092        } else if (packets > 32) {
1093                /* If we have processed over 32 packets in a single interrupt
1094                 * for Tx assume we need to switch over to "bulk" mode.
1095                 */
1096                rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1097        }
1098
1099        /* We have no packets to actually measure against. This means
1100         * either one of the other queues on this vector is active or
1101         * we are a Tx queue doing TSO with too high of an interrupt rate.
1102         *
1103         * Between 4 and 56 we can assume that our current interrupt delay
1104         * is only slightly too low. As such we should increase it by a small
1105         * fixed amount.
1106         */
1107        if (packets < 56) {
1108                itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1109                if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1110                        itr &= I40E_ITR_ADAPTIVE_LATENCY;
1111                        itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1112                }
1113                goto clear_counts;
1114        }
1115
1116        if (packets <= 256) {
1117                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1118                itr &= I40E_ITR_MASK;
1119
1120                /* Between 56 and 112 is our "goldilocks" zone where we are
1121                 * working out "just right". Just report that our current
1122                 * ITR is good for us.
1123                 */
1124                if (packets <= 112)
1125                        goto clear_counts;
1126
1127                /* If packet count is 128 or greater we are likely looking
1128                 * at a slight overrun of the delay we want. Try halving
1129                 * our delay to see if that will cut the number of packets
1130                 * in half per interrupt.
1131                 */
1132                itr /= 2;
1133                itr &= I40E_ITR_MASK;
1134                if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1135                        itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1136
1137                goto clear_counts;
1138        }
1139
1140        /* The paths below assume we are dealing with a bulk ITR since
1141         * number of packets is greater than 256. We are just going to have
1142         * to compute a value and try to bring the count under control,
1143         * though for smaller packet sizes there isn't much we can do as
1144         * NAPI polling will likely be kicking in sooner rather than later.
1145         */
1146        itr = I40E_ITR_ADAPTIVE_BULK;
1147
1148adjust_by_size:
1149        /* If packet counts are 256 or greater we can assume we have a gross
1150         * overestimation of what the rate should be. Instead of trying to fine
1151         * tune it just use the formula below to try and dial in an exact value
1152         * give the current packet size of the frame.
1153         */
1154        avg_wire_size = bytes / packets;
1155
1156        /* The following is a crude approximation of:
1157         *  wmem_default / (size + overhead) = desired_pkts_per_int
1158         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1159         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1160         *
1161         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1162         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1163         * formula down to
1164         *
1165         *  (170 * (size + 24)) / (size + 640) = ITR
1166         *
1167         * We first do some math on the packet size and then finally bitshift
1168         * by 8 after rounding up. We also have to account for PCIe link speed
1169         * difference as ITR scales based on this.
1170         */
1171        if (avg_wire_size <= 60) {
1172                /* Start at 250k ints/sec */
1173                avg_wire_size = 4096;
1174        } else if (avg_wire_size <= 380) {
1175                /* 250K ints/sec to 60K ints/sec */
1176                avg_wire_size *= 40;
1177                avg_wire_size += 1696;
1178        } else if (avg_wire_size <= 1084) {
1179                /* 60K ints/sec to 36K ints/sec */
1180                avg_wire_size *= 15;
1181                avg_wire_size += 11452;
1182        } else if (avg_wire_size <= 1980) {
1183                /* 36K ints/sec to 30K ints/sec */
1184                avg_wire_size *= 5;
1185                avg_wire_size += 22420;
1186        } else {
1187                /* plateau at a limit of 30K ints/sec */
1188                avg_wire_size = 32256;
1189        }
1190
1191        /* If we are in low latency mode halve our delay which doubles the
1192         * rate to somewhere between 100K to 16K ints/sec
1193         */
1194        if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1195                avg_wire_size /= 2;
1196
1197        /* Resultant value is 256 times larger than it needs to be. This
1198         * gives us room to adjust the value as needed to either increase
1199         * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1200         *
1201         * Use addition as we have already recorded the new latency flag
1202         * for the ITR value.
1203         */
1204        itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1205               I40E_ITR_ADAPTIVE_MIN_INC;
1206
1207        if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1208                itr &= I40E_ITR_ADAPTIVE_LATENCY;
1209                itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1210        }
1211
1212clear_counts:
1213        /* write back value */
1214        rc->target_itr = itr;
1215
1216        /* next update should occur within next jiffy */
1217        rc->next_update = next_update + 1;
1218
1219        rc->total_bytes = 0;
1220        rc->total_packets = 0;
1221}
1222
1223/**
1224 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1225 * @rx_ring: rx descriptor ring to store buffers on
1226 * @old_buff: donor buffer to have page reused
1227 *
1228 * Synchronizes page for reuse by the adapter
1229 **/
1230static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1231                               struct i40e_rx_buffer *old_buff)
1232{
1233        struct i40e_rx_buffer *new_buff;
1234        u16 nta = rx_ring->next_to_alloc;
1235
1236        new_buff = &rx_ring->rx_bi[nta];
1237
1238        /* update, and store next to alloc */
1239        nta++;
1240        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1241
1242        /* transfer page from old buffer to new buffer */
1243        new_buff->dma           = old_buff->dma;
1244        new_buff->page          = old_buff->page;
1245        new_buff->page_offset   = old_buff->page_offset;
1246        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1247}
1248
1249/**
1250 * i40e_rx_is_programming_status - check for programming status descriptor
1251 * @qw: qword representing status_error_len in CPU ordering
1252 *
1253 * The value of in the descriptor length field indicate if this
1254 * is a programming status descriptor for flow director or FCoE
1255 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1256 * it is a packet descriptor.
1257 **/
1258static inline bool i40e_rx_is_programming_status(u64 qw)
1259{
1260        /* The Rx filter programming status and SPH bit occupy the same
1261         * spot in the descriptor. Since we don't support packet split we
1262         * can just reuse the bit as an indication that this is a
1263         * programming status descriptor.
1264         */
1265        return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1266}
1267
1268/**
1269 * i40e_clean_programming_status - clean the programming status descriptor
1270 * @rx_ring: the rx ring that has this descriptor
1271 * @rx_desc: the rx descriptor written back by HW
1272 * @qw: qword representing status_error_len in CPU ordering
1273 *
1274 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1275 * status being successful or not and take actions accordingly. FCoE should
1276 * handle its context/filter programming/invalidation status and take actions.
1277 *
1278 **/
1279static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1280                                          union i40e_rx_desc *rx_desc,
1281                                          u64 qw)
1282{
1283        struct i40e_rx_buffer *rx_buffer;
1284        u32 ntc = rx_ring->next_to_clean;
1285        u8 id;
1286
1287        /* fetch, update, and store next to clean */
1288        rx_buffer = &rx_ring->rx_bi[ntc++];
1289        ntc = (ntc < rx_ring->count) ? ntc : 0;
1290        rx_ring->next_to_clean = ntc;
1291
1292        prefetch(I40E_RX_DESC(rx_ring, ntc));
1293
1294        /* place unused page back on the ring */
1295        i40e_reuse_rx_page(rx_ring, rx_buffer);
1296        rx_ring->rx_stats.page_reuse_count++;
1297
1298        /* clear contents of buffer_info */
1299        rx_buffer->page = NULL;
1300
1301        id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1302                  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1303
1304        if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1305                i40e_fd_handle_status(rx_ring, rx_desc, id);
1306}
1307
1308/**
1309 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1310 * @tx_ring: the tx ring to set up
1311 *
1312 * Return 0 on success, negative on error
1313 **/
1314int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1315{
1316        struct device *dev = tx_ring->dev;
1317        int bi_size;
1318
1319        if (!dev)
1320                return -ENOMEM;
1321
1322        /* warn if we are about to overwrite the pointer */
1323        WARN_ON(tx_ring->tx_bi);
1324        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1325        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1326        if (!tx_ring->tx_bi)
1327                goto err;
1328
1329        u64_stats_init(&tx_ring->syncp);
1330
1331        /* round up to nearest 4K */
1332        tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1333        /* add u32 for head writeback, align after this takes care of
1334         * guaranteeing this is at least one cache line in size
1335         */
1336        tx_ring->size += sizeof(u32);
1337        tx_ring->size = ALIGN(tx_ring->size, 4096);
1338        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1339                                           &tx_ring->dma, GFP_KERNEL);
1340        if (!tx_ring->desc) {
1341                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1342                         tx_ring->size);
1343                goto err;
1344        }
1345
1346        tx_ring->next_to_use = 0;
1347        tx_ring->next_to_clean = 0;
1348        tx_ring->tx_stats.prev_pkt_ctr = -1;
1349        return 0;
1350
1351err:
1352        kfree(tx_ring->tx_bi);
1353        tx_ring->tx_bi = NULL;
1354        return -ENOMEM;
1355}
1356
1357/**
1358 * i40e_clean_rx_ring - Free Rx buffers
1359 * @rx_ring: ring to be cleaned
1360 **/
1361void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1362{
1363        unsigned long bi_size;
1364        u16 i;
1365
1366        /* ring already cleared, nothing to do */
1367        if (!rx_ring->rx_bi)
1368                return;
1369
1370        if (rx_ring->skb) {
1371                dev_kfree_skb(rx_ring->skb);
1372                rx_ring->skb = NULL;
1373        }
1374
1375        /* Free all the Rx ring sk_buffs */
1376        for (i = 0; i < rx_ring->count; i++) {
1377                struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1378
1379                if (!rx_bi->page)
1380                        continue;
1381
1382                /* Invalidate cache lines that may have been written to by
1383                 * device so that we avoid corrupting memory.
1384                 */
1385                dma_sync_single_range_for_cpu(rx_ring->dev,
1386                                              rx_bi->dma,
1387                                              rx_bi->page_offset,
1388                                              rx_ring->rx_buf_len,
1389                                              DMA_FROM_DEVICE);
1390
1391                /* free resources associated with mapping */
1392                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1393                                     i40e_rx_pg_size(rx_ring),
1394                                     DMA_FROM_DEVICE,
1395                                     I40E_RX_DMA_ATTR);
1396
1397                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1398
1399                rx_bi->page = NULL;
1400                rx_bi->page_offset = 0;
1401        }
1402
1403        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1404        memset(rx_ring->rx_bi, 0, bi_size);
1405
1406        /* Zero out the descriptor ring */
1407        memset(rx_ring->desc, 0, rx_ring->size);
1408
1409        rx_ring->next_to_alloc = 0;
1410        rx_ring->next_to_clean = 0;
1411        rx_ring->next_to_use = 0;
1412}
1413
1414/**
1415 * i40e_free_rx_resources - Free Rx resources
1416 * @rx_ring: ring to clean the resources from
1417 *
1418 * Free all receive software resources
1419 **/
1420void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1421{
1422        i40e_clean_rx_ring(rx_ring);
1423        if (rx_ring->vsi->type == I40E_VSI_MAIN)
1424                xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1425        rx_ring->xdp_prog = NULL;
1426        kfree(rx_ring->rx_bi);
1427        rx_ring->rx_bi = NULL;
1428
1429        if (rx_ring->desc) {
1430                dma_free_coherent(rx_ring->dev, rx_ring->size,
1431                                  rx_ring->desc, rx_ring->dma);
1432                rx_ring->desc = NULL;
1433        }
1434}
1435
1436/**
1437 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1438 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1439 *
1440 * Returns 0 on success, negative on failure
1441 **/
1442int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1443{
1444        struct device *dev = rx_ring->dev;
1445        int err = -ENOMEM;
1446        int bi_size;
1447
1448        /* warn if we are about to overwrite the pointer */
1449        WARN_ON(rx_ring->rx_bi);
1450        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1451        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1452        if (!rx_ring->rx_bi)
1453                goto err;
1454
1455        u64_stats_init(&rx_ring->syncp);
1456
1457        /* Round up to nearest 4K */
1458        rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1459        rx_ring->size = ALIGN(rx_ring->size, 4096);
1460        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1461                                           &rx_ring->dma, GFP_KERNEL);
1462
1463        if (!rx_ring->desc) {
1464                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1465                         rx_ring->size);
1466                goto err;
1467        }
1468
1469        rx_ring->next_to_alloc = 0;
1470        rx_ring->next_to_clean = 0;
1471        rx_ring->next_to_use = 0;
1472
1473        /* XDP RX-queue info only needed for RX rings exposed to XDP */
1474        if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1475                err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1476                                       rx_ring->queue_index);
1477                if (err < 0)
1478                        goto err;
1479        }
1480
1481        rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1482
1483        return 0;
1484err:
1485        kfree(rx_ring->rx_bi);
1486        rx_ring->rx_bi = NULL;
1487        return err;
1488}
1489
1490/**
1491 * i40e_release_rx_desc - Store the new tail and head values
1492 * @rx_ring: ring to bump
1493 * @val: new head index
1494 **/
1495static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1496{
1497        rx_ring->next_to_use = val;
1498
1499        /* update next to alloc since we have filled the ring */
1500        rx_ring->next_to_alloc = val;
1501
1502        /* Force memory writes to complete before letting h/w
1503         * know there are new descriptors to fetch.  (Only
1504         * applicable for weak-ordered memory model archs,
1505         * such as IA-64).
1506         */
1507        wmb();
1508        writel(val, rx_ring->tail);
1509}
1510
1511/**
1512 * i40e_rx_offset - Return expected offset into page to access data
1513 * @rx_ring: Ring we are requesting offset of
1514 *
1515 * Returns the offset value for ring into the data buffer.
1516 */
1517static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1518{
1519        return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1520}
1521
1522/**
1523 * i40e_alloc_mapped_page - recycle or make a new page
1524 * @rx_ring: ring to use
1525 * @bi: rx_buffer struct to modify
1526 *
1527 * Returns true if the page was successfully allocated or
1528 * reused.
1529 **/
1530static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1531                                   struct i40e_rx_buffer *bi)
1532{
1533        struct page *page = bi->page;
1534        dma_addr_t dma;
1535
1536        /* since we are recycling buffers we should seldom need to alloc */
1537        if (likely(page)) {
1538                rx_ring->rx_stats.page_reuse_count++;
1539                return true;
1540        }
1541
1542        /* alloc new page for storage */
1543        page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1544        if (unlikely(!page)) {
1545                rx_ring->rx_stats.alloc_page_failed++;
1546                return false;
1547        }
1548
1549        /* map page for use */
1550        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1551                                 i40e_rx_pg_size(rx_ring),
1552                                 DMA_FROM_DEVICE,
1553                                 I40E_RX_DMA_ATTR);
1554
1555        /* if mapping failed free memory back to system since
1556         * there isn't much point in holding memory we can't use
1557         */
1558        if (dma_mapping_error(rx_ring->dev, dma)) {
1559                __free_pages(page, i40e_rx_pg_order(rx_ring));
1560                rx_ring->rx_stats.alloc_page_failed++;
1561                return false;
1562        }
1563
1564        bi->dma = dma;
1565        bi->page = page;
1566        bi->page_offset = i40e_rx_offset(rx_ring);
1567        page_ref_add(page, USHRT_MAX - 1);
1568        bi->pagecnt_bias = USHRT_MAX;
1569
1570        return true;
1571}
1572
1573/**
1574 * i40e_receive_skb - Send a completed packet up the stack
1575 * @rx_ring:  rx ring in play
1576 * @skb: packet to send up
1577 * @vlan_tag: vlan tag for packet
1578 **/
1579static void i40e_receive_skb(struct i40e_ring *rx_ring,
1580                             struct sk_buff *skb, u16 vlan_tag)
1581{
1582        struct i40e_q_vector *q_vector = rx_ring->q_vector;
1583
1584        if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1585            (vlan_tag & VLAN_VID_MASK))
1586                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1587
1588        napi_gro_receive(&q_vector->napi, skb);
1589}
1590
1591/**
1592 * i40e_alloc_rx_buffers - Replace used receive buffers
1593 * @rx_ring: ring to place buffers on
1594 * @cleaned_count: number of buffers to replace
1595 *
1596 * Returns false if all allocations were successful, true if any fail
1597 **/
1598bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1599{
1600        u16 ntu = rx_ring->next_to_use;
1601        union i40e_rx_desc *rx_desc;
1602        struct i40e_rx_buffer *bi;
1603
1604        /* do nothing if no valid netdev defined */
1605        if (!rx_ring->netdev || !cleaned_count)
1606                return false;
1607
1608        rx_desc = I40E_RX_DESC(rx_ring, ntu);
1609        bi = &rx_ring->rx_bi[ntu];
1610
1611        do {
1612                if (!i40e_alloc_mapped_page(rx_ring, bi))
1613                        goto no_buffers;
1614
1615                /* sync the buffer for use by the device */
1616                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1617                                                 bi->page_offset,
1618                                                 rx_ring->rx_buf_len,
1619                                                 DMA_FROM_DEVICE);
1620
1621                /* Refresh the desc even if buffer_addrs didn't change
1622                 * because each write-back erases this info.
1623                 */
1624                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1625
1626                rx_desc++;
1627                bi++;
1628                ntu++;
1629                if (unlikely(ntu == rx_ring->count)) {
1630                        rx_desc = I40E_RX_DESC(rx_ring, 0);
1631                        bi = rx_ring->rx_bi;
1632                        ntu = 0;
1633                }
1634
1635                /* clear the status bits for the next_to_use descriptor */
1636                rx_desc->wb.qword1.status_error_len = 0;
1637
1638                cleaned_count--;
1639        } while (cleaned_count);
1640
1641        if (rx_ring->next_to_use != ntu)
1642                i40e_release_rx_desc(rx_ring, ntu);
1643
1644        return false;
1645
1646no_buffers:
1647        if (rx_ring->next_to_use != ntu)
1648                i40e_release_rx_desc(rx_ring, ntu);
1649
1650        /* make sure to come back via polling to try again after
1651         * allocation failure
1652         */
1653        return true;
1654}
1655
1656/**
1657 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1658 * @vsi: the VSI we care about
1659 * @skb: skb currently being received and modified
1660 * @rx_desc: the receive descriptor
1661 **/
1662static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1663                                    struct sk_buff *skb,
1664                                    union i40e_rx_desc *rx_desc)
1665{
1666        struct i40e_rx_ptype_decoded decoded;
1667        u32 rx_error, rx_status;
1668        bool ipv4, ipv6;
1669        u8 ptype;
1670        u64 qword;
1671
1672        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1673        ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1674        rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1675                   I40E_RXD_QW1_ERROR_SHIFT;
1676        rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1677                    I40E_RXD_QW1_STATUS_SHIFT;
1678        decoded = decode_rx_desc_ptype(ptype);
1679
1680        skb->ip_summed = CHECKSUM_NONE;
1681
1682        skb_checksum_none_assert(skb);
1683
1684        /* Rx csum enabled and ip headers found? */
1685        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1686                return;
1687
1688        /* did the hardware decode the packet and checksum? */
1689        if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1690                return;
1691
1692        /* both known and outer_ip must be set for the below code to work */
1693        if (!(decoded.known && decoded.outer_ip))
1694                return;
1695
1696        ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1697               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1698        ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1699               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1700
1701        if (ipv4 &&
1702            (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1703                         BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1704                goto checksum_fail;
1705
1706        /* likely incorrect csum if alternate IP extension headers found */
1707        if (ipv6 &&
1708            rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1709                /* don't increment checksum err here, non-fatal err */
1710                return;
1711
1712        /* there was some L4 error, count error and punt packet to the stack */
1713        if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1714                goto checksum_fail;
1715
1716        /* handle packets that were not able to be checksummed due
1717         * to arrival speed, in this case the stack can compute
1718         * the csum.
1719         */
1720        if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1721                return;
1722
1723        /* If there is an outer header present that might contain a checksum
1724         * we need to bump the checksum level by 1 to reflect the fact that
1725         * we are indicating we validated the inner checksum.
1726         */
1727        if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1728                skb->csum_level = 1;
1729
1730        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1731        switch (decoded.inner_prot) {
1732        case I40E_RX_PTYPE_INNER_PROT_TCP:
1733        case I40E_RX_PTYPE_INNER_PROT_UDP:
1734        case I40E_RX_PTYPE_INNER_PROT_SCTP:
1735                skb->ip_summed = CHECKSUM_UNNECESSARY;
1736                /* fall though */
1737        default:
1738                break;
1739        }
1740
1741        return;
1742
1743checksum_fail:
1744        vsi->back->hw_csum_rx_error++;
1745}
1746
1747/**
1748 * i40e_ptype_to_htype - get a hash type
1749 * @ptype: the ptype value from the descriptor
1750 *
1751 * Returns a hash type to be used by skb_set_hash
1752 **/
1753static inline int i40e_ptype_to_htype(u8 ptype)
1754{
1755        struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1756
1757        if (!decoded.known)
1758                return PKT_HASH_TYPE_NONE;
1759
1760        if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1761            decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1762                return PKT_HASH_TYPE_L4;
1763        else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1764                 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1765                return PKT_HASH_TYPE_L3;
1766        else
1767                return PKT_HASH_TYPE_L2;
1768}
1769
1770/**
1771 * i40e_rx_hash - set the hash value in the skb
1772 * @ring: descriptor ring
1773 * @rx_desc: specific descriptor
1774 * @skb: skb currently being received and modified
1775 * @rx_ptype: Rx packet type
1776 **/
1777static inline void i40e_rx_hash(struct i40e_ring *ring,
1778                                union i40e_rx_desc *rx_desc,
1779                                struct sk_buff *skb,
1780                                u8 rx_ptype)
1781{
1782        u32 hash;
1783        const __le64 rss_mask =
1784                cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1785                            I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1786
1787        if (!(ring->netdev->features & NETIF_F_RXHASH))
1788                return;
1789
1790        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1791                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1792                skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1793        }
1794}
1795
1796/**
1797 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1798 * @rx_ring: rx descriptor ring packet is being transacted on
1799 * @rx_desc: pointer to the EOP Rx descriptor
1800 * @skb: pointer to current skb being populated
1801 * @rx_ptype: the packet type decoded by hardware
1802 *
1803 * This function checks the ring, descriptor, and packet information in
1804 * order to populate the hash, checksum, VLAN, protocol, and
1805 * other fields within the skb.
1806 **/
1807static inline
1808void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1809                             union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1810                             u8 rx_ptype)
1811{
1812        u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1813        u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1814                        I40E_RXD_QW1_STATUS_SHIFT;
1815        u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1816        u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1817                   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1818
1819        if (unlikely(tsynvalid))
1820                i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1821
1822        i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1823
1824        i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1825
1826        skb_record_rx_queue(skb, rx_ring->queue_index);
1827
1828        /* modifies the skb - consumes the enet header */
1829        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830}
1831
1832/**
1833 * i40e_cleanup_headers - Correct empty headers
1834 * @rx_ring: rx descriptor ring packet is being transacted on
1835 * @skb: pointer to current skb being fixed
1836 * @rx_desc: pointer to the EOP Rx descriptor
1837 *
1838 * Also address the case where we are pulling data in on pages only
1839 * and as such no data is present in the skb header.
1840 *
1841 * In addition if skb is not at least 60 bytes we need to pad it so that
1842 * it is large enough to qualify as a valid Ethernet frame.
1843 *
1844 * Returns true if an error was encountered and skb was freed.
1845 **/
1846static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1847                                 union i40e_rx_desc *rx_desc)
1848
1849{
1850        /* XDP packets use error pointer so abort at this point */
1851        if (IS_ERR(skb))
1852                return true;
1853
1854        /* ERR_MASK will only have valid bits if EOP set, and
1855         * what we are doing here is actually checking
1856         * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1857         * the error field
1858         */
1859        if (unlikely(i40e_test_staterr(rx_desc,
1860                                       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1861                dev_kfree_skb_any(skb);
1862                return true;
1863        }
1864
1865        /* if eth_skb_pad returns an error the skb was freed */
1866        if (eth_skb_pad(skb))
1867                return true;
1868
1869        return false;
1870}
1871
1872/**
1873 * i40e_page_is_reusable - check if any reuse is possible
1874 * @page: page struct to check
1875 *
1876 * A page is not reusable if it was allocated under low memory
1877 * conditions, or it's not in the same NUMA node as this CPU.
1878 */
1879static inline bool i40e_page_is_reusable(struct page *page)
1880{
1881        return (page_to_nid(page) == numa_mem_id()) &&
1882                !page_is_pfmemalloc(page);
1883}
1884
1885/**
1886 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1887 * the adapter for another receive
1888 *
1889 * @rx_buffer: buffer containing the page
1890 *
1891 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1892 * an unused region in the page.
1893 *
1894 * For small pages, @truesize will be a constant value, half the size
1895 * of the memory at page.  We'll attempt to alternate between high and
1896 * low halves of the page, with one half ready for use by the hardware
1897 * and the other half being consumed by the stack.  We use the page
1898 * ref count to determine whether the stack has finished consuming the
1899 * portion of this page that was passed up with a previous packet.  If
1900 * the page ref count is >1, we'll assume the "other" half page is
1901 * still busy, and this page cannot be reused.
1902 *
1903 * For larger pages, @truesize will be the actual space used by the
1904 * received packet (adjusted upward to an even multiple of the cache
1905 * line size).  This will advance through the page by the amount
1906 * actually consumed by the received packets while there is still
1907 * space for a buffer.  Each region of larger pages will be used at
1908 * most once, after which the page will not be reused.
1909 *
1910 * In either case, if the page is reusable its refcount is increased.
1911 **/
1912static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1913{
1914        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1915        struct page *page = rx_buffer->page;
1916
1917        /* Is any reuse possible? */
1918        if (unlikely(!i40e_page_is_reusable(page)))
1919                return false;
1920
1921#if (PAGE_SIZE < 8192)
1922        /* if we are only owner of page we can reuse it */
1923        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1924                return false;
1925#else
1926#define I40E_LAST_OFFSET \
1927        (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1928        if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1929                return false;
1930#endif
1931
1932        /* If we have drained the page fragment pool we need to update
1933         * the pagecnt_bias and page count so that we fully restock the
1934         * number of references the driver holds.
1935         */
1936        if (unlikely(pagecnt_bias == 1)) {
1937                page_ref_add(page, USHRT_MAX - 1);
1938                rx_buffer->pagecnt_bias = USHRT_MAX;
1939        }
1940
1941        return true;
1942}
1943
1944/**
1945 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1946 * @rx_ring: rx descriptor ring to transact packets on
1947 * @rx_buffer: buffer containing page to add
1948 * @skb: sk_buff to place the data into
1949 * @size: packet length from rx_desc
1950 *
1951 * This function will add the data contained in rx_buffer->page to the skb.
1952 * It will just attach the page as a frag to the skb.
1953 *
1954 * The function will then update the page offset.
1955 **/
1956static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1957                             struct i40e_rx_buffer *rx_buffer,
1958                             struct sk_buff *skb,
1959                             unsigned int size)
1960{
1961#if (PAGE_SIZE < 8192)
1962        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1963#else
1964        unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1965#endif
1966
1967        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1968                        rx_buffer->page_offset, size, truesize);
1969
1970        /* page is being used so we must update the page offset */
1971#if (PAGE_SIZE < 8192)
1972        rx_buffer->page_offset ^= truesize;
1973#else
1974        rx_buffer->page_offset += truesize;
1975#endif
1976}
1977
1978/**
1979 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1980 * @rx_ring: rx descriptor ring to transact packets on
1981 * @size: size of buffer to add to skb
1982 *
1983 * This function will pull an Rx buffer from the ring and synchronize it
1984 * for use by the CPU.
1985 */
1986static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1987                                                 const unsigned int size)
1988{
1989        struct i40e_rx_buffer *rx_buffer;
1990
1991        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1992        prefetchw(rx_buffer->page);
1993
1994        /* we are reusing so sync this buffer for CPU use */
1995        dma_sync_single_range_for_cpu(rx_ring->dev,
1996                                      rx_buffer->dma,
1997                                      rx_buffer->page_offset,
1998                                      size,
1999                                      DMA_FROM_DEVICE);
2000
2001        /* We have pulled a buffer for use, so decrement pagecnt_bias */
2002        rx_buffer->pagecnt_bias--;
2003
2004        return rx_buffer;
2005}
2006
2007/**
2008 * i40e_construct_skb - Allocate skb and populate it
2009 * @rx_ring: rx descriptor ring to transact packets on
2010 * @rx_buffer: rx buffer to pull data from
2011 * @xdp: xdp_buff pointing to the data
2012 *
2013 * This function allocates an skb.  It then populates it with the page
2014 * data from the current receive descriptor, taking care to set up the
2015 * skb correctly.
2016 */
2017static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2018                                          struct i40e_rx_buffer *rx_buffer,
2019                                          struct xdp_buff *xdp)
2020{
2021        unsigned int size = xdp->data_end - xdp->data;
2022#if (PAGE_SIZE < 8192)
2023        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2024#else
2025        unsigned int truesize = SKB_DATA_ALIGN(size);
2026#endif
2027        unsigned int headlen;
2028        struct sk_buff *skb;
2029
2030        /* prefetch first cache line of first page */
2031        prefetch(xdp->data);
2032#if L1_CACHE_BYTES < 128
2033        prefetch(xdp->data + L1_CACHE_BYTES);
2034#endif
2035        /* Note, we get here by enabling legacy-rx via:
2036         *
2037         *    ethtool --set-priv-flags <dev> legacy-rx on
2038         *
2039         * In this mode, we currently get 0 extra XDP headroom as
2040         * opposed to having legacy-rx off, where we process XDP
2041         * packets going to stack via i40e_build_skb(). The latter
2042         * provides us currently with 192 bytes of headroom.
2043         *
2044         * For i40e_construct_skb() mode it means that the
2045         * xdp->data_meta will always point to xdp->data, since
2046         * the helper cannot expand the head. Should this ever
2047         * change in future for legacy-rx mode on, then lets also
2048         * add xdp->data_meta handling here.
2049         */
2050
2051        /* allocate a skb to store the frags */
2052        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2053                               I40E_RX_HDR_SIZE,
2054                               GFP_ATOMIC | __GFP_NOWARN);
2055        if (unlikely(!skb))
2056                return NULL;
2057
2058        /* Determine available headroom for copy */
2059        headlen = size;
2060        if (headlen > I40E_RX_HDR_SIZE)
2061                headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
2062
2063        /* align pull length to size of long to optimize memcpy performance */
2064        memcpy(__skb_put(skb, headlen), xdp->data,
2065               ALIGN(headlen, sizeof(long)));
2066
2067        /* update all of the pointers */
2068        size -= headlen;
2069        if (size) {
2070                skb_add_rx_frag(skb, 0, rx_buffer->page,
2071                                rx_buffer->page_offset + headlen,
2072                                size, truesize);
2073
2074                /* buffer is used by skb, update page_offset */
2075#if (PAGE_SIZE < 8192)
2076                rx_buffer->page_offset ^= truesize;
2077#else
2078                rx_buffer->page_offset += truesize;
2079#endif
2080        } else {
2081                /* buffer is unused, reset bias back to rx_buffer */
2082                rx_buffer->pagecnt_bias++;
2083        }
2084
2085        return skb;
2086}
2087
2088/**
2089 * i40e_build_skb - Build skb around an existing buffer
2090 * @rx_ring: Rx descriptor ring to transact packets on
2091 * @rx_buffer: Rx buffer to pull data from
2092 * @xdp: xdp_buff pointing to the data
2093 *
2094 * This function builds an skb around an existing Rx buffer, taking care
2095 * to set up the skb correctly and avoid any memcpy overhead.
2096 */
2097static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2098                                      struct i40e_rx_buffer *rx_buffer,
2099                                      struct xdp_buff *xdp)
2100{
2101        unsigned int metasize = xdp->data - xdp->data_meta;
2102#if (PAGE_SIZE < 8192)
2103        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2104#else
2105        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2106                                SKB_DATA_ALIGN(xdp->data_end -
2107                                               xdp->data_hard_start);
2108#endif
2109        struct sk_buff *skb;
2110
2111        /* Prefetch first cache line of first page. If xdp->data_meta
2112         * is unused, this points exactly as xdp->data, otherwise we
2113         * likely have a consumer accessing first few bytes of meta
2114         * data, and then actual data.
2115         */
2116        prefetch(xdp->data_meta);
2117#if L1_CACHE_BYTES < 128
2118        prefetch(xdp->data_meta + L1_CACHE_BYTES);
2119#endif
2120        /* build an skb around the page buffer */
2121        skb = build_skb(xdp->data_hard_start, truesize);
2122        if (unlikely(!skb))
2123                return NULL;
2124
2125        /* update pointers within the skb to store the data */
2126        skb_reserve(skb, xdp->data - xdp->data_hard_start);
2127        __skb_put(skb, xdp->data_end - xdp->data);
2128        if (metasize)
2129                skb_metadata_set(skb, metasize);
2130
2131        /* buffer is used by skb, update page_offset */
2132#if (PAGE_SIZE < 8192)
2133        rx_buffer->page_offset ^= truesize;
2134#else
2135        rx_buffer->page_offset += truesize;
2136#endif
2137
2138        return skb;
2139}
2140
2141/**
2142 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2143 * @rx_ring: rx descriptor ring to transact packets on
2144 * @rx_buffer: rx buffer to pull data from
2145 *
2146 * This function will clean up the contents of the rx_buffer.  It will
2147 * either recycle the buffer or unmap it and free the associated resources.
2148 */
2149static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2150                               struct i40e_rx_buffer *rx_buffer)
2151{
2152        if (i40e_can_reuse_rx_page(rx_buffer)) {
2153                /* hand second half of page back to the ring */
2154                i40e_reuse_rx_page(rx_ring, rx_buffer);
2155                rx_ring->rx_stats.page_reuse_count++;
2156        } else {
2157                /* we are not reusing the buffer so unmap it */
2158                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159                                     i40e_rx_pg_size(rx_ring),
2160                                     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2161                __page_frag_cache_drain(rx_buffer->page,
2162                                        rx_buffer->pagecnt_bias);
2163        }
2164
2165        /* clear contents of buffer_info */
2166        rx_buffer->page = NULL;
2167}
2168
2169/**
2170 * i40e_is_non_eop - process handling of non-EOP buffers
2171 * @rx_ring: Rx ring being processed
2172 * @rx_desc: Rx descriptor for current buffer
2173 * @skb: Current socket buffer containing buffer in progress
2174 *
2175 * This function updates next to clean.  If the buffer is an EOP buffer
2176 * this function exits returning false, otherwise it will place the
2177 * sk_buff in the next buffer to be chained and return true indicating
2178 * that this is in fact a non-EOP buffer.
2179 **/
2180static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2181                            union i40e_rx_desc *rx_desc,
2182                            struct sk_buff *skb)
2183{
2184        u32 ntc = rx_ring->next_to_clean + 1;
2185
2186        /* fetch, update, and store next to clean */
2187        ntc = (ntc < rx_ring->count) ? ntc : 0;
2188        rx_ring->next_to_clean = ntc;
2189
2190        prefetch(I40E_RX_DESC(rx_ring, ntc));
2191
2192        /* if we are the last buffer then there is nothing else to do */
2193#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2194        if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2195                return false;
2196
2197        rx_ring->rx_stats.non_eop_descs++;
2198
2199        return true;
2200}
2201
2202#define I40E_XDP_PASS           0
2203#define I40E_XDP_CONSUMED       BIT(0)
2204#define I40E_XDP_TX             BIT(1)
2205#define I40E_XDP_REDIR          BIT(2)
2206
2207static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2208                              struct i40e_ring *xdp_ring);
2209
2210static int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp,
2211                                 struct i40e_ring *xdp_ring)
2212{
2213        struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2214
2215        if (unlikely(!xdpf))
2216                return I40E_XDP_CONSUMED;
2217
2218        return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2219}
2220
2221/**
2222 * i40e_run_xdp - run an XDP program
2223 * @rx_ring: Rx ring being processed
2224 * @xdp: XDP buffer containing the frame
2225 **/
2226static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2227                                    struct xdp_buff *xdp)
2228{
2229        int err, result = I40E_XDP_PASS;
2230        struct i40e_ring *xdp_ring;
2231        struct bpf_prog *xdp_prog;
2232        u32 act;
2233
2234        rcu_read_lock();
2235        xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2236
2237        if (!xdp_prog)
2238                goto xdp_out;
2239
2240        prefetchw(xdp->data_hard_start); /* xdp_frame write */
2241
2242        act = bpf_prog_run_xdp(xdp_prog, xdp);
2243        switch (act) {
2244        case XDP_PASS:
2245                break;
2246        case XDP_TX:
2247                xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2248                result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2249                break;
2250        case XDP_REDIRECT:
2251                err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2252                result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2253                break;
2254        default:
2255                bpf_warn_invalid_xdp_action(act);
2256                /* fall through */
2257        case XDP_ABORTED:
2258                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2259                /* fall through -- handle aborts by dropping packet */
2260        case XDP_DROP:
2261                result = I40E_XDP_CONSUMED;
2262                break;
2263        }
2264xdp_out:
2265        rcu_read_unlock();
2266        return ERR_PTR(-result);
2267}
2268
2269/**
2270 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2271 * @rx_ring: Rx ring
2272 * @rx_buffer: Rx buffer to adjust
2273 * @size: Size of adjustment
2274 **/
2275static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2276                                struct i40e_rx_buffer *rx_buffer,
2277                                unsigned int size)
2278{
2279#if (PAGE_SIZE < 8192)
2280        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2281
2282        rx_buffer->page_offset ^= truesize;
2283#else
2284        unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2285
2286        rx_buffer->page_offset += truesize;
2287#endif
2288}
2289
2290static inline void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2291{
2292        /* Force memory writes to complete before letting h/w
2293         * know there are new descriptors to fetch.
2294         */
2295        wmb();
2296        writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2297}
2298
2299/**
2300 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2301 * @rx_ring: rx descriptor ring to transact packets on
2302 * @budget: Total limit on number of packets to process
2303 *
2304 * This function provides a "bounce buffer" approach to Rx interrupt
2305 * processing.  The advantage to this is that on systems that have
2306 * expensive overhead for IOMMU access this provides a means of avoiding
2307 * it by maintaining the mapping of the page to the system.
2308 *
2309 * Returns amount of work completed
2310 **/
2311static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2312{
2313        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2314        struct sk_buff *skb = rx_ring->skb;
2315        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2316        unsigned int xdp_xmit = 0;
2317        bool failure = false;
2318        struct xdp_buff xdp;
2319
2320        xdp.rxq = &rx_ring->xdp_rxq;
2321
2322        while (likely(total_rx_packets < (unsigned int)budget)) {
2323                struct i40e_rx_buffer *rx_buffer;
2324                union i40e_rx_desc *rx_desc;
2325                unsigned int size;
2326                u16 vlan_tag;
2327                u8 rx_ptype;
2328                u64 qword;
2329
2330                /* return some buffers to hardware, one at a time is too slow */
2331                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2332                        failure = failure ||
2333                                  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2334                        cleaned_count = 0;
2335                }
2336
2337                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2338
2339                /* status_error_len will always be zero for unused descriptors
2340                 * because it's cleared in cleanup, and overlaps with hdr_addr
2341                 * which is always zero because packet split isn't used, if the
2342                 * hardware wrote DD then the length will be non-zero
2343                 */
2344                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2345
2346                /* This memory barrier is needed to keep us from reading
2347                 * any other fields out of the rx_desc until we have
2348                 * verified the descriptor has been written back.
2349                 */
2350                dma_rmb();
2351
2352                if (unlikely(i40e_rx_is_programming_status(qword))) {
2353                        i40e_clean_programming_status(rx_ring, rx_desc, qword);
2354                        cleaned_count++;
2355                        continue;
2356                }
2357                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2358                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2359                if (!size)
2360                        break;
2361
2362                i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2363                rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2364
2365                /* retrieve a buffer from the ring */
2366                if (!skb) {
2367                        xdp.data = page_address(rx_buffer->page) +
2368                                   rx_buffer->page_offset;
2369                        xdp.data_meta = xdp.data;
2370                        xdp.data_hard_start = xdp.data -
2371                                              i40e_rx_offset(rx_ring);
2372                        xdp.data_end = xdp.data + size;
2373
2374                        skb = i40e_run_xdp(rx_ring, &xdp);
2375                }
2376
2377                if (IS_ERR(skb)) {
2378                        unsigned int xdp_res = -PTR_ERR(skb);
2379
2380                        if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2381                                xdp_xmit |= xdp_res;
2382                                i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2383                        } else {
2384                                rx_buffer->pagecnt_bias++;
2385                        }
2386                        total_rx_bytes += size;
2387                        total_rx_packets++;
2388                } else if (skb) {
2389                        i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2390                } else if (ring_uses_build_skb(rx_ring)) {
2391                        skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2392                } else {
2393                        skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2394                }
2395
2396                /* exit if we failed to retrieve a buffer */
2397                if (!skb) {
2398                        rx_ring->rx_stats.alloc_buff_failed++;
2399                        rx_buffer->pagecnt_bias++;
2400                        break;
2401                }
2402
2403                i40e_put_rx_buffer(rx_ring, rx_buffer);
2404                cleaned_count++;
2405
2406                if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2407                        continue;
2408
2409                if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2410                        skb = NULL;
2411                        continue;
2412                }
2413
2414                /* probably a little skewed due to removing CRC */
2415                total_rx_bytes += skb->len;
2416
2417                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2418                rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2419                           I40E_RXD_QW1_PTYPE_SHIFT;
2420
2421                /* populate checksum, VLAN, and protocol */
2422                i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2423
2424                vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2425                           le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2426
2427                i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2428                i40e_receive_skb(rx_ring, skb, vlan_tag);
2429                skb = NULL;
2430
2431                /* update budget accounting */
2432                total_rx_packets++;
2433        }
2434
2435        if (xdp_xmit & I40E_XDP_REDIR)
2436                xdp_do_flush_map();
2437
2438        if (xdp_xmit & I40E_XDP_TX) {
2439                struct i40e_ring *xdp_ring =
2440                        rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2441
2442                i40e_xdp_ring_update_tail(xdp_ring);
2443        }
2444
2445        rx_ring->skb = skb;
2446
2447        u64_stats_update_begin(&rx_ring->syncp);
2448        rx_ring->stats.packets += total_rx_packets;
2449        rx_ring->stats.bytes += total_rx_bytes;
2450        u64_stats_update_end(&rx_ring->syncp);
2451        rx_ring->q_vector->rx.total_packets += total_rx_packets;
2452        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2453
2454        /* guarantee a trip back through this routine if there was a failure */
2455        return failure ? budget : (int)total_rx_packets;
2456}
2457
2458static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2459{
2460        u32 val;
2461
2462        /* We don't bother with setting the CLEARPBA bit as the data sheet
2463         * points out doing so is "meaningless since it was already
2464         * auto-cleared". The auto-clearing happens when the interrupt is
2465         * asserted.
2466         *
2467         * Hardware errata 28 for also indicates that writing to a
2468         * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2469         * an event in the PBA anyway so we need to rely on the automask
2470         * to hold pending events for us until the interrupt is re-enabled
2471         *
2472         * The itr value is reported in microseconds, and the register
2473         * value is recorded in 2 microsecond units. For this reason we
2474         * only need to shift by the interval shift - 1 instead of the
2475         * full value.
2476         */
2477        itr &= I40E_ITR_MASK;
2478
2479        val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2480              (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2481              (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2482
2483        return val;
2484}
2485
2486/* a small macro to shorten up some long lines */
2487#define INTREG I40E_PFINT_DYN_CTLN
2488
2489/* The act of updating the ITR will cause it to immediately trigger. In order
2490 * to prevent this from throwing off adaptive update statistics we defer the
2491 * update so that it can only happen so often. So after either Tx or Rx are
2492 * updated we make the adaptive scheme wait until either the ITR completely
2493 * expires via the next_update expiration or we have been through at least
2494 * 3 interrupts.
2495 */
2496#define ITR_COUNTDOWN_START 3
2497
2498/**
2499 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2500 * @vsi: the VSI we care about
2501 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2502 *
2503 **/
2504static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2505                                          struct i40e_q_vector *q_vector)
2506{
2507        struct i40e_hw *hw = &vsi->back->hw;
2508        u32 intval;
2509
2510        /* If we don't have MSIX, then we only need to re-enable icr0 */
2511        if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2512                i40e_irq_dynamic_enable_icr0(vsi->back);
2513                return;
2514        }
2515
2516        /* These will do nothing if dynamic updates are not enabled */
2517        i40e_update_itr(q_vector, &q_vector->tx);
2518        i40e_update_itr(q_vector, &q_vector->rx);
2519
2520        /* This block of logic allows us to get away with only updating
2521         * one ITR value with each interrupt. The idea is to perform a
2522         * pseudo-lazy update with the following criteria.
2523         *
2524         * 1. Rx is given higher priority than Tx if both are in same state
2525         * 2. If we must reduce an ITR that is given highest priority.
2526         * 3. We then give priority to increasing ITR based on amount.
2527         */
2528        if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2529                /* Rx ITR needs to be reduced, this is highest priority */
2530                intval = i40e_buildreg_itr(I40E_RX_ITR,
2531                                           q_vector->rx.target_itr);
2532                q_vector->rx.current_itr = q_vector->rx.target_itr;
2533                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2534        } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2535                   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2536                    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2537                /* Tx ITR needs to be reduced, this is second priority
2538                 * Tx ITR needs to be increased more than Rx, fourth priority
2539                 */
2540                intval = i40e_buildreg_itr(I40E_TX_ITR,
2541                                           q_vector->tx.target_itr);
2542                q_vector->tx.current_itr = q_vector->tx.target_itr;
2543                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2544        } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2545                /* Rx ITR needs to be increased, third priority */
2546                intval = i40e_buildreg_itr(I40E_RX_ITR,
2547                                           q_vector->rx.target_itr);
2548                q_vector->rx.current_itr = q_vector->rx.target_itr;
2549                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2550        } else {
2551                /* No ITR update, lowest priority */
2552                intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2553                if (q_vector->itr_countdown)
2554                        q_vector->itr_countdown--;
2555        }
2556
2557        if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2558                wr32(hw, INTREG(q_vector->reg_idx), intval);
2559}
2560
2561/**
2562 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2563 * @napi: napi struct with our devices info in it
2564 * @budget: amount of work driver is allowed to do this pass, in packets
2565 *
2566 * This function will clean all queues associated with a q_vector.
2567 *
2568 * Returns the amount of work done
2569 **/
2570int i40e_napi_poll(struct napi_struct *napi, int budget)
2571{
2572        struct i40e_q_vector *q_vector =
2573                               container_of(napi, struct i40e_q_vector, napi);
2574        struct i40e_vsi *vsi = q_vector->vsi;
2575        struct i40e_ring *ring;
2576        bool clean_complete = true;
2577        bool arm_wb = false;
2578        int budget_per_ring;
2579        int work_done = 0;
2580
2581        if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2582                napi_complete(napi);
2583                return 0;
2584        }
2585
2586        /* Since the actual Tx work is minimal, we can give the Tx a larger
2587         * budget and be more aggressive about cleaning up the Tx descriptors.
2588         */
2589        i40e_for_each_ring(ring, q_vector->tx) {
2590                if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2591                        clean_complete = false;
2592                        continue;
2593                }
2594                arm_wb |= ring->arm_wb;
2595                ring->arm_wb = false;
2596        }
2597
2598        /* Handle case where we are called by netpoll with a budget of 0 */
2599        if (budget <= 0)
2600                goto tx_only;
2601
2602        /* We attempt to distribute budget to each Rx queue fairly, but don't
2603         * allow the budget to go below 1 because that would exit polling early.
2604         */
2605        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2606
2607        i40e_for_each_ring(ring, q_vector->rx) {
2608                int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2609
2610                work_done += cleaned;
2611                /* if we clean as many as budgeted, we must not be done */
2612                if (cleaned >= budget_per_ring)
2613                        clean_complete = false;
2614        }
2615
2616        /* If work not completed, return budget and polling will return */
2617        if (!clean_complete) {
2618                int cpu_id = smp_processor_id();
2619
2620                /* It is possible that the interrupt affinity has changed but,
2621                 * if the cpu is pegged at 100%, polling will never exit while
2622                 * traffic continues and the interrupt will be stuck on this
2623                 * cpu.  We check to make sure affinity is correct before we
2624                 * continue to poll, otherwise we must stop polling so the
2625                 * interrupt can move to the correct cpu.
2626                 */
2627                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2628                        /* Tell napi that we are done polling */
2629                        napi_complete_done(napi, work_done);
2630
2631                        /* Force an interrupt */
2632                        i40e_force_wb(vsi, q_vector);
2633
2634                        /* Return budget-1 so that polling stops */
2635                        return budget - 1;
2636                }
2637tx_only:
2638                if (arm_wb) {
2639                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2640                        i40e_enable_wb_on_itr(vsi, q_vector);
2641                }
2642                return budget;
2643        }
2644
2645        if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2646                q_vector->arm_wb_state = false;
2647
2648        /* Work is done so exit the polling mode and re-enable the interrupt */
2649        napi_complete_done(napi, work_done);
2650
2651        i40e_update_enable_itr(vsi, q_vector);
2652
2653        return min(work_done, budget - 1);
2654}
2655
2656/**
2657 * i40e_atr - Add a Flow Director ATR filter
2658 * @tx_ring:  ring to add programming descriptor to
2659 * @skb:      send buffer
2660 * @tx_flags: send tx flags
2661 **/
2662static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2663                     u32 tx_flags)
2664{
2665        struct i40e_filter_program_desc *fdir_desc;
2666        struct i40e_pf *pf = tx_ring->vsi->back;
2667        union {
2668                unsigned char *network;
2669                struct iphdr *ipv4;
2670                struct ipv6hdr *ipv6;
2671        } hdr;
2672        struct tcphdr *th;
2673        unsigned int hlen;
2674        u32 flex_ptype, dtype_cmd;
2675        int l4_proto;
2676        u16 i;
2677
2678        /* make sure ATR is enabled */
2679        if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2680                return;
2681
2682        if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2683                return;
2684
2685        /* if sampling is disabled do nothing */
2686        if (!tx_ring->atr_sample_rate)
2687                return;
2688
2689        /* Currently only IPv4/IPv6 with TCP is supported */
2690        if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2691                return;
2692
2693        /* snag network header to get L4 type and address */
2694        hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2695                      skb_inner_network_header(skb) : skb_network_header(skb);
2696
2697        /* Note: tx_flags gets modified to reflect inner protocols in
2698         * tx_enable_csum function if encap is enabled.
2699         */
2700        if (tx_flags & I40E_TX_FLAGS_IPV4) {
2701                /* access ihl as u8 to avoid unaligned access on ia64 */
2702                hlen = (hdr.network[0] & 0x0F) << 2;
2703                l4_proto = hdr.ipv4->protocol;
2704        } else {
2705                /* find the start of the innermost ipv6 header */
2706                unsigned int inner_hlen = hdr.network - skb->data;
2707                unsigned int h_offset = inner_hlen;
2708
2709                /* this function updates h_offset to the end of the header */
2710                l4_proto =
2711                  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2712                /* hlen will contain our best estimate of the tcp header */
2713                hlen = h_offset - inner_hlen;
2714        }
2715
2716        if (l4_proto != IPPROTO_TCP)
2717                return;
2718
2719        th = (struct tcphdr *)(hdr.network + hlen);
2720
2721        /* Due to lack of space, no more new filters can be programmed */
2722        if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2723                return;
2724        if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2725                /* HW ATR eviction will take care of removing filters on FIN
2726                 * and RST packets.
2727                 */
2728                if (th->fin || th->rst)
2729                        return;
2730        }
2731
2732        tx_ring->atr_count++;
2733
2734        /* sample on all syn/fin/rst packets or once every atr sample rate */
2735        if (!th->fin &&
2736            !th->syn &&
2737            !th->rst &&
2738            (tx_ring->atr_count < tx_ring->atr_sample_rate))
2739                return;
2740
2741        tx_ring->atr_count = 0;
2742
2743        /* grab the next descriptor */
2744        i = tx_ring->next_to_use;
2745        fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2746
2747        i++;
2748        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2749
2750        flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2751                      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2752        flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2753                      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2754                       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2755                      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2756                       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2757
2758        flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2759
2760        dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2761
2762        dtype_cmd |= (th->fin || th->rst) ?
2763                     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2764                      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2765                     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2766                      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2767
2768        dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2769                     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2770
2771        dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2772                     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2773
2774        dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2775        if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2776                dtype_cmd |=
2777                        ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2778                        I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2779                        I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2780        else
2781                dtype_cmd |=
2782                        ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2783                        I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784                        I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785
2786        if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2787                dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2788
2789        fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2790        fdir_desc->rsvd = cpu_to_le32(0);
2791        fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2792        fdir_desc->fd_id = cpu_to_le32(0);
2793}
2794
2795/**
2796 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2797 * @skb:     send buffer
2798 * @tx_ring: ring to send buffer on
2799 * @flags:   the tx flags to be set
2800 *
2801 * Checks the skb and set up correspondingly several generic transmit flags
2802 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2803 *
2804 * Returns error code indicate the frame should be dropped upon error and the
2805 * otherwise  returns 0 to indicate the flags has been set properly.
2806 **/
2807static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2808                                             struct i40e_ring *tx_ring,
2809                                             u32 *flags)
2810{
2811        __be16 protocol = skb->protocol;
2812        u32  tx_flags = 0;
2813
2814        if (protocol == htons(ETH_P_8021Q) &&
2815            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2816                /* When HW VLAN acceleration is turned off by the user the
2817                 * stack sets the protocol to 8021q so that the driver
2818                 * can take any steps required to support the SW only
2819                 * VLAN handling.  In our case the driver doesn't need
2820                 * to take any further steps so just set the protocol
2821                 * to the encapsulated ethertype.
2822                 */
2823                skb->protocol = vlan_get_protocol(skb);
2824                goto out;
2825        }
2826
2827        /* if we have a HW VLAN tag being added, default to the HW one */
2828        if (skb_vlan_tag_present(skb)) {
2829                tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2830                tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2831        /* else if it is a SW VLAN, check the next protocol and store the tag */
2832        } else if (protocol == htons(ETH_P_8021Q)) {
2833                struct vlan_hdr *vhdr, _vhdr;
2834
2835                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2836                if (!vhdr)
2837                        return -EINVAL;
2838
2839                protocol = vhdr->h_vlan_encapsulated_proto;
2840                tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2841                tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2842        }
2843
2844        if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2845                goto out;
2846
2847        /* Insert 802.1p priority into VLAN header */
2848        if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2849            (skb->priority != TC_PRIO_CONTROL)) {
2850                tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2851                tx_flags |= (skb->priority & 0x7) <<
2852                                I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2853                if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2854                        struct vlan_ethhdr *vhdr;
2855                        int rc;
2856
2857                        rc = skb_cow_head(skb, 0);
2858                        if (rc < 0)
2859                                return rc;
2860                        vhdr = (struct vlan_ethhdr *)skb->data;
2861                        vhdr->h_vlan_TCI = htons(tx_flags >>
2862                                                 I40E_TX_FLAGS_VLAN_SHIFT);
2863                } else {
2864                        tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2865                }
2866        }
2867
2868out:
2869        *flags = tx_flags;
2870        return 0;
2871}
2872
2873/**
2874 * i40e_tso - set up the tso context descriptor
2875 * @first:    pointer to first Tx buffer for xmit
2876 * @hdr_len:  ptr to the size of the packet header
2877 * @cd_type_cmd_tso_mss: Quad Word 1
2878 *
2879 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2880 **/
2881static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2882                    u64 *cd_type_cmd_tso_mss)
2883{
2884        struct sk_buff *skb = first->skb;
2885        u64 cd_cmd, cd_tso_len, cd_mss;
2886        union {
2887                struct iphdr *v4;
2888                struct ipv6hdr *v6;
2889                unsigned char *hdr;
2890        } ip;
2891        union {
2892                struct tcphdr *tcp;
2893                struct udphdr *udp;
2894                unsigned char *hdr;
2895        } l4;
2896        u32 paylen, l4_offset;
2897        u16 gso_segs, gso_size;
2898        int err;
2899
2900        if (skb->ip_summed != CHECKSUM_PARTIAL)
2901                return 0;
2902
2903        if (!skb_is_gso(skb))
2904                return 0;
2905
2906        err = skb_cow_head(skb, 0);
2907        if (err < 0)
2908                return err;
2909
2910        ip.hdr = skb_network_header(skb);
2911        l4.hdr = skb_transport_header(skb);
2912
2913        /* initialize outer IP header fields */
2914        if (ip.v4->version == 4) {
2915                ip.v4->tot_len = 0;
2916                ip.v4->check = 0;
2917        } else {
2918                ip.v6->payload_len = 0;
2919        }
2920
2921        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2922                                         SKB_GSO_GRE_CSUM |
2923                                         SKB_GSO_IPXIP4 |
2924                                         SKB_GSO_IPXIP6 |
2925                                         SKB_GSO_UDP_TUNNEL |
2926                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
2927                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2928                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2929                        l4.udp->len = 0;
2930
2931                        /* determine offset of outer transport header */
2932                        l4_offset = l4.hdr - skb->data;
2933
2934                        /* remove payload length from outer checksum */
2935                        paylen = skb->len - l4_offset;
2936                        csum_replace_by_diff(&l4.udp->check,
2937                                             (__force __wsum)htonl(paylen));
2938                }
2939
2940                /* reset pointers to inner headers */
2941                ip.hdr = skb_inner_network_header(skb);
2942                l4.hdr = skb_inner_transport_header(skb);
2943
2944                /* initialize inner IP header fields */
2945                if (ip.v4->version == 4) {
2946                        ip.v4->tot_len = 0;
2947                        ip.v4->check = 0;
2948                } else {
2949                        ip.v6->payload_len = 0;
2950                }
2951        }
2952
2953        /* determine offset of inner transport header */
2954        l4_offset = l4.hdr - skb->data;
2955
2956        /* remove payload length from inner checksum */
2957        paylen = skb->len - l4_offset;
2958        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2959
2960        /* compute length of segmentation header */
2961        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2962
2963        /* pull values out of skb_shinfo */
2964        gso_size = skb_shinfo(skb)->gso_size;
2965        gso_segs = skb_shinfo(skb)->gso_segs;
2966
2967        /* update GSO size and bytecount with header size */
2968        first->gso_segs = gso_segs;
2969        first->bytecount += (first->gso_segs - 1) * *hdr_len;
2970
2971        /* find the field values */
2972        cd_cmd = I40E_TX_CTX_DESC_TSO;
2973        cd_tso_len = skb->len - *hdr_len;
2974        cd_mss = gso_size;
2975        *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2976                                (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2977                                (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2978        return 1;
2979}
2980
2981/**
2982 * i40e_tsyn - set up the tsyn context descriptor
2983 * @tx_ring:  ptr to the ring to send
2984 * @skb:      ptr to the skb we're sending
2985 * @tx_flags: the collected send information
2986 * @cd_type_cmd_tso_mss: Quad Word 1
2987 *
2988 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2989 **/
2990static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2991                     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2992{
2993        struct i40e_pf *pf;
2994
2995        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2996                return 0;
2997
2998        /* Tx timestamps cannot be sampled when doing TSO */
2999        if (tx_flags & I40E_TX_FLAGS_TSO)
3000                return 0;
3001
3002        /* only timestamp the outbound packet if the user has requested it and
3003         * we are not already transmitting a packet to be timestamped
3004         */
3005        pf = i40e_netdev_to_pf(tx_ring->netdev);
3006        if (!(pf->flags & I40E_FLAG_PTP))
3007                return 0;
3008
3009        if (pf->ptp_tx &&
3010            !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3011                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3012                pf->ptp_tx_start = jiffies;
3013                pf->ptp_tx_skb = skb_get(skb);
3014        } else {
3015                pf->tx_hwtstamp_skipped++;
3016                return 0;
3017        }
3018
3019        *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3020                                I40E_TXD_CTX_QW1_CMD_SHIFT;
3021
3022        return 1;
3023}
3024
3025/**
3026 * i40e_tx_enable_csum - Enable Tx checksum offloads
3027 * @skb: send buffer
3028 * @tx_flags: pointer to Tx flags currently set
3029 * @td_cmd: Tx descriptor command bits to set
3030 * @td_offset: Tx descriptor header offsets to set
3031 * @tx_ring: Tx descriptor ring
3032 * @cd_tunneling: ptr to context desc bits
3033 **/
3034static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3035                               u32 *td_cmd, u32 *td_offset,
3036                               struct i40e_ring *tx_ring,
3037                               u32 *cd_tunneling)
3038{
3039        union {
3040                struct iphdr *v4;
3041                struct ipv6hdr *v6;
3042                unsigned char *hdr;
3043        } ip;
3044        union {
3045                struct tcphdr *tcp;
3046                struct udphdr *udp;
3047                unsigned char *hdr;
3048        } l4;
3049        unsigned char *exthdr;
3050        u32 offset, cmd = 0;
3051        __be16 frag_off;
3052        u8 l4_proto = 0;
3053
3054        if (skb->ip_summed != CHECKSUM_PARTIAL)
3055                return 0;
3056
3057        ip.hdr = skb_network_header(skb);
3058        l4.hdr = skb_transport_header(skb);
3059
3060        /* compute outer L2 header size */
3061        offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3062
3063        if (skb->encapsulation) {
3064                u32 tunnel = 0;
3065                /* define outer network header type */
3066                if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3067                        tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3068                                  I40E_TX_CTX_EXT_IP_IPV4 :
3069                                  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3070
3071                        l4_proto = ip.v4->protocol;
3072                } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3073                        tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3074
3075                        exthdr = ip.hdr + sizeof(*ip.v6);
3076                        l4_proto = ip.v6->nexthdr;
3077                        if (l4.hdr != exthdr)
3078                                ipv6_skip_exthdr(skb, exthdr - skb->data,
3079                                                 &l4_proto, &frag_off);
3080                }
3081
3082                /* define outer transport */
3083                switch (l4_proto) {
3084                case IPPROTO_UDP:
3085                        tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3086                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3087                        break;
3088                case IPPROTO_GRE:
3089                        tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3090                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3091                        break;
3092                case IPPROTO_IPIP:
3093                case IPPROTO_IPV6:
3094                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3095                        l4.hdr = skb_inner_network_header(skb);
3096                        break;
3097                default:
3098                        if (*tx_flags & I40E_TX_FLAGS_TSO)
3099                                return -1;
3100
3101                        skb_checksum_help(skb);
3102                        return 0;
3103                }
3104
3105                /* compute outer L3 header size */
3106                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3107                          I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3108
3109                /* switch IP header pointer from outer to inner header */
3110                ip.hdr = skb_inner_network_header(skb);
3111
3112                /* compute tunnel header size */
3113                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3114                          I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3115
3116                /* indicate if we need to offload outer UDP header */
3117                if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3118                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3119                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3120                        tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3121
3122                /* record tunnel offload values */
3123                *cd_tunneling |= tunnel;
3124
3125                /* switch L4 header pointer from outer to inner */
3126                l4.hdr = skb_inner_transport_header(skb);
3127                l4_proto = 0;
3128
3129                /* reset type as we transition from outer to inner headers */
3130                *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3131                if (ip.v4->version == 4)
3132                        *tx_flags |= I40E_TX_FLAGS_IPV4;
3133                if (ip.v6->version == 6)
3134                        *tx_flags |= I40E_TX_FLAGS_IPV6;
3135        }
3136
3137        /* Enable IP checksum offloads */
3138        if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3139                l4_proto = ip.v4->protocol;
3140                /* the stack computes the IP header already, the only time we
3141                 * need the hardware to recompute it is in the case of TSO.
3142                 */
3143                cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3144                       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3145                       I40E_TX_DESC_CMD_IIPT_IPV4;
3146        } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3147                cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3148
3149                exthdr = ip.hdr + sizeof(*ip.v6);
3150                l4_proto = ip.v6->nexthdr;
3151                if (l4.hdr != exthdr)
3152                        ipv6_skip_exthdr(skb, exthdr - skb->data,
3153                                         &l4_proto, &frag_off);
3154        }
3155
3156        /* compute inner L3 header size */
3157        offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3158
3159        /* Enable L4 checksum offloads */
3160        switch (l4_proto) {
3161        case IPPROTO_TCP:
3162                /* enable checksum offloads */
3163                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3164                offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3165                break;
3166        case IPPROTO_SCTP:
3167                /* enable SCTP checksum offload */
3168                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3169                offset |= (sizeof(struct sctphdr) >> 2) <<
3170                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3171                break;
3172        case IPPROTO_UDP:
3173                /* enable UDP checksum offload */
3174                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3175                offset |= (sizeof(struct udphdr) >> 2) <<
3176                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3177                break;
3178        default:
3179                if (*tx_flags & I40E_TX_FLAGS_TSO)
3180                        return -1;
3181                skb_checksum_help(skb);
3182                return 0;
3183        }
3184
3185        *td_cmd |= cmd;
3186        *td_offset |= offset;
3187
3188        return 1;
3189}
3190
3191/**
3192 * i40e_create_tx_ctx Build the Tx context descriptor
3193 * @tx_ring:  ring to create the descriptor on
3194 * @cd_type_cmd_tso_mss: Quad Word 1
3195 * @cd_tunneling: Quad Word 0 - bits 0-31
3196 * @cd_l2tag2: Quad Word 0 - bits 32-63
3197 **/
3198static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3199                               const u64 cd_type_cmd_tso_mss,
3200                               const u32 cd_tunneling, const u32 cd_l2tag2)
3201{
3202        struct i40e_tx_context_desc *context_desc;
3203        int i = tx_ring->next_to_use;
3204
3205        if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3206            !cd_tunneling && !cd_l2tag2)
3207                return;
3208
3209        /* grab the next descriptor */
3210        context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3211
3212        i++;
3213        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3214
3215        /* cpu_to_le32 and assign to struct fields */
3216        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3217        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3218        context_desc->rsvd = cpu_to_le16(0);
3219        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3220}
3221
3222/**
3223 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3224 * @tx_ring: the ring to be checked
3225 * @size:    the size buffer we want to assure is available
3226 *
3227 * Returns -EBUSY if a stop is needed, else 0
3228 **/
3229int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3230{
3231        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3232        /* Memory barrier before checking head and tail */
3233        smp_mb();
3234
3235        /* Check again in a case another CPU has just made room available. */
3236        if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3237                return -EBUSY;
3238
3239        /* A reprieve! - use start_queue because it doesn't call schedule */
3240        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3241        ++tx_ring->tx_stats.restart_queue;
3242        return 0;
3243}
3244
3245/**
3246 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3247 * @skb:      send buffer
3248 *
3249 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3250 * and so we need to figure out the cases where we need to linearize the skb.
3251 *
3252 * For TSO we need to count the TSO header and segment payload separately.
3253 * As such we need to check cases where we have 7 fragments or more as we
3254 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3255 * the segment payload in the first descriptor, and another 7 for the
3256 * fragments.
3257 **/
3258bool __i40e_chk_linearize(struct sk_buff *skb)
3259{
3260        const struct skb_frag_struct *frag, *stale;
3261        int nr_frags, sum;
3262
3263        /* no need to check if number of frags is less than 7 */
3264        nr_frags = skb_shinfo(skb)->nr_frags;
3265        if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3266                return false;
3267
3268        /* We need to walk through the list and validate that each group
3269         * of 6 fragments totals at least gso_size.
3270         */
3271        nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3272        frag = &skb_shinfo(skb)->frags[0];
3273
3274        /* Initialize size to the negative value of gso_size minus 1.  We
3275         * use this as the worst case scenerio in which the frag ahead
3276         * of us only provides one byte which is why we are limited to 6
3277         * descriptors for a single transmit as the header and previous
3278         * fragment are already consuming 2 descriptors.
3279         */
3280        sum = 1 - skb_shinfo(skb)->gso_size;
3281
3282        /* Add size of frags 0 through 4 to create our initial sum */
3283        sum += skb_frag_size(frag++);
3284        sum += skb_frag_size(frag++);
3285        sum += skb_frag_size(frag++);
3286        sum += skb_frag_size(frag++);
3287        sum += skb_frag_size(frag++);
3288
3289        /* Walk through fragments adding latest fragment, testing it, and
3290         * then removing stale fragments from the sum.
3291         */
3292        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3293                int stale_size = skb_frag_size(stale);
3294
3295                sum += skb_frag_size(frag++);
3296
3297                /* The stale fragment may present us with a smaller
3298                 * descriptor than the actual fragment size. To account
3299                 * for that we need to remove all the data on the front and
3300                 * figure out what the remainder would be in the last
3301                 * descriptor associated with the fragment.
3302                 */
3303                if (stale_size > I40E_MAX_DATA_PER_TXD) {
3304                        int align_pad = -(stale->page_offset) &
3305                                        (I40E_MAX_READ_REQ_SIZE - 1);
3306
3307                        sum -= align_pad;
3308                        stale_size -= align_pad;
3309
3310                        do {
3311                                sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3312                                stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3313                        } while (stale_size > I40E_MAX_DATA_PER_TXD);
3314                }
3315
3316                /* if sum is negative we failed to make sufficient progress */
3317                if (sum < 0)
3318                        return true;
3319
3320                if (!nr_frags--)
3321                        break;
3322
3323                sum -= stale_size;
3324        }
3325
3326        return false;
3327}
3328
3329/**
3330 * i40e_tx_map - Build the Tx descriptor
3331 * @tx_ring:  ring to send buffer on
3332 * @skb:      send buffer
3333 * @first:    first buffer info buffer to use
3334 * @tx_flags: collected send information
3335 * @hdr_len:  size of the packet header
3336 * @td_cmd:   the command field in the descriptor
3337 * @td_offset: offset for checksum or crc
3338 *
3339 * Returns 0 on success, -1 on failure to DMA
3340 **/
3341static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3342                              struct i40e_tx_buffer *first, u32 tx_flags,
3343                              const u8 hdr_len, u32 td_cmd, u32 td_offset)
3344{
3345        unsigned int data_len = skb->data_len;
3346        unsigned int size = skb_headlen(skb);
3347        struct skb_frag_struct *frag;
3348        struct i40e_tx_buffer *tx_bi;
3349        struct i40e_tx_desc *tx_desc;
3350        u16 i = tx_ring->next_to_use;
3351        u32 td_tag = 0;
3352        dma_addr_t dma;
3353        u16 desc_count = 1;
3354
3355        if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3356                td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3357                td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3358                         I40E_TX_FLAGS_VLAN_SHIFT;
3359        }
3360
3361        first->tx_flags = tx_flags;
3362
3363        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3364
3365        tx_desc = I40E_TX_DESC(tx_ring, i);
3366        tx_bi = first;
3367
3368        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3369                unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3370
3371                if (dma_mapping_error(tx_ring->dev, dma))
3372                        goto dma_error;
3373
3374                /* record length, and DMA address */
3375                dma_unmap_len_set(tx_bi, len, size);
3376                dma_unmap_addr_set(tx_bi, dma, dma);
3377
3378                /* align size to end of page */
3379                max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3380                tx_desc->buffer_addr = cpu_to_le64(dma);
3381
3382                while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3383                        tx_desc->cmd_type_offset_bsz =
3384                                build_ctob(td_cmd, td_offset,
3385                                           max_data, td_tag);
3386
3387                        tx_desc++;
3388                        i++;
3389                        desc_count++;
3390
3391                        if (i == tx_ring->count) {
3392                                tx_desc = I40E_TX_DESC(tx_ring, 0);
3393                                i = 0;
3394                        }
3395
3396                        dma += max_data;
3397                        size -= max_data;
3398
3399                        max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3400                        tx_desc->buffer_addr = cpu_to_le64(dma);
3401                }
3402
3403                if (likely(!data_len))
3404                        break;
3405
3406                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3407                                                          size, td_tag);
3408
3409                tx_desc++;
3410                i++;
3411                desc_count++;
3412
3413                if (i == tx_ring->count) {
3414                        tx_desc = I40E_TX_DESC(tx_ring, 0);
3415                        i = 0;
3416                }
3417
3418                size = skb_frag_size(frag);
3419                data_len -= size;
3420
3421                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3422                                       DMA_TO_DEVICE);
3423
3424                tx_bi = &tx_ring->tx_bi[i];
3425        }
3426
3427        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3428
3429        i++;
3430        if (i == tx_ring->count)
3431                i = 0;
3432
3433        tx_ring->next_to_use = i;
3434
3435        i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3436
3437        /* write last descriptor with EOP bit */
3438        td_cmd |= I40E_TX_DESC_CMD_EOP;
3439
3440        /* We OR these values together to check both against 4 (WB_STRIDE)
3441         * below. This is safe since we don't re-use desc_count afterwards.
3442         */
3443        desc_count |= ++tx_ring->packet_stride;
3444
3445        if (desc_count >= WB_STRIDE) {
3446                /* write last descriptor with RS bit set */
3447                td_cmd |= I40E_TX_DESC_CMD_RS;
3448                tx_ring->packet_stride = 0;
3449        }
3450
3451        tx_desc->cmd_type_offset_bsz =
3452                        build_ctob(td_cmd, td_offset, size, td_tag);
3453
3454        /* Force memory writes to complete before letting h/w know there
3455         * are new descriptors to fetch.
3456         *
3457         * We also use this memory barrier to make certain all of the
3458         * status bits have been updated before next_to_watch is written.
3459         */
3460        wmb();
3461
3462        /* set next_to_watch value indicating a packet is present */
3463        first->next_to_watch = tx_desc;
3464
3465        /* notify HW of packet */
3466        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3467                writel(i, tx_ring->tail);
3468
3469                /* we need this if more than one processor can write to our tail
3470                 * at a time, it synchronizes IO on IA64/Altix systems
3471                 */
3472                mmiowb();
3473        }
3474
3475        return 0;
3476
3477dma_error:
3478        dev_info(tx_ring->dev, "TX DMA map failed\n");
3479
3480        /* clear dma mappings for failed tx_bi map */
3481        for (;;) {
3482                tx_bi = &tx_ring->tx_bi[i];
3483                i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3484                if (tx_bi == first)
3485                        break;
3486                if (i == 0)
3487                        i = tx_ring->count;
3488                i--;
3489        }
3490
3491        tx_ring->next_to_use = i;
3492
3493        return -1;
3494}
3495
3496/**
3497 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3498 * @xdp: data to transmit
3499 * @xdp_ring: XDP Tx ring
3500 **/
3501static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3502                              struct i40e_ring *xdp_ring)
3503{
3504        u16 i = xdp_ring->next_to_use;
3505        struct i40e_tx_buffer *tx_bi;
3506        struct i40e_tx_desc *tx_desc;
3507        u32 size = xdpf->len;
3508        dma_addr_t dma;
3509
3510        if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3511                xdp_ring->tx_stats.tx_busy++;
3512                return I40E_XDP_CONSUMED;
3513        }
3514
3515        dma = dma_map_single(xdp_ring->dev, xdpf->data, size, DMA_TO_DEVICE);
3516        if (dma_mapping_error(xdp_ring->dev, dma))
3517                return I40E_XDP_CONSUMED;
3518
3519        tx_bi = &xdp_ring->tx_bi[i];
3520        tx_bi->bytecount = size;
3521        tx_bi->gso_segs = 1;
3522        tx_bi->xdpf = xdpf;
3523
3524        /* record length, and DMA address */
3525        dma_unmap_len_set(tx_bi, len, size);
3526        dma_unmap_addr_set(tx_bi, dma, dma);
3527
3528        tx_desc = I40E_TX_DESC(xdp_ring, i);
3529        tx_desc->buffer_addr = cpu_to_le64(dma);
3530        tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3531                                                  | I40E_TXD_CMD,
3532                                                  0, size, 0);
3533
3534        /* Make certain all of the status bits have been updated
3535         * before next_to_watch is written.
3536         */
3537        smp_wmb();
3538
3539        i++;
3540        if (i == xdp_ring->count)
3541                i = 0;
3542
3543        tx_bi->next_to_watch = tx_desc;
3544        xdp_ring->next_to_use = i;
3545
3546        return I40E_XDP_TX;
3547}
3548
3549/**
3550 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3551 * @skb:     send buffer
3552 * @tx_ring: ring to send buffer on
3553 *
3554 * Returns NETDEV_TX_OK if sent, else an error code
3555 **/
3556static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3557                                        struct i40e_ring *tx_ring)
3558{
3559        u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3560        u32 cd_tunneling = 0, cd_l2tag2 = 0;
3561        struct i40e_tx_buffer *first;
3562        u32 td_offset = 0;
3563        u32 tx_flags = 0;
3564        __be16 protocol;
3565        u32 td_cmd = 0;
3566        u8 hdr_len = 0;
3567        int tso, count;
3568        int tsyn;
3569
3570        /* prefetch the data, we'll need it later */
3571        prefetch(skb->data);
3572
3573        i40e_trace(xmit_frame_ring, skb, tx_ring);
3574
3575        count = i40e_xmit_descriptor_count(skb);
3576        if (i40e_chk_linearize(skb, count)) {
3577                if (__skb_linearize(skb)) {
3578                        dev_kfree_skb_any(skb);
3579                        return NETDEV_TX_OK;
3580                }
3581                count = i40e_txd_use_count(skb->len);
3582                tx_ring->tx_stats.tx_linearize++;
3583        }
3584
3585        /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3586         *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3587         *       + 4 desc gap to avoid the cache line where head is,
3588         *       + 1 desc for context descriptor,
3589         * otherwise try next time
3590         */
3591        if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3592                tx_ring->tx_stats.tx_busy++;
3593                return NETDEV_TX_BUSY;
3594        }
3595
3596        /* record the location of the first descriptor for this packet */
3597        first = &tx_ring->tx_bi[tx_ring->next_to_use];
3598        first->skb = skb;
3599        first->bytecount = skb->len;
3600        first->gso_segs = 1;
3601
3602        /* prepare the xmit flags */
3603        if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3604                goto out_drop;
3605
3606        /* obtain protocol of skb */
3607        protocol = vlan_get_protocol(skb);
3608
3609        /* setup IPv4/IPv6 offloads */
3610        if (protocol == htons(ETH_P_IP))
3611                tx_flags |= I40E_TX_FLAGS_IPV4;
3612        else if (protocol == htons(ETH_P_IPV6))
3613                tx_flags |= I40E_TX_FLAGS_IPV6;
3614
3615        tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3616
3617        if (tso < 0)
3618                goto out_drop;
3619        else if (tso)
3620                tx_flags |= I40E_TX_FLAGS_TSO;
3621
3622        /* Always offload the checksum, since it's in the data descriptor */
3623        tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3624                                  tx_ring, &cd_tunneling);
3625        if (tso < 0)
3626                goto out_drop;
3627
3628        tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3629
3630        if (tsyn)
3631                tx_flags |= I40E_TX_FLAGS_TSYN;
3632
3633        skb_tx_timestamp(skb);
3634
3635        /* always enable CRC insertion offload */
3636        td_cmd |= I40E_TX_DESC_CMD_ICRC;
3637
3638        i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3639                           cd_tunneling, cd_l2tag2);
3640
3641        /* Add Flow Director ATR if it's enabled.
3642         *
3643         * NOTE: this must always be directly before the data descriptor.
3644         */
3645        i40e_atr(tx_ring, skb, tx_flags);
3646
3647        if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3648                        td_cmd, td_offset))
3649                goto cleanup_tx_tstamp;
3650
3651        return NETDEV_TX_OK;
3652
3653out_drop:
3654        i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3655        dev_kfree_skb_any(first->skb);
3656        first->skb = NULL;
3657cleanup_tx_tstamp:
3658        if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3659                struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3660
3661                dev_kfree_skb_any(pf->ptp_tx_skb);
3662                pf->ptp_tx_skb = NULL;
3663                clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3664        }
3665
3666        return NETDEV_TX_OK;
3667}
3668
3669/**
3670 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3671 * @skb:    send buffer
3672 * @netdev: network interface device structure
3673 *
3674 * Returns NETDEV_TX_OK if sent, else an error code
3675 **/
3676netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3677{
3678        struct i40e_netdev_priv *np = netdev_priv(netdev);
3679        struct i40e_vsi *vsi = np->vsi;
3680        struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3681
3682        /* hardware can't handle really short frames, hardware padding works
3683         * beyond this point
3684         */
3685        if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3686                return NETDEV_TX_OK;
3687
3688        return i40e_xmit_frame_ring(skb, tx_ring);
3689}
3690
3691/**
3692 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3693 * @dev: netdev
3694 * @xdp: XDP buffer
3695 *
3696 * Returns number of frames successfully sent. Frames that fail are
3697 * free'ed via XDP return API.
3698 *
3699 * For error cases, a negative errno code is returned and no-frames
3700 * are transmitted (caller must handle freeing frames).
3701 **/
3702int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3703                  u32 flags)
3704{
3705        struct i40e_netdev_priv *np = netdev_priv(dev);
3706        unsigned int queue_index = smp_processor_id();
3707        struct i40e_vsi *vsi = np->vsi;
3708        struct i40e_ring *xdp_ring;
3709        int drops = 0;
3710        int i;
3711
3712        if (test_bit(__I40E_VSI_DOWN, vsi->state))
3713                return -ENETDOWN;
3714
3715        if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
3716                return -ENXIO;
3717
3718        if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3719                return -EINVAL;
3720
3721        xdp_ring = vsi->xdp_rings[queue_index];
3722
3723        for (i = 0; i < n; i++) {
3724                struct xdp_frame *xdpf = frames[i];
3725                int err;
3726
3727                err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3728                if (err != I40E_XDP_TX) {
3729                        xdp_return_frame_rx_napi(xdpf);
3730                        drops++;
3731                }
3732        }
3733
3734        if (unlikely(flags & XDP_XMIT_FLUSH))
3735                i40e_xdp_ring_update_tail(xdp_ring);
3736
3737        return n - drops;
3738}
3739