linux/drivers/net/ethernet/sun/sungem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
   3 * sungem.c: Sun GEM ethernet driver.
   4 *
   5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
   6 *
   7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
   8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
   9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  10 *
  11 * NAPI and NETPOLL support
  12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  13 *
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/fcntl.h>
  22#include <linux/interrupt.h>
  23#include <linux/ioport.h>
  24#include <linux/in.h>
  25#include <linux/sched.h>
  26#include <linux/string.h>
  27#include <linux/delay.h>
  28#include <linux/errno.h>
  29#include <linux/pci.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/netdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36#include <linux/crc32.h>
  37#include <linux/random.h>
  38#include <linux/workqueue.h>
  39#include <linux/if_vlan.h>
  40#include <linux/bitops.h>
  41#include <linux/mm.h>
  42#include <linux/gfp.h>
  43
  44#include <asm/io.h>
  45#include <asm/byteorder.h>
  46#include <linux/uaccess.h>
  47#include <asm/irq.h>
  48
  49#ifdef CONFIG_SPARC
  50#include <asm/idprom.h>
  51#include <asm/prom.h>
  52#endif
  53
  54#ifdef CONFIG_PPC_PMAC
  55#include <asm/prom.h>
  56#include <asm/machdep.h>
  57#include <asm/pmac_feature.h>
  58#endif
  59
  60#include <linux/sungem_phy.h>
  61#include "sungem.h"
  62
  63#define STRIP_FCS
  64
  65#define DEFAULT_MSG     (NETIF_MSG_DRV          | \
  66                         NETIF_MSG_PROBE        | \
  67                         NETIF_MSG_LINK)
  68
  69#define ADVERTISE_MASK  (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  70                         SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  71                         SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  72                         SUPPORTED_Pause | SUPPORTED_Autoneg)
  73
  74#define DRV_NAME        "sungem"
  75#define DRV_VERSION     "1.0"
  76#define DRV_AUTHOR      "David S. Miller <davem@redhat.com>"
  77
  78static char version[] =
  79        DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  80
  81MODULE_AUTHOR(DRV_AUTHOR);
  82MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  83MODULE_LICENSE("GPL");
  84
  85#define GEM_MODULE_NAME "gem"
  86
  87static const struct pci_device_id gem_pci_tbl[] = {
  88        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  89          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  90
  91        /* These models only differ from the original GEM in
  92         * that their tx/rx fifos are of a different size and
  93         * they only support 10/100 speeds. -DaveM
  94         *
  95         * Apple's GMAC does support gigabit on machines with
  96         * the BCM54xx PHYs. -BenH
  97         */
  98        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  99          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 100        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
 101          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 102        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
 103          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 104        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
 105          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 106        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
 107          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 108        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
 109          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 110        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
 111          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 112        {0, }
 113};
 114
 115MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
 116
 117static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
 118{
 119        u32 cmd;
 120        int limit = 10000;
 121
 122        cmd  = (1 << 30);
 123        cmd |= (2 << 28);
 124        cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 125        cmd |= (reg << 18) & MIF_FRAME_REGAD;
 126        cmd |= (MIF_FRAME_TAMSB);
 127        writel(cmd, gp->regs + MIF_FRAME);
 128
 129        while (--limit) {
 130                cmd = readl(gp->regs + MIF_FRAME);
 131                if (cmd & MIF_FRAME_TALSB)
 132                        break;
 133
 134                udelay(10);
 135        }
 136
 137        if (!limit)
 138                cmd = 0xffff;
 139
 140        return cmd & MIF_FRAME_DATA;
 141}
 142
 143static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
 144{
 145        struct gem *gp = netdev_priv(dev);
 146        return __sungem_phy_read(gp, mii_id, reg);
 147}
 148
 149static inline u16 sungem_phy_read(struct gem *gp, int reg)
 150{
 151        return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
 152}
 153
 154static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
 155{
 156        u32 cmd;
 157        int limit = 10000;
 158
 159        cmd  = (1 << 30);
 160        cmd |= (1 << 28);
 161        cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 162        cmd |= (reg << 18) & MIF_FRAME_REGAD;
 163        cmd |= (MIF_FRAME_TAMSB);
 164        cmd |= (val & MIF_FRAME_DATA);
 165        writel(cmd, gp->regs + MIF_FRAME);
 166
 167        while (limit--) {
 168                cmd = readl(gp->regs + MIF_FRAME);
 169                if (cmd & MIF_FRAME_TALSB)
 170                        break;
 171
 172                udelay(10);
 173        }
 174}
 175
 176static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
 177{
 178        struct gem *gp = netdev_priv(dev);
 179        __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
 180}
 181
 182static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
 183{
 184        __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
 185}
 186
 187static inline void gem_enable_ints(struct gem *gp)
 188{
 189        /* Enable all interrupts but TXDONE */
 190        writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 191}
 192
 193static inline void gem_disable_ints(struct gem *gp)
 194{
 195        /* Disable all interrupts, including TXDONE */
 196        writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 197        (void)readl(gp->regs + GREG_IMASK); /* write posting */
 198}
 199
 200static void gem_get_cell(struct gem *gp)
 201{
 202        BUG_ON(gp->cell_enabled < 0);
 203        gp->cell_enabled++;
 204#ifdef CONFIG_PPC_PMAC
 205        if (gp->cell_enabled == 1) {
 206                mb();
 207                pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
 208                udelay(10);
 209        }
 210#endif /* CONFIG_PPC_PMAC */
 211}
 212
 213/* Turn off the chip's clock */
 214static void gem_put_cell(struct gem *gp)
 215{
 216        BUG_ON(gp->cell_enabled <= 0);
 217        gp->cell_enabled--;
 218#ifdef CONFIG_PPC_PMAC
 219        if (gp->cell_enabled == 0) {
 220                mb();
 221                pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
 222                udelay(10);
 223        }
 224#endif /* CONFIG_PPC_PMAC */
 225}
 226
 227static inline void gem_netif_stop(struct gem *gp)
 228{
 229        netif_trans_update(gp->dev);    /* prevent tx timeout */
 230        napi_disable(&gp->napi);
 231        netif_tx_disable(gp->dev);
 232}
 233
 234static inline void gem_netif_start(struct gem *gp)
 235{
 236        /* NOTE: unconditional netif_wake_queue is only
 237         * appropriate so long as all callers are assured to
 238         * have free tx slots.
 239         */
 240        netif_wake_queue(gp->dev);
 241        napi_enable(&gp->napi);
 242}
 243
 244static void gem_schedule_reset(struct gem *gp)
 245{
 246        gp->reset_task_pending = 1;
 247        schedule_work(&gp->reset_task);
 248}
 249
 250static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
 251{
 252        if (netif_msg_intr(gp))
 253                printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
 254}
 255
 256static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 257{
 258        u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
 259        u32 pcs_miistat;
 260
 261        if (netif_msg_intr(gp))
 262                printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
 263                        gp->dev->name, pcs_istat);
 264
 265        if (!(pcs_istat & PCS_ISTAT_LSC)) {
 266                netdev_err(dev, "PCS irq but no link status change???\n");
 267                return 0;
 268        }
 269
 270        /* The link status bit latches on zero, so you must
 271         * read it twice in such a case to see a transition
 272         * to the link being up.
 273         */
 274        pcs_miistat = readl(gp->regs + PCS_MIISTAT);
 275        if (!(pcs_miistat & PCS_MIISTAT_LS))
 276                pcs_miistat |=
 277                        (readl(gp->regs + PCS_MIISTAT) &
 278                         PCS_MIISTAT_LS);
 279
 280        if (pcs_miistat & PCS_MIISTAT_ANC) {
 281                /* The remote-fault indication is only valid
 282                 * when autoneg has completed.
 283                 */
 284                if (pcs_miistat & PCS_MIISTAT_RF)
 285                        netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
 286                else
 287                        netdev_info(dev, "PCS AutoNEG complete\n");
 288        }
 289
 290        if (pcs_miistat & PCS_MIISTAT_LS) {
 291                netdev_info(dev, "PCS link is now up\n");
 292                netif_carrier_on(gp->dev);
 293        } else {
 294                netdev_info(dev, "PCS link is now down\n");
 295                netif_carrier_off(gp->dev);
 296                /* If this happens and the link timer is not running,
 297                 * reset so we re-negotiate.
 298                 */
 299                if (!timer_pending(&gp->link_timer))
 300                        return 1;
 301        }
 302
 303        return 0;
 304}
 305
 306static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 307{
 308        u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
 309
 310        if (netif_msg_intr(gp))
 311                printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
 312                        gp->dev->name, txmac_stat);
 313
 314        /* Defer timer expiration is quite normal,
 315         * don't even log the event.
 316         */
 317        if ((txmac_stat & MAC_TXSTAT_DTE) &&
 318            !(txmac_stat & ~MAC_TXSTAT_DTE))
 319                return 0;
 320
 321        if (txmac_stat & MAC_TXSTAT_URUN) {
 322                netdev_err(dev, "TX MAC xmit underrun\n");
 323                dev->stats.tx_fifo_errors++;
 324        }
 325
 326        if (txmac_stat & MAC_TXSTAT_MPE) {
 327                netdev_err(dev, "TX MAC max packet size error\n");
 328                dev->stats.tx_errors++;
 329        }
 330
 331        /* The rest are all cases of one of the 16-bit TX
 332         * counters expiring.
 333         */
 334        if (txmac_stat & MAC_TXSTAT_NCE)
 335                dev->stats.collisions += 0x10000;
 336
 337        if (txmac_stat & MAC_TXSTAT_ECE) {
 338                dev->stats.tx_aborted_errors += 0x10000;
 339                dev->stats.collisions += 0x10000;
 340        }
 341
 342        if (txmac_stat & MAC_TXSTAT_LCE) {
 343                dev->stats.tx_aborted_errors += 0x10000;
 344                dev->stats.collisions += 0x10000;
 345        }
 346
 347        /* We do not keep track of MAC_TXSTAT_FCE and
 348         * MAC_TXSTAT_PCE events.
 349         */
 350        return 0;
 351}
 352
 353/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
 354 * so we do the following.
 355 *
 356 * If any part of the reset goes wrong, we return 1 and that causes the
 357 * whole chip to be reset.
 358 */
 359static int gem_rxmac_reset(struct gem *gp)
 360{
 361        struct net_device *dev = gp->dev;
 362        int limit, i;
 363        u64 desc_dma;
 364        u32 val;
 365
 366        /* First, reset & disable MAC RX. */
 367        writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
 368        for (limit = 0; limit < 5000; limit++) {
 369                if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
 370                        break;
 371                udelay(10);
 372        }
 373        if (limit == 5000) {
 374                netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
 375                return 1;
 376        }
 377
 378        writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
 379               gp->regs + MAC_RXCFG);
 380        for (limit = 0; limit < 5000; limit++) {
 381                if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
 382                        break;
 383                udelay(10);
 384        }
 385        if (limit == 5000) {
 386                netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
 387                return 1;
 388        }
 389
 390        /* Second, disable RX DMA. */
 391        writel(0, gp->regs + RXDMA_CFG);
 392        for (limit = 0; limit < 5000; limit++) {
 393                if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
 394                        break;
 395                udelay(10);
 396        }
 397        if (limit == 5000) {
 398                netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
 399                return 1;
 400        }
 401
 402        mdelay(5);
 403
 404        /* Execute RX reset command. */
 405        writel(gp->swrst_base | GREG_SWRST_RXRST,
 406               gp->regs + GREG_SWRST);
 407        for (limit = 0; limit < 5000; limit++) {
 408                if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
 409                        break;
 410                udelay(10);
 411        }
 412        if (limit == 5000) {
 413                netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
 414                return 1;
 415        }
 416
 417        /* Refresh the RX ring. */
 418        for (i = 0; i < RX_RING_SIZE; i++) {
 419                struct gem_rxd *rxd = &gp->init_block->rxd[i];
 420
 421                if (gp->rx_skbs[i] == NULL) {
 422                        netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
 423                        return 1;
 424                }
 425
 426                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 427        }
 428        gp->rx_new = gp->rx_old = 0;
 429
 430        /* Now we must reprogram the rest of RX unit. */
 431        desc_dma = (u64) gp->gblock_dvma;
 432        desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
 433        writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
 434        writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
 435        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
 436        val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
 437               (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
 438        writel(val, gp->regs + RXDMA_CFG);
 439        if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
 440                writel(((5 & RXDMA_BLANK_IPKTS) |
 441                        ((8 << 12) & RXDMA_BLANK_ITIME)),
 442                       gp->regs + RXDMA_BLANK);
 443        else
 444                writel(((5 & RXDMA_BLANK_IPKTS) |
 445                        ((4 << 12) & RXDMA_BLANK_ITIME)),
 446                       gp->regs + RXDMA_BLANK);
 447        val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
 448        val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
 449        writel(val, gp->regs + RXDMA_PTHRESH);
 450        val = readl(gp->regs + RXDMA_CFG);
 451        writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
 452        writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
 453        val = readl(gp->regs + MAC_RXCFG);
 454        writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
 455
 456        return 0;
 457}
 458
 459static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 460{
 461        u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
 462        int ret = 0;
 463
 464        if (netif_msg_intr(gp))
 465                printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
 466                        gp->dev->name, rxmac_stat);
 467
 468        if (rxmac_stat & MAC_RXSTAT_OFLW) {
 469                u32 smac = readl(gp->regs + MAC_SMACHINE);
 470
 471                netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
 472                dev->stats.rx_over_errors++;
 473                dev->stats.rx_fifo_errors++;
 474
 475                ret = gem_rxmac_reset(gp);
 476        }
 477
 478        if (rxmac_stat & MAC_RXSTAT_ACE)
 479                dev->stats.rx_frame_errors += 0x10000;
 480
 481        if (rxmac_stat & MAC_RXSTAT_CCE)
 482                dev->stats.rx_crc_errors += 0x10000;
 483
 484        if (rxmac_stat & MAC_RXSTAT_LCE)
 485                dev->stats.rx_length_errors += 0x10000;
 486
 487        /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
 488         * events.
 489         */
 490        return ret;
 491}
 492
 493static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 494{
 495        u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
 496
 497        if (netif_msg_intr(gp))
 498                printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
 499                        gp->dev->name, mac_cstat);
 500
 501        /* This interrupt is just for pause frame and pause
 502         * tracking.  It is useful for diagnostics and debug
 503         * but probably by default we will mask these events.
 504         */
 505        if (mac_cstat & MAC_CSTAT_PS)
 506                gp->pause_entered++;
 507
 508        if (mac_cstat & MAC_CSTAT_PRCV)
 509                gp->pause_last_time_recvd = (mac_cstat >> 16);
 510
 511        return 0;
 512}
 513
 514static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 515{
 516        u32 mif_status = readl(gp->regs + MIF_STATUS);
 517        u32 reg_val, changed_bits;
 518
 519        reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
 520        changed_bits = (mif_status & MIF_STATUS_STAT);
 521
 522        gem_handle_mif_event(gp, reg_val, changed_bits);
 523
 524        return 0;
 525}
 526
 527static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 528{
 529        u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
 530
 531        if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
 532            gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
 533                netdev_err(dev, "PCI error [%04x]", pci_estat);
 534
 535                if (pci_estat & GREG_PCIESTAT_BADACK)
 536                        pr_cont(" <No ACK64# during ABS64 cycle>");
 537                if (pci_estat & GREG_PCIESTAT_DTRTO)
 538                        pr_cont(" <Delayed transaction timeout>");
 539                if (pci_estat & GREG_PCIESTAT_OTHER)
 540                        pr_cont(" <other>");
 541                pr_cont("\n");
 542        } else {
 543                pci_estat |= GREG_PCIESTAT_OTHER;
 544                netdev_err(dev, "PCI error\n");
 545        }
 546
 547        if (pci_estat & GREG_PCIESTAT_OTHER) {
 548                u16 pci_cfg_stat;
 549
 550                /* Interrogate PCI config space for the
 551                 * true cause.
 552                 */
 553                pci_read_config_word(gp->pdev, PCI_STATUS,
 554                                     &pci_cfg_stat);
 555                netdev_err(dev, "Read PCI cfg space status [%04x]\n",
 556                           pci_cfg_stat);
 557                if (pci_cfg_stat & PCI_STATUS_PARITY)
 558                        netdev_err(dev, "PCI parity error detected\n");
 559                if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
 560                        netdev_err(dev, "PCI target abort\n");
 561                if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
 562                        netdev_err(dev, "PCI master acks target abort\n");
 563                if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
 564                        netdev_err(dev, "PCI master abort\n");
 565                if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
 566                        netdev_err(dev, "PCI system error SERR#\n");
 567                if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
 568                        netdev_err(dev, "PCI parity error\n");
 569
 570                /* Write the error bits back to clear them. */
 571                pci_cfg_stat &= (PCI_STATUS_PARITY |
 572                                 PCI_STATUS_SIG_TARGET_ABORT |
 573                                 PCI_STATUS_REC_TARGET_ABORT |
 574                                 PCI_STATUS_REC_MASTER_ABORT |
 575                                 PCI_STATUS_SIG_SYSTEM_ERROR |
 576                                 PCI_STATUS_DETECTED_PARITY);
 577                pci_write_config_word(gp->pdev,
 578                                      PCI_STATUS, pci_cfg_stat);
 579        }
 580
 581        /* For all PCI errors, we should reset the chip. */
 582        return 1;
 583}
 584
 585/* All non-normal interrupt conditions get serviced here.
 586 * Returns non-zero if we should just exit the interrupt
 587 * handler right now (ie. if we reset the card which invalidates
 588 * all of the other original irq status bits).
 589 */
 590static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
 591{
 592        if (gem_status & GREG_STAT_RXNOBUF) {
 593                /* Frame arrived, no free RX buffers available. */
 594                if (netif_msg_rx_err(gp))
 595                        printk(KERN_DEBUG "%s: no buffer for rx frame\n",
 596                                gp->dev->name);
 597                dev->stats.rx_dropped++;
 598        }
 599
 600        if (gem_status & GREG_STAT_RXTAGERR) {
 601                /* corrupt RX tag framing */
 602                if (netif_msg_rx_err(gp))
 603                        printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
 604                                gp->dev->name);
 605                dev->stats.rx_errors++;
 606
 607                return 1;
 608        }
 609
 610        if (gem_status & GREG_STAT_PCS) {
 611                if (gem_pcs_interrupt(dev, gp, gem_status))
 612                        return 1;
 613        }
 614
 615        if (gem_status & GREG_STAT_TXMAC) {
 616                if (gem_txmac_interrupt(dev, gp, gem_status))
 617                        return 1;
 618        }
 619
 620        if (gem_status & GREG_STAT_RXMAC) {
 621                if (gem_rxmac_interrupt(dev, gp, gem_status))
 622                        return 1;
 623        }
 624
 625        if (gem_status & GREG_STAT_MAC) {
 626                if (gem_mac_interrupt(dev, gp, gem_status))
 627                        return 1;
 628        }
 629
 630        if (gem_status & GREG_STAT_MIF) {
 631                if (gem_mif_interrupt(dev, gp, gem_status))
 632                        return 1;
 633        }
 634
 635        if (gem_status & GREG_STAT_PCIERR) {
 636                if (gem_pci_interrupt(dev, gp, gem_status))
 637                        return 1;
 638        }
 639
 640        return 0;
 641}
 642
 643static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
 644{
 645        int entry, limit;
 646
 647        entry = gp->tx_old;
 648        limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
 649        while (entry != limit) {
 650                struct sk_buff *skb;
 651                struct gem_txd *txd;
 652                dma_addr_t dma_addr;
 653                u32 dma_len;
 654                int frag;
 655
 656                if (netif_msg_tx_done(gp))
 657                        printk(KERN_DEBUG "%s: tx done, slot %d\n",
 658                                gp->dev->name, entry);
 659                skb = gp->tx_skbs[entry];
 660                if (skb_shinfo(skb)->nr_frags) {
 661                        int last = entry + skb_shinfo(skb)->nr_frags;
 662                        int walk = entry;
 663                        int incomplete = 0;
 664
 665                        last &= (TX_RING_SIZE - 1);
 666                        for (;;) {
 667                                walk = NEXT_TX(walk);
 668                                if (walk == limit)
 669                                        incomplete = 1;
 670                                if (walk == last)
 671                                        break;
 672                        }
 673                        if (incomplete)
 674                                break;
 675                }
 676                gp->tx_skbs[entry] = NULL;
 677                dev->stats.tx_bytes += skb->len;
 678
 679                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 680                        txd = &gp->init_block->txd[entry];
 681
 682                        dma_addr = le64_to_cpu(txd->buffer);
 683                        dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
 684
 685                        pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
 686                        entry = NEXT_TX(entry);
 687                }
 688
 689                dev->stats.tx_packets++;
 690                dev_consume_skb_any(skb);
 691        }
 692        gp->tx_old = entry;
 693
 694        /* Need to make the tx_old update visible to gem_start_xmit()
 695         * before checking for netif_queue_stopped().  Without the
 696         * memory barrier, there is a small possibility that gem_start_xmit()
 697         * will miss it and cause the queue to be stopped forever.
 698         */
 699        smp_mb();
 700
 701        if (unlikely(netif_queue_stopped(dev) &&
 702                     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
 703                struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 704
 705                __netif_tx_lock(txq, smp_processor_id());
 706                if (netif_queue_stopped(dev) &&
 707                    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
 708                        netif_wake_queue(dev);
 709                __netif_tx_unlock(txq);
 710        }
 711}
 712
 713static __inline__ void gem_post_rxds(struct gem *gp, int limit)
 714{
 715        int cluster_start, curr, count, kick;
 716
 717        cluster_start = curr = (gp->rx_new & ~(4 - 1));
 718        count = 0;
 719        kick = -1;
 720        dma_wmb();
 721        while (curr != limit) {
 722                curr = NEXT_RX(curr);
 723                if (++count == 4) {
 724                        struct gem_rxd *rxd =
 725                                &gp->init_block->rxd[cluster_start];
 726                        for (;;) {
 727                                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 728                                rxd++;
 729                                cluster_start = NEXT_RX(cluster_start);
 730                                if (cluster_start == curr)
 731                                        break;
 732                        }
 733                        kick = curr;
 734                        count = 0;
 735                }
 736        }
 737        if (kick >= 0) {
 738                mb();
 739                writel(kick, gp->regs + RXDMA_KICK);
 740        }
 741}
 742
 743#define ALIGNED_RX_SKB_ADDR(addr) \
 744        ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
 745static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
 746                                                gfp_t gfp_flags)
 747{
 748        struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
 749
 750        if (likely(skb)) {
 751                unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
 752                skb_reserve(skb, offset);
 753        }
 754        return skb;
 755}
 756
 757static int gem_rx(struct gem *gp, int work_to_do)
 758{
 759        struct net_device *dev = gp->dev;
 760        int entry, drops, work_done = 0;
 761        u32 done;
 762
 763        if (netif_msg_rx_status(gp))
 764                printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
 765                        gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
 766
 767        entry = gp->rx_new;
 768        drops = 0;
 769        done = readl(gp->regs + RXDMA_DONE);
 770        for (;;) {
 771                struct gem_rxd *rxd = &gp->init_block->rxd[entry];
 772                struct sk_buff *skb;
 773                u64 status = le64_to_cpu(rxd->status_word);
 774                dma_addr_t dma_addr;
 775                int len;
 776
 777                if ((status & RXDCTRL_OWN) != 0)
 778                        break;
 779
 780                if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
 781                        break;
 782
 783                /* When writing back RX descriptor, GEM writes status
 784                 * then buffer address, possibly in separate transactions.
 785                 * If we don't wait for the chip to write both, we could
 786                 * post a new buffer to this descriptor then have GEM spam
 787                 * on the buffer address.  We sync on the RX completion
 788                 * register to prevent this from happening.
 789                 */
 790                if (entry == done) {
 791                        done = readl(gp->regs + RXDMA_DONE);
 792                        if (entry == done)
 793                                break;
 794                }
 795
 796                /* We can now account for the work we're about to do */
 797                work_done++;
 798
 799                skb = gp->rx_skbs[entry];
 800
 801                len = (status & RXDCTRL_BUFSZ) >> 16;
 802                if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
 803                        dev->stats.rx_errors++;
 804                        if (len < ETH_ZLEN)
 805                                dev->stats.rx_length_errors++;
 806                        if (len & RXDCTRL_BAD)
 807                                dev->stats.rx_crc_errors++;
 808
 809                        /* We'll just return it to GEM. */
 810                drop_it:
 811                        dev->stats.rx_dropped++;
 812                        goto next;
 813                }
 814
 815                dma_addr = le64_to_cpu(rxd->buffer);
 816                if (len > RX_COPY_THRESHOLD) {
 817                        struct sk_buff *new_skb;
 818
 819                        new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
 820                        if (new_skb == NULL) {
 821                                drops++;
 822                                goto drop_it;
 823                        }
 824                        pci_unmap_page(gp->pdev, dma_addr,
 825                                       RX_BUF_ALLOC_SIZE(gp),
 826                                       PCI_DMA_FROMDEVICE);
 827                        gp->rx_skbs[entry] = new_skb;
 828                        skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
 829                        rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
 830                                                               virt_to_page(new_skb->data),
 831                                                               offset_in_page(new_skb->data),
 832                                                               RX_BUF_ALLOC_SIZE(gp),
 833                                                               PCI_DMA_FROMDEVICE));
 834                        skb_reserve(new_skb, RX_OFFSET);
 835
 836                        /* Trim the original skb for the netif. */
 837                        skb_trim(skb, len);
 838                } else {
 839                        struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
 840
 841                        if (copy_skb == NULL) {
 842                                drops++;
 843                                goto drop_it;
 844                        }
 845
 846                        skb_reserve(copy_skb, 2);
 847                        skb_put(copy_skb, len);
 848                        pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 849                        skb_copy_from_linear_data(skb, copy_skb->data, len);
 850                        pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 851
 852                        /* We'll reuse the original ring buffer. */
 853                        skb = copy_skb;
 854                }
 855
 856                if (likely(dev->features & NETIF_F_RXCSUM)) {
 857                        __sum16 csum;
 858
 859                        csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
 860                        skb->csum = csum_unfold(csum);
 861                        skb->ip_summed = CHECKSUM_COMPLETE;
 862                }
 863                skb->protocol = eth_type_trans(skb, gp->dev);
 864
 865                napi_gro_receive(&gp->napi, skb);
 866
 867                dev->stats.rx_packets++;
 868                dev->stats.rx_bytes += len;
 869
 870        next:
 871                entry = NEXT_RX(entry);
 872        }
 873
 874        gem_post_rxds(gp, entry);
 875
 876        gp->rx_new = entry;
 877
 878        if (drops)
 879                netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
 880
 881        return work_done;
 882}
 883
 884static int gem_poll(struct napi_struct *napi, int budget)
 885{
 886        struct gem *gp = container_of(napi, struct gem, napi);
 887        struct net_device *dev = gp->dev;
 888        int work_done;
 889
 890        work_done = 0;
 891        do {
 892                /* Handle anomalies */
 893                if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
 894                        struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 895                        int reset;
 896
 897                        /* We run the abnormal interrupt handling code with
 898                         * the Tx lock. It only resets the Rx portion of the
 899                         * chip, but we need to guard it against DMA being
 900                         * restarted by the link poll timer
 901                         */
 902                        __netif_tx_lock(txq, smp_processor_id());
 903                        reset = gem_abnormal_irq(dev, gp, gp->status);
 904                        __netif_tx_unlock(txq);
 905                        if (reset) {
 906                                gem_schedule_reset(gp);
 907                                napi_complete(napi);
 908                                return work_done;
 909                        }
 910                }
 911
 912                /* Run TX completion thread */
 913                gem_tx(dev, gp, gp->status);
 914
 915                /* Run RX thread. We don't use any locking here,
 916                 * code willing to do bad things - like cleaning the
 917                 * rx ring - must call napi_disable(), which
 918                 * schedule_timeout()'s if polling is already disabled.
 919                 */
 920                work_done += gem_rx(gp, budget - work_done);
 921
 922                if (work_done >= budget)
 923                        return work_done;
 924
 925                gp->status = readl(gp->regs + GREG_STAT);
 926        } while (gp->status & GREG_STAT_NAPI);
 927
 928        napi_complete_done(napi, work_done);
 929        gem_enable_ints(gp);
 930
 931        return work_done;
 932}
 933
 934static irqreturn_t gem_interrupt(int irq, void *dev_id)
 935{
 936        struct net_device *dev = dev_id;
 937        struct gem *gp = netdev_priv(dev);
 938
 939        if (napi_schedule_prep(&gp->napi)) {
 940                u32 gem_status = readl(gp->regs + GREG_STAT);
 941
 942                if (unlikely(gem_status == 0)) {
 943                        napi_enable(&gp->napi);
 944                        return IRQ_NONE;
 945                }
 946                if (netif_msg_intr(gp))
 947                        printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
 948                               gp->dev->name, gem_status);
 949
 950                gp->status = gem_status;
 951                gem_disable_ints(gp);
 952                __napi_schedule(&gp->napi);
 953        }
 954
 955        /* If polling was disabled at the time we received that
 956         * interrupt, we may return IRQ_HANDLED here while we
 957         * should return IRQ_NONE. No big deal...
 958         */
 959        return IRQ_HANDLED;
 960}
 961
 962#ifdef CONFIG_NET_POLL_CONTROLLER
 963static void gem_poll_controller(struct net_device *dev)
 964{
 965        struct gem *gp = netdev_priv(dev);
 966
 967        disable_irq(gp->pdev->irq);
 968        gem_interrupt(gp->pdev->irq, dev);
 969        enable_irq(gp->pdev->irq);
 970}
 971#endif
 972
 973static void gem_tx_timeout(struct net_device *dev)
 974{
 975        struct gem *gp = netdev_priv(dev);
 976
 977        netdev_err(dev, "transmit timed out, resetting\n");
 978
 979        netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
 980                   readl(gp->regs + TXDMA_CFG),
 981                   readl(gp->regs + MAC_TXSTAT),
 982                   readl(gp->regs + MAC_TXCFG));
 983        netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
 984                   readl(gp->regs + RXDMA_CFG),
 985                   readl(gp->regs + MAC_RXSTAT),
 986                   readl(gp->regs + MAC_RXCFG));
 987
 988        gem_schedule_reset(gp);
 989}
 990
 991static __inline__ int gem_intme(int entry)
 992{
 993        /* Algorithm: IRQ every 1/2 of descriptors. */
 994        if (!(entry & ((TX_RING_SIZE>>1)-1)))
 995                return 1;
 996
 997        return 0;
 998}
 999
1000static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1001                                  struct net_device *dev)
1002{
1003        struct gem *gp = netdev_priv(dev);
1004        int entry;
1005        u64 ctrl;
1006
1007        ctrl = 0;
1008        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1009                const u64 csum_start_off = skb_checksum_start_offset(skb);
1010                const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1011
1012                ctrl = (TXDCTRL_CENAB |
1013                        (csum_start_off << 15) |
1014                        (csum_stuff_off << 21));
1015        }
1016
1017        if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1018                /* This is a hard error, log it. */
1019                if (!netif_queue_stopped(dev)) {
1020                        netif_stop_queue(dev);
1021                        netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1022                }
1023                return NETDEV_TX_BUSY;
1024        }
1025
1026        entry = gp->tx_new;
1027        gp->tx_skbs[entry] = skb;
1028
1029        if (skb_shinfo(skb)->nr_frags == 0) {
1030                struct gem_txd *txd = &gp->init_block->txd[entry];
1031                dma_addr_t mapping;
1032                u32 len;
1033
1034                len = skb->len;
1035                mapping = pci_map_page(gp->pdev,
1036                                       virt_to_page(skb->data),
1037                                       offset_in_page(skb->data),
1038                                       len, PCI_DMA_TODEVICE);
1039                ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1040                if (gem_intme(entry))
1041                        ctrl |= TXDCTRL_INTME;
1042                txd->buffer = cpu_to_le64(mapping);
1043                dma_wmb();
1044                txd->control_word = cpu_to_le64(ctrl);
1045                entry = NEXT_TX(entry);
1046        } else {
1047                struct gem_txd *txd;
1048                u32 first_len;
1049                u64 intme;
1050                dma_addr_t first_mapping;
1051                int frag, first_entry = entry;
1052
1053                intme = 0;
1054                if (gem_intme(entry))
1055                        intme |= TXDCTRL_INTME;
1056
1057                /* We must give this initial chunk to the device last.
1058                 * Otherwise we could race with the device.
1059                 */
1060                first_len = skb_headlen(skb);
1061                first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1062                                             offset_in_page(skb->data),
1063                                             first_len, PCI_DMA_TODEVICE);
1064                entry = NEXT_TX(entry);
1065
1066                for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1067                        const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1068                        u32 len;
1069                        dma_addr_t mapping;
1070                        u64 this_ctrl;
1071
1072                        len = skb_frag_size(this_frag);
1073                        mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1074                                                   0, len, DMA_TO_DEVICE);
1075                        this_ctrl = ctrl;
1076                        if (frag == skb_shinfo(skb)->nr_frags - 1)
1077                                this_ctrl |= TXDCTRL_EOF;
1078
1079                        txd = &gp->init_block->txd[entry];
1080                        txd->buffer = cpu_to_le64(mapping);
1081                        dma_wmb();
1082                        txd->control_word = cpu_to_le64(this_ctrl | len);
1083
1084                        if (gem_intme(entry))
1085                                intme |= TXDCTRL_INTME;
1086
1087                        entry = NEXT_TX(entry);
1088                }
1089                txd = &gp->init_block->txd[first_entry];
1090                txd->buffer = cpu_to_le64(first_mapping);
1091                dma_wmb();
1092                txd->control_word =
1093                        cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1094        }
1095
1096        gp->tx_new = entry;
1097        if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1098                netif_stop_queue(dev);
1099
1100                /* netif_stop_queue() must be done before checking
1101                 * checking tx index in TX_BUFFS_AVAIL() below, because
1102                 * in gem_tx(), we update tx_old before checking for
1103                 * netif_queue_stopped().
1104                 */
1105                smp_mb();
1106                if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1107                        netif_wake_queue(dev);
1108        }
1109        if (netif_msg_tx_queued(gp))
1110                printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1111                       dev->name, entry, skb->len);
1112        mb();
1113        writel(gp->tx_new, gp->regs + TXDMA_KICK);
1114
1115        return NETDEV_TX_OK;
1116}
1117
1118static void gem_pcs_reset(struct gem *gp)
1119{
1120        int limit;
1121        u32 val;
1122
1123        /* Reset PCS unit. */
1124        val = readl(gp->regs + PCS_MIICTRL);
1125        val |= PCS_MIICTRL_RST;
1126        writel(val, gp->regs + PCS_MIICTRL);
1127
1128        limit = 32;
1129        while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1130                udelay(100);
1131                if (limit-- <= 0)
1132                        break;
1133        }
1134        if (limit < 0)
1135                netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1136}
1137
1138static void gem_pcs_reinit_adv(struct gem *gp)
1139{
1140        u32 val;
1141
1142        /* Make sure PCS is disabled while changing advertisement
1143         * configuration.
1144         */
1145        val = readl(gp->regs + PCS_CFG);
1146        val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1147        writel(val, gp->regs + PCS_CFG);
1148
1149        /* Advertise all capabilities except asymmetric
1150         * pause.
1151         */
1152        val = readl(gp->regs + PCS_MIIADV);
1153        val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1154                PCS_MIIADV_SP | PCS_MIIADV_AP);
1155        writel(val, gp->regs + PCS_MIIADV);
1156
1157        /* Enable and restart auto-negotiation, disable wrapback/loopback,
1158         * and re-enable PCS.
1159         */
1160        val = readl(gp->regs + PCS_MIICTRL);
1161        val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1162        val &= ~PCS_MIICTRL_WB;
1163        writel(val, gp->regs + PCS_MIICTRL);
1164
1165        val = readl(gp->regs + PCS_CFG);
1166        val |= PCS_CFG_ENABLE;
1167        writel(val, gp->regs + PCS_CFG);
1168
1169        /* Make sure serialink loopback is off.  The meaning
1170         * of this bit is logically inverted based upon whether
1171         * you are in Serialink or SERDES mode.
1172         */
1173        val = readl(gp->regs + PCS_SCTRL);
1174        if (gp->phy_type == phy_serialink)
1175                val &= ~PCS_SCTRL_LOOP;
1176        else
1177                val |= PCS_SCTRL_LOOP;
1178        writel(val, gp->regs + PCS_SCTRL);
1179}
1180
1181#define STOP_TRIES 32
1182
1183static void gem_reset(struct gem *gp)
1184{
1185        int limit;
1186        u32 val;
1187
1188        /* Make sure we won't get any more interrupts */
1189        writel(0xffffffff, gp->regs + GREG_IMASK);
1190
1191        /* Reset the chip */
1192        writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1193               gp->regs + GREG_SWRST);
1194
1195        limit = STOP_TRIES;
1196
1197        do {
1198                udelay(20);
1199                val = readl(gp->regs + GREG_SWRST);
1200                if (limit-- <= 0)
1201                        break;
1202        } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1203
1204        if (limit < 0)
1205                netdev_err(gp->dev, "SW reset is ghetto\n");
1206
1207        if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1208                gem_pcs_reinit_adv(gp);
1209}
1210
1211static void gem_start_dma(struct gem *gp)
1212{
1213        u32 val;
1214
1215        /* We are ready to rock, turn everything on. */
1216        val = readl(gp->regs + TXDMA_CFG);
1217        writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1218        val = readl(gp->regs + RXDMA_CFG);
1219        writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1220        val = readl(gp->regs + MAC_TXCFG);
1221        writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1222        val = readl(gp->regs + MAC_RXCFG);
1223        writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1224
1225        (void) readl(gp->regs + MAC_RXCFG);
1226        udelay(100);
1227
1228        gem_enable_ints(gp);
1229
1230        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1231}
1232
1233/* DMA won't be actually stopped before about 4ms tho ...
1234 */
1235static void gem_stop_dma(struct gem *gp)
1236{
1237        u32 val;
1238
1239        /* We are done rocking, turn everything off. */
1240        val = readl(gp->regs + TXDMA_CFG);
1241        writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1242        val = readl(gp->regs + RXDMA_CFG);
1243        writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1244        val = readl(gp->regs + MAC_TXCFG);
1245        writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1246        val = readl(gp->regs + MAC_RXCFG);
1247        writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1248
1249        (void) readl(gp->regs + MAC_RXCFG);
1250
1251        /* Need to wait a bit ... done by the caller */
1252}
1253
1254
1255// XXX dbl check what that function should do when called on PCS PHY
1256static void gem_begin_auto_negotiation(struct gem *gp,
1257                                       const struct ethtool_link_ksettings *ep)
1258{
1259        u32 advertise, features;
1260        int autoneg;
1261        int speed;
1262        int duplex;
1263        u32 advertising;
1264
1265        if (ep)
1266                ethtool_convert_link_mode_to_legacy_u32(
1267                        &advertising, ep->link_modes.advertising);
1268
1269        if (gp->phy_type != phy_mii_mdio0 &&
1270            gp->phy_type != phy_mii_mdio1)
1271                goto non_mii;
1272
1273        /* Setup advertise */
1274        if (found_mii_phy(gp))
1275                features = gp->phy_mii.def->features;
1276        else
1277                features = 0;
1278
1279        advertise = features & ADVERTISE_MASK;
1280        if (gp->phy_mii.advertising != 0)
1281                advertise &= gp->phy_mii.advertising;
1282
1283        autoneg = gp->want_autoneg;
1284        speed = gp->phy_mii.speed;
1285        duplex = gp->phy_mii.duplex;
1286
1287        /* Setup link parameters */
1288        if (!ep)
1289                goto start_aneg;
1290        if (ep->base.autoneg == AUTONEG_ENABLE) {
1291                advertise = advertising;
1292                autoneg = 1;
1293        } else {
1294                autoneg = 0;
1295                speed = ep->base.speed;
1296                duplex = ep->base.duplex;
1297        }
1298
1299start_aneg:
1300        /* Sanitize settings based on PHY capabilities */
1301        if ((features & SUPPORTED_Autoneg) == 0)
1302                autoneg = 0;
1303        if (speed == SPEED_1000 &&
1304            !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1305                speed = SPEED_100;
1306        if (speed == SPEED_100 &&
1307            !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1308                speed = SPEED_10;
1309        if (duplex == DUPLEX_FULL &&
1310            !(features & (SUPPORTED_1000baseT_Full |
1311                          SUPPORTED_100baseT_Full |
1312                          SUPPORTED_10baseT_Full)))
1313                duplex = DUPLEX_HALF;
1314        if (speed == 0)
1315                speed = SPEED_10;
1316
1317        /* If we are asleep, we don't try to actually setup the PHY, we
1318         * just store the settings
1319         */
1320        if (!netif_device_present(gp->dev)) {
1321                gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1322                gp->phy_mii.speed = speed;
1323                gp->phy_mii.duplex = duplex;
1324                return;
1325        }
1326
1327        /* Configure PHY & start aneg */
1328        gp->want_autoneg = autoneg;
1329        if (autoneg) {
1330                if (found_mii_phy(gp))
1331                        gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1332                gp->lstate = link_aneg;
1333        } else {
1334                if (found_mii_phy(gp))
1335                        gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1336                gp->lstate = link_force_ok;
1337        }
1338
1339non_mii:
1340        gp->timer_ticks = 0;
1341        mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1342}
1343
1344/* A link-up condition has occurred, initialize and enable the
1345 * rest of the chip.
1346 */
1347static int gem_set_link_modes(struct gem *gp)
1348{
1349        struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1350        int full_duplex, speed, pause;
1351        u32 val;
1352
1353        full_duplex = 0;
1354        speed = SPEED_10;
1355        pause = 0;
1356
1357        if (found_mii_phy(gp)) {
1358                if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1359                        return 1;
1360                full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1361                speed = gp->phy_mii.speed;
1362                pause = gp->phy_mii.pause;
1363        } else if (gp->phy_type == phy_serialink ||
1364                   gp->phy_type == phy_serdes) {
1365                u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1366
1367                if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1368                        full_duplex = 1;
1369                speed = SPEED_1000;
1370        }
1371
1372        netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1373                   speed, (full_duplex ? "full" : "half"));
1374
1375
1376        /* We take the tx queue lock to avoid collisions between
1377         * this code, the tx path and the NAPI-driven error path
1378         */
1379        __netif_tx_lock(txq, smp_processor_id());
1380
1381        val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1382        if (full_duplex) {
1383                val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1384        } else {
1385                /* MAC_TXCFG_NBO must be zero. */
1386        }
1387        writel(val, gp->regs + MAC_TXCFG);
1388
1389        val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1390        if (!full_duplex &&
1391            (gp->phy_type == phy_mii_mdio0 ||
1392             gp->phy_type == phy_mii_mdio1)) {
1393                val |= MAC_XIFCFG_DISE;
1394        } else if (full_duplex) {
1395                val |= MAC_XIFCFG_FLED;
1396        }
1397
1398        if (speed == SPEED_1000)
1399                val |= (MAC_XIFCFG_GMII);
1400
1401        writel(val, gp->regs + MAC_XIFCFG);
1402
1403        /* If gigabit and half-duplex, enable carrier extension
1404         * mode.  Else, disable it.
1405         */
1406        if (speed == SPEED_1000 && !full_duplex) {
1407                val = readl(gp->regs + MAC_TXCFG);
1408                writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1409
1410                val = readl(gp->regs + MAC_RXCFG);
1411                writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1412        } else {
1413                val = readl(gp->regs + MAC_TXCFG);
1414                writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1415
1416                val = readl(gp->regs + MAC_RXCFG);
1417                writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1418        }
1419
1420        if (gp->phy_type == phy_serialink ||
1421            gp->phy_type == phy_serdes) {
1422                u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1423
1424                if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1425                        pause = 1;
1426        }
1427
1428        if (!full_duplex)
1429                writel(512, gp->regs + MAC_STIME);
1430        else
1431                writel(64, gp->regs + MAC_STIME);
1432        val = readl(gp->regs + MAC_MCCFG);
1433        if (pause)
1434                val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1435        else
1436                val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1437        writel(val, gp->regs + MAC_MCCFG);
1438
1439        gem_start_dma(gp);
1440
1441        __netif_tx_unlock(txq);
1442
1443        if (netif_msg_link(gp)) {
1444                if (pause) {
1445                        netdev_info(gp->dev,
1446                                    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1447                                    gp->rx_fifo_sz,
1448                                    gp->rx_pause_off,
1449                                    gp->rx_pause_on);
1450                } else {
1451                        netdev_info(gp->dev, "Pause is disabled\n");
1452                }
1453        }
1454
1455        return 0;
1456}
1457
1458static int gem_mdio_link_not_up(struct gem *gp)
1459{
1460        switch (gp->lstate) {
1461        case link_force_ret:
1462                netif_info(gp, link, gp->dev,
1463                           "Autoneg failed again, keeping forced mode\n");
1464                gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1465                        gp->last_forced_speed, DUPLEX_HALF);
1466                gp->timer_ticks = 5;
1467                gp->lstate = link_force_ok;
1468                return 0;
1469        case link_aneg:
1470                /* We try forced modes after a failed aneg only on PHYs that don't
1471                 * have "magic_aneg" bit set, which means they internally do the
1472                 * while forced-mode thingy. On these, we just restart aneg
1473                 */
1474                if (gp->phy_mii.def->magic_aneg)
1475                        return 1;
1476                netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1477                /* Try forced modes. */
1478                gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1479                        DUPLEX_HALF);
1480                gp->timer_ticks = 5;
1481                gp->lstate = link_force_try;
1482                return 0;
1483        case link_force_try:
1484                /* Downgrade from 100 to 10 Mbps if necessary.
1485                 * If already at 10Mbps, warn user about the
1486                 * situation every 10 ticks.
1487                 */
1488                if (gp->phy_mii.speed == SPEED_100) {
1489                        gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1490                                DUPLEX_HALF);
1491                        gp->timer_ticks = 5;
1492                        netif_info(gp, link, gp->dev,
1493                                   "switching to forced 10bt\n");
1494                        return 0;
1495                } else
1496                        return 1;
1497        default:
1498                return 0;
1499        }
1500}
1501
1502static void gem_link_timer(struct timer_list *t)
1503{
1504        struct gem *gp = from_timer(gp, t, link_timer);
1505        struct net_device *dev = gp->dev;
1506        int restart_aneg = 0;
1507
1508        /* There's no point doing anything if we're going to be reset */
1509        if (gp->reset_task_pending)
1510                return;
1511
1512        if (gp->phy_type == phy_serialink ||
1513            gp->phy_type == phy_serdes) {
1514                u32 val = readl(gp->regs + PCS_MIISTAT);
1515
1516                if (!(val & PCS_MIISTAT_LS))
1517                        val = readl(gp->regs + PCS_MIISTAT);
1518
1519                if ((val & PCS_MIISTAT_LS) != 0) {
1520                        if (gp->lstate == link_up)
1521                                goto restart;
1522
1523                        gp->lstate = link_up;
1524                        netif_carrier_on(dev);
1525                        (void)gem_set_link_modes(gp);
1526                }
1527                goto restart;
1528        }
1529        if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1530                /* Ok, here we got a link. If we had it due to a forced
1531                 * fallback, and we were configured for autoneg, we do
1532                 * retry a short autoneg pass. If you know your hub is
1533                 * broken, use ethtool ;)
1534                 */
1535                if (gp->lstate == link_force_try && gp->want_autoneg) {
1536                        gp->lstate = link_force_ret;
1537                        gp->last_forced_speed = gp->phy_mii.speed;
1538                        gp->timer_ticks = 5;
1539                        if (netif_msg_link(gp))
1540                                netdev_info(dev,
1541                                            "Got link after fallback, retrying autoneg once...\n");
1542                        gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1543                } else if (gp->lstate != link_up) {
1544                        gp->lstate = link_up;
1545                        netif_carrier_on(dev);
1546                        if (gem_set_link_modes(gp))
1547                                restart_aneg = 1;
1548                }
1549        } else {
1550                /* If the link was previously up, we restart the
1551                 * whole process
1552                 */
1553                if (gp->lstate == link_up) {
1554                        gp->lstate = link_down;
1555                        netif_info(gp, link, dev, "Link down\n");
1556                        netif_carrier_off(dev);
1557                        gem_schedule_reset(gp);
1558                        /* The reset task will restart the timer */
1559                        return;
1560                } else if (++gp->timer_ticks > 10) {
1561                        if (found_mii_phy(gp))
1562                                restart_aneg = gem_mdio_link_not_up(gp);
1563                        else
1564                                restart_aneg = 1;
1565                }
1566        }
1567        if (restart_aneg) {
1568                gem_begin_auto_negotiation(gp, NULL);
1569                return;
1570        }
1571restart:
1572        mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1573}
1574
1575static void gem_clean_rings(struct gem *gp)
1576{
1577        struct gem_init_block *gb = gp->init_block;
1578        struct sk_buff *skb;
1579        int i;
1580        dma_addr_t dma_addr;
1581
1582        for (i = 0; i < RX_RING_SIZE; i++) {
1583                struct gem_rxd *rxd;
1584
1585                rxd = &gb->rxd[i];
1586                if (gp->rx_skbs[i] != NULL) {
1587                        skb = gp->rx_skbs[i];
1588                        dma_addr = le64_to_cpu(rxd->buffer);
1589                        pci_unmap_page(gp->pdev, dma_addr,
1590                                       RX_BUF_ALLOC_SIZE(gp),
1591                                       PCI_DMA_FROMDEVICE);
1592                        dev_kfree_skb_any(skb);
1593                        gp->rx_skbs[i] = NULL;
1594                }
1595                rxd->status_word = 0;
1596                dma_wmb();
1597                rxd->buffer = 0;
1598        }
1599
1600        for (i = 0; i < TX_RING_SIZE; i++) {
1601                if (gp->tx_skbs[i] != NULL) {
1602                        struct gem_txd *txd;
1603                        int frag;
1604
1605                        skb = gp->tx_skbs[i];
1606                        gp->tx_skbs[i] = NULL;
1607
1608                        for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1609                                int ent = i & (TX_RING_SIZE - 1);
1610
1611                                txd = &gb->txd[ent];
1612                                dma_addr = le64_to_cpu(txd->buffer);
1613                                pci_unmap_page(gp->pdev, dma_addr,
1614                                               le64_to_cpu(txd->control_word) &
1615                                               TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1616
1617                                if (frag != skb_shinfo(skb)->nr_frags)
1618                                        i++;
1619                        }
1620                        dev_kfree_skb_any(skb);
1621                }
1622        }
1623}
1624
1625static void gem_init_rings(struct gem *gp)
1626{
1627        struct gem_init_block *gb = gp->init_block;
1628        struct net_device *dev = gp->dev;
1629        int i;
1630        dma_addr_t dma_addr;
1631
1632        gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1633
1634        gem_clean_rings(gp);
1635
1636        gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1637                            (unsigned)VLAN_ETH_FRAME_LEN);
1638
1639        for (i = 0; i < RX_RING_SIZE; i++) {
1640                struct sk_buff *skb;
1641                struct gem_rxd *rxd = &gb->rxd[i];
1642
1643                skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1644                if (!skb) {
1645                        rxd->buffer = 0;
1646                        rxd->status_word = 0;
1647                        continue;
1648                }
1649
1650                gp->rx_skbs[i] = skb;
1651                skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1652                dma_addr = pci_map_page(gp->pdev,
1653                                        virt_to_page(skb->data),
1654                                        offset_in_page(skb->data),
1655                                        RX_BUF_ALLOC_SIZE(gp),
1656                                        PCI_DMA_FROMDEVICE);
1657                rxd->buffer = cpu_to_le64(dma_addr);
1658                dma_wmb();
1659                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1660                skb_reserve(skb, RX_OFFSET);
1661        }
1662
1663        for (i = 0; i < TX_RING_SIZE; i++) {
1664                struct gem_txd *txd = &gb->txd[i];
1665
1666                txd->control_word = 0;
1667                dma_wmb();
1668                txd->buffer = 0;
1669        }
1670        wmb();
1671}
1672
1673/* Init PHY interface and start link poll state machine */
1674static void gem_init_phy(struct gem *gp)
1675{
1676        u32 mifcfg;
1677
1678        /* Revert MIF CFG setting done on stop_phy */
1679        mifcfg = readl(gp->regs + MIF_CFG);
1680        mifcfg &= ~MIF_CFG_BBMODE;
1681        writel(mifcfg, gp->regs + MIF_CFG);
1682
1683        if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1684                int i;
1685
1686                /* Those delay sucks, the HW seem to love them though, I'll
1687                 * serisouly consider breaking some locks here to be able
1688                 * to schedule instead
1689                 */
1690                for (i = 0; i < 3; i++) {
1691#ifdef CONFIG_PPC_PMAC
1692                        pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1693                        msleep(20);
1694#endif
1695                        /* Some PHYs used by apple have problem getting back to us,
1696                         * we do an additional reset here
1697                         */
1698                        sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1699                        msleep(20);
1700                        if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1701                                break;
1702                        if (i == 2)
1703                                netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1704                }
1705        }
1706
1707        if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1708            gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1709                u32 val;
1710
1711                /* Init datapath mode register. */
1712                if (gp->phy_type == phy_mii_mdio0 ||
1713                    gp->phy_type == phy_mii_mdio1) {
1714                        val = PCS_DMODE_MGM;
1715                } else if (gp->phy_type == phy_serialink) {
1716                        val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1717                } else {
1718                        val = PCS_DMODE_ESM;
1719                }
1720
1721                writel(val, gp->regs + PCS_DMODE);
1722        }
1723
1724        if (gp->phy_type == phy_mii_mdio0 ||
1725            gp->phy_type == phy_mii_mdio1) {
1726                /* Reset and detect MII PHY */
1727                sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1728
1729                /* Init PHY */
1730                if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1731                        gp->phy_mii.def->ops->init(&gp->phy_mii);
1732        } else {
1733                gem_pcs_reset(gp);
1734                gem_pcs_reinit_adv(gp);
1735        }
1736
1737        /* Default aneg parameters */
1738        gp->timer_ticks = 0;
1739        gp->lstate = link_down;
1740        netif_carrier_off(gp->dev);
1741
1742        /* Print things out */
1743        if (gp->phy_type == phy_mii_mdio0 ||
1744            gp->phy_type == phy_mii_mdio1)
1745                netdev_info(gp->dev, "Found %s PHY\n",
1746                            gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1747
1748        gem_begin_auto_negotiation(gp, NULL);
1749}
1750
1751static void gem_init_dma(struct gem *gp)
1752{
1753        u64 desc_dma = (u64) gp->gblock_dvma;
1754        u32 val;
1755
1756        val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1757        writel(val, gp->regs + TXDMA_CFG);
1758
1759        writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1760        writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1761        desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1762
1763        writel(0, gp->regs + TXDMA_KICK);
1764
1765        val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1766               (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1767        writel(val, gp->regs + RXDMA_CFG);
1768
1769        writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1770        writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1771
1772        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1773
1774        val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1775        val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1776        writel(val, gp->regs + RXDMA_PTHRESH);
1777
1778        if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1779                writel(((5 & RXDMA_BLANK_IPKTS) |
1780                        ((8 << 12) & RXDMA_BLANK_ITIME)),
1781                       gp->regs + RXDMA_BLANK);
1782        else
1783                writel(((5 & RXDMA_BLANK_IPKTS) |
1784                        ((4 << 12) & RXDMA_BLANK_ITIME)),
1785                       gp->regs + RXDMA_BLANK);
1786}
1787
1788static u32 gem_setup_multicast(struct gem *gp)
1789{
1790        u32 rxcfg = 0;
1791        int i;
1792
1793        if ((gp->dev->flags & IFF_ALLMULTI) ||
1794            (netdev_mc_count(gp->dev) > 256)) {
1795                for (i=0; i<16; i++)
1796                        writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1797                rxcfg |= MAC_RXCFG_HFE;
1798        } else if (gp->dev->flags & IFF_PROMISC) {
1799                rxcfg |= MAC_RXCFG_PROM;
1800        } else {
1801                u16 hash_table[16];
1802                u32 crc;
1803                struct netdev_hw_addr *ha;
1804                int i;
1805
1806                memset(hash_table, 0, sizeof(hash_table));
1807                netdev_for_each_mc_addr(ha, gp->dev) {
1808                        crc = ether_crc_le(6, ha->addr);
1809                        crc >>= 24;
1810                        hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1811                }
1812                for (i=0; i<16; i++)
1813                        writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1814                rxcfg |= MAC_RXCFG_HFE;
1815        }
1816
1817        return rxcfg;
1818}
1819
1820static void gem_init_mac(struct gem *gp)
1821{
1822        unsigned char *e = &gp->dev->dev_addr[0];
1823
1824        writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1825
1826        writel(0x00, gp->regs + MAC_IPG0);
1827        writel(0x08, gp->regs + MAC_IPG1);
1828        writel(0x04, gp->regs + MAC_IPG2);
1829        writel(0x40, gp->regs + MAC_STIME);
1830        writel(0x40, gp->regs + MAC_MINFSZ);
1831
1832        /* Ethernet payload + header + FCS + optional VLAN tag. */
1833        writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1834
1835        writel(0x07, gp->regs + MAC_PASIZE);
1836        writel(0x04, gp->regs + MAC_JAMSIZE);
1837        writel(0x10, gp->regs + MAC_ATTLIM);
1838        writel(0x8808, gp->regs + MAC_MCTYPE);
1839
1840        writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1841
1842        writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1843        writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1844        writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1845
1846        writel(0, gp->regs + MAC_ADDR3);
1847        writel(0, gp->regs + MAC_ADDR4);
1848        writel(0, gp->regs + MAC_ADDR5);
1849
1850        writel(0x0001, gp->regs + MAC_ADDR6);
1851        writel(0xc200, gp->regs + MAC_ADDR7);
1852        writel(0x0180, gp->regs + MAC_ADDR8);
1853
1854        writel(0, gp->regs + MAC_AFILT0);
1855        writel(0, gp->regs + MAC_AFILT1);
1856        writel(0, gp->regs + MAC_AFILT2);
1857        writel(0, gp->regs + MAC_AF21MSK);
1858        writel(0, gp->regs + MAC_AF0MSK);
1859
1860        gp->mac_rx_cfg = gem_setup_multicast(gp);
1861#ifdef STRIP_FCS
1862        gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1863#endif
1864        writel(0, gp->regs + MAC_NCOLL);
1865        writel(0, gp->regs + MAC_FASUCC);
1866        writel(0, gp->regs + MAC_ECOLL);
1867        writel(0, gp->regs + MAC_LCOLL);
1868        writel(0, gp->regs + MAC_DTIMER);
1869        writel(0, gp->regs + MAC_PATMPS);
1870        writel(0, gp->regs + MAC_RFCTR);
1871        writel(0, gp->regs + MAC_LERR);
1872        writel(0, gp->regs + MAC_AERR);
1873        writel(0, gp->regs + MAC_FCSERR);
1874        writel(0, gp->regs + MAC_RXCVERR);
1875
1876        /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1877         * them once a link is established.
1878         */
1879        writel(0, gp->regs + MAC_TXCFG);
1880        writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1881        writel(0, gp->regs + MAC_MCCFG);
1882        writel(0, gp->regs + MAC_XIFCFG);
1883
1884        /* Setup MAC interrupts.  We want to get all of the interesting
1885         * counter expiration events, but we do not want to hear about
1886         * normal rx/tx as the DMA engine tells us that.
1887         */
1888        writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1889        writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1890
1891        /* Don't enable even the PAUSE interrupts for now, we
1892         * make no use of those events other than to record them.
1893         */
1894        writel(0xffffffff, gp->regs + MAC_MCMASK);
1895
1896        /* Don't enable GEM's WOL in normal operations
1897         */
1898        if (gp->has_wol)
1899                writel(0, gp->regs + WOL_WAKECSR);
1900}
1901
1902static void gem_init_pause_thresholds(struct gem *gp)
1903{
1904        u32 cfg;
1905
1906        /* Calculate pause thresholds.  Setting the OFF threshold to the
1907         * full RX fifo size effectively disables PAUSE generation which
1908         * is what we do for 10/100 only GEMs which have FIFOs too small
1909         * to make real gains from PAUSE.
1910         */
1911        if (gp->rx_fifo_sz <= (2 * 1024)) {
1912                gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1913        } else {
1914                int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1915                int off = (gp->rx_fifo_sz - (max_frame * 2));
1916                int on = off - max_frame;
1917
1918                gp->rx_pause_off = off;
1919                gp->rx_pause_on = on;
1920        }
1921
1922
1923        /* Configure the chip "burst" DMA mode & enable some
1924         * HW bug fixes on Apple version
1925         */
1926        cfg  = 0;
1927        if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1928                cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1929#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1930        cfg |= GREG_CFG_IBURST;
1931#endif
1932        cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1933        cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1934        writel(cfg, gp->regs + GREG_CFG);
1935
1936        /* If Infinite Burst didn't stick, then use different
1937         * thresholds (and Apple bug fixes don't exist)
1938         */
1939        if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1940                cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1941                cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1942                writel(cfg, gp->regs + GREG_CFG);
1943        }
1944}
1945
1946static int gem_check_invariants(struct gem *gp)
1947{
1948        struct pci_dev *pdev = gp->pdev;
1949        u32 mif_cfg;
1950
1951        /* On Apple's sungem, we can't rely on registers as the chip
1952         * was been powered down by the firmware. The PHY is looked
1953         * up later on.
1954         */
1955        if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1956                gp->phy_type = phy_mii_mdio0;
1957                gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1958                gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1959                gp->swrst_base = 0;
1960
1961                mif_cfg = readl(gp->regs + MIF_CFG);
1962                mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1963                mif_cfg |= MIF_CFG_MDI0;
1964                writel(mif_cfg, gp->regs + MIF_CFG);
1965                writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1966                writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1967
1968                /* We hard-code the PHY address so we can properly bring it out of
1969                 * reset later on, we can't really probe it at this point, though
1970                 * that isn't an issue.
1971                 */
1972                if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1973                        gp->mii_phy_addr = 1;
1974                else
1975                        gp->mii_phy_addr = 0;
1976
1977                return 0;
1978        }
1979
1980        mif_cfg = readl(gp->regs + MIF_CFG);
1981
1982        if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1983            pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1984                /* One of the MII PHYs _must_ be present
1985                 * as this chip has no gigabit PHY.
1986                 */
1987                if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1988                        pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1989                               mif_cfg);
1990                        return -1;
1991                }
1992        }
1993
1994        /* Determine initial PHY interface type guess.  MDIO1 is the
1995         * external PHY and thus takes precedence over MDIO0.
1996         */
1997
1998        if (mif_cfg & MIF_CFG_MDI1) {
1999                gp->phy_type = phy_mii_mdio1;
2000                mif_cfg |= MIF_CFG_PSELECT;
2001                writel(mif_cfg, gp->regs + MIF_CFG);
2002        } else if (mif_cfg & MIF_CFG_MDI0) {
2003                gp->phy_type = phy_mii_mdio0;
2004                mif_cfg &= ~MIF_CFG_PSELECT;
2005                writel(mif_cfg, gp->regs + MIF_CFG);
2006        } else {
2007#ifdef CONFIG_SPARC
2008                const char *p;
2009
2010                p = of_get_property(gp->of_node, "shared-pins", NULL);
2011                if (p && !strcmp(p, "serdes"))
2012                        gp->phy_type = phy_serdes;
2013                else
2014#endif
2015                        gp->phy_type = phy_serialink;
2016        }
2017        if (gp->phy_type == phy_mii_mdio1 ||
2018            gp->phy_type == phy_mii_mdio0) {
2019                int i;
2020
2021                for (i = 0; i < 32; i++) {
2022                        gp->mii_phy_addr = i;
2023                        if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2024                                break;
2025                }
2026                if (i == 32) {
2027                        if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2028                                pr_err("RIO MII phy will not respond\n");
2029                                return -1;
2030                        }
2031                        gp->phy_type = phy_serdes;
2032                }
2033        }
2034
2035        /* Fetch the FIFO configurations now too. */
2036        gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2037        gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2038
2039        if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2040                if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2041                        if (gp->tx_fifo_sz != (9 * 1024) ||
2042                            gp->rx_fifo_sz != (20 * 1024)) {
2043                                pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2044                                       gp->tx_fifo_sz, gp->rx_fifo_sz);
2045                                return -1;
2046                        }
2047                        gp->swrst_base = 0;
2048                } else {
2049                        if (gp->tx_fifo_sz != (2 * 1024) ||
2050                            gp->rx_fifo_sz != (2 * 1024)) {
2051                                pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2052                                       gp->tx_fifo_sz, gp->rx_fifo_sz);
2053                                return -1;
2054                        }
2055                        gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2056                }
2057        }
2058
2059        return 0;
2060}
2061
2062static void gem_reinit_chip(struct gem *gp)
2063{
2064        /* Reset the chip */
2065        gem_reset(gp);
2066
2067        /* Make sure ints are disabled */
2068        gem_disable_ints(gp);
2069
2070        /* Allocate & setup ring buffers */
2071        gem_init_rings(gp);
2072
2073        /* Configure pause thresholds */
2074        gem_init_pause_thresholds(gp);
2075
2076        /* Init DMA & MAC engines */
2077        gem_init_dma(gp);
2078        gem_init_mac(gp);
2079}
2080
2081
2082static void gem_stop_phy(struct gem *gp, int wol)
2083{
2084        u32 mifcfg;
2085
2086        /* Let the chip settle down a bit, it seems that helps
2087         * for sleep mode on some models
2088         */
2089        msleep(10);
2090
2091        /* Make sure we aren't polling PHY status change. We
2092         * don't currently use that feature though
2093         */
2094        mifcfg = readl(gp->regs + MIF_CFG);
2095        mifcfg &= ~MIF_CFG_POLL;
2096        writel(mifcfg, gp->regs + MIF_CFG);
2097
2098        if (wol && gp->has_wol) {
2099                unsigned char *e = &gp->dev->dev_addr[0];
2100                u32 csr;
2101
2102                /* Setup wake-on-lan for MAGIC packet */
2103                writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2104                       gp->regs + MAC_RXCFG);
2105                writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2106                writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2107                writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2108
2109                writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2110                csr = WOL_WAKECSR_ENABLE;
2111                if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2112                        csr |= WOL_WAKECSR_MII;
2113                writel(csr, gp->regs + WOL_WAKECSR);
2114        } else {
2115                writel(0, gp->regs + MAC_RXCFG);
2116                (void)readl(gp->regs + MAC_RXCFG);
2117                /* Machine sleep will die in strange ways if we
2118                 * dont wait a bit here, looks like the chip takes
2119                 * some time to really shut down
2120                 */
2121                msleep(10);
2122        }
2123
2124        writel(0, gp->regs + MAC_TXCFG);
2125        writel(0, gp->regs + MAC_XIFCFG);
2126        writel(0, gp->regs + TXDMA_CFG);
2127        writel(0, gp->regs + RXDMA_CFG);
2128
2129        if (!wol) {
2130                gem_reset(gp);
2131                writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2132                writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2133
2134                if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2135                        gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2136
2137                /* According to Apple, we must set the MDIO pins to this begnign
2138                 * state or we may 1) eat more current, 2) damage some PHYs
2139                 */
2140                writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2141                writel(0, gp->regs + MIF_BBCLK);
2142                writel(0, gp->regs + MIF_BBDATA);
2143                writel(0, gp->regs + MIF_BBOENAB);
2144                writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2145                (void) readl(gp->regs + MAC_XIFCFG);
2146        }
2147}
2148
2149static int gem_do_start(struct net_device *dev)
2150{
2151        struct gem *gp = netdev_priv(dev);
2152        int rc;
2153
2154        /* Enable the cell */
2155        gem_get_cell(gp);
2156
2157        /* Make sure PCI access and bus master are enabled */
2158        rc = pci_enable_device(gp->pdev);
2159        if (rc) {
2160                netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2161
2162                /* Put cell and forget it for now, it will be considered as
2163                 * still asleep, a new sleep cycle may bring it back
2164                 */
2165                gem_put_cell(gp);
2166                return -ENXIO;
2167        }
2168        pci_set_master(gp->pdev);
2169
2170        /* Init & setup chip hardware */
2171        gem_reinit_chip(gp);
2172
2173        /* An interrupt might come in handy */
2174        rc = request_irq(gp->pdev->irq, gem_interrupt,
2175                         IRQF_SHARED, dev->name, (void *)dev);
2176        if (rc) {
2177                netdev_err(dev, "failed to request irq !\n");
2178
2179                gem_reset(gp);
2180                gem_clean_rings(gp);
2181                gem_put_cell(gp);
2182                return rc;
2183        }
2184
2185        /* Mark us as attached again if we come from resume(), this has
2186         * no effect if we weren't detached and needs to be done now.
2187         */
2188        netif_device_attach(dev);
2189
2190        /* Restart NAPI & queues */
2191        gem_netif_start(gp);
2192
2193        /* Detect & init PHY, start autoneg etc... this will
2194         * eventually result in starting DMA operations when
2195         * the link is up
2196         */
2197        gem_init_phy(gp);
2198
2199        return 0;
2200}
2201
2202static void gem_do_stop(struct net_device *dev, int wol)
2203{
2204        struct gem *gp = netdev_priv(dev);
2205
2206        /* Stop NAPI and stop tx queue */
2207        gem_netif_stop(gp);
2208
2209        /* Make sure ints are disabled. We don't care about
2210         * synchronizing as NAPI is disabled, thus a stray
2211         * interrupt will do nothing bad (our irq handler
2212         * just schedules NAPI)
2213         */
2214        gem_disable_ints(gp);
2215
2216        /* Stop the link timer */
2217        del_timer_sync(&gp->link_timer);
2218
2219        /* We cannot cancel the reset task while holding the
2220         * rtnl lock, we'd get an A->B / B->A deadlock stituation
2221         * if we did. This is not an issue however as the reset
2222         * task is synchronized vs. us (rtnl_lock) and will do
2223         * nothing if the device is down or suspended. We do
2224         * still clear reset_task_pending to avoid a spurrious
2225         * reset later on in case we do resume before it gets
2226         * scheduled.
2227         */
2228        gp->reset_task_pending = 0;
2229
2230        /* If we are going to sleep with WOL */
2231        gem_stop_dma(gp);
2232        msleep(10);
2233        if (!wol)
2234                gem_reset(gp);
2235        msleep(10);
2236
2237        /* Get rid of rings */
2238        gem_clean_rings(gp);
2239
2240        /* No irq needed anymore */
2241        free_irq(gp->pdev->irq, (void *) dev);
2242
2243        /* Shut the PHY down eventually and setup WOL */
2244        gem_stop_phy(gp, wol);
2245
2246        /* Make sure bus master is disabled */
2247        pci_disable_device(gp->pdev);
2248
2249        /* Cell not needed neither if no WOL */
2250        if (!wol)
2251                gem_put_cell(gp);
2252}
2253
2254static void gem_reset_task(struct work_struct *work)
2255{
2256        struct gem *gp = container_of(work, struct gem, reset_task);
2257
2258        /* Lock out the network stack (essentially shield ourselves
2259         * against a racing open, close, control call, or suspend
2260         */
2261        rtnl_lock();
2262
2263        /* Skip the reset task if suspended or closed, or if it's
2264         * been cancelled by gem_do_stop (see comment there)
2265         */
2266        if (!netif_device_present(gp->dev) ||
2267            !netif_running(gp->dev) ||
2268            !gp->reset_task_pending) {
2269                rtnl_unlock();
2270                return;
2271        }
2272
2273        /* Stop the link timer */
2274        del_timer_sync(&gp->link_timer);
2275
2276        /* Stop NAPI and tx */
2277        gem_netif_stop(gp);
2278
2279        /* Reset the chip & rings */
2280        gem_reinit_chip(gp);
2281        if (gp->lstate == link_up)
2282                gem_set_link_modes(gp);
2283
2284        /* Restart NAPI and Tx */
2285        gem_netif_start(gp);
2286
2287        /* We are back ! */
2288        gp->reset_task_pending = 0;
2289
2290        /* If the link is not up, restart autoneg, else restart the
2291         * polling timer
2292         */
2293        if (gp->lstate != link_up)
2294                gem_begin_auto_negotiation(gp, NULL);
2295        else
2296                mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2297
2298        rtnl_unlock();
2299}
2300
2301static int gem_open(struct net_device *dev)
2302{
2303        /* We allow open while suspended, we just do nothing,
2304         * the chip will be initialized in resume()
2305         */
2306        if (netif_device_present(dev))
2307                return gem_do_start(dev);
2308        return 0;
2309}
2310
2311static int gem_close(struct net_device *dev)
2312{
2313        if (netif_device_present(dev))
2314                gem_do_stop(dev, 0);
2315
2316        return 0;
2317}
2318
2319#ifdef CONFIG_PM
2320static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2321{
2322        struct net_device *dev = pci_get_drvdata(pdev);
2323        struct gem *gp = netdev_priv(dev);
2324
2325        /* Lock the network stack first to avoid racing with open/close,
2326         * reset task and setting calls
2327         */
2328        rtnl_lock();
2329
2330        /* Not running, mark ourselves non-present, no need for
2331         * a lock here
2332         */
2333        if (!netif_running(dev)) {
2334                netif_device_detach(dev);
2335                rtnl_unlock();
2336                return 0;
2337        }
2338        netdev_info(dev, "suspending, WakeOnLan %s\n",
2339                    (gp->wake_on_lan && netif_running(dev)) ?
2340                    "enabled" : "disabled");
2341
2342        /* Tell the network stack we're gone. gem_do_stop() below will
2343         * synchronize with TX, stop NAPI etc...
2344         */
2345        netif_device_detach(dev);
2346
2347        /* Switch off chip, remember WOL setting */
2348        gp->asleep_wol = !!gp->wake_on_lan;
2349        gem_do_stop(dev, gp->asleep_wol);
2350
2351        /* Unlock the network stack */
2352        rtnl_unlock();
2353
2354        return 0;
2355}
2356
2357static int gem_resume(struct pci_dev *pdev)
2358{
2359        struct net_device *dev = pci_get_drvdata(pdev);
2360        struct gem *gp = netdev_priv(dev);
2361
2362        /* See locking comment in gem_suspend */
2363        rtnl_lock();
2364
2365        /* Not running, mark ourselves present, no need for
2366         * a lock here
2367         */
2368        if (!netif_running(dev)) {
2369                netif_device_attach(dev);
2370                rtnl_unlock();
2371                return 0;
2372        }
2373
2374        /* Restart chip. If that fails there isn't much we can do, we
2375         * leave things stopped.
2376         */
2377        gem_do_start(dev);
2378
2379        /* If we had WOL enabled, the cell clock was never turned off during
2380         * sleep, so we end up beeing unbalanced. Fix that here
2381         */
2382        if (gp->asleep_wol)
2383                gem_put_cell(gp);
2384
2385        /* Unlock the network stack */
2386        rtnl_unlock();
2387
2388        return 0;
2389}
2390#endif /* CONFIG_PM */
2391
2392static struct net_device_stats *gem_get_stats(struct net_device *dev)
2393{
2394        struct gem *gp = netdev_priv(dev);
2395
2396        /* I have seen this being called while the PM was in progress,
2397         * so we shield against this. Let's also not poke at registers
2398         * while the reset task is going on.
2399         *
2400         * TODO: Move stats collection elsewhere (link timer ?) and
2401         * make this a nop to avoid all those synchro issues
2402         */
2403        if (!netif_device_present(dev) || !netif_running(dev))
2404                goto bail;
2405
2406        /* Better safe than sorry... */
2407        if (WARN_ON(!gp->cell_enabled))
2408                goto bail;
2409
2410        dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2411        writel(0, gp->regs + MAC_FCSERR);
2412
2413        dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2414        writel(0, gp->regs + MAC_AERR);
2415
2416        dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2417        writel(0, gp->regs + MAC_LERR);
2418
2419        dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2420        dev->stats.collisions +=
2421                (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2422        writel(0, gp->regs + MAC_ECOLL);
2423        writel(0, gp->regs + MAC_LCOLL);
2424 bail:
2425        return &dev->stats;
2426}
2427
2428static int gem_set_mac_address(struct net_device *dev, void *addr)
2429{
2430        struct sockaddr *macaddr = (struct sockaddr *) addr;
2431        struct gem *gp = netdev_priv(dev);
2432        unsigned char *e = &dev->dev_addr[0];
2433
2434        if (!is_valid_ether_addr(macaddr->sa_data))
2435                return -EADDRNOTAVAIL;
2436
2437        memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2438
2439        /* We'll just catch it later when the device is up'd or resumed */
2440        if (!netif_running(dev) || !netif_device_present(dev))
2441                return 0;
2442
2443        /* Better safe than sorry... */
2444        if (WARN_ON(!gp->cell_enabled))
2445                return 0;
2446
2447        writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2448        writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2449        writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2450
2451        return 0;
2452}
2453
2454static void gem_set_multicast(struct net_device *dev)
2455{
2456        struct gem *gp = netdev_priv(dev);
2457        u32 rxcfg, rxcfg_new;
2458        int limit = 10000;
2459
2460        if (!netif_running(dev) || !netif_device_present(dev))
2461                return;
2462
2463        /* Better safe than sorry... */
2464        if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2465                return;
2466
2467        rxcfg = readl(gp->regs + MAC_RXCFG);
2468        rxcfg_new = gem_setup_multicast(gp);
2469#ifdef STRIP_FCS
2470        rxcfg_new |= MAC_RXCFG_SFCS;
2471#endif
2472        gp->mac_rx_cfg = rxcfg_new;
2473
2474        writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2475        while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2476                if (!limit--)
2477                        break;
2478                udelay(10);
2479        }
2480
2481        rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2482        rxcfg |= rxcfg_new;
2483
2484        writel(rxcfg, gp->regs + MAC_RXCFG);
2485}
2486
2487/* Jumbo-grams don't seem to work :-( */
2488#define GEM_MIN_MTU     ETH_MIN_MTU
2489#if 1
2490#define GEM_MAX_MTU     ETH_DATA_LEN
2491#else
2492#define GEM_MAX_MTU     9000
2493#endif
2494
2495static int gem_change_mtu(struct net_device *dev, int new_mtu)
2496{
2497        struct gem *gp = netdev_priv(dev);
2498
2499        dev->mtu = new_mtu;
2500
2501        /* We'll just catch it later when the device is up'd or resumed */
2502        if (!netif_running(dev) || !netif_device_present(dev))
2503                return 0;
2504
2505        /* Better safe than sorry... */
2506        if (WARN_ON(!gp->cell_enabled))
2507                return 0;
2508
2509        gem_netif_stop(gp);
2510        gem_reinit_chip(gp);
2511        if (gp->lstate == link_up)
2512                gem_set_link_modes(gp);
2513        gem_netif_start(gp);
2514
2515        return 0;
2516}
2517
2518static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2519{
2520        struct gem *gp = netdev_priv(dev);
2521
2522        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2523        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2524        strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2525}
2526
2527static int gem_get_link_ksettings(struct net_device *dev,
2528                                  struct ethtool_link_ksettings *cmd)
2529{
2530        struct gem *gp = netdev_priv(dev);
2531        u32 supported, advertising;
2532
2533        if (gp->phy_type == phy_mii_mdio0 ||
2534            gp->phy_type == phy_mii_mdio1) {
2535                if (gp->phy_mii.def)
2536                        supported = gp->phy_mii.def->features;
2537                else
2538                        supported = (SUPPORTED_10baseT_Half |
2539                                          SUPPORTED_10baseT_Full);
2540
2541                /* XXX hardcoded stuff for now */
2542                cmd->base.port = PORT_MII;
2543                cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2544
2545                /* Return current PHY settings */
2546                cmd->base.autoneg = gp->want_autoneg;
2547                cmd->base.speed = gp->phy_mii.speed;
2548                cmd->base.duplex = gp->phy_mii.duplex;
2549                advertising = gp->phy_mii.advertising;
2550
2551                /* If we started with a forced mode, we don't have a default
2552                 * advertise set, we need to return something sensible so
2553                 * userland can re-enable autoneg properly.
2554                 */
2555                if (advertising == 0)
2556                        advertising = supported;
2557        } else { // XXX PCS ?
2558                supported =
2559                        (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2560                         SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2561                         SUPPORTED_Autoneg);
2562                advertising = supported;
2563                cmd->base.speed = 0;
2564                cmd->base.duplex = 0;
2565                cmd->base.port = 0;
2566                cmd->base.phy_address = 0;
2567                cmd->base.autoneg = 0;
2568
2569                /* serdes means usually a Fibre connector, with most fixed */
2570                if (gp->phy_type == phy_serdes) {
2571                        cmd->base.port = PORT_FIBRE;
2572                        supported = (SUPPORTED_1000baseT_Half |
2573                                SUPPORTED_1000baseT_Full |
2574                                SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2575                                SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2576                        advertising = supported;
2577                        if (gp->lstate == link_up)
2578                                cmd->base.speed = SPEED_1000;
2579                        cmd->base.duplex = DUPLEX_FULL;
2580                        cmd->base.autoneg = 1;
2581                }
2582        }
2583
2584        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2585                                                supported);
2586        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2587                                                advertising);
2588
2589        return 0;
2590}
2591
2592static int gem_set_link_ksettings(struct net_device *dev,
2593                                  const struct ethtool_link_ksettings *cmd)
2594{
2595        struct gem *gp = netdev_priv(dev);
2596        u32 speed = cmd->base.speed;
2597        u32 advertising;
2598
2599        ethtool_convert_link_mode_to_legacy_u32(&advertising,
2600                                                cmd->link_modes.advertising);
2601
2602        /* Verify the settings we care about. */
2603        if (cmd->base.autoneg != AUTONEG_ENABLE &&
2604            cmd->base.autoneg != AUTONEG_DISABLE)
2605                return -EINVAL;
2606
2607        if (cmd->base.autoneg == AUTONEG_ENABLE &&
2608            advertising == 0)
2609                return -EINVAL;
2610
2611        if (cmd->base.autoneg == AUTONEG_DISABLE &&
2612            ((speed != SPEED_1000 &&
2613              speed != SPEED_100 &&
2614              speed != SPEED_10) ||
2615             (cmd->base.duplex != DUPLEX_HALF &&
2616              cmd->base.duplex != DUPLEX_FULL)))
2617                return -EINVAL;
2618
2619        /* Apply settings and restart link process. */
2620        if (netif_device_present(gp->dev)) {
2621                del_timer_sync(&gp->link_timer);
2622                gem_begin_auto_negotiation(gp, cmd);
2623        }
2624
2625        return 0;
2626}
2627
2628static int gem_nway_reset(struct net_device *dev)
2629{
2630        struct gem *gp = netdev_priv(dev);
2631
2632        if (!gp->want_autoneg)
2633                return -EINVAL;
2634
2635        /* Restart link process  */
2636        if (netif_device_present(gp->dev)) {
2637                del_timer_sync(&gp->link_timer);
2638                gem_begin_auto_negotiation(gp, NULL);
2639        }
2640
2641        return 0;
2642}
2643
2644static u32 gem_get_msglevel(struct net_device *dev)
2645{
2646        struct gem *gp = netdev_priv(dev);
2647        return gp->msg_enable;
2648}
2649
2650static void gem_set_msglevel(struct net_device *dev, u32 value)
2651{
2652        struct gem *gp = netdev_priv(dev);
2653        gp->msg_enable = value;
2654}
2655
2656
2657/* Add more when I understand how to program the chip */
2658/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2659
2660#define WOL_SUPPORTED_MASK      (WAKE_MAGIC)
2661
2662static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2663{
2664        struct gem *gp = netdev_priv(dev);
2665
2666        /* Add more when I understand how to program the chip */
2667        if (gp->has_wol) {
2668                wol->supported = WOL_SUPPORTED_MASK;
2669                wol->wolopts = gp->wake_on_lan;
2670        } else {
2671                wol->supported = 0;
2672                wol->wolopts = 0;
2673        }
2674}
2675
2676static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2677{
2678        struct gem *gp = netdev_priv(dev);
2679
2680        if (!gp->has_wol)
2681                return -EOPNOTSUPP;
2682        gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2683        return 0;
2684}
2685
2686static const struct ethtool_ops gem_ethtool_ops = {
2687        .get_drvinfo            = gem_get_drvinfo,
2688        .get_link               = ethtool_op_get_link,
2689        .nway_reset             = gem_nway_reset,
2690        .get_msglevel           = gem_get_msglevel,
2691        .set_msglevel           = gem_set_msglevel,
2692        .get_wol                = gem_get_wol,
2693        .set_wol                = gem_set_wol,
2694        .get_link_ksettings     = gem_get_link_ksettings,
2695        .set_link_ksettings     = gem_set_link_ksettings,
2696};
2697
2698static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2699{
2700        struct gem *gp = netdev_priv(dev);
2701        struct mii_ioctl_data *data = if_mii(ifr);
2702        int rc = -EOPNOTSUPP;
2703
2704        /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2705         * netif_device_present() is true and holds rtnl_lock for us
2706         * so we have nothing to worry about
2707         */
2708
2709        switch (cmd) {
2710        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
2711                data->phy_id = gp->mii_phy_addr;
2712                /* Fallthrough... */
2713
2714        case SIOCGMIIREG:               /* Read MII PHY register. */
2715                data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2716                                           data->reg_num & 0x1f);
2717                rc = 0;
2718                break;
2719
2720        case SIOCSMIIREG:               /* Write MII PHY register. */
2721                __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2722                            data->val_in);
2723                rc = 0;
2724                break;
2725        }
2726        return rc;
2727}
2728
2729#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2730/* Fetch MAC address from vital product data of PCI ROM. */
2731static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2732{
2733        int this_offset;
2734
2735        for (this_offset = 0x20; this_offset < len; this_offset++) {
2736                void __iomem *p = rom_base + this_offset;
2737                int i;
2738
2739                if (readb(p + 0) != 0x90 ||
2740                    readb(p + 1) != 0x00 ||
2741                    readb(p + 2) != 0x09 ||
2742                    readb(p + 3) != 0x4e ||
2743                    readb(p + 4) != 0x41 ||
2744                    readb(p + 5) != 0x06)
2745                        continue;
2746
2747                this_offset += 6;
2748                p += 6;
2749
2750                for (i = 0; i < 6; i++)
2751                        dev_addr[i] = readb(p + i);
2752                return 1;
2753        }
2754        return 0;
2755}
2756
2757static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2758{
2759        size_t size;
2760        void __iomem *p = pci_map_rom(pdev, &size);
2761
2762        if (p) {
2763                        int found;
2764
2765                found = readb(p) == 0x55 &&
2766                        readb(p + 1) == 0xaa &&
2767                        find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2768                pci_unmap_rom(pdev, p);
2769                if (found)
2770                        return;
2771        }
2772
2773        /* Sun MAC prefix then 3 random bytes. */
2774        dev_addr[0] = 0x08;
2775        dev_addr[1] = 0x00;
2776        dev_addr[2] = 0x20;
2777        get_random_bytes(dev_addr + 3, 3);
2778}
2779#endif /* not Sparc and not PPC */
2780
2781static int gem_get_device_address(struct gem *gp)
2782{
2783#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2784        struct net_device *dev = gp->dev;
2785        const unsigned char *addr;
2786
2787        addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2788        if (addr == NULL) {
2789#ifdef CONFIG_SPARC
2790                addr = idprom->id_ethaddr;
2791#else
2792                printk("\n");
2793                pr_err("%s: can't get mac-address\n", dev->name);
2794                return -1;
2795#endif
2796        }
2797        memcpy(dev->dev_addr, addr, ETH_ALEN);
2798#else
2799        get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2800#endif
2801        return 0;
2802}
2803
2804static void gem_remove_one(struct pci_dev *pdev)
2805{
2806        struct net_device *dev = pci_get_drvdata(pdev);
2807
2808        if (dev) {
2809                struct gem *gp = netdev_priv(dev);
2810
2811                unregister_netdev(dev);
2812
2813                /* Ensure reset task is truly gone */
2814                cancel_work_sync(&gp->reset_task);
2815
2816                /* Free resources */
2817                pci_free_consistent(pdev,
2818                                    sizeof(struct gem_init_block),
2819                                    gp->init_block,
2820                                    gp->gblock_dvma);
2821                iounmap(gp->regs);
2822                pci_release_regions(pdev);
2823                free_netdev(dev);
2824        }
2825}
2826
2827static const struct net_device_ops gem_netdev_ops = {
2828        .ndo_open               = gem_open,
2829        .ndo_stop               = gem_close,
2830        .ndo_start_xmit         = gem_start_xmit,
2831        .ndo_get_stats          = gem_get_stats,
2832        .ndo_set_rx_mode        = gem_set_multicast,
2833        .ndo_do_ioctl           = gem_ioctl,
2834        .ndo_tx_timeout         = gem_tx_timeout,
2835        .ndo_change_mtu         = gem_change_mtu,
2836        .ndo_validate_addr      = eth_validate_addr,
2837        .ndo_set_mac_address    = gem_set_mac_address,
2838#ifdef CONFIG_NET_POLL_CONTROLLER
2839        .ndo_poll_controller    = gem_poll_controller,
2840#endif
2841};
2842
2843static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2844{
2845        unsigned long gemreg_base, gemreg_len;
2846        struct net_device *dev;
2847        struct gem *gp;
2848        int err, pci_using_dac;
2849
2850        printk_once(KERN_INFO "%s", version);
2851
2852        /* Apple gmac note: during probe, the chip is powered up by
2853         * the arch code to allow the code below to work (and to let
2854         * the chip be probed on the config space. It won't stay powered
2855         * up until the interface is brought up however, so we can't rely
2856         * on register configuration done at this point.
2857         */
2858        err = pci_enable_device(pdev);
2859        if (err) {
2860                pr_err("Cannot enable MMIO operation, aborting\n");
2861                return err;
2862        }
2863        pci_set_master(pdev);
2864
2865        /* Configure DMA attributes. */
2866
2867        /* All of the GEM documentation states that 64-bit DMA addressing
2868         * is fully supported and should work just fine.  However the
2869         * front end for RIO based GEMs is different and only supports
2870         * 32-bit addressing.
2871         *
2872         * For now we assume the various PPC GEMs are 32-bit only as well.
2873         */
2874        if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2875            pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2876            !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2877                pci_using_dac = 1;
2878        } else {
2879                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2880                if (err) {
2881                        pr_err("No usable DMA configuration, aborting\n");
2882                        goto err_disable_device;
2883                }
2884                pci_using_dac = 0;
2885        }
2886
2887        gemreg_base = pci_resource_start(pdev, 0);
2888        gemreg_len = pci_resource_len(pdev, 0);
2889
2890        if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2891                pr_err("Cannot find proper PCI device base address, aborting\n");
2892                err = -ENODEV;
2893                goto err_disable_device;
2894        }
2895
2896        dev = alloc_etherdev(sizeof(*gp));
2897        if (!dev) {
2898                err = -ENOMEM;
2899                goto err_disable_device;
2900        }
2901        SET_NETDEV_DEV(dev, &pdev->dev);
2902
2903        gp = netdev_priv(dev);
2904
2905        err = pci_request_regions(pdev, DRV_NAME);
2906        if (err) {
2907                pr_err("Cannot obtain PCI resources, aborting\n");
2908                goto err_out_free_netdev;
2909        }
2910
2911        gp->pdev = pdev;
2912        gp->dev = dev;
2913
2914        gp->msg_enable = DEFAULT_MSG;
2915
2916        timer_setup(&gp->link_timer, gem_link_timer, 0);
2917
2918        INIT_WORK(&gp->reset_task, gem_reset_task);
2919
2920        gp->lstate = link_down;
2921        gp->timer_ticks = 0;
2922        netif_carrier_off(dev);
2923
2924        gp->regs = ioremap(gemreg_base, gemreg_len);
2925        if (!gp->regs) {
2926                pr_err("Cannot map device registers, aborting\n");
2927                err = -EIO;
2928                goto err_out_free_res;
2929        }
2930
2931        /* On Apple, we want a reference to the Open Firmware device-tree
2932         * node. We use it for clock control.
2933         */
2934#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2935        gp->of_node = pci_device_to_OF_node(pdev);
2936#endif
2937
2938        /* Only Apple version supports WOL afaik */
2939        if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2940                gp->has_wol = 1;
2941
2942        /* Make sure cell is enabled */
2943        gem_get_cell(gp);
2944
2945        /* Make sure everything is stopped and in init state */
2946        gem_reset(gp);
2947
2948        /* Fill up the mii_phy structure (even if we won't use it) */
2949        gp->phy_mii.dev = dev;
2950        gp->phy_mii.mdio_read = _sungem_phy_read;
2951        gp->phy_mii.mdio_write = _sungem_phy_write;
2952#ifdef CONFIG_PPC_PMAC
2953        gp->phy_mii.platform_data = gp->of_node;
2954#endif
2955        /* By default, we start with autoneg */
2956        gp->want_autoneg = 1;
2957
2958        /* Check fifo sizes, PHY type, etc... */
2959        if (gem_check_invariants(gp)) {
2960                err = -ENODEV;
2961                goto err_out_iounmap;
2962        }
2963
2964        /* It is guaranteed that the returned buffer will be at least
2965         * PAGE_SIZE aligned.
2966         */
2967        gp->init_block = (struct gem_init_block *)
2968                pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2969                                     &gp->gblock_dvma);
2970        if (!gp->init_block) {
2971                pr_err("Cannot allocate init block, aborting\n");
2972                err = -ENOMEM;
2973                goto err_out_iounmap;
2974        }
2975
2976        err = gem_get_device_address(gp);
2977        if (err)
2978                goto err_out_free_consistent;
2979
2980        dev->netdev_ops = &gem_netdev_ops;
2981        netif_napi_add(dev, &gp->napi, gem_poll, 64);
2982        dev->ethtool_ops = &gem_ethtool_ops;
2983        dev->watchdog_timeo = 5 * HZ;
2984        dev->dma = 0;
2985
2986        /* Set that now, in case PM kicks in now */
2987        pci_set_drvdata(pdev, dev);
2988
2989        /* We can do scatter/gather and HW checksum */
2990        dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2991        dev->features = dev->hw_features;
2992        if (pci_using_dac)
2993                dev->features |= NETIF_F_HIGHDMA;
2994
2995        /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2996        dev->min_mtu = GEM_MIN_MTU;
2997        dev->max_mtu = GEM_MAX_MTU;
2998
2999        /* Register with kernel */
3000        if (register_netdev(dev)) {
3001                pr_err("Cannot register net device, aborting\n");
3002                err = -ENOMEM;
3003                goto err_out_free_consistent;
3004        }
3005
3006        /* Undo the get_cell with appropriate locking (we could use
3007         * ndo_init/uninit but that would be even more clumsy imho)
3008         */
3009        rtnl_lock();
3010        gem_put_cell(gp);
3011        rtnl_unlock();
3012
3013        netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3014                    dev->dev_addr);
3015        return 0;
3016
3017err_out_free_consistent:
3018        gem_remove_one(pdev);
3019err_out_iounmap:
3020        gem_put_cell(gp);
3021        iounmap(gp->regs);
3022
3023err_out_free_res:
3024        pci_release_regions(pdev);
3025
3026err_out_free_netdev:
3027        free_netdev(dev);
3028err_disable_device:
3029        pci_disable_device(pdev);
3030        return err;
3031
3032}
3033
3034
3035static struct pci_driver gem_driver = {
3036        .name           = GEM_MODULE_NAME,
3037        .id_table       = gem_pci_tbl,
3038        .probe          = gem_init_one,
3039        .remove         = gem_remove_one,
3040#ifdef CONFIG_PM
3041        .suspend        = gem_suspend,
3042        .resume         = gem_resume,
3043#endif /* CONFIG_PM */
3044};
3045
3046module_pci_driver(gem_driver);
3047