linux/drivers/nvme/host/rdma.c
<<
>>
Prefs
   1/*
   2 * NVMe over Fabrics RDMA host code.
   3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <rdma/mr_pool.h>
  19#include <linux/err.h>
  20#include <linux/string.h>
  21#include <linux/atomic.h>
  22#include <linux/blk-mq.h>
  23#include <linux/blk-mq-rdma.h>
  24#include <linux/types.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/scatterlist.h>
  28#include <linux/nvme.h>
  29#include <asm/unaligned.h>
  30
  31#include <rdma/ib_verbs.h>
  32#include <rdma/rdma_cm.h>
  33#include <linux/nvme-rdma.h>
  34
  35#include "nvme.h"
  36#include "fabrics.h"
  37
  38
  39#define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
  40
  41#define NVME_RDMA_MAX_SEGMENTS          256
  42
  43#define NVME_RDMA_MAX_INLINE_SEGMENTS   4
  44
  45struct nvme_rdma_device {
  46        struct ib_device        *dev;
  47        struct ib_pd            *pd;
  48        struct kref             ref;
  49        struct list_head        entry;
  50        unsigned int            num_inline_segments;
  51};
  52
  53struct nvme_rdma_qe {
  54        struct ib_cqe           cqe;
  55        void                    *data;
  56        u64                     dma;
  57};
  58
  59struct nvme_rdma_queue;
  60struct nvme_rdma_request {
  61        struct nvme_request     req;
  62        struct ib_mr            *mr;
  63        struct nvme_rdma_qe     sqe;
  64        union nvme_result       result;
  65        __le16                  status;
  66        refcount_t              ref;
  67        struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  68        u32                     num_sge;
  69        int                     nents;
  70        struct ib_reg_wr        reg_wr;
  71        struct ib_cqe           reg_cqe;
  72        struct nvme_rdma_queue  *queue;
  73        struct sg_table         sg_table;
  74        struct scatterlist      first_sgl[];
  75};
  76
  77enum nvme_rdma_queue_flags {
  78        NVME_RDMA_Q_ALLOCATED           = 0,
  79        NVME_RDMA_Q_LIVE                = 1,
  80        NVME_RDMA_Q_TR_READY            = 2,
  81};
  82
  83struct nvme_rdma_queue {
  84        struct nvme_rdma_qe     *rsp_ring;
  85        int                     queue_size;
  86        size_t                  cmnd_capsule_len;
  87        struct nvme_rdma_ctrl   *ctrl;
  88        struct nvme_rdma_device *device;
  89        struct ib_cq            *ib_cq;
  90        struct ib_qp            *qp;
  91
  92        unsigned long           flags;
  93        struct rdma_cm_id       *cm_id;
  94        int                     cm_error;
  95        struct completion       cm_done;
  96};
  97
  98struct nvme_rdma_ctrl {
  99        /* read only in the hot path */
 100        struct nvme_rdma_queue  *queues;
 101
 102        /* other member variables */
 103        struct blk_mq_tag_set   tag_set;
 104        struct work_struct      err_work;
 105
 106        struct nvme_rdma_qe     async_event_sqe;
 107
 108        struct delayed_work     reconnect_work;
 109
 110        struct list_head        list;
 111
 112        struct blk_mq_tag_set   admin_tag_set;
 113        struct nvme_rdma_device *device;
 114
 115        u32                     max_fr_pages;
 116
 117        struct sockaddr_storage addr;
 118        struct sockaddr_storage src_addr;
 119
 120        struct nvme_ctrl        ctrl;
 121        bool                    use_inline_data;
 122};
 123
 124static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
 125{
 126        return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
 127}
 128
 129static LIST_HEAD(device_list);
 130static DEFINE_MUTEX(device_list_mutex);
 131
 132static LIST_HEAD(nvme_rdma_ctrl_list);
 133static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
 134
 135/*
 136 * Disabling this option makes small I/O goes faster, but is fundamentally
 137 * unsafe.  With it turned off we will have to register a global rkey that
 138 * allows read and write access to all physical memory.
 139 */
 140static bool register_always = true;
 141module_param(register_always, bool, 0444);
 142MODULE_PARM_DESC(register_always,
 143         "Use memory registration even for contiguous memory regions");
 144
 145static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
 146                struct rdma_cm_event *event);
 147static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 148
 149static const struct blk_mq_ops nvme_rdma_mq_ops;
 150static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
 151
 152/* XXX: really should move to a generic header sooner or later.. */
 153static inline void put_unaligned_le24(u32 val, u8 *p)
 154{
 155        *p++ = val;
 156        *p++ = val >> 8;
 157        *p++ = val >> 16;
 158}
 159
 160static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
 161{
 162        return queue - queue->ctrl->queues;
 163}
 164
 165static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
 166{
 167        return queue->cmnd_capsule_len - sizeof(struct nvme_command);
 168}
 169
 170static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 171                size_t capsule_size, enum dma_data_direction dir)
 172{
 173        ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
 174        kfree(qe->data);
 175}
 176
 177static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 178                size_t capsule_size, enum dma_data_direction dir)
 179{
 180        qe->data = kzalloc(capsule_size, GFP_KERNEL);
 181        if (!qe->data)
 182                return -ENOMEM;
 183
 184        qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
 185        if (ib_dma_mapping_error(ibdev, qe->dma)) {
 186                kfree(qe->data);
 187                return -ENOMEM;
 188        }
 189
 190        return 0;
 191}
 192
 193static void nvme_rdma_free_ring(struct ib_device *ibdev,
 194                struct nvme_rdma_qe *ring, size_t ib_queue_size,
 195                size_t capsule_size, enum dma_data_direction dir)
 196{
 197        int i;
 198
 199        for (i = 0; i < ib_queue_size; i++)
 200                nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
 201        kfree(ring);
 202}
 203
 204static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
 205                size_t ib_queue_size, size_t capsule_size,
 206                enum dma_data_direction dir)
 207{
 208        struct nvme_rdma_qe *ring;
 209        int i;
 210
 211        ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
 212        if (!ring)
 213                return NULL;
 214
 215        for (i = 0; i < ib_queue_size; i++) {
 216                if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
 217                        goto out_free_ring;
 218        }
 219
 220        return ring;
 221
 222out_free_ring:
 223        nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
 224        return NULL;
 225}
 226
 227static void nvme_rdma_qp_event(struct ib_event *event, void *context)
 228{
 229        pr_debug("QP event %s (%d)\n",
 230                 ib_event_msg(event->event), event->event);
 231
 232}
 233
 234static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
 235{
 236        wait_for_completion_interruptible_timeout(&queue->cm_done,
 237                        msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
 238        return queue->cm_error;
 239}
 240
 241static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
 242{
 243        struct nvme_rdma_device *dev = queue->device;
 244        struct ib_qp_init_attr init_attr;
 245        int ret;
 246
 247        memset(&init_attr, 0, sizeof(init_attr));
 248        init_attr.event_handler = nvme_rdma_qp_event;
 249        /* +1 for drain */
 250        init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
 251        /* +1 for drain */
 252        init_attr.cap.max_recv_wr = queue->queue_size + 1;
 253        init_attr.cap.max_recv_sge = 1;
 254        init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
 255        init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
 256        init_attr.qp_type = IB_QPT_RC;
 257        init_attr.send_cq = queue->ib_cq;
 258        init_attr.recv_cq = queue->ib_cq;
 259
 260        ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
 261
 262        queue->qp = queue->cm_id->qp;
 263        return ret;
 264}
 265
 266static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
 267                struct request *rq, unsigned int hctx_idx)
 268{
 269        struct nvme_rdma_ctrl *ctrl = set->driver_data;
 270        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 271        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 272        struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
 273        struct nvme_rdma_device *dev = queue->device;
 274
 275        nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
 276                        DMA_TO_DEVICE);
 277}
 278
 279static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
 280                struct request *rq, unsigned int hctx_idx,
 281                unsigned int numa_node)
 282{
 283        struct nvme_rdma_ctrl *ctrl = set->driver_data;
 284        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 285        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 286        struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
 287        struct nvme_rdma_device *dev = queue->device;
 288        struct ib_device *ibdev = dev->dev;
 289        int ret;
 290
 291        nvme_req(rq)->ctrl = &ctrl->ctrl;
 292        ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
 293                        DMA_TO_DEVICE);
 294        if (ret)
 295                return ret;
 296
 297        req->queue = queue;
 298
 299        return 0;
 300}
 301
 302static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 303                unsigned int hctx_idx)
 304{
 305        struct nvme_rdma_ctrl *ctrl = data;
 306        struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
 307
 308        BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
 309
 310        hctx->driver_data = queue;
 311        return 0;
 312}
 313
 314static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 315                unsigned int hctx_idx)
 316{
 317        struct nvme_rdma_ctrl *ctrl = data;
 318        struct nvme_rdma_queue *queue = &ctrl->queues[0];
 319
 320        BUG_ON(hctx_idx != 0);
 321
 322        hctx->driver_data = queue;
 323        return 0;
 324}
 325
 326static void nvme_rdma_free_dev(struct kref *ref)
 327{
 328        struct nvme_rdma_device *ndev =
 329                container_of(ref, struct nvme_rdma_device, ref);
 330
 331        mutex_lock(&device_list_mutex);
 332        list_del(&ndev->entry);
 333        mutex_unlock(&device_list_mutex);
 334
 335        ib_dealloc_pd(ndev->pd);
 336        kfree(ndev);
 337}
 338
 339static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
 340{
 341        kref_put(&dev->ref, nvme_rdma_free_dev);
 342}
 343
 344static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
 345{
 346        return kref_get_unless_zero(&dev->ref);
 347}
 348
 349static struct nvme_rdma_device *
 350nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
 351{
 352        struct nvme_rdma_device *ndev;
 353
 354        mutex_lock(&device_list_mutex);
 355        list_for_each_entry(ndev, &device_list, entry) {
 356                if (ndev->dev->node_guid == cm_id->device->node_guid &&
 357                    nvme_rdma_dev_get(ndev))
 358                        goto out_unlock;
 359        }
 360
 361        ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
 362        if (!ndev)
 363                goto out_err;
 364
 365        ndev->dev = cm_id->device;
 366        kref_init(&ndev->ref);
 367
 368        ndev->pd = ib_alloc_pd(ndev->dev,
 369                register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
 370        if (IS_ERR(ndev->pd))
 371                goto out_free_dev;
 372
 373        if (!(ndev->dev->attrs.device_cap_flags &
 374              IB_DEVICE_MEM_MGT_EXTENSIONS)) {
 375                dev_err(&ndev->dev->dev,
 376                        "Memory registrations not supported.\n");
 377                goto out_free_pd;
 378        }
 379
 380        ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
 381                                        ndev->dev->attrs.max_send_sge - 1);
 382        list_add(&ndev->entry, &device_list);
 383out_unlock:
 384        mutex_unlock(&device_list_mutex);
 385        return ndev;
 386
 387out_free_pd:
 388        ib_dealloc_pd(ndev->pd);
 389out_free_dev:
 390        kfree(ndev);
 391out_err:
 392        mutex_unlock(&device_list_mutex);
 393        return NULL;
 394}
 395
 396static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
 397{
 398        struct nvme_rdma_device *dev;
 399        struct ib_device *ibdev;
 400
 401        if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
 402                return;
 403
 404        dev = queue->device;
 405        ibdev = dev->dev;
 406
 407        ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
 408
 409        /*
 410         * The cm_id object might have been destroyed during RDMA connection
 411         * establishment error flow to avoid getting other cma events, thus
 412         * the destruction of the QP shouldn't use rdma_cm API.
 413         */
 414        ib_destroy_qp(queue->qp);
 415        ib_free_cq(queue->ib_cq);
 416
 417        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 418                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 419
 420        nvme_rdma_dev_put(dev);
 421}
 422
 423static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
 424{
 425        return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
 426                     ibdev->attrs.max_fast_reg_page_list_len);
 427}
 428
 429static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
 430{
 431        struct ib_device *ibdev;
 432        const int send_wr_factor = 3;                   /* MR, SEND, INV */
 433        const int cq_factor = send_wr_factor + 1;       /* + RECV */
 434        int comp_vector, idx = nvme_rdma_queue_idx(queue);
 435        int ret;
 436
 437        queue->device = nvme_rdma_find_get_device(queue->cm_id);
 438        if (!queue->device) {
 439                dev_err(queue->cm_id->device->dev.parent,
 440                        "no client data found!\n");
 441                return -ECONNREFUSED;
 442        }
 443        ibdev = queue->device->dev;
 444
 445        /*
 446         * Spread I/O queues completion vectors according their queue index.
 447         * Admin queues can always go on completion vector 0.
 448         */
 449        comp_vector = idx == 0 ? idx : idx - 1;
 450
 451        /* +1 for ib_stop_cq */
 452        queue->ib_cq = ib_alloc_cq(ibdev, queue,
 453                                cq_factor * queue->queue_size + 1,
 454                                comp_vector, IB_POLL_SOFTIRQ);
 455        if (IS_ERR(queue->ib_cq)) {
 456                ret = PTR_ERR(queue->ib_cq);
 457                goto out_put_dev;
 458        }
 459
 460        ret = nvme_rdma_create_qp(queue, send_wr_factor);
 461        if (ret)
 462                goto out_destroy_ib_cq;
 463
 464        queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
 465                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 466        if (!queue->rsp_ring) {
 467                ret = -ENOMEM;
 468                goto out_destroy_qp;
 469        }
 470
 471        ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
 472                              queue->queue_size,
 473                              IB_MR_TYPE_MEM_REG,
 474                              nvme_rdma_get_max_fr_pages(ibdev));
 475        if (ret) {
 476                dev_err(queue->ctrl->ctrl.device,
 477                        "failed to initialize MR pool sized %d for QID %d\n",
 478                        queue->queue_size, idx);
 479                goto out_destroy_ring;
 480        }
 481
 482        set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
 483
 484        return 0;
 485
 486out_destroy_ring:
 487        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 488                            sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 489out_destroy_qp:
 490        rdma_destroy_qp(queue->cm_id);
 491out_destroy_ib_cq:
 492        ib_free_cq(queue->ib_cq);
 493out_put_dev:
 494        nvme_rdma_dev_put(queue->device);
 495        return ret;
 496}
 497
 498static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
 499                int idx, size_t queue_size)
 500{
 501        struct nvme_rdma_queue *queue;
 502        struct sockaddr *src_addr = NULL;
 503        int ret;
 504
 505        queue = &ctrl->queues[idx];
 506        queue->ctrl = ctrl;
 507        init_completion(&queue->cm_done);
 508
 509        if (idx > 0)
 510                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
 511        else
 512                queue->cmnd_capsule_len = sizeof(struct nvme_command);
 513
 514        queue->queue_size = queue_size;
 515
 516        queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
 517                        RDMA_PS_TCP, IB_QPT_RC);
 518        if (IS_ERR(queue->cm_id)) {
 519                dev_info(ctrl->ctrl.device,
 520                        "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
 521                return PTR_ERR(queue->cm_id);
 522        }
 523
 524        if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
 525                src_addr = (struct sockaddr *)&ctrl->src_addr;
 526
 527        queue->cm_error = -ETIMEDOUT;
 528        ret = rdma_resolve_addr(queue->cm_id, src_addr,
 529                        (struct sockaddr *)&ctrl->addr,
 530                        NVME_RDMA_CONNECT_TIMEOUT_MS);
 531        if (ret) {
 532                dev_info(ctrl->ctrl.device,
 533                        "rdma_resolve_addr failed (%d).\n", ret);
 534                goto out_destroy_cm_id;
 535        }
 536
 537        ret = nvme_rdma_wait_for_cm(queue);
 538        if (ret) {
 539                dev_info(ctrl->ctrl.device,
 540                        "rdma connection establishment failed (%d)\n", ret);
 541                goto out_destroy_cm_id;
 542        }
 543
 544        set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
 545
 546        return 0;
 547
 548out_destroy_cm_id:
 549        rdma_destroy_id(queue->cm_id);
 550        nvme_rdma_destroy_queue_ib(queue);
 551        return ret;
 552}
 553
 554static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 555{
 556        if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
 557                return;
 558
 559        rdma_disconnect(queue->cm_id);
 560        ib_drain_qp(queue->qp);
 561}
 562
 563static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
 564{
 565        if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
 566                return;
 567
 568        nvme_rdma_destroy_queue_ib(queue);
 569        rdma_destroy_id(queue->cm_id);
 570}
 571
 572static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
 573{
 574        int i;
 575
 576        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 577                nvme_rdma_free_queue(&ctrl->queues[i]);
 578}
 579
 580static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
 581{
 582        int i;
 583
 584        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 585                nvme_rdma_stop_queue(&ctrl->queues[i]);
 586}
 587
 588static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
 589{
 590        int ret;
 591
 592        if (idx)
 593                ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
 594        else
 595                ret = nvmf_connect_admin_queue(&ctrl->ctrl);
 596
 597        if (!ret)
 598                set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
 599        else
 600                dev_info(ctrl->ctrl.device,
 601                        "failed to connect queue: %d ret=%d\n", idx, ret);
 602        return ret;
 603}
 604
 605static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
 606{
 607        int i, ret = 0;
 608
 609        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 610                ret = nvme_rdma_start_queue(ctrl, i);
 611                if (ret)
 612                        goto out_stop_queues;
 613        }
 614
 615        return 0;
 616
 617out_stop_queues:
 618        for (i--; i >= 1; i--)
 619                nvme_rdma_stop_queue(&ctrl->queues[i]);
 620        return ret;
 621}
 622
 623static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
 624{
 625        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
 626        struct ib_device *ibdev = ctrl->device->dev;
 627        unsigned int nr_io_queues;
 628        int i, ret;
 629
 630        nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
 631
 632        /*
 633         * we map queues according to the device irq vectors for
 634         * optimal locality so we don't need more queues than
 635         * completion vectors.
 636         */
 637        nr_io_queues = min_t(unsigned int, nr_io_queues,
 638                                ibdev->num_comp_vectors);
 639
 640        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
 641        if (ret)
 642                return ret;
 643
 644        ctrl->ctrl.queue_count = nr_io_queues + 1;
 645        if (ctrl->ctrl.queue_count < 2)
 646                return 0;
 647
 648        dev_info(ctrl->ctrl.device,
 649                "creating %d I/O queues.\n", nr_io_queues);
 650
 651        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 652                ret = nvme_rdma_alloc_queue(ctrl, i,
 653                                ctrl->ctrl.sqsize + 1);
 654                if (ret)
 655                        goto out_free_queues;
 656        }
 657
 658        return 0;
 659
 660out_free_queues:
 661        for (i--; i >= 1; i--)
 662                nvme_rdma_free_queue(&ctrl->queues[i]);
 663
 664        return ret;
 665}
 666
 667static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
 668                struct blk_mq_tag_set *set)
 669{
 670        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 671
 672        blk_mq_free_tag_set(set);
 673        nvme_rdma_dev_put(ctrl->device);
 674}
 675
 676static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
 677                bool admin)
 678{
 679        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 680        struct blk_mq_tag_set *set;
 681        int ret;
 682
 683        if (admin) {
 684                set = &ctrl->admin_tag_set;
 685                memset(set, 0, sizeof(*set));
 686                set->ops = &nvme_rdma_admin_mq_ops;
 687                set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
 688                set->reserved_tags = 2; /* connect + keep-alive */
 689                set->numa_node = NUMA_NO_NODE;
 690                set->cmd_size = sizeof(struct nvme_rdma_request) +
 691                        SG_CHUNK_SIZE * sizeof(struct scatterlist);
 692                set->driver_data = ctrl;
 693                set->nr_hw_queues = 1;
 694                set->timeout = ADMIN_TIMEOUT;
 695                set->flags = BLK_MQ_F_NO_SCHED;
 696        } else {
 697                set = &ctrl->tag_set;
 698                memset(set, 0, sizeof(*set));
 699                set->ops = &nvme_rdma_mq_ops;
 700                set->queue_depth = nctrl->sqsize + 1;
 701                set->reserved_tags = 1; /* fabric connect */
 702                set->numa_node = NUMA_NO_NODE;
 703                set->flags = BLK_MQ_F_SHOULD_MERGE;
 704                set->cmd_size = sizeof(struct nvme_rdma_request) +
 705                        SG_CHUNK_SIZE * sizeof(struct scatterlist);
 706                set->driver_data = ctrl;
 707                set->nr_hw_queues = nctrl->queue_count - 1;
 708                set->timeout = NVME_IO_TIMEOUT;
 709        }
 710
 711        ret = blk_mq_alloc_tag_set(set);
 712        if (ret)
 713                goto out;
 714
 715        /*
 716         * We need a reference on the device as long as the tag_set is alive,
 717         * as the MRs in the request structures need a valid ib_device.
 718         */
 719        ret = nvme_rdma_dev_get(ctrl->device);
 720        if (!ret) {
 721                ret = -EINVAL;
 722                goto out_free_tagset;
 723        }
 724
 725        return set;
 726
 727out_free_tagset:
 728        blk_mq_free_tag_set(set);
 729out:
 730        return ERR_PTR(ret);
 731}
 732
 733static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
 734                bool remove)
 735{
 736        if (remove) {
 737                blk_cleanup_queue(ctrl->ctrl.admin_q);
 738                nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
 739        }
 740        if (ctrl->async_event_sqe.data) {
 741                nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 742                                sizeof(struct nvme_command), DMA_TO_DEVICE);
 743                ctrl->async_event_sqe.data = NULL;
 744        }
 745        nvme_rdma_free_queue(&ctrl->queues[0]);
 746}
 747
 748static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
 749                bool new)
 750{
 751        int error;
 752
 753        error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
 754        if (error)
 755                return error;
 756
 757        ctrl->device = ctrl->queues[0].device;
 758
 759        ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
 760
 761        error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 762                        sizeof(struct nvme_command), DMA_TO_DEVICE);
 763        if (error)
 764                goto out_free_queue;
 765
 766        if (new) {
 767                ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
 768                if (IS_ERR(ctrl->ctrl.admin_tagset)) {
 769                        error = PTR_ERR(ctrl->ctrl.admin_tagset);
 770                        goto out_free_async_qe;
 771                }
 772
 773                ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 774                if (IS_ERR(ctrl->ctrl.admin_q)) {
 775                        error = PTR_ERR(ctrl->ctrl.admin_q);
 776                        goto out_free_tagset;
 777                }
 778        }
 779
 780        error = nvme_rdma_start_queue(ctrl, 0);
 781        if (error)
 782                goto out_cleanup_queue;
 783
 784        error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
 785                        &ctrl->ctrl.cap);
 786        if (error) {
 787                dev_err(ctrl->ctrl.device,
 788                        "prop_get NVME_REG_CAP failed\n");
 789                goto out_stop_queue;
 790        }
 791
 792        ctrl->ctrl.sqsize =
 793                min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
 794
 795        error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
 796        if (error)
 797                goto out_stop_queue;
 798
 799        ctrl->ctrl.max_hw_sectors =
 800                (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
 801
 802        error = nvme_init_identify(&ctrl->ctrl);
 803        if (error)
 804                goto out_stop_queue;
 805
 806        return 0;
 807
 808out_stop_queue:
 809        nvme_rdma_stop_queue(&ctrl->queues[0]);
 810out_cleanup_queue:
 811        if (new)
 812                blk_cleanup_queue(ctrl->ctrl.admin_q);
 813out_free_tagset:
 814        if (new)
 815                nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
 816out_free_async_qe:
 817        nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 818                sizeof(struct nvme_command), DMA_TO_DEVICE);
 819out_free_queue:
 820        nvme_rdma_free_queue(&ctrl->queues[0]);
 821        return error;
 822}
 823
 824static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
 825                bool remove)
 826{
 827        if (remove) {
 828                blk_cleanup_queue(ctrl->ctrl.connect_q);
 829                nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
 830        }
 831        nvme_rdma_free_io_queues(ctrl);
 832}
 833
 834static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
 835{
 836        int ret;
 837
 838        ret = nvme_rdma_alloc_io_queues(ctrl);
 839        if (ret)
 840                return ret;
 841
 842        if (new) {
 843                ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
 844                if (IS_ERR(ctrl->ctrl.tagset)) {
 845                        ret = PTR_ERR(ctrl->ctrl.tagset);
 846                        goto out_free_io_queues;
 847                }
 848
 849                ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
 850                if (IS_ERR(ctrl->ctrl.connect_q)) {
 851                        ret = PTR_ERR(ctrl->ctrl.connect_q);
 852                        goto out_free_tag_set;
 853                }
 854        } else {
 855                blk_mq_update_nr_hw_queues(&ctrl->tag_set,
 856                        ctrl->ctrl.queue_count - 1);
 857        }
 858
 859        ret = nvme_rdma_start_io_queues(ctrl);
 860        if (ret)
 861                goto out_cleanup_connect_q;
 862
 863        return 0;
 864
 865out_cleanup_connect_q:
 866        if (new)
 867                blk_cleanup_queue(ctrl->ctrl.connect_q);
 868out_free_tag_set:
 869        if (new)
 870                nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
 871out_free_io_queues:
 872        nvme_rdma_free_io_queues(ctrl);
 873        return ret;
 874}
 875
 876static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
 877                bool remove)
 878{
 879        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
 880        nvme_rdma_stop_queue(&ctrl->queues[0]);
 881        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
 882                        &ctrl->ctrl);
 883        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
 884        nvme_rdma_destroy_admin_queue(ctrl, remove);
 885}
 886
 887static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
 888                bool remove)
 889{
 890        if (ctrl->ctrl.queue_count > 1) {
 891                nvme_stop_queues(&ctrl->ctrl);
 892                nvme_rdma_stop_io_queues(ctrl);
 893                blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
 894                                &ctrl->ctrl);
 895                if (remove)
 896                        nvme_start_queues(&ctrl->ctrl);
 897                nvme_rdma_destroy_io_queues(ctrl, remove);
 898        }
 899}
 900
 901static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
 902{
 903        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 904
 905        cancel_work_sync(&ctrl->err_work);
 906        cancel_delayed_work_sync(&ctrl->reconnect_work);
 907}
 908
 909static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
 910{
 911        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 912
 913        if (list_empty(&ctrl->list))
 914                goto free_ctrl;
 915
 916        mutex_lock(&nvme_rdma_ctrl_mutex);
 917        list_del(&ctrl->list);
 918        mutex_unlock(&nvme_rdma_ctrl_mutex);
 919
 920        nvmf_free_options(nctrl->opts);
 921free_ctrl:
 922        kfree(ctrl->queues);
 923        kfree(ctrl);
 924}
 925
 926static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
 927{
 928        /* If we are resetting/deleting then do nothing */
 929        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
 930                WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
 931                        ctrl->ctrl.state == NVME_CTRL_LIVE);
 932                return;
 933        }
 934
 935        if (nvmf_should_reconnect(&ctrl->ctrl)) {
 936                dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
 937                        ctrl->ctrl.opts->reconnect_delay);
 938                queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
 939                                ctrl->ctrl.opts->reconnect_delay * HZ);
 940        } else {
 941                nvme_delete_ctrl(&ctrl->ctrl);
 942        }
 943}
 944
 945static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
 946{
 947        int ret = -EINVAL;
 948        bool changed;
 949
 950        ret = nvme_rdma_configure_admin_queue(ctrl, new);
 951        if (ret)
 952                return ret;
 953
 954        if (ctrl->ctrl.icdoff) {
 955                dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
 956                goto destroy_admin;
 957        }
 958
 959        if (!(ctrl->ctrl.sgls & (1 << 2))) {
 960                dev_err(ctrl->ctrl.device,
 961                        "Mandatory keyed sgls are not supported!\n");
 962                goto destroy_admin;
 963        }
 964
 965        if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
 966                dev_warn(ctrl->ctrl.device,
 967                        "queue_size %zu > ctrl sqsize %u, clamping down\n",
 968                        ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
 969        }
 970
 971        if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
 972                dev_warn(ctrl->ctrl.device,
 973                        "sqsize %u > ctrl maxcmd %u, clamping down\n",
 974                        ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
 975                ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
 976        }
 977
 978        if (ctrl->ctrl.sgls & (1 << 20))
 979                ctrl->use_inline_data = true;
 980
 981        if (ctrl->ctrl.queue_count > 1) {
 982                ret = nvme_rdma_configure_io_queues(ctrl, new);
 983                if (ret)
 984                        goto destroy_admin;
 985        }
 986
 987        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
 988        if (!changed) {
 989                /* state change failure is ok if we're in DELETING state */
 990                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
 991                ret = -EINVAL;
 992                goto destroy_io;
 993        }
 994
 995        nvme_start_ctrl(&ctrl->ctrl);
 996        return 0;
 997
 998destroy_io:
 999        if (ctrl->ctrl.queue_count > 1)
1000                nvme_rdma_destroy_io_queues(ctrl, new);
1001destroy_admin:
1002        nvme_rdma_stop_queue(&ctrl->queues[0]);
1003        nvme_rdma_destroy_admin_queue(ctrl, new);
1004        return ret;
1005}
1006
1007static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1008{
1009        struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1010                        struct nvme_rdma_ctrl, reconnect_work);
1011
1012        ++ctrl->ctrl.nr_reconnects;
1013
1014        if (nvme_rdma_setup_ctrl(ctrl, false))
1015                goto requeue;
1016
1017        dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1018                        ctrl->ctrl.nr_reconnects);
1019
1020        ctrl->ctrl.nr_reconnects = 0;
1021
1022        return;
1023
1024requeue:
1025        dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1026                        ctrl->ctrl.nr_reconnects);
1027        nvme_rdma_reconnect_or_remove(ctrl);
1028}
1029
1030static void nvme_rdma_error_recovery_work(struct work_struct *work)
1031{
1032        struct nvme_rdma_ctrl *ctrl = container_of(work,
1033                        struct nvme_rdma_ctrl, err_work);
1034
1035        nvme_stop_keep_alive(&ctrl->ctrl);
1036        nvme_rdma_teardown_io_queues(ctrl, false);
1037        nvme_start_queues(&ctrl->ctrl);
1038        nvme_rdma_teardown_admin_queue(ctrl, false);
1039
1040        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1041                /* state change failure is ok if we're in DELETING state */
1042                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1043                return;
1044        }
1045
1046        nvme_rdma_reconnect_or_remove(ctrl);
1047}
1048
1049static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1050{
1051        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1052                return;
1053
1054        queue_work(nvme_wq, &ctrl->err_work);
1055}
1056
1057static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1058                const char *op)
1059{
1060        struct nvme_rdma_queue *queue = cq->cq_context;
1061        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1062
1063        if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1064                dev_info(ctrl->ctrl.device,
1065                             "%s for CQE 0x%p failed with status %s (%d)\n",
1066                             op, wc->wr_cqe,
1067                             ib_wc_status_msg(wc->status), wc->status);
1068        nvme_rdma_error_recovery(ctrl);
1069}
1070
1071static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1072{
1073        if (unlikely(wc->status != IB_WC_SUCCESS))
1074                nvme_rdma_wr_error(cq, wc, "MEMREG");
1075}
1076
1077static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1078{
1079        struct nvme_rdma_request *req =
1080                container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1081        struct request *rq = blk_mq_rq_from_pdu(req);
1082
1083        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1084                nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1085                return;
1086        }
1087
1088        if (refcount_dec_and_test(&req->ref))
1089                nvme_end_request(rq, req->status, req->result);
1090
1091}
1092
1093static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1094                struct nvme_rdma_request *req)
1095{
1096        struct ib_send_wr wr = {
1097                .opcode             = IB_WR_LOCAL_INV,
1098                .next               = NULL,
1099                .num_sge            = 0,
1100                .send_flags         = IB_SEND_SIGNALED,
1101                .ex.invalidate_rkey = req->mr->rkey,
1102        };
1103
1104        req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1105        wr.wr_cqe = &req->reg_cqe;
1106
1107        return ib_post_send(queue->qp, &wr, NULL);
1108}
1109
1110static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1111                struct request *rq)
1112{
1113        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1114        struct nvme_rdma_device *dev = queue->device;
1115        struct ib_device *ibdev = dev->dev;
1116
1117        if (!blk_rq_payload_bytes(rq))
1118                return;
1119
1120        if (req->mr) {
1121                ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1122                req->mr = NULL;
1123        }
1124
1125        ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1126                        req->nents, rq_data_dir(rq) ==
1127                                    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1128
1129        nvme_cleanup_cmd(rq);
1130        sg_free_table_chained(&req->sg_table, true);
1131}
1132
1133static int nvme_rdma_set_sg_null(struct nvme_command *c)
1134{
1135        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1136
1137        sg->addr = 0;
1138        put_unaligned_le24(0, sg->length);
1139        put_unaligned_le32(0, sg->key);
1140        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1141        return 0;
1142}
1143
1144static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1145                struct nvme_rdma_request *req, struct nvme_command *c,
1146                int count)
1147{
1148        struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1149        struct scatterlist *sgl = req->sg_table.sgl;
1150        struct ib_sge *sge = &req->sge[1];
1151        u32 len = 0;
1152        int i;
1153
1154        for (i = 0; i < count; i++, sgl++, sge++) {
1155                sge->addr = sg_dma_address(sgl);
1156                sge->length = sg_dma_len(sgl);
1157                sge->lkey = queue->device->pd->local_dma_lkey;
1158                len += sge->length;
1159        }
1160
1161        sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1162        sg->length = cpu_to_le32(len);
1163        sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1164
1165        req->num_sge += count;
1166        return 0;
1167}
1168
1169static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1170                struct nvme_rdma_request *req, struct nvme_command *c)
1171{
1172        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1173
1174        sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1175        put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1176        put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1177        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1178        return 0;
1179}
1180
1181static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1182                struct nvme_rdma_request *req, struct nvme_command *c,
1183                int count)
1184{
1185        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1186        int nr;
1187
1188        req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1189        if (WARN_ON_ONCE(!req->mr))
1190                return -EAGAIN;
1191
1192        /*
1193         * Align the MR to a 4K page size to match the ctrl page size and
1194         * the block virtual boundary.
1195         */
1196        nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1197        if (unlikely(nr < count)) {
1198                ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1199                req->mr = NULL;
1200                if (nr < 0)
1201                        return nr;
1202                return -EINVAL;
1203        }
1204
1205        ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1206
1207        req->reg_cqe.done = nvme_rdma_memreg_done;
1208        memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1209        req->reg_wr.wr.opcode = IB_WR_REG_MR;
1210        req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1211        req->reg_wr.wr.num_sge = 0;
1212        req->reg_wr.mr = req->mr;
1213        req->reg_wr.key = req->mr->rkey;
1214        req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1215                             IB_ACCESS_REMOTE_READ |
1216                             IB_ACCESS_REMOTE_WRITE;
1217
1218        sg->addr = cpu_to_le64(req->mr->iova);
1219        put_unaligned_le24(req->mr->length, sg->length);
1220        put_unaligned_le32(req->mr->rkey, sg->key);
1221        sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1222                        NVME_SGL_FMT_INVALIDATE;
1223
1224        return 0;
1225}
1226
1227static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1228                struct request *rq, struct nvme_command *c)
1229{
1230        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1231        struct nvme_rdma_device *dev = queue->device;
1232        struct ib_device *ibdev = dev->dev;
1233        int count, ret;
1234
1235        req->num_sge = 1;
1236        refcount_set(&req->ref, 2); /* send and recv completions */
1237
1238        c->common.flags |= NVME_CMD_SGL_METABUF;
1239
1240        if (!blk_rq_payload_bytes(rq))
1241                return nvme_rdma_set_sg_null(c);
1242
1243        req->sg_table.sgl = req->first_sgl;
1244        ret = sg_alloc_table_chained(&req->sg_table,
1245                        blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1246        if (ret)
1247                return -ENOMEM;
1248
1249        req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1250
1251        count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1252                    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1253        if (unlikely(count <= 0)) {
1254                ret = -EIO;
1255                goto out_free_table;
1256        }
1257
1258        if (count <= dev->num_inline_segments) {
1259                if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1260                    queue->ctrl->use_inline_data &&
1261                    blk_rq_payload_bytes(rq) <=
1262                                nvme_rdma_inline_data_size(queue)) {
1263                        ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1264                        goto out;
1265                }
1266
1267                if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1268                        ret = nvme_rdma_map_sg_single(queue, req, c);
1269                        goto out;
1270                }
1271        }
1272
1273        ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1274out:
1275        if (unlikely(ret))
1276                goto out_unmap_sg;
1277
1278        return 0;
1279
1280out_unmap_sg:
1281        ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1282                        req->nents, rq_data_dir(rq) ==
1283                        WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1284out_free_table:
1285        sg_free_table_chained(&req->sg_table, true);
1286        return ret;
1287}
1288
1289static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1290{
1291        struct nvme_rdma_qe *qe =
1292                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1293        struct nvme_rdma_request *req =
1294                container_of(qe, struct nvme_rdma_request, sqe);
1295        struct request *rq = blk_mq_rq_from_pdu(req);
1296
1297        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1298                nvme_rdma_wr_error(cq, wc, "SEND");
1299                return;
1300        }
1301
1302        if (refcount_dec_and_test(&req->ref))
1303                nvme_end_request(rq, req->status, req->result);
1304}
1305
1306static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1307                struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1308                struct ib_send_wr *first)
1309{
1310        struct ib_send_wr wr;
1311        int ret;
1312
1313        sge->addr   = qe->dma;
1314        sge->length = sizeof(struct nvme_command),
1315        sge->lkey   = queue->device->pd->local_dma_lkey;
1316
1317        wr.next       = NULL;
1318        wr.wr_cqe     = &qe->cqe;
1319        wr.sg_list    = sge;
1320        wr.num_sge    = num_sge;
1321        wr.opcode     = IB_WR_SEND;
1322        wr.send_flags = IB_SEND_SIGNALED;
1323
1324        if (first)
1325                first->next = &wr;
1326        else
1327                first = &wr;
1328
1329        ret = ib_post_send(queue->qp, first, NULL);
1330        if (unlikely(ret)) {
1331                dev_err(queue->ctrl->ctrl.device,
1332                             "%s failed with error code %d\n", __func__, ret);
1333        }
1334        return ret;
1335}
1336
1337static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1338                struct nvme_rdma_qe *qe)
1339{
1340        struct ib_recv_wr wr;
1341        struct ib_sge list;
1342        int ret;
1343
1344        list.addr   = qe->dma;
1345        list.length = sizeof(struct nvme_completion);
1346        list.lkey   = queue->device->pd->local_dma_lkey;
1347
1348        qe->cqe.done = nvme_rdma_recv_done;
1349
1350        wr.next     = NULL;
1351        wr.wr_cqe   = &qe->cqe;
1352        wr.sg_list  = &list;
1353        wr.num_sge  = 1;
1354
1355        ret = ib_post_recv(queue->qp, &wr, NULL);
1356        if (unlikely(ret)) {
1357                dev_err(queue->ctrl->ctrl.device,
1358                        "%s failed with error code %d\n", __func__, ret);
1359        }
1360        return ret;
1361}
1362
1363static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1364{
1365        u32 queue_idx = nvme_rdma_queue_idx(queue);
1366
1367        if (queue_idx == 0)
1368                return queue->ctrl->admin_tag_set.tags[queue_idx];
1369        return queue->ctrl->tag_set.tags[queue_idx - 1];
1370}
1371
1372static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1373{
1374        if (unlikely(wc->status != IB_WC_SUCCESS))
1375                nvme_rdma_wr_error(cq, wc, "ASYNC");
1376}
1377
1378static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1379{
1380        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1381        struct nvme_rdma_queue *queue = &ctrl->queues[0];
1382        struct ib_device *dev = queue->device->dev;
1383        struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1384        struct nvme_command *cmd = sqe->data;
1385        struct ib_sge sge;
1386        int ret;
1387
1388        ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1389
1390        memset(cmd, 0, sizeof(*cmd));
1391        cmd->common.opcode = nvme_admin_async_event;
1392        cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1393        cmd->common.flags |= NVME_CMD_SGL_METABUF;
1394        nvme_rdma_set_sg_null(cmd);
1395
1396        sqe->cqe.done = nvme_rdma_async_done;
1397
1398        ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1399                        DMA_TO_DEVICE);
1400
1401        ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1402        WARN_ON_ONCE(ret);
1403}
1404
1405static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1406                struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1407{
1408        struct request *rq;
1409        struct nvme_rdma_request *req;
1410        int ret = 0;
1411
1412        rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1413        if (!rq) {
1414                dev_err(queue->ctrl->ctrl.device,
1415                        "tag 0x%x on QP %#x not found\n",
1416                        cqe->command_id, queue->qp->qp_num);
1417                nvme_rdma_error_recovery(queue->ctrl);
1418                return ret;
1419        }
1420        req = blk_mq_rq_to_pdu(rq);
1421
1422        req->status = cqe->status;
1423        req->result = cqe->result;
1424
1425        if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1426                if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1427                        dev_err(queue->ctrl->ctrl.device,
1428                                "Bogus remote invalidation for rkey %#x\n",
1429                                req->mr->rkey);
1430                        nvme_rdma_error_recovery(queue->ctrl);
1431                }
1432        } else if (req->mr) {
1433                ret = nvme_rdma_inv_rkey(queue, req);
1434                if (unlikely(ret < 0)) {
1435                        dev_err(queue->ctrl->ctrl.device,
1436                                "Queueing INV WR for rkey %#x failed (%d)\n",
1437                                req->mr->rkey, ret);
1438                        nvme_rdma_error_recovery(queue->ctrl);
1439                }
1440                /* the local invalidation completion will end the request */
1441                return 0;
1442        }
1443
1444        if (refcount_dec_and_test(&req->ref)) {
1445                if (rq->tag == tag)
1446                        ret = 1;
1447                nvme_end_request(rq, req->status, req->result);
1448        }
1449
1450        return ret;
1451}
1452
1453static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1454{
1455        struct nvme_rdma_qe *qe =
1456                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1457        struct nvme_rdma_queue *queue = cq->cq_context;
1458        struct ib_device *ibdev = queue->device->dev;
1459        struct nvme_completion *cqe = qe->data;
1460        const size_t len = sizeof(struct nvme_completion);
1461        int ret = 0;
1462
1463        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1464                nvme_rdma_wr_error(cq, wc, "RECV");
1465                return 0;
1466        }
1467
1468        ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1469        /*
1470         * AEN requests are special as they don't time out and can
1471         * survive any kind of queue freeze and often don't respond to
1472         * aborts.  We don't even bother to allocate a struct request
1473         * for them but rather special case them here.
1474         */
1475        if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1476                        cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1477                nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1478                                &cqe->result);
1479        else
1480                ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1481        ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1482
1483        nvme_rdma_post_recv(queue, qe);
1484        return ret;
1485}
1486
1487static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1488{
1489        __nvme_rdma_recv_done(cq, wc, -1);
1490}
1491
1492static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1493{
1494        int ret, i;
1495
1496        for (i = 0; i < queue->queue_size; i++) {
1497                ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1498                if (ret)
1499                        goto out_destroy_queue_ib;
1500        }
1501
1502        return 0;
1503
1504out_destroy_queue_ib:
1505        nvme_rdma_destroy_queue_ib(queue);
1506        return ret;
1507}
1508
1509static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1510                struct rdma_cm_event *ev)
1511{
1512        struct rdma_cm_id *cm_id = queue->cm_id;
1513        int status = ev->status;
1514        const char *rej_msg;
1515        const struct nvme_rdma_cm_rej *rej_data;
1516        u8 rej_data_len;
1517
1518        rej_msg = rdma_reject_msg(cm_id, status);
1519        rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1520
1521        if (rej_data && rej_data_len >= sizeof(u16)) {
1522                u16 sts = le16_to_cpu(rej_data->sts);
1523
1524                dev_err(queue->ctrl->ctrl.device,
1525                      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1526                      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1527        } else {
1528                dev_err(queue->ctrl->ctrl.device,
1529                        "Connect rejected: status %d (%s).\n", status, rej_msg);
1530        }
1531
1532        return -ECONNRESET;
1533}
1534
1535static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1536{
1537        int ret;
1538
1539        ret = nvme_rdma_create_queue_ib(queue);
1540        if (ret)
1541                return ret;
1542
1543        ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1544        if (ret) {
1545                dev_err(queue->ctrl->ctrl.device,
1546                        "rdma_resolve_route failed (%d).\n",
1547                        queue->cm_error);
1548                goto out_destroy_queue;
1549        }
1550
1551        return 0;
1552
1553out_destroy_queue:
1554        nvme_rdma_destroy_queue_ib(queue);
1555        return ret;
1556}
1557
1558static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1559{
1560        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1561        struct rdma_conn_param param = { };
1562        struct nvme_rdma_cm_req priv = { };
1563        int ret;
1564
1565        param.qp_num = queue->qp->qp_num;
1566        param.flow_control = 1;
1567
1568        param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1569        /* maximum retry count */
1570        param.retry_count = 7;
1571        param.rnr_retry_count = 7;
1572        param.private_data = &priv;
1573        param.private_data_len = sizeof(priv);
1574
1575        priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1576        priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1577        /*
1578         * set the admin queue depth to the minimum size
1579         * specified by the Fabrics standard.
1580         */
1581        if (priv.qid == 0) {
1582                priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1583                priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1584        } else {
1585                /*
1586                 * current interpretation of the fabrics spec
1587                 * is at minimum you make hrqsize sqsize+1, or a
1588                 * 1's based representation of sqsize.
1589                 */
1590                priv.hrqsize = cpu_to_le16(queue->queue_size);
1591                priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1592        }
1593
1594        ret = rdma_connect(queue->cm_id, &param);
1595        if (ret) {
1596                dev_err(ctrl->ctrl.device,
1597                        "rdma_connect failed (%d).\n", ret);
1598                goto out_destroy_queue_ib;
1599        }
1600
1601        return 0;
1602
1603out_destroy_queue_ib:
1604        nvme_rdma_destroy_queue_ib(queue);
1605        return ret;
1606}
1607
1608static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1609                struct rdma_cm_event *ev)
1610{
1611        struct nvme_rdma_queue *queue = cm_id->context;
1612        int cm_error = 0;
1613
1614        dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1615                rdma_event_msg(ev->event), ev->event,
1616                ev->status, cm_id);
1617
1618        switch (ev->event) {
1619        case RDMA_CM_EVENT_ADDR_RESOLVED:
1620                cm_error = nvme_rdma_addr_resolved(queue);
1621                break;
1622        case RDMA_CM_EVENT_ROUTE_RESOLVED:
1623                cm_error = nvme_rdma_route_resolved(queue);
1624                break;
1625        case RDMA_CM_EVENT_ESTABLISHED:
1626                queue->cm_error = nvme_rdma_conn_established(queue);
1627                /* complete cm_done regardless of success/failure */
1628                complete(&queue->cm_done);
1629                return 0;
1630        case RDMA_CM_EVENT_REJECTED:
1631                nvme_rdma_destroy_queue_ib(queue);
1632                cm_error = nvme_rdma_conn_rejected(queue, ev);
1633                break;
1634        case RDMA_CM_EVENT_ROUTE_ERROR:
1635        case RDMA_CM_EVENT_CONNECT_ERROR:
1636        case RDMA_CM_EVENT_UNREACHABLE:
1637                nvme_rdma_destroy_queue_ib(queue);
1638                /* fall through */
1639        case RDMA_CM_EVENT_ADDR_ERROR:
1640                dev_dbg(queue->ctrl->ctrl.device,
1641                        "CM error event %d\n", ev->event);
1642                cm_error = -ECONNRESET;
1643                break;
1644        case RDMA_CM_EVENT_DISCONNECTED:
1645        case RDMA_CM_EVENT_ADDR_CHANGE:
1646        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1647                dev_dbg(queue->ctrl->ctrl.device,
1648                        "disconnect received - connection closed\n");
1649                nvme_rdma_error_recovery(queue->ctrl);
1650                break;
1651        case RDMA_CM_EVENT_DEVICE_REMOVAL:
1652                /* device removal is handled via the ib_client API */
1653                break;
1654        default:
1655                dev_err(queue->ctrl->ctrl.device,
1656                        "Unexpected RDMA CM event (%d)\n", ev->event);
1657                nvme_rdma_error_recovery(queue->ctrl);
1658                break;
1659        }
1660
1661        if (cm_error) {
1662                queue->cm_error = cm_error;
1663                complete(&queue->cm_done);
1664        }
1665
1666        return 0;
1667}
1668
1669static enum blk_eh_timer_return
1670nvme_rdma_timeout(struct request *rq, bool reserved)
1671{
1672        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1673
1674        dev_warn(req->queue->ctrl->ctrl.device,
1675                 "I/O %d QID %d timeout, reset controller\n",
1676                 rq->tag, nvme_rdma_queue_idx(req->queue));
1677
1678        /* queue error recovery */
1679        nvme_rdma_error_recovery(req->queue->ctrl);
1680
1681        /* fail with DNR on cmd timeout */
1682        nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1683
1684        return BLK_EH_DONE;
1685}
1686
1687static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1688                const struct blk_mq_queue_data *bd)
1689{
1690        struct nvme_ns *ns = hctx->queue->queuedata;
1691        struct nvme_rdma_queue *queue = hctx->driver_data;
1692        struct request *rq = bd->rq;
1693        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1694        struct nvme_rdma_qe *sqe = &req->sqe;
1695        struct nvme_command *c = sqe->data;
1696        struct ib_device *dev;
1697        bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1698        blk_status_t ret;
1699        int err;
1700
1701        WARN_ON_ONCE(rq->tag < 0);
1702
1703        if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1704                return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1705
1706        dev = queue->device->dev;
1707        ib_dma_sync_single_for_cpu(dev, sqe->dma,
1708                        sizeof(struct nvme_command), DMA_TO_DEVICE);
1709
1710        ret = nvme_setup_cmd(ns, rq, c);
1711        if (ret)
1712                return ret;
1713
1714        blk_mq_start_request(rq);
1715
1716        err = nvme_rdma_map_data(queue, rq, c);
1717        if (unlikely(err < 0)) {
1718                dev_err(queue->ctrl->ctrl.device,
1719                             "Failed to map data (%d)\n", err);
1720                nvme_cleanup_cmd(rq);
1721                goto err;
1722        }
1723
1724        sqe->cqe.done = nvme_rdma_send_done;
1725
1726        ib_dma_sync_single_for_device(dev, sqe->dma,
1727                        sizeof(struct nvme_command), DMA_TO_DEVICE);
1728
1729        err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1730                        req->mr ? &req->reg_wr.wr : NULL);
1731        if (unlikely(err)) {
1732                nvme_rdma_unmap_data(queue, rq);
1733                goto err;
1734        }
1735
1736        return BLK_STS_OK;
1737err:
1738        if (err == -ENOMEM || err == -EAGAIN)
1739                return BLK_STS_RESOURCE;
1740        return BLK_STS_IOERR;
1741}
1742
1743static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1744{
1745        struct nvme_rdma_queue *queue = hctx->driver_data;
1746        struct ib_cq *cq = queue->ib_cq;
1747        struct ib_wc wc;
1748        int found = 0;
1749
1750        while (ib_poll_cq(cq, 1, &wc) > 0) {
1751                struct ib_cqe *cqe = wc.wr_cqe;
1752
1753                if (cqe) {
1754                        if (cqe->done == nvme_rdma_recv_done)
1755                                found |= __nvme_rdma_recv_done(cq, &wc, tag);
1756                        else
1757                                cqe->done(cq, &wc);
1758                }
1759        }
1760
1761        return found;
1762}
1763
1764static void nvme_rdma_complete_rq(struct request *rq)
1765{
1766        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1767
1768        nvme_rdma_unmap_data(req->queue, rq);
1769        nvme_complete_rq(rq);
1770}
1771
1772static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1773{
1774        struct nvme_rdma_ctrl *ctrl = set->driver_data;
1775
1776        return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1777}
1778
1779static const struct blk_mq_ops nvme_rdma_mq_ops = {
1780        .queue_rq       = nvme_rdma_queue_rq,
1781        .complete       = nvme_rdma_complete_rq,
1782        .init_request   = nvme_rdma_init_request,
1783        .exit_request   = nvme_rdma_exit_request,
1784        .init_hctx      = nvme_rdma_init_hctx,
1785        .poll           = nvme_rdma_poll,
1786        .timeout        = nvme_rdma_timeout,
1787        .map_queues     = nvme_rdma_map_queues,
1788};
1789
1790static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1791        .queue_rq       = nvme_rdma_queue_rq,
1792        .complete       = nvme_rdma_complete_rq,
1793        .init_request   = nvme_rdma_init_request,
1794        .exit_request   = nvme_rdma_exit_request,
1795        .init_hctx      = nvme_rdma_init_admin_hctx,
1796        .timeout        = nvme_rdma_timeout,
1797};
1798
1799static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1800{
1801        nvme_rdma_teardown_io_queues(ctrl, shutdown);
1802        if (shutdown)
1803                nvme_shutdown_ctrl(&ctrl->ctrl);
1804        else
1805                nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1806        nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1807}
1808
1809static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1810{
1811        nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1812}
1813
1814static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1815{
1816        struct nvme_rdma_ctrl *ctrl =
1817                container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1818
1819        nvme_stop_ctrl(&ctrl->ctrl);
1820        nvme_rdma_shutdown_ctrl(ctrl, false);
1821
1822        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1823                /* state change failure should never happen */
1824                WARN_ON_ONCE(1);
1825                return;
1826        }
1827
1828        if (nvme_rdma_setup_ctrl(ctrl, false))
1829                goto out_fail;
1830
1831        return;
1832
1833out_fail:
1834        ++ctrl->ctrl.nr_reconnects;
1835        nvme_rdma_reconnect_or_remove(ctrl);
1836}
1837
1838static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1839        .name                   = "rdma",
1840        .module                 = THIS_MODULE,
1841        .flags                  = NVME_F_FABRICS,
1842        .reg_read32             = nvmf_reg_read32,
1843        .reg_read64             = nvmf_reg_read64,
1844        .reg_write32            = nvmf_reg_write32,
1845        .free_ctrl              = nvme_rdma_free_ctrl,
1846        .submit_async_event     = nvme_rdma_submit_async_event,
1847        .delete_ctrl            = nvme_rdma_delete_ctrl,
1848        .get_address            = nvmf_get_address,
1849        .stop_ctrl              = nvme_rdma_stop_ctrl,
1850};
1851
1852static inline bool
1853__nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1854        struct nvmf_ctrl_options *opts)
1855{
1856        char *stdport = __stringify(NVME_RDMA_IP_PORT);
1857
1858
1859        if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1860            strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1861                return false;
1862
1863        if (opts->mask & NVMF_OPT_TRSVCID &&
1864            ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1865                if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1866                        return false;
1867        } else if (opts->mask & NVMF_OPT_TRSVCID) {
1868                if (strcmp(opts->trsvcid, stdport))
1869                        return false;
1870        } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1871                if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1872                        return false;
1873        }
1874        /* else, it's a match as both have stdport. Fall to next checks */
1875
1876        /*
1877         * checking the local address is rough. In most cases, one
1878         * is not specified and the host port is selected by the stack.
1879         *
1880         * Assume no match if:
1881         *  local address is specified and address is not the same
1882         *  local address is not specified but remote is, or vice versa
1883         *    (admin using specific host_traddr when it matters).
1884         */
1885        if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1886            ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1887                if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1888                        return false;
1889        } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1890                   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1891                return false;
1892        /*
1893         * if neither controller had an host port specified, assume it's
1894         * a match as everything else matched.
1895         */
1896
1897        return true;
1898}
1899
1900/*
1901 * Fails a connection request if it matches an existing controller
1902 * (association) with the same tuple:
1903 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1904 *
1905 * if local address is not specified in the request, it will match an
1906 * existing controller with all the other parameters the same and no
1907 * local port address specified as well.
1908 *
1909 * The ports don't need to be compared as they are intrinsically
1910 * already matched by the port pointers supplied.
1911 */
1912static bool
1913nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1914{
1915        struct nvme_rdma_ctrl *ctrl;
1916        bool found = false;
1917
1918        mutex_lock(&nvme_rdma_ctrl_mutex);
1919        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1920                found = __nvme_rdma_options_match(ctrl, opts);
1921                if (found)
1922                        break;
1923        }
1924        mutex_unlock(&nvme_rdma_ctrl_mutex);
1925
1926        return found;
1927}
1928
1929static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1930                struct nvmf_ctrl_options *opts)
1931{
1932        struct nvme_rdma_ctrl *ctrl;
1933        int ret;
1934        bool changed;
1935        char *port;
1936
1937        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1938        if (!ctrl)
1939                return ERR_PTR(-ENOMEM);
1940        ctrl->ctrl.opts = opts;
1941        INIT_LIST_HEAD(&ctrl->list);
1942
1943        if (opts->mask & NVMF_OPT_TRSVCID)
1944                port = opts->trsvcid;
1945        else
1946                port = __stringify(NVME_RDMA_IP_PORT);
1947
1948        ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1949                        opts->traddr, port, &ctrl->addr);
1950        if (ret) {
1951                pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1952                goto out_free_ctrl;
1953        }
1954
1955        if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1956                ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1957                        opts->host_traddr, NULL, &ctrl->src_addr);
1958                if (ret) {
1959                        pr_err("malformed src address passed: %s\n",
1960                               opts->host_traddr);
1961                        goto out_free_ctrl;
1962                }
1963        }
1964
1965        if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1966                ret = -EALREADY;
1967                goto out_free_ctrl;
1968        }
1969
1970        INIT_DELAYED_WORK(&ctrl->reconnect_work,
1971                        nvme_rdma_reconnect_ctrl_work);
1972        INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1973        INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1974
1975        ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1976        ctrl->ctrl.sqsize = opts->queue_size - 1;
1977        ctrl->ctrl.kato = opts->kato;
1978
1979        ret = -ENOMEM;
1980        ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1981                                GFP_KERNEL);
1982        if (!ctrl->queues)
1983                goto out_free_ctrl;
1984
1985        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1986                                0 /* no quirks, we're perfect! */);
1987        if (ret)
1988                goto out_kfree_queues;
1989
1990        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1991        WARN_ON_ONCE(!changed);
1992
1993        ret = nvme_rdma_setup_ctrl(ctrl, true);
1994        if (ret)
1995                goto out_uninit_ctrl;
1996
1997        dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1998                ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1999
2000        nvme_get_ctrl(&ctrl->ctrl);
2001
2002        mutex_lock(&nvme_rdma_ctrl_mutex);
2003        list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2004        mutex_unlock(&nvme_rdma_ctrl_mutex);
2005
2006        return &ctrl->ctrl;
2007
2008out_uninit_ctrl:
2009        nvme_uninit_ctrl(&ctrl->ctrl);
2010        nvme_put_ctrl(&ctrl->ctrl);
2011        if (ret > 0)
2012                ret = -EIO;
2013        return ERR_PTR(ret);
2014out_kfree_queues:
2015        kfree(ctrl->queues);
2016out_free_ctrl:
2017        kfree(ctrl);
2018        return ERR_PTR(ret);
2019}
2020
2021static struct nvmf_transport_ops nvme_rdma_transport = {
2022        .name           = "rdma",
2023        .module         = THIS_MODULE,
2024        .required_opts  = NVMF_OPT_TRADDR,
2025        .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2026                          NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2027        .create_ctrl    = nvme_rdma_create_ctrl,
2028};
2029
2030static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2031{
2032        struct nvme_rdma_ctrl *ctrl;
2033        struct nvme_rdma_device *ndev;
2034        bool found = false;
2035
2036        mutex_lock(&device_list_mutex);
2037        list_for_each_entry(ndev, &device_list, entry) {
2038                if (ndev->dev == ib_device) {
2039                        found = true;
2040                        break;
2041                }
2042        }
2043        mutex_unlock(&device_list_mutex);
2044
2045        if (!found)
2046                return;
2047
2048        /* Delete all controllers using this device */
2049        mutex_lock(&nvme_rdma_ctrl_mutex);
2050        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2051                if (ctrl->device->dev != ib_device)
2052                        continue;
2053                nvme_delete_ctrl(&ctrl->ctrl);
2054        }
2055        mutex_unlock(&nvme_rdma_ctrl_mutex);
2056
2057        flush_workqueue(nvme_delete_wq);
2058}
2059
2060static struct ib_client nvme_rdma_ib_client = {
2061        .name   = "nvme_rdma",
2062        .remove = nvme_rdma_remove_one
2063};
2064
2065static int __init nvme_rdma_init_module(void)
2066{
2067        int ret;
2068
2069        ret = ib_register_client(&nvme_rdma_ib_client);
2070        if (ret)
2071                return ret;
2072
2073        ret = nvmf_register_transport(&nvme_rdma_transport);
2074        if (ret)
2075                goto err_unreg_client;
2076
2077        return 0;
2078
2079err_unreg_client:
2080        ib_unregister_client(&nvme_rdma_ib_client);
2081        return ret;
2082}
2083
2084static void __exit nvme_rdma_cleanup_module(void)
2085{
2086        nvmf_unregister_transport(&nvme_rdma_transport);
2087        ib_unregister_client(&nvme_rdma_ib_client);
2088}
2089
2090module_init(nvme_rdma_init_module);
2091module_exit(nvme_rdma_cleanup_module);
2092
2093MODULE_LICENSE("GPL v2");
2094