linux/drivers/tty/serial/ifx6x60.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/****************************************************************************
   3 *
   4 * Driver for the IFX 6x60 spi modem.
   5 *
   6 * Copyright (C) 2008 Option International
   7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   8 *                    Denis Joseph Barrow <d.barow@option.com>
   9 *                    Jan Dumon <j.dumon@option.com>
  10 *
  11 * Copyright (C) 2009, 2010 Intel Corp
  12 * Russ Gorby <russ.gorby@intel.com>
  13 *
  14 * Driver modified by Intel from Option gtm501l_spi.c
  15 *
  16 * Notes
  17 * o    The driver currently assumes a single device only. If you need to
  18 *      change this then look for saved_ifx_dev and add a device lookup
  19 * o    The driver is intended to be big-endian safe but has never been
  20 *      tested that way (no suitable hardware). There are a couple of FIXME
  21 *      notes by areas that may need addressing
  22 * o    Some of the GPIO naming/setup assumptions may need revisiting if
  23 *      you need to use this driver for another platform.
  24 *
  25 *****************************************************************************/
  26#include <linux/dma-mapping.h>
  27#include <linux/module.h>
  28#include <linux/termios.h>
  29#include <linux/tty.h>
  30#include <linux/device.h>
  31#include <linux/spi/spi.h>
  32#include <linux/kfifo.h>
  33#include <linux/tty_flip.h>
  34#include <linux/timer.h>
  35#include <linux/serial.h>
  36#include <linux/interrupt.h>
  37#include <linux/irq.h>
  38#include <linux/rfkill.h>
  39#include <linux/fs.h>
  40#include <linux/ip.h>
  41#include <linux/dmapool.h>
  42#include <linux/gpio.h>
  43#include <linux/sched.h>
  44#include <linux/time.h>
  45#include <linux/wait.h>
  46#include <linux/pm.h>
  47#include <linux/pm_runtime.h>
  48#include <linux/spi/ifx_modem.h>
  49#include <linux/delay.h>
  50#include <linux/reboot.h>
  51
  52#include "ifx6x60.h"
  53
  54#define IFX_SPI_MORE_MASK               0x10
  55#define IFX_SPI_MORE_BIT                4       /* bit position in u8 */
  56#define IFX_SPI_CTS_BIT                 6       /* bit position in u8 */
  57#define IFX_SPI_MODE                    SPI_MODE_1
  58#define IFX_SPI_TTY_ID                  0
  59#define IFX_SPI_TIMEOUT_SEC             2
  60#define IFX_SPI_HEADER_0                (-1)
  61#define IFX_SPI_HEADER_F                (-2)
  62
  63#define PO_POST_DELAY           200
  64#define IFX_MDM_RST_PMU 4
  65
  66/* forward reference */
  67static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
  68static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  69                                unsigned long event, void *data);
  70static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
  71
  72/* local variables */
  73static int spi_bpw = 16;                /* 8, 16 or 32 bit word length */
  74static struct tty_driver *tty_drv;
  75static struct ifx_spi_device *saved_ifx_dev;
  76static struct lock_class_key ifx_spi_key;
  77
  78static struct notifier_block ifx_modem_reboot_notifier_block = {
  79        .notifier_call = ifx_modem_reboot_callback,
  80};
  81
  82static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
  83{
  84        gpio_set_value(IFX_MDM_RST_PMU, 1);
  85        msleep(PO_POST_DELAY);
  86
  87        return 0;
  88}
  89
  90static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  91                                 unsigned long event, void *data)
  92{
  93        if (saved_ifx_dev)
  94                ifx_modem_power_off(saved_ifx_dev);
  95        else
  96                pr_warn("no ifx modem active;\n");
  97
  98        return NOTIFY_OK;
  99}
 100
 101/* GPIO/GPE settings */
 102
 103/**
 104 *      mrdy_set_high           -       set MRDY GPIO
 105 *      @ifx: device we are controlling
 106 *
 107 */
 108static inline void mrdy_set_high(struct ifx_spi_device *ifx)
 109{
 110        gpio_set_value(ifx->gpio.mrdy, 1);
 111}
 112
 113/**
 114 *      mrdy_set_low            -       clear MRDY GPIO
 115 *      @ifx: device we are controlling
 116 *
 117 */
 118static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 119{
 120        gpio_set_value(ifx->gpio.mrdy, 0);
 121}
 122
 123/**
 124 *      ifx_spi_power_state_set
 125 *      @ifx_dev: our SPI device
 126 *      @val: bits to set
 127 *
 128 *      Set bit in power status and signal power system if status becomes non-0
 129 */
 130static void
 131ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 132{
 133        unsigned long flags;
 134
 135        spin_lock_irqsave(&ifx_dev->power_lock, flags);
 136
 137        /*
 138         * if power status is already non-0, just update, else
 139         * tell power system
 140         */
 141        if (!ifx_dev->power_status)
 142                pm_runtime_get(&ifx_dev->spi_dev->dev);
 143        ifx_dev->power_status |= val;
 144
 145        spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 146}
 147
 148/**
 149 *      ifx_spi_power_state_clear       -       clear power bit
 150 *      @ifx_dev: our SPI device
 151 *      @val: bits to clear
 152 *
 153 *      clear bit in power status and signal power system if status becomes 0
 154 */
 155static void
 156ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 157{
 158        unsigned long flags;
 159
 160        spin_lock_irqsave(&ifx_dev->power_lock, flags);
 161
 162        if (ifx_dev->power_status) {
 163                ifx_dev->power_status &= ~val;
 164                if (!ifx_dev->power_status)
 165                        pm_runtime_put(&ifx_dev->spi_dev->dev);
 166        }
 167
 168        spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 169}
 170
 171/**
 172 *      swap_buf_8
 173 *      @buf: our buffer
 174 *      @len : number of bytes (not words) in the buffer
 175 *      @end: end of buffer
 176 *
 177 *      Swap the contents of a buffer into big endian format
 178 */
 179static inline void swap_buf_8(unsigned char *buf, int len, void *end)
 180{
 181        /* don't swap buffer if SPI word width is 8 bits */
 182        return;
 183}
 184
 185/**
 186 *      swap_buf_16
 187 *      @buf: our buffer
 188 *      @len : number of bytes (not words) in the buffer
 189 *      @end: end of buffer
 190 *
 191 *      Swap the contents of a buffer into big endian format
 192 */
 193static inline void swap_buf_16(unsigned char *buf, int len, void *end)
 194{
 195        int n;
 196
 197        u16 *buf_16 = (u16 *)buf;
 198        len = ((len + 1) >> 1);
 199        if ((void *)&buf_16[len] > end) {
 200                pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
 201                       &buf_16[len], end);
 202                return;
 203        }
 204        for (n = 0; n < len; n++) {
 205                *buf_16 = cpu_to_be16(*buf_16);
 206                buf_16++;
 207        }
 208}
 209
 210/**
 211 *      swap_buf_32
 212 *      @buf: our buffer
 213 *      @len : number of bytes (not words) in the buffer
 214 *      @end: end of buffer
 215 *
 216 *      Swap the contents of a buffer into big endian format
 217 */
 218static inline void swap_buf_32(unsigned char *buf, int len, void *end)
 219{
 220        int n;
 221
 222        u32 *buf_32 = (u32 *)buf;
 223        len = (len + 3) >> 2;
 224
 225        if ((void *)&buf_32[len] > end) {
 226                pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
 227                       &buf_32[len], end);
 228                return;
 229        }
 230        for (n = 0; n < len; n++) {
 231                *buf_32 = cpu_to_be32(*buf_32);
 232                buf_32++;
 233        }
 234}
 235
 236/**
 237 *      mrdy_assert             -       assert MRDY line
 238 *      @ifx_dev: our SPI device
 239 *
 240 *      Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 241 *      now.
 242 *
 243 *      FIXME: Can SRDY even go high as we are running this code ?
 244 */
 245static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 246{
 247        int val = gpio_get_value(ifx_dev->gpio.srdy);
 248        if (!val) {
 249                if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 250                                      &ifx_dev->flags)) {
 251                        mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
 252
 253                }
 254        }
 255        ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 256        mrdy_set_high(ifx_dev);
 257}
 258
 259/**
 260 *      ifx_spi_timeout         -       SPI timeout
 261 *      @arg: our SPI device
 262 *
 263 *      The SPI has timed out: hang up the tty. Users will then see a hangup
 264 *      and error events.
 265 */
 266static void ifx_spi_timeout(struct timer_list *t)
 267{
 268        struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
 269
 270        dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 271        tty_port_tty_hangup(&ifx_dev->tty_port, false);
 272        mrdy_set_low(ifx_dev);
 273        clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 274}
 275
 276/* char/tty operations */
 277
 278/**
 279 *      ifx_spi_tiocmget        -       get modem lines
 280 *      @tty: our tty device
 281 *      @filp: file handle issuing the request
 282 *
 283 *      Map the signal state into Linux modem flags and report the value
 284 *      in Linux terms
 285 */
 286static int ifx_spi_tiocmget(struct tty_struct *tty)
 287{
 288        unsigned int value;
 289        struct ifx_spi_device *ifx_dev = tty->driver_data;
 290
 291        value =
 292        (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 293        (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 294        (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 295        (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 296        (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 297        (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 298        return value;
 299}
 300
 301/**
 302 *      ifx_spi_tiocmset        -       set modem bits
 303 *      @tty: the tty structure
 304 *      @set: bits to set
 305 *      @clear: bits to clear
 306 *
 307 *      The IFX6x60 only supports DTR and RTS. Set them accordingly
 308 *      and flag that an update to the modem is needed.
 309 *
 310 *      FIXME: do we need to kick the tranfers when we do this ?
 311 */
 312static int ifx_spi_tiocmset(struct tty_struct *tty,
 313                            unsigned int set, unsigned int clear)
 314{
 315        struct ifx_spi_device *ifx_dev = tty->driver_data;
 316
 317        if (set & TIOCM_RTS)
 318                set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 319        if (set & TIOCM_DTR)
 320                set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 321        if (clear & TIOCM_RTS)
 322                clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 323        if (clear & TIOCM_DTR)
 324                clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 325
 326        set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 327        return 0;
 328}
 329
 330/**
 331 *      ifx_spi_open    -       called on tty open
 332 *      @tty: our tty device
 333 *      @filp: file handle being associated with the tty
 334 *
 335 *      Open the tty interface. We let the tty_port layer do all the work
 336 *      for us.
 337 *
 338 *      FIXME: Remove single device assumption and saved_ifx_dev
 339 */
 340static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 341{
 342        return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 343}
 344
 345/**
 346 *      ifx_spi_close   -       called when our tty closes
 347 *      @tty: the tty being closed
 348 *      @filp: the file handle being closed
 349 *
 350 *      Perform the close of the tty. We use the tty_port layer to do all
 351 *      our hard work.
 352 */
 353static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 354{
 355        struct ifx_spi_device *ifx_dev = tty->driver_data;
 356        tty_port_close(&ifx_dev->tty_port, tty, filp);
 357        /* FIXME: should we do an ifx_spi_reset here ? */
 358}
 359
 360/**
 361 *      ifx_decode_spi_header   -       decode received header
 362 *      @buffer: the received data
 363 *      @length: decoded length
 364 *      @more: decoded more flag
 365 *      @received_cts: status of cts we received
 366 *
 367 *      Note how received_cts is handled -- if header is all F it is left
 368 *      the same as it was, if header is all 0 it is set to 0 otherwise it is
 369 *      taken from the incoming header.
 370 *
 371 *      FIXME: endianness
 372 */
 373static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 374                        unsigned char *more, unsigned char *received_cts)
 375{
 376        u16 h1;
 377        u16 h2;
 378        u16 *in_buffer = (u16 *)buffer;
 379
 380        h1 = *in_buffer;
 381        h2 = *(in_buffer+1);
 382
 383        if (h1 == 0 && h2 == 0) {
 384                *received_cts = 0;
 385                *more = 0;
 386                return IFX_SPI_HEADER_0;
 387        } else if (h1 == 0xffff && h2 == 0xffff) {
 388                *more = 0;
 389                /* spi_slave_cts remains as it was */
 390                return IFX_SPI_HEADER_F;
 391        }
 392
 393        *length = h1 & 0xfff;   /* upper bits of byte are flags */
 394        *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 395        *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 396        return 0;
 397}
 398
 399/**
 400 *      ifx_setup_spi_header    -       set header fields
 401 *      @txbuffer: pointer to start of SPI buffer
 402 *      @tx_count: bytes
 403 *      @more: indicate if more to follow
 404 *
 405 *      Format up an SPI header for a transfer
 406 *
 407 *      FIXME: endianness?
 408 */
 409static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 410                                        unsigned char more)
 411{
 412        *(u16 *)(txbuffer) = tx_count;
 413        *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 414        txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 415}
 416
 417/**
 418 *      ifx_spi_prepare_tx_buffer       -       prepare transmit frame
 419 *      @ifx_dev: our SPI device
 420 *
 421 *      The transmit buffr needs a header and various other bits of
 422 *      information followed by as much data as we can pull from the FIFO
 423 *      and transfer. This function formats up a suitable buffer in the
 424 *      ifx_dev->tx_buffer
 425 *
 426 *      FIXME: performance - should we wake the tty when the queue is half
 427 *                           empty ?
 428 */
 429static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 430{
 431        int temp_count;
 432        int queue_length;
 433        int tx_count;
 434        unsigned char *tx_buffer;
 435
 436        tx_buffer = ifx_dev->tx_buffer;
 437
 438        /* make room for required SPI header */
 439        tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 440        tx_count = IFX_SPI_HEADER_OVERHEAD;
 441
 442        /* clear to signal no more data if this turns out to be the
 443         * last buffer sent in a sequence */
 444        ifx_dev->spi_more = 0;
 445
 446        /* if modem cts is set, just send empty buffer */
 447        if (!ifx_dev->spi_slave_cts) {
 448                /* see if there's tx data */
 449                queue_length = kfifo_len(&ifx_dev->tx_fifo);
 450                if (queue_length != 0) {
 451                        /* data to mux -- see if there's room for it */
 452                        temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 453                        temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 454                                        tx_buffer, temp_count,
 455                                        &ifx_dev->fifo_lock);
 456
 457                        /* update buffer pointer and data count in message */
 458                        tx_buffer += temp_count;
 459                        tx_count += temp_count;
 460                        if (temp_count == queue_length)
 461                                /* poke port to get more data */
 462                                tty_port_tty_wakeup(&ifx_dev->tty_port);
 463                        else /* more data in port, use next SPI message */
 464                                ifx_dev->spi_more = 1;
 465                }
 466        }
 467        /* have data and info for header -- set up SPI header in buffer */
 468        /* spi header needs payload size, not entire buffer size */
 469        ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 470                                        tx_count-IFX_SPI_HEADER_OVERHEAD,
 471                                        ifx_dev->spi_more);
 472        /* swap actual data in the buffer */
 473        ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
 474                &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 475        return tx_count;
 476}
 477
 478/**
 479 *      ifx_spi_write           -       line discipline write
 480 *      @tty: our tty device
 481 *      @buf: pointer to buffer to write (kernel space)
 482 *      @count: size of buffer
 483 *
 484 *      Write the characters we have been given into the FIFO. If the device
 485 *      is not active then activate it, when the SRDY line is asserted back
 486 *      this will commence I/O
 487 */
 488static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 489                         int count)
 490{
 491        struct ifx_spi_device *ifx_dev = tty->driver_data;
 492        unsigned char *tmp_buf = (unsigned char *)buf;
 493        unsigned long flags;
 494        bool is_fifo_empty;
 495        int tx_count;
 496
 497        spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
 498        is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
 499        tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
 500        spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
 501        if (is_fifo_empty)
 502                mrdy_assert(ifx_dev);
 503
 504        return tx_count;
 505}
 506
 507/**
 508 *      ifx_spi_chars_in_buffer -       line discipline helper
 509 *      @tty: our tty device
 510 *
 511 *      Report how much data we can accept before we drop bytes. As we use
 512 *      a simple FIFO this is nice and easy.
 513 */
 514static int ifx_spi_write_room(struct tty_struct *tty)
 515{
 516        struct ifx_spi_device *ifx_dev = tty->driver_data;
 517        return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 518}
 519
 520/**
 521 *      ifx_spi_chars_in_buffer -       line discipline helper
 522 *      @tty: our tty device
 523 *
 524 *      Report how many characters we have buffered. In our case this is the
 525 *      number of bytes sitting in our transmit FIFO.
 526 */
 527static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 528{
 529        struct ifx_spi_device *ifx_dev = tty->driver_data;
 530        return kfifo_len(&ifx_dev->tx_fifo);
 531}
 532
 533/**
 534 *      ifx_port_hangup
 535 *      @port: our tty port
 536 *
 537 *      tty port hang up. Called when tty_hangup processing is invoked either
 538 *      by loss of carrier, or by software (eg vhangup). Serialized against
 539 *      activate/shutdown by the tty layer.
 540 */
 541static void ifx_spi_hangup(struct tty_struct *tty)
 542{
 543        struct ifx_spi_device *ifx_dev = tty->driver_data;
 544        tty_port_hangup(&ifx_dev->tty_port);
 545}
 546
 547/**
 548 *      ifx_port_activate
 549 *      @port: our tty port
 550 *
 551 *      tty port activate method - called for first open. Serialized
 552 *      with hangup and shutdown by the tty layer.
 553 */
 554static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 555{
 556        struct ifx_spi_device *ifx_dev =
 557                container_of(port, struct ifx_spi_device, tty_port);
 558
 559        /* clear any old data; can't do this in 'close' */
 560        kfifo_reset(&ifx_dev->tx_fifo);
 561
 562        /* clear any flag which may be set in port shutdown procedure */
 563        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 564        clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 565
 566        /* put port data into this tty */
 567        tty->driver_data = ifx_dev;
 568
 569        /* allows flip string push from int context */
 570        port->low_latency = 1;
 571
 572        /* set flag to allows data transfer */
 573        set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 574
 575        return 0;
 576}
 577
 578/**
 579 *      ifx_port_shutdown
 580 *      @port: our tty port
 581 *
 582 *      tty port shutdown method - called for last port close. Serialized
 583 *      with hangup and activate by the tty layer.
 584 */
 585static void ifx_port_shutdown(struct tty_port *port)
 586{
 587        struct ifx_spi_device *ifx_dev =
 588                container_of(port, struct ifx_spi_device, tty_port);
 589
 590        clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 591        mrdy_set_low(ifx_dev);
 592        del_timer(&ifx_dev->spi_timer);
 593        clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 594        tasklet_kill(&ifx_dev->io_work_tasklet);
 595}
 596
 597static const struct tty_port_operations ifx_tty_port_ops = {
 598        .activate = ifx_port_activate,
 599        .shutdown = ifx_port_shutdown,
 600};
 601
 602static const struct tty_operations ifx_spi_serial_ops = {
 603        .open = ifx_spi_open,
 604        .close = ifx_spi_close,
 605        .write = ifx_spi_write,
 606        .hangup = ifx_spi_hangup,
 607        .write_room = ifx_spi_write_room,
 608        .chars_in_buffer = ifx_spi_chars_in_buffer,
 609        .tiocmget = ifx_spi_tiocmget,
 610        .tiocmset = ifx_spi_tiocmset,
 611};
 612
 613/**
 614 *      ifx_spi_insert_fip_string       -       queue received data
 615 *      @ifx_ser: our SPI device
 616 *      @chars: buffer we have received
 617 *      @size: number of chars reeived
 618 *
 619 *      Queue bytes to the tty assuming the tty side is currently open. If
 620 *      not the discard the data.
 621 */
 622static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 623                                    unsigned char *chars, size_t size)
 624{
 625        tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
 626        tty_flip_buffer_push(&ifx_dev->tty_port);
 627}
 628
 629/**
 630 *      ifx_spi_complete        -       SPI transfer completed
 631 *      @ctx: our SPI device
 632 *
 633 *      An SPI transfer has completed. Process any received data and kick off
 634 *      any further transmits we can commence.
 635 */
 636static void ifx_spi_complete(void *ctx)
 637{
 638        struct ifx_spi_device *ifx_dev = ctx;
 639        int length;
 640        int actual_length;
 641        unsigned char more = 0;
 642        unsigned char cts;
 643        int local_write_pending = 0;
 644        int queue_length;
 645        int srdy;
 646        int decode_result;
 647
 648        mrdy_set_low(ifx_dev);
 649
 650        if (!ifx_dev->spi_msg.status) {
 651                /* check header validity, get comm flags */
 652                ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 653                        &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 654                decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 655                                &length, &more, &cts);
 656                if (decode_result == IFX_SPI_HEADER_0) {
 657                        dev_dbg(&ifx_dev->spi_dev->dev,
 658                                "ignore input: invalid header 0");
 659                        ifx_dev->spi_slave_cts = 0;
 660                        goto complete_exit;
 661                } else if (decode_result == IFX_SPI_HEADER_F) {
 662                        dev_dbg(&ifx_dev->spi_dev->dev,
 663                                "ignore input: invalid header F");
 664                        goto complete_exit;
 665                }
 666
 667                ifx_dev->spi_slave_cts = cts;
 668
 669                actual_length = min((unsigned int)length,
 670                                        ifx_dev->spi_msg.actual_length);
 671                ifx_dev->swap_buf(
 672                        (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 673                         actual_length,
 674                         &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 675                ifx_spi_insert_flip_string(
 676                        ifx_dev,
 677                        ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 678                        (size_t)actual_length);
 679        } else {
 680                more = 0;
 681                dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 682                       ifx_dev->spi_msg.status);
 683        }
 684
 685complete_exit:
 686        if (ifx_dev->write_pending) {
 687                ifx_dev->write_pending = 0;
 688                local_write_pending = 1;
 689        }
 690
 691        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 692
 693        queue_length = kfifo_len(&ifx_dev->tx_fifo);
 694        srdy = gpio_get_value(ifx_dev->gpio.srdy);
 695        if (!srdy)
 696                ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 697
 698        /* schedule output if there is more to do */
 699        if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 700                tasklet_schedule(&ifx_dev->io_work_tasklet);
 701        else {
 702                if (more || ifx_dev->spi_more || queue_length > 0 ||
 703                        local_write_pending) {
 704                        if (ifx_dev->spi_slave_cts) {
 705                                if (more)
 706                                        mrdy_assert(ifx_dev);
 707                        } else
 708                                mrdy_assert(ifx_dev);
 709                } else {
 710                        /*
 711                         * poke line discipline driver if any for more data
 712                         * may or may not get more data to write
 713                         * for now, say not busy
 714                         */
 715                        ifx_spi_power_state_clear(ifx_dev,
 716                                                  IFX_SPI_POWER_DATA_PENDING);
 717                        tty_port_tty_wakeup(&ifx_dev->tty_port);
 718                }
 719        }
 720}
 721
 722/**
 723 *      ifx_spio_io             -       I/O tasklet
 724 *      @data: our SPI device
 725 *
 726 *      Queue data for transmission if possible and then kick off the
 727 *      transfer.
 728 */
 729static void ifx_spi_io(unsigned long data)
 730{
 731        int retval;
 732        struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 733
 734        if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
 735                test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
 736                if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 737                        ifx_dev->gpio.unack_srdy_int_nb--;
 738
 739                ifx_spi_prepare_tx_buffer(ifx_dev);
 740
 741                spi_message_init(&ifx_dev->spi_msg);
 742                INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 743
 744                ifx_dev->spi_msg.context = ifx_dev;
 745                ifx_dev->spi_msg.complete = ifx_spi_complete;
 746
 747                /* set up our spi transfer */
 748                /* note len is BYTES, not transfers */
 749                ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 750                ifx_dev->spi_xfer.cs_change = 0;
 751                ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 752                /* ifx_dev->spi_xfer.speed_hz = 390625; */
 753                ifx_dev->spi_xfer.bits_per_word =
 754                        ifx_dev->spi_dev->bits_per_word;
 755
 756                ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 757                ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 758
 759                /*
 760                 * setup dma pointers
 761                 */
 762                if (ifx_dev->use_dma) {
 763                        ifx_dev->spi_msg.is_dma_mapped = 1;
 764                        ifx_dev->tx_dma = ifx_dev->tx_bus;
 765                        ifx_dev->rx_dma = ifx_dev->rx_bus;
 766                        ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 767                        ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 768                } else {
 769                        ifx_dev->spi_msg.is_dma_mapped = 0;
 770                        ifx_dev->tx_dma = (dma_addr_t)0;
 771                        ifx_dev->rx_dma = (dma_addr_t)0;
 772                        ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 773                        ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 774                }
 775
 776                spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 777
 778                /* Assert MRDY. This may have already been done by the write
 779                 * routine.
 780                 */
 781                mrdy_assert(ifx_dev);
 782
 783                retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 784                if (retval) {
 785                        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 786                                  &ifx_dev->flags);
 787                        tasklet_schedule(&ifx_dev->io_work_tasklet);
 788                        return;
 789                }
 790        } else
 791                ifx_dev->write_pending = 1;
 792}
 793
 794/**
 795 *      ifx_spi_free_port       -       free up the tty side
 796 *      @ifx_dev: IFX device going away
 797 *
 798 *      Unregister and free up a port when the device goes away
 799 */
 800static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 801{
 802        if (ifx_dev->tty_dev)
 803                tty_unregister_device(tty_drv, ifx_dev->minor);
 804        tty_port_destroy(&ifx_dev->tty_port);
 805        kfifo_free(&ifx_dev->tx_fifo);
 806}
 807
 808/**
 809 *      ifx_spi_create_port     -       create a new port
 810 *      @ifx_dev: our spi device
 811 *
 812 *      Allocate and initialise the tty port that goes with this interface
 813 *      and add it to the tty layer so that it can be opened.
 814 */
 815static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 816{
 817        int ret = 0;
 818        struct tty_port *pport = &ifx_dev->tty_port;
 819
 820        spin_lock_init(&ifx_dev->fifo_lock);
 821        lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 822                &ifx_spi_key, 0);
 823
 824        if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 825                ret = -ENOMEM;
 826                goto error_ret;
 827        }
 828
 829        tty_port_init(pport);
 830        pport->ops = &ifx_tty_port_ops;
 831        ifx_dev->minor = IFX_SPI_TTY_ID;
 832        ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
 833                        ifx_dev->minor, &ifx_dev->spi_dev->dev);
 834        if (IS_ERR(ifx_dev->tty_dev)) {
 835                dev_dbg(&ifx_dev->spi_dev->dev,
 836                        "%s: registering tty device failed", __func__);
 837                ret = PTR_ERR(ifx_dev->tty_dev);
 838                goto error_port;
 839        }
 840        return 0;
 841
 842error_port:
 843        tty_port_destroy(pport);
 844error_ret:
 845        ifx_spi_free_port(ifx_dev);
 846        return ret;
 847}
 848
 849/**
 850 *      ifx_spi_handle_srdy             -       handle SRDY
 851 *      @ifx_dev: device asserting SRDY
 852 *
 853 *      Check our device state and see what we need to kick off when SRDY
 854 *      is asserted. This usually means killing the timer and firing off the
 855 *      I/O processing.
 856 */
 857static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 858{
 859        if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 860                del_timer(&ifx_dev->spi_timer);
 861                clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 862        }
 863
 864        ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 865
 866        if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 867                tasklet_schedule(&ifx_dev->io_work_tasklet);
 868        else
 869                set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 870}
 871
 872/**
 873 *      ifx_spi_srdy_interrupt  -       SRDY asserted
 874 *      @irq: our IRQ number
 875 *      @dev: our ifx device
 876 *
 877 *      The modem asserted SRDY. Handle the srdy event
 878 */
 879static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 880{
 881        struct ifx_spi_device *ifx_dev = dev;
 882        ifx_dev->gpio.unack_srdy_int_nb++;
 883        ifx_spi_handle_srdy(ifx_dev);
 884        return IRQ_HANDLED;
 885}
 886
 887/**
 888 *      ifx_spi_reset_interrupt -       Modem has changed reset state
 889 *      @irq: interrupt number
 890 *      @dev: our device pointer
 891 *
 892 *      The modem has either entered or left reset state. Check the GPIO
 893 *      line to see which.
 894 *
 895 *      FIXME: review locking on MR_INPROGRESS versus
 896 *      parallel unsolicited reset/solicited reset
 897 */
 898static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 899{
 900        struct ifx_spi_device *ifx_dev = dev;
 901        int val = gpio_get_value(ifx_dev->gpio.reset_out);
 902        int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 903
 904        if (val == 0) {
 905                /* entered reset */
 906                set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 907                if (!solreset) {
 908                        /* unsolicited reset  */
 909                        tty_port_tty_hangup(&ifx_dev->tty_port, false);
 910                }
 911        } else {
 912                /* exited reset */
 913                clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 914                if (solreset) {
 915                        set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 916                        wake_up(&ifx_dev->mdm_reset_wait);
 917                }
 918        }
 919        return IRQ_HANDLED;
 920}
 921
 922/**
 923 *      ifx_spi_free_device - free device
 924 *      @ifx_dev: device to free
 925 *
 926 *      Free the IFX device
 927 */
 928static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 929{
 930        ifx_spi_free_port(ifx_dev);
 931        dma_free_coherent(&ifx_dev->spi_dev->dev,
 932                                IFX_SPI_TRANSFER_SIZE,
 933                                ifx_dev->tx_buffer,
 934                                ifx_dev->tx_bus);
 935        dma_free_coherent(&ifx_dev->spi_dev->dev,
 936                                IFX_SPI_TRANSFER_SIZE,
 937                                ifx_dev->rx_buffer,
 938                                ifx_dev->rx_bus);
 939}
 940
 941/**
 942 *      ifx_spi_reset   -       reset modem
 943 *      @ifx_dev: modem to reset
 944 *
 945 *      Perform a reset on the modem
 946 */
 947static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 948{
 949        int ret;
 950        /*
 951         * set up modem power, reset
 952         *
 953         * delays are required on some platforms for the modem
 954         * to reset properly
 955         */
 956        set_bit(MR_START, &ifx_dev->mdm_reset_state);
 957        gpio_set_value(ifx_dev->gpio.po, 0);
 958        gpio_set_value(ifx_dev->gpio.reset, 0);
 959        msleep(25);
 960        gpio_set_value(ifx_dev->gpio.reset, 1);
 961        msleep(1);
 962        gpio_set_value(ifx_dev->gpio.po, 1);
 963        msleep(1);
 964        gpio_set_value(ifx_dev->gpio.po, 0);
 965        ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 966                                 test_bit(MR_COMPLETE,
 967                                          &ifx_dev->mdm_reset_state),
 968                                 IFX_RESET_TIMEOUT);
 969        if (!ret)
 970                dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 971                         ifx_dev->mdm_reset_state);
 972
 973        ifx_dev->mdm_reset_state = 0;
 974        return ret;
 975}
 976
 977/**
 978 *      ifx_spi_spi_probe       -       probe callback
 979 *      @spi: our possible matching SPI device
 980 *
 981 *      Probe for a 6x60 modem on SPI bus. Perform any needed device and
 982 *      GPIO setup.
 983 *
 984 *      FIXME:
 985 *      -       Support for multiple devices
 986 *      -       Split out MID specific GPIO handling eventually
 987 */
 988
 989static int ifx_spi_spi_probe(struct spi_device *spi)
 990{
 991        int ret;
 992        int srdy;
 993        struct ifx_modem_platform_data *pl_data;
 994        struct ifx_spi_device *ifx_dev;
 995
 996        if (saved_ifx_dev) {
 997                dev_dbg(&spi->dev, "ignoring subsequent detection");
 998                return -ENODEV;
 999        }
1000
1001        pl_data = dev_get_platdata(&spi->dev);
1002        if (!pl_data) {
1003                dev_err(&spi->dev, "missing platform data!");
1004                return -ENODEV;
1005        }
1006
1007        /* initialize structure to hold our device variables */
1008        ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009        if (!ifx_dev) {
1010                dev_err(&spi->dev, "spi device allocation failed");
1011                return -ENOMEM;
1012        }
1013        saved_ifx_dev = ifx_dev;
1014        ifx_dev->spi_dev = spi;
1015        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016        spin_lock_init(&ifx_dev->write_lock);
1017        spin_lock_init(&ifx_dev->power_lock);
1018        ifx_dev->power_status = 0;
1019        timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1020        ifx_dev->modem = pl_data->modem_type;
1021        ifx_dev->use_dma = pl_data->use_dma;
1022        ifx_dev->max_hz = pl_data->max_hz;
1023        /* initialize spi mode, etc */
1024        spi->max_speed_hz = ifx_dev->max_hz;
1025        spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026        spi->bits_per_word = spi_bpw;
1027        ret = spi_setup(spi);
1028        if (ret) {
1029                dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1030                kfree(ifx_dev);
1031                return -ENODEV;
1032        }
1033
1034        /* init swap_buf function according to word width configuration */
1035        if (spi->bits_per_word == 32)
1036                ifx_dev->swap_buf = swap_buf_32;
1037        else if (spi->bits_per_word == 16)
1038                ifx_dev->swap_buf = swap_buf_16;
1039        else
1040                ifx_dev->swap_buf = swap_buf_8;
1041
1042        /* ensure SPI protocol flags are initialized to enable transfer */
1043        ifx_dev->spi_more = 0;
1044        ifx_dev->spi_slave_cts = 0;
1045
1046        /*initialize transfer and dma buffers */
1047        ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048                                IFX_SPI_TRANSFER_SIZE,
1049                                &ifx_dev->tx_bus,
1050                                GFP_KERNEL);
1051        if (!ifx_dev->tx_buffer) {
1052                dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1053                ret = -ENOMEM;
1054                goto error_ret;
1055        }
1056        ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057                                IFX_SPI_TRANSFER_SIZE,
1058                                &ifx_dev->rx_bus,
1059                                GFP_KERNEL);
1060        if (!ifx_dev->rx_buffer) {
1061                dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1062                ret = -ENOMEM;
1063                goto error_ret;
1064        }
1065
1066        /* initialize waitq for modem reset */
1067        init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068
1069        spi_set_drvdata(spi, ifx_dev);
1070        tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1071                                                (unsigned long)ifx_dev);
1072
1073        set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1074
1075        /* create our tty port */
1076        ret = ifx_spi_create_port(ifx_dev);
1077        if (ret != 0) {
1078                dev_err(&spi->dev, "create default tty port failed");
1079                goto error_ret;
1080        }
1081
1082        ifx_dev->gpio.reset = pl_data->rst_pmu;
1083        ifx_dev->gpio.po = pl_data->pwr_on;
1084        ifx_dev->gpio.mrdy = pl_data->mrdy;
1085        ifx_dev->gpio.srdy = pl_data->srdy;
1086        ifx_dev->gpio.reset_out = pl_data->rst_out;
1087
1088        dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1089                 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1090                 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1091
1092        /* Configure gpios */
1093        ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1094        if (ret < 0) {
1095                dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1096                        ifx_dev->gpio.reset);
1097                goto error_ret;
1098        }
1099        ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1100        ret += gpio_export(ifx_dev->gpio.reset, 1);
1101        if (ret) {
1102                dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1103                        ifx_dev->gpio.reset);
1104                ret = -EBUSY;
1105                goto error_ret2;
1106        }
1107
1108        ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1109        ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1110        ret += gpio_export(ifx_dev->gpio.po, 1);
1111        if (ret) {
1112                dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1113                        ifx_dev->gpio.po);
1114                ret = -EBUSY;
1115                goto error_ret3;
1116        }
1117
1118        ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1119        if (ret < 0) {
1120                dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1121                        ifx_dev->gpio.mrdy);
1122                goto error_ret3;
1123        }
1124        ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1125        ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1126        if (ret) {
1127                dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1128                        ifx_dev->gpio.mrdy);
1129                ret = -EBUSY;
1130                goto error_ret4;
1131        }
1132
1133        ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1134        if (ret < 0) {
1135                dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1136                        ifx_dev->gpio.srdy);
1137                ret = -EBUSY;
1138                goto error_ret4;
1139        }
1140        ret += gpio_export(ifx_dev->gpio.srdy, 1);
1141        ret += gpio_direction_input(ifx_dev->gpio.srdy);
1142        if (ret) {
1143                dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1144                        ifx_dev->gpio.srdy);
1145                ret = -EBUSY;
1146                goto error_ret5;
1147        }
1148
1149        ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1150        if (ret < 0) {
1151                dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1152                        ifx_dev->gpio.reset_out);
1153                goto error_ret5;
1154        }
1155        ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1156        ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1157        if (ret) {
1158                dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1159                        ifx_dev->gpio.reset_out);
1160                ret = -EBUSY;
1161                goto error_ret6;
1162        }
1163
1164        ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1165                          ifx_spi_reset_interrupt,
1166                          IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1167                          ifx_dev);
1168        if (ret) {
1169                dev_err(&spi->dev, "Unable to get irq %x\n",
1170                        gpio_to_irq(ifx_dev->gpio.reset_out));
1171                goto error_ret6;
1172        }
1173
1174        ret = ifx_spi_reset(ifx_dev);
1175
1176        ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1177                          ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1178                          ifx_dev);
1179        if (ret) {
1180                dev_err(&spi->dev, "Unable to get irq %x",
1181                        gpio_to_irq(ifx_dev->gpio.srdy));
1182                goto error_ret7;
1183        }
1184
1185        /* set pm runtime power state and register with power system */
1186        pm_runtime_set_active(&spi->dev);
1187        pm_runtime_enable(&spi->dev);
1188
1189        /* handle case that modem is already signaling SRDY */
1190        /* no outgoing tty open at this point, this just satisfies the
1191         * modem's read and should reset communication properly
1192         */
1193        srdy = gpio_get_value(ifx_dev->gpio.srdy);
1194
1195        if (srdy) {
1196                mrdy_assert(ifx_dev);
1197                ifx_spi_handle_srdy(ifx_dev);
1198        } else
1199                mrdy_set_low(ifx_dev);
1200        return 0;
1201
1202error_ret7:
1203        free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1204error_ret6:
1205        gpio_free(ifx_dev->gpio.srdy);
1206error_ret5:
1207        gpio_free(ifx_dev->gpio.mrdy);
1208error_ret4:
1209        gpio_free(ifx_dev->gpio.reset);
1210error_ret3:
1211        gpio_free(ifx_dev->gpio.po);
1212error_ret2:
1213        gpio_free(ifx_dev->gpio.reset_out);
1214error_ret:
1215        ifx_spi_free_device(ifx_dev);
1216        saved_ifx_dev = NULL;
1217        return ret;
1218}
1219
1220/**
1221 *      ifx_spi_spi_remove      -       SPI device was removed
1222 *      @spi: SPI device
1223 *
1224 *      FIXME: We should be shutting the device down here not in
1225 *      the module unload path.
1226 */
1227
1228static int ifx_spi_spi_remove(struct spi_device *spi)
1229{
1230        struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1231        /* stop activity */
1232        tasklet_kill(&ifx_dev->io_work_tasklet);
1233        /* free irq */
1234        free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1235        free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1236
1237        gpio_free(ifx_dev->gpio.srdy);
1238        gpio_free(ifx_dev->gpio.mrdy);
1239        gpio_free(ifx_dev->gpio.reset);
1240        gpio_free(ifx_dev->gpio.po);
1241        gpio_free(ifx_dev->gpio.reset_out);
1242
1243        /* free allocations */
1244        ifx_spi_free_device(ifx_dev);
1245
1246        saved_ifx_dev = NULL;
1247        return 0;
1248}
1249
1250/**
1251 *      ifx_spi_spi_shutdown    -       called on SPI shutdown
1252 *      @spi: SPI device
1253 *
1254 *      No action needs to be taken here
1255 */
1256
1257static void ifx_spi_spi_shutdown(struct spi_device *spi)
1258{
1259        struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1260
1261        ifx_modem_power_off(ifx_dev);
1262}
1263
1264/*
1265 * various suspends and resumes have nothing to do
1266 * no hardware to save state for
1267 */
1268
1269/**
1270 *      ifx_spi_pm_suspend      -       suspend modem on system suspend
1271 *      @dev: device being suspended
1272 *
1273 *      Suspend the modem. No action needed on Intel MID platforms, may
1274 *      need extending for other systems.
1275 */
1276static int ifx_spi_pm_suspend(struct device *dev)
1277{
1278        return 0;
1279}
1280
1281/**
1282 *      ifx_spi_pm_resume       -       resume modem on system resume
1283 *      @dev: device being suspended
1284 *
1285 *      Allow the modem to resume. No action needed.
1286 *
1287 *      FIXME: do we need to reset anything here ?
1288 */
1289static int ifx_spi_pm_resume(struct device *dev)
1290{
1291        return 0;
1292}
1293
1294/**
1295 *      ifx_spi_pm_runtime_resume       -       suspend modem
1296 *      @dev: device being suspended
1297 *
1298 *      Allow the modem to resume. No action needed.
1299 */
1300static int ifx_spi_pm_runtime_resume(struct device *dev)
1301{
1302        return 0;
1303}
1304
1305/**
1306 *      ifx_spi_pm_runtime_suspend      -       suspend modem
1307 *      @dev: device being suspended
1308 *
1309 *      Allow the modem to suspend and thus suspend to continue up the
1310 *      device tree.
1311 */
1312static int ifx_spi_pm_runtime_suspend(struct device *dev)
1313{
1314        return 0;
1315}
1316
1317/**
1318 *      ifx_spi_pm_runtime_idle         -       check if modem idle
1319 *      @dev: our device
1320 *
1321 *      Check conditions and queue runtime suspend if idle.
1322 */
1323static int ifx_spi_pm_runtime_idle(struct device *dev)
1324{
1325        struct spi_device *spi = to_spi_device(dev);
1326        struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1327
1328        if (!ifx_dev->power_status)
1329                pm_runtime_suspend(dev);
1330
1331        return 0;
1332}
1333
1334static const struct dev_pm_ops ifx_spi_pm = {
1335        .resume = ifx_spi_pm_resume,
1336        .suspend = ifx_spi_pm_suspend,
1337        .runtime_resume = ifx_spi_pm_runtime_resume,
1338        .runtime_suspend = ifx_spi_pm_runtime_suspend,
1339        .runtime_idle = ifx_spi_pm_runtime_idle
1340};
1341
1342static const struct spi_device_id ifx_id_table[] = {
1343        {"ifx6160", 0},
1344        {"ifx6260", 0},
1345        { }
1346};
1347MODULE_DEVICE_TABLE(spi, ifx_id_table);
1348
1349/* spi operations */
1350static struct spi_driver ifx_spi_driver = {
1351        .driver = {
1352                .name = DRVNAME,
1353                .pm = &ifx_spi_pm,
1354        },
1355        .probe = ifx_spi_spi_probe,
1356        .shutdown = ifx_spi_spi_shutdown,
1357        .remove = ifx_spi_spi_remove,
1358        .id_table = ifx_id_table
1359};
1360
1361/**
1362 *      ifx_spi_exit    -       module exit
1363 *
1364 *      Unload the module.
1365 */
1366
1367static void __exit ifx_spi_exit(void)
1368{
1369        /* unregister */
1370        spi_unregister_driver(&ifx_spi_driver);
1371        tty_unregister_driver(tty_drv);
1372        put_tty_driver(tty_drv);
1373        unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1374}
1375
1376/**
1377 *      ifx_spi_init            -       module entry point
1378 *
1379 *      Initialise the SPI and tty interfaces for the IFX SPI driver
1380 *      We need to initialize upper-edge spi driver after the tty
1381 *      driver because otherwise the spi probe will race
1382 */
1383
1384static int __init ifx_spi_init(void)
1385{
1386        int result;
1387
1388        tty_drv = alloc_tty_driver(1);
1389        if (!tty_drv) {
1390                pr_err("%s: alloc_tty_driver failed", DRVNAME);
1391                return -ENOMEM;
1392        }
1393
1394        tty_drv->driver_name = DRVNAME;
1395        tty_drv->name = TTYNAME;
1396        tty_drv->minor_start = IFX_SPI_TTY_ID;
1397        tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1398        tty_drv->subtype = SERIAL_TYPE_NORMAL;
1399        tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1400        tty_drv->init_termios = tty_std_termios;
1401
1402        tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1403
1404        result = tty_register_driver(tty_drv);
1405        if (result) {
1406                pr_err("%s: tty_register_driver failed(%d)",
1407                        DRVNAME, result);
1408                goto err_free_tty;
1409        }
1410
1411        result = spi_register_driver(&ifx_spi_driver);
1412        if (result) {
1413                pr_err("%s: spi_register_driver failed(%d)",
1414                        DRVNAME, result);
1415                goto err_unreg_tty;
1416        }
1417
1418        result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1419        if (result) {
1420                pr_err("%s: register ifx modem reboot notifier failed(%d)",
1421                        DRVNAME, result);
1422                goto err_unreg_spi;
1423        }
1424
1425        return 0;
1426err_unreg_spi:
1427        spi_unregister_driver(&ifx_spi_driver);
1428err_unreg_tty:
1429        tty_unregister_driver(tty_drv);
1430err_free_tty:
1431        put_tty_driver(tty_drv);
1432
1433        return result;
1434}
1435
1436module_init(ifx_spi_init);
1437module_exit(ifx_spi_exit);
1438
1439MODULE_AUTHOR("Intel");
1440MODULE_DESCRIPTION("IFX6x60 spi driver");
1441MODULE_LICENSE("GPL");
1442MODULE_INFO(Version, "0.1-IFX6x60");
1443