linux/fs/gfs2/file.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/pagemap.h>
  15#include <linux/uio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mm.h>
  18#include <linux/mount.h>
  19#include <linux/fs.h>
  20#include <linux/gfs2_ondisk.h>
  21#include <linux/falloc.h>
  22#include <linux/swap.h>
  23#include <linux/crc32.h>
  24#include <linux/writeback.h>
  25#include <linux/uaccess.h>
  26#include <linux/dlm.h>
  27#include <linux/dlm_plock.h>
  28#include <linux/delay.h>
  29#include <linux/backing-dev.h>
  30
  31#include "gfs2.h"
  32#include "incore.h"
  33#include "bmap.h"
  34#include "aops.h"
  35#include "dir.h"
  36#include "glock.h"
  37#include "glops.h"
  38#include "inode.h"
  39#include "log.h"
  40#include "meta_io.h"
  41#include "quota.h"
  42#include "rgrp.h"
  43#include "trans.h"
  44#include "util.h"
  45
  46/**
  47 * gfs2_llseek - seek to a location in a file
  48 * @file: the file
  49 * @offset: the offset
  50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
  51 *
  52 * SEEK_END requires the glock for the file because it references the
  53 * file's size.
  54 *
  55 * Returns: The new offset, or errno
  56 */
  57
  58static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
  59{
  60        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
  61        struct gfs2_holder i_gh;
  62        loff_t error;
  63
  64        switch (whence) {
  65        case SEEK_END:
  66                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
  67                                           &i_gh);
  68                if (!error) {
  69                        error = generic_file_llseek(file, offset, whence);
  70                        gfs2_glock_dq_uninit(&i_gh);
  71                }
  72                break;
  73
  74        case SEEK_DATA:
  75                error = gfs2_seek_data(file, offset);
  76                break;
  77
  78        case SEEK_HOLE:
  79                error = gfs2_seek_hole(file, offset);
  80                break;
  81
  82        case SEEK_CUR:
  83        case SEEK_SET:
  84                /*
  85                 * These don't reference inode->i_size and don't depend on the
  86                 * block mapping, so we don't need the glock.
  87                 */
  88                error = generic_file_llseek(file, offset, whence);
  89                break;
  90        default:
  91                error = -EINVAL;
  92        }
  93
  94        return error;
  95}
  96
  97/**
  98 * gfs2_readdir - Iterator for a directory
  99 * @file: The directory to read from
 100 * @ctx: What to feed directory entries to
 101 *
 102 * Returns: errno
 103 */
 104
 105static int gfs2_readdir(struct file *file, struct dir_context *ctx)
 106{
 107        struct inode *dir = file->f_mapping->host;
 108        struct gfs2_inode *dip = GFS2_I(dir);
 109        struct gfs2_holder d_gh;
 110        int error;
 111
 112        error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
 113        if (error)
 114                return error;
 115
 116        error = gfs2_dir_read(dir, ctx, &file->f_ra);
 117
 118        gfs2_glock_dq_uninit(&d_gh);
 119
 120        return error;
 121}
 122
 123/**
 124 * fsflag_gfs2flag
 125 *
 126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
 127 * and to GFS2_DIF_JDATA for non-directories.
 128 */
 129static struct {
 130        u32 fsflag;
 131        u32 gfsflag;
 132} fsflag_gfs2flag[] = {
 133        {FS_SYNC_FL, GFS2_DIF_SYNC},
 134        {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
 135        {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
 136        {FS_NOATIME_FL, GFS2_DIF_NOATIME},
 137        {FS_INDEX_FL, GFS2_DIF_EXHASH},
 138        {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
 139        {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
 140};
 141
 142static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
 143{
 144        struct inode *inode = file_inode(filp);
 145        struct gfs2_inode *ip = GFS2_I(inode);
 146        struct gfs2_holder gh;
 147        int i, error;
 148        u32 gfsflags, fsflags = 0;
 149
 150        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 151        error = gfs2_glock_nq(&gh);
 152        if (error)
 153                goto out_uninit;
 154
 155        gfsflags = ip->i_diskflags;
 156        if (S_ISDIR(inode->i_mode))
 157                gfsflags &= ~GFS2_DIF_JDATA;
 158        else
 159                gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
 160        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
 161                if (gfsflags & fsflag_gfs2flag[i].gfsflag)
 162                        fsflags |= fsflag_gfs2flag[i].fsflag;
 163
 164        if (put_user(fsflags, ptr))
 165                error = -EFAULT;
 166
 167        gfs2_glock_dq(&gh);
 168out_uninit:
 169        gfs2_holder_uninit(&gh);
 170        return error;
 171}
 172
 173void gfs2_set_inode_flags(struct inode *inode)
 174{
 175        struct gfs2_inode *ip = GFS2_I(inode);
 176        unsigned int flags = inode->i_flags;
 177
 178        flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
 179        if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
 180                flags |= S_NOSEC;
 181        if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
 182                flags |= S_IMMUTABLE;
 183        if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
 184                flags |= S_APPEND;
 185        if (ip->i_diskflags & GFS2_DIF_NOATIME)
 186                flags |= S_NOATIME;
 187        if (ip->i_diskflags & GFS2_DIF_SYNC)
 188                flags |= S_SYNC;
 189        inode->i_flags = flags;
 190}
 191
 192/* Flags that can be set by user space */
 193#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|                    \
 194                             GFS2_DIF_IMMUTABLE|                \
 195                             GFS2_DIF_APPENDONLY|               \
 196                             GFS2_DIF_NOATIME|                  \
 197                             GFS2_DIF_SYNC|                     \
 198                             GFS2_DIF_TOPDIR|                   \
 199                             GFS2_DIF_INHERIT_JDATA)
 200
 201/**
 202 * do_gfs2_set_flags - set flags on an inode
 203 * @filp: file pointer
 204 * @reqflags: The flags to set
 205 * @mask: Indicates which flags are valid
 206 *
 207 */
 208static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
 209{
 210        struct inode *inode = file_inode(filp);
 211        struct gfs2_inode *ip = GFS2_I(inode);
 212        struct gfs2_sbd *sdp = GFS2_SB(inode);
 213        struct buffer_head *bh;
 214        struct gfs2_holder gh;
 215        int error;
 216        u32 new_flags, flags;
 217
 218        error = mnt_want_write_file(filp);
 219        if (error)
 220                return error;
 221
 222        error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 223        if (error)
 224                goto out_drop_write;
 225
 226        error = -EACCES;
 227        if (!inode_owner_or_capable(inode))
 228                goto out;
 229
 230        error = 0;
 231        flags = ip->i_diskflags;
 232        new_flags = (flags & ~mask) | (reqflags & mask);
 233        if ((new_flags ^ flags) == 0)
 234                goto out;
 235
 236        error = -EPERM;
 237        if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
 238                goto out;
 239        if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
 240                goto out;
 241        if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
 242            !capable(CAP_LINUX_IMMUTABLE))
 243                goto out;
 244        if (!IS_IMMUTABLE(inode)) {
 245                error = gfs2_permission(inode, MAY_WRITE);
 246                if (error)
 247                        goto out;
 248        }
 249        if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
 250                if (new_flags & GFS2_DIF_JDATA)
 251                        gfs2_log_flush(sdp, ip->i_gl,
 252                                       GFS2_LOG_HEAD_FLUSH_NORMAL |
 253                                       GFS2_LFC_SET_FLAGS);
 254                error = filemap_fdatawrite(inode->i_mapping);
 255                if (error)
 256                        goto out;
 257                error = filemap_fdatawait(inode->i_mapping);
 258                if (error)
 259                        goto out;
 260                if (new_flags & GFS2_DIF_JDATA)
 261                        gfs2_ordered_del_inode(ip);
 262        }
 263        error = gfs2_trans_begin(sdp, RES_DINODE, 0);
 264        if (error)
 265                goto out;
 266        error = gfs2_meta_inode_buffer(ip, &bh);
 267        if (error)
 268                goto out_trans_end;
 269        inode->i_ctime = current_time(inode);
 270        gfs2_trans_add_meta(ip->i_gl, bh);
 271        ip->i_diskflags = new_flags;
 272        gfs2_dinode_out(ip, bh->b_data);
 273        brelse(bh);
 274        gfs2_set_inode_flags(inode);
 275        gfs2_set_aops(inode);
 276out_trans_end:
 277        gfs2_trans_end(sdp);
 278out:
 279        gfs2_glock_dq_uninit(&gh);
 280out_drop_write:
 281        mnt_drop_write_file(filp);
 282        return error;
 283}
 284
 285static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
 286{
 287        struct inode *inode = file_inode(filp);
 288        u32 fsflags, gfsflags = 0;
 289        u32 mask;
 290        int i;
 291
 292        if (get_user(fsflags, ptr))
 293                return -EFAULT;
 294
 295        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
 296                if (fsflags & fsflag_gfs2flag[i].fsflag) {
 297                        fsflags &= ~fsflag_gfs2flag[i].fsflag;
 298                        gfsflags |= fsflag_gfs2flag[i].gfsflag;
 299                }
 300        }
 301        if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
 302                return -EINVAL;
 303
 304        mask = GFS2_FLAGS_USER_SET;
 305        if (S_ISDIR(inode->i_mode)) {
 306                mask &= ~GFS2_DIF_JDATA;
 307        } else {
 308                /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
 309                if (gfsflags & GFS2_DIF_TOPDIR)
 310                        return -EINVAL;
 311                mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
 312        }
 313
 314        return do_gfs2_set_flags(filp, gfsflags, mask);
 315}
 316
 317static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 318{
 319        switch(cmd) {
 320        case FS_IOC_GETFLAGS:
 321                return gfs2_get_flags(filp, (u32 __user *)arg);
 322        case FS_IOC_SETFLAGS:
 323                return gfs2_set_flags(filp, (u32 __user *)arg);
 324        case FITRIM:
 325                return gfs2_fitrim(filp, (void __user *)arg);
 326        }
 327        return -ENOTTY;
 328}
 329
 330/**
 331 * gfs2_size_hint - Give a hint to the size of a write request
 332 * @filep: The struct file
 333 * @offset: The file offset of the write
 334 * @size: The length of the write
 335 *
 336 * When we are about to do a write, this function records the total
 337 * write size in order to provide a suitable hint to the lower layers
 338 * about how many blocks will be required.
 339 *
 340 */
 341
 342static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
 343{
 344        struct inode *inode = file_inode(filep);
 345        struct gfs2_sbd *sdp = GFS2_SB(inode);
 346        struct gfs2_inode *ip = GFS2_I(inode);
 347        size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
 348        int hint = min_t(size_t, INT_MAX, blks);
 349
 350        if (hint > atomic_read(&ip->i_res.rs_sizehint))
 351                atomic_set(&ip->i_res.rs_sizehint, hint);
 352}
 353
 354/**
 355 * gfs2_allocate_page_backing - Use bmap to allocate blocks
 356 * @page: The (locked) page to allocate backing for
 357 *
 358 * We try to allocate all the blocks required for the page in
 359 * one go. This might fail for various reasons, so we keep
 360 * trying until all the blocks to back this page are allocated.
 361 * If some of the blocks are already allocated, thats ok too.
 362 */
 363
 364static int gfs2_allocate_page_backing(struct page *page)
 365{
 366        struct inode *inode = page->mapping->host;
 367        struct buffer_head bh;
 368        unsigned long size = PAGE_SIZE;
 369        u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
 370
 371        do {
 372                bh.b_state = 0;
 373                bh.b_size = size;
 374                gfs2_block_map(inode, lblock, &bh, 1);
 375                if (!buffer_mapped(&bh))
 376                        return -EIO;
 377                size -= bh.b_size;
 378                lblock += (bh.b_size >> inode->i_blkbits);
 379        } while(size > 0);
 380        return 0;
 381}
 382
 383/**
 384 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
 385 * @vma: The virtual memory area
 386 * @vmf: The virtual memory fault containing the page to become writable
 387 *
 388 * When the page becomes writable, we need to ensure that we have
 389 * blocks allocated on disk to back that page.
 390 */
 391
 392static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
 393{
 394        struct page *page = vmf->page;
 395        struct inode *inode = file_inode(vmf->vma->vm_file);
 396        struct gfs2_inode *ip = GFS2_I(inode);
 397        struct gfs2_sbd *sdp = GFS2_SB(inode);
 398        struct gfs2_alloc_parms ap = { .aflags = 0, };
 399        unsigned long last_index;
 400        u64 pos = page->index << PAGE_SHIFT;
 401        unsigned int data_blocks, ind_blocks, rblocks;
 402        struct gfs2_holder gh;
 403        loff_t size;
 404        int ret;
 405
 406        sb_start_pagefault(inode->i_sb);
 407
 408        ret = gfs2_rsqa_alloc(ip);
 409        if (ret)
 410                goto out;
 411
 412        gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
 413
 414        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 415        ret = gfs2_glock_nq(&gh);
 416        if (ret)
 417                goto out_uninit;
 418
 419        /* Update file times before taking page lock */
 420        file_update_time(vmf->vma->vm_file);
 421
 422        set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
 423        set_bit(GIF_SW_PAGED, &ip->i_flags);
 424
 425        if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
 426                lock_page(page);
 427                if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
 428                        ret = -EAGAIN;
 429                        unlock_page(page);
 430                }
 431                goto out_unlock;
 432        }
 433
 434        ret = gfs2_rindex_update(sdp);
 435        if (ret)
 436                goto out_unlock;
 437
 438        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
 439        ap.target = data_blocks + ind_blocks;
 440        ret = gfs2_quota_lock_check(ip, &ap);
 441        if (ret)
 442                goto out_unlock;
 443        ret = gfs2_inplace_reserve(ip, &ap);
 444        if (ret)
 445                goto out_quota_unlock;
 446
 447        rblocks = RES_DINODE + ind_blocks;
 448        if (gfs2_is_jdata(ip))
 449                rblocks += data_blocks ? data_blocks : 1;
 450        if (ind_blocks || data_blocks) {
 451                rblocks += RES_STATFS + RES_QUOTA;
 452                rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
 453        }
 454        ret = gfs2_trans_begin(sdp, rblocks, 0);
 455        if (ret)
 456                goto out_trans_fail;
 457
 458        lock_page(page);
 459        ret = -EINVAL;
 460        size = i_size_read(inode);
 461        last_index = (size - 1) >> PAGE_SHIFT;
 462        /* Check page index against inode size */
 463        if (size == 0 || (page->index > last_index))
 464                goto out_trans_end;
 465
 466        ret = -EAGAIN;
 467        /* If truncated, we must retry the operation, we may have raced
 468         * with the glock demotion code.
 469         */
 470        if (!PageUptodate(page) || page->mapping != inode->i_mapping)
 471                goto out_trans_end;
 472
 473        /* Unstuff, if required, and allocate backing blocks for page */
 474        ret = 0;
 475        if (gfs2_is_stuffed(ip))
 476                ret = gfs2_unstuff_dinode(ip, page);
 477        if (ret == 0)
 478                ret = gfs2_allocate_page_backing(page);
 479
 480out_trans_end:
 481        if (ret)
 482                unlock_page(page);
 483        gfs2_trans_end(sdp);
 484out_trans_fail:
 485        gfs2_inplace_release(ip);
 486out_quota_unlock:
 487        gfs2_quota_unlock(ip);
 488out_unlock:
 489        gfs2_glock_dq(&gh);
 490out_uninit:
 491        gfs2_holder_uninit(&gh);
 492        if (ret == 0) {
 493                set_page_dirty(page);
 494                wait_for_stable_page(page);
 495        }
 496out:
 497        sb_end_pagefault(inode->i_sb);
 498        return block_page_mkwrite_return(ret);
 499}
 500
 501static const struct vm_operations_struct gfs2_vm_ops = {
 502        .fault = filemap_fault,
 503        .map_pages = filemap_map_pages,
 504        .page_mkwrite = gfs2_page_mkwrite,
 505};
 506
 507/**
 508 * gfs2_mmap -
 509 * @file: The file to map
 510 * @vma: The VMA which described the mapping
 511 *
 512 * There is no need to get a lock here unless we should be updating
 513 * atime. We ignore any locking errors since the only consequence is
 514 * a missed atime update (which will just be deferred until later).
 515 *
 516 * Returns: 0
 517 */
 518
 519static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
 520{
 521        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 522
 523        if (!(file->f_flags & O_NOATIME) &&
 524            !IS_NOATIME(&ip->i_inode)) {
 525                struct gfs2_holder i_gh;
 526                int error;
 527
 528                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 529                                           &i_gh);
 530                if (error)
 531                        return error;
 532                /* grab lock to update inode */
 533                gfs2_glock_dq_uninit(&i_gh);
 534                file_accessed(file);
 535        }
 536        vma->vm_ops = &gfs2_vm_ops;
 537
 538        return 0;
 539}
 540
 541/**
 542 * gfs2_open_common - This is common to open and atomic_open
 543 * @inode: The inode being opened
 544 * @file: The file being opened
 545 *
 546 * This maybe called under a glock or not depending upon how it has
 547 * been called. We must always be called under a glock for regular
 548 * files, however. For other file types, it does not matter whether
 549 * we hold the glock or not.
 550 *
 551 * Returns: Error code or 0 for success
 552 */
 553
 554int gfs2_open_common(struct inode *inode, struct file *file)
 555{
 556        struct gfs2_file *fp;
 557        int ret;
 558
 559        if (S_ISREG(inode->i_mode)) {
 560                ret = generic_file_open(inode, file);
 561                if (ret)
 562                        return ret;
 563        }
 564
 565        fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
 566        if (!fp)
 567                return -ENOMEM;
 568
 569        mutex_init(&fp->f_fl_mutex);
 570
 571        gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
 572        file->private_data = fp;
 573        return 0;
 574}
 575
 576/**
 577 * gfs2_open - open a file
 578 * @inode: the inode to open
 579 * @file: the struct file for this opening
 580 *
 581 * After atomic_open, this function is only used for opening files
 582 * which are already cached. We must still get the glock for regular
 583 * files to ensure that we have the file size uptodate for the large
 584 * file check which is in the common code. That is only an issue for
 585 * regular files though.
 586 *
 587 * Returns: errno
 588 */
 589
 590static int gfs2_open(struct inode *inode, struct file *file)
 591{
 592        struct gfs2_inode *ip = GFS2_I(inode);
 593        struct gfs2_holder i_gh;
 594        int error;
 595        bool need_unlock = false;
 596
 597        if (S_ISREG(ip->i_inode.i_mode)) {
 598                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 599                                           &i_gh);
 600                if (error)
 601                        return error;
 602                need_unlock = true;
 603        }
 604
 605        error = gfs2_open_common(inode, file);
 606
 607        if (need_unlock)
 608                gfs2_glock_dq_uninit(&i_gh);
 609
 610        return error;
 611}
 612
 613/**
 614 * gfs2_release - called to close a struct file
 615 * @inode: the inode the struct file belongs to
 616 * @file: the struct file being closed
 617 *
 618 * Returns: errno
 619 */
 620
 621static int gfs2_release(struct inode *inode, struct file *file)
 622{
 623        struct gfs2_inode *ip = GFS2_I(inode);
 624
 625        kfree(file->private_data);
 626        file->private_data = NULL;
 627
 628        if (!(file->f_mode & FMODE_WRITE))
 629                return 0;
 630
 631        gfs2_rsqa_delete(ip, &inode->i_writecount);
 632        return 0;
 633}
 634
 635/**
 636 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 637 * @file: the file that points to the dentry
 638 * @start: the start position in the file to sync
 639 * @end: the end position in the file to sync
 640 * @datasync: set if we can ignore timestamp changes
 641 *
 642 * We split the data flushing here so that we don't wait for the data
 643 * until after we've also sent the metadata to disk. Note that for
 644 * data=ordered, we will write & wait for the data at the log flush
 645 * stage anyway, so this is unlikely to make much of a difference
 646 * except in the data=writeback case.
 647 *
 648 * If the fdatawrite fails due to any reason except -EIO, we will
 649 * continue the remainder of the fsync, although we'll still report
 650 * the error at the end. This is to match filemap_write_and_wait_range()
 651 * behaviour.
 652 *
 653 * Returns: errno
 654 */
 655
 656static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
 657                      int datasync)
 658{
 659        struct address_space *mapping = file->f_mapping;
 660        struct inode *inode = mapping->host;
 661        int sync_state = inode->i_state & I_DIRTY_ALL;
 662        struct gfs2_inode *ip = GFS2_I(inode);
 663        int ret = 0, ret1 = 0;
 664
 665        if (mapping->nrpages) {
 666                ret1 = filemap_fdatawrite_range(mapping, start, end);
 667                if (ret1 == -EIO)
 668                        return ret1;
 669        }
 670
 671        if (!gfs2_is_jdata(ip))
 672                sync_state &= ~I_DIRTY_PAGES;
 673        if (datasync)
 674                sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
 675
 676        if (sync_state) {
 677                ret = sync_inode_metadata(inode, 1);
 678                if (ret)
 679                        return ret;
 680                if (gfs2_is_jdata(ip))
 681                        ret = file_write_and_wait(file);
 682                if (ret)
 683                        return ret;
 684                gfs2_ail_flush(ip->i_gl, 1);
 685        }
 686
 687        if (mapping->nrpages)
 688                ret = file_fdatawait_range(file, start, end);
 689
 690        return ret ? ret : ret1;
 691}
 692
 693static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
 694{
 695        struct file *file = iocb->ki_filp;
 696        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 697        size_t count = iov_iter_count(to);
 698        struct gfs2_holder gh;
 699        ssize_t ret;
 700
 701        if (!count)
 702                return 0; /* skip atime */
 703
 704        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
 705        ret = gfs2_glock_nq(&gh);
 706        if (ret)
 707                goto out_uninit;
 708
 709        ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
 710
 711        gfs2_glock_dq(&gh);
 712out_uninit:
 713        gfs2_holder_uninit(&gh);
 714        return ret;
 715}
 716
 717static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 718{
 719        struct file *file = iocb->ki_filp;
 720        struct inode *inode = file->f_mapping->host;
 721        struct gfs2_inode *ip = GFS2_I(inode);
 722        size_t len = iov_iter_count(from);
 723        loff_t offset = iocb->ki_pos;
 724        struct gfs2_holder gh;
 725        ssize_t ret;
 726
 727        /*
 728         * Deferred lock, even if its a write, since we do no allocation on
 729         * this path. All we need to change is the atime, and this lock mode
 730         * ensures that other nodes have flushed their buffered read caches
 731         * (i.e. their page cache entries for this inode). We do not,
 732         * unfortunately, have the option of only flushing a range like the
 733         * VFS does.
 734         */
 735        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
 736        ret = gfs2_glock_nq(&gh);
 737        if (ret)
 738                goto out_uninit;
 739
 740        /* Silently fall back to buffered I/O when writing beyond EOF */
 741        if (offset + len > i_size_read(&ip->i_inode))
 742                goto out;
 743
 744        ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
 745
 746out:
 747        gfs2_glock_dq(&gh);
 748out_uninit:
 749        gfs2_holder_uninit(&gh);
 750        return ret;
 751}
 752
 753static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 754{
 755        ssize_t ret;
 756
 757        if (iocb->ki_flags & IOCB_DIRECT) {
 758                ret = gfs2_file_direct_read(iocb, to);
 759                if (likely(ret != -ENOTBLK))
 760                        return ret;
 761                iocb->ki_flags &= ~IOCB_DIRECT;
 762        }
 763        return generic_file_read_iter(iocb, to);
 764}
 765
 766/**
 767 * gfs2_file_write_iter - Perform a write to a file
 768 * @iocb: The io context
 769 * @from: The data to write
 770 *
 771 * We have to do a lock/unlock here to refresh the inode size for
 772 * O_APPEND writes, otherwise we can land up writing at the wrong
 773 * offset. There is still a race, but provided the app is using its
 774 * own file locking, this will make O_APPEND work as expected.
 775 *
 776 */
 777
 778static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 779{
 780        struct file *file = iocb->ki_filp;
 781        struct inode *inode = file_inode(file);
 782        struct gfs2_inode *ip = GFS2_I(inode);
 783        ssize_t written = 0, ret;
 784
 785        ret = gfs2_rsqa_alloc(ip);
 786        if (ret)
 787                return ret;
 788
 789        gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
 790
 791        if (iocb->ki_flags & IOCB_APPEND) {
 792                struct gfs2_holder gh;
 793
 794                ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 795                if (ret)
 796                        return ret;
 797                gfs2_glock_dq_uninit(&gh);
 798        }
 799
 800        inode_lock(inode);
 801        ret = generic_write_checks(iocb, from);
 802        if (ret <= 0)
 803                goto out;
 804
 805        /* We can write back this queue in page reclaim */
 806        current->backing_dev_info = inode_to_bdi(inode);
 807
 808        ret = file_remove_privs(file);
 809        if (ret)
 810                goto out2;
 811
 812        ret = file_update_time(file);
 813        if (ret)
 814                goto out2;
 815
 816        if (iocb->ki_flags & IOCB_DIRECT) {
 817                struct address_space *mapping = file->f_mapping;
 818                loff_t pos, endbyte;
 819                ssize_t buffered;
 820
 821                written = gfs2_file_direct_write(iocb, from);
 822                if (written < 0 || !iov_iter_count(from))
 823                        goto out2;
 824
 825                ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 826                if (unlikely(ret < 0))
 827                        goto out2;
 828                buffered = ret;
 829
 830                /*
 831                 * We need to ensure that the page cache pages are written to
 832                 * disk and invalidated to preserve the expected O_DIRECT
 833                 * semantics.
 834                 */
 835                pos = iocb->ki_pos;
 836                endbyte = pos + buffered - 1;
 837                ret = filemap_write_and_wait_range(mapping, pos, endbyte);
 838                if (!ret) {
 839                        iocb->ki_pos += buffered;
 840                        written += buffered;
 841                        invalidate_mapping_pages(mapping,
 842                                                 pos >> PAGE_SHIFT,
 843                                                 endbyte >> PAGE_SHIFT);
 844                } else {
 845                        /*
 846                         * We don't know how much we wrote, so just return
 847                         * the number of bytes which were direct-written
 848                         */
 849                }
 850        } else {
 851                ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 852                if (likely(ret > 0))
 853                        iocb->ki_pos += ret;
 854        }
 855
 856out2:
 857        current->backing_dev_info = NULL;
 858out:
 859        inode_unlock(inode);
 860        if (likely(ret > 0)) {
 861                /* Handle various SYNC-type writes */
 862                ret = generic_write_sync(iocb, ret);
 863        }
 864        return written ? written : ret;
 865}
 866
 867static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
 868                           int mode)
 869{
 870        struct super_block *sb = inode->i_sb;
 871        struct gfs2_inode *ip = GFS2_I(inode);
 872        loff_t end = offset + len;
 873        struct buffer_head *dibh;
 874        int error;
 875
 876        error = gfs2_meta_inode_buffer(ip, &dibh);
 877        if (unlikely(error))
 878                return error;
 879
 880        gfs2_trans_add_meta(ip->i_gl, dibh);
 881
 882        if (gfs2_is_stuffed(ip)) {
 883                error = gfs2_unstuff_dinode(ip, NULL);
 884                if (unlikely(error))
 885                        goto out;
 886        }
 887
 888        while (offset < end) {
 889                struct iomap iomap = { };
 890
 891                error = gfs2_iomap_get_alloc(inode, offset, end - offset,
 892                                             &iomap);
 893                if (error)
 894                        goto out;
 895                offset = iomap.offset + iomap.length;
 896                if (!(iomap.flags & IOMAP_F_NEW))
 897                        continue;
 898                error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
 899                                         iomap.length >> inode->i_blkbits,
 900                                         GFP_NOFS);
 901                if (error) {
 902                        fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
 903                        goto out;
 904                }
 905        }
 906out:
 907        brelse(dibh);
 908        return error;
 909}
 910/**
 911 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
 912 *                     blocks, determine how many bytes can be written.
 913 * @ip:          The inode in question.
 914 * @len:         Max cap of bytes. What we return in *len must be <= this.
 915 * @data_blocks: Compute and return the number of data blocks needed
 916 * @ind_blocks:  Compute and return the number of indirect blocks needed
 917 * @max_blocks:  The total blocks available to work with.
 918 *
 919 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
 920 */
 921static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
 922                            unsigned int *data_blocks, unsigned int *ind_blocks,
 923                            unsigned int max_blocks)
 924{
 925        loff_t max = *len;
 926        const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 927        unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
 928
 929        for (tmp = max_data; tmp > sdp->sd_diptrs;) {
 930                tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
 931                max_data -= tmp;
 932        }
 933
 934        *data_blocks = max_data;
 935        *ind_blocks = max_blocks - max_data;
 936        *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
 937        if (*len > max) {
 938                *len = max;
 939                gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
 940        }
 941}
 942
 943static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
 944{
 945        struct inode *inode = file_inode(file);
 946        struct gfs2_sbd *sdp = GFS2_SB(inode);
 947        struct gfs2_inode *ip = GFS2_I(inode);
 948        struct gfs2_alloc_parms ap = { .aflags = 0, };
 949        unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 950        loff_t bytes, max_bytes, max_blks;
 951        int error;
 952        const loff_t pos = offset;
 953        const loff_t count = len;
 954        loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
 955        loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
 956        loff_t max_chunk_size = UINT_MAX & bsize_mask;
 957
 958        next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
 959
 960        offset &= bsize_mask;
 961
 962        len = next - offset;
 963        bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
 964        if (!bytes)
 965                bytes = UINT_MAX;
 966        bytes &= bsize_mask;
 967        if (bytes == 0)
 968                bytes = sdp->sd_sb.sb_bsize;
 969
 970        gfs2_size_hint(file, offset, len);
 971
 972        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
 973        ap.min_target = data_blocks + ind_blocks;
 974
 975        while (len > 0) {
 976                if (len < bytes)
 977                        bytes = len;
 978                if (!gfs2_write_alloc_required(ip, offset, bytes)) {
 979                        len -= bytes;
 980                        offset += bytes;
 981                        continue;
 982                }
 983
 984                /* We need to determine how many bytes we can actually
 985                 * fallocate without exceeding quota or going over the
 986                 * end of the fs. We start off optimistically by assuming
 987                 * we can write max_bytes */
 988                max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
 989
 990                /* Since max_bytes is most likely a theoretical max, we
 991                 * calculate a more realistic 'bytes' to serve as a good
 992                 * starting point for the number of bytes we may be able
 993                 * to write */
 994                gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
 995                ap.target = data_blocks + ind_blocks;
 996
 997                error = gfs2_quota_lock_check(ip, &ap);
 998                if (error)
 999                        return error;
1000                /* ap.allowed tells us how many blocks quota will allow
1001                 * us to write. Check if this reduces max_blks */
1002                max_blks = UINT_MAX;
1003                if (ap.allowed)
1004                        max_blks = ap.allowed;
1005
1006                error = gfs2_inplace_reserve(ip, &ap);
1007                if (error)
1008                        goto out_qunlock;
1009
1010                /* check if the selected rgrp limits our max_blks further */
1011                if (ap.allowed && ap.allowed < max_blks)
1012                        max_blks = ap.allowed;
1013
1014                /* Almost done. Calculate bytes that can be written using
1015                 * max_blks. We also recompute max_bytes, data_blocks and
1016                 * ind_blocks */
1017                calc_max_reserv(ip, &max_bytes, &data_blocks,
1018                                &ind_blocks, max_blks);
1019
1020                rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1021                          RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1022                if (gfs2_is_jdata(ip))
1023                        rblocks += data_blocks ? data_blocks : 1;
1024
1025                error = gfs2_trans_begin(sdp, rblocks,
1026                                         PAGE_SIZE/sdp->sd_sb.sb_bsize);
1027                if (error)
1028                        goto out_trans_fail;
1029
1030                error = fallocate_chunk(inode, offset, max_bytes, mode);
1031                gfs2_trans_end(sdp);
1032
1033                if (error)
1034                        goto out_trans_fail;
1035
1036                len -= max_bytes;
1037                offset += max_bytes;
1038                gfs2_inplace_release(ip);
1039                gfs2_quota_unlock(ip);
1040        }
1041
1042        if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
1043                i_size_write(inode, pos + count);
1044                file_update_time(file);
1045                mark_inode_dirty(inode);
1046        }
1047
1048        if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1049                return vfs_fsync_range(file, pos, pos + count - 1,
1050                               (file->f_flags & __O_SYNC) ? 0 : 1);
1051        return 0;
1052
1053out_trans_fail:
1054        gfs2_inplace_release(ip);
1055out_qunlock:
1056        gfs2_quota_unlock(ip);
1057        return error;
1058}
1059
1060static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1061{
1062        struct inode *inode = file_inode(file);
1063        struct gfs2_sbd *sdp = GFS2_SB(inode);
1064        struct gfs2_inode *ip = GFS2_I(inode);
1065        struct gfs2_holder gh;
1066        int ret;
1067
1068        if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1069                return -EOPNOTSUPP;
1070        /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1071        if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1072                return -EOPNOTSUPP;
1073
1074        inode_lock(inode);
1075
1076        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1077        ret = gfs2_glock_nq(&gh);
1078        if (ret)
1079                goto out_uninit;
1080
1081        if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1082            (offset + len) > inode->i_size) {
1083                ret = inode_newsize_ok(inode, offset + len);
1084                if (ret)
1085                        goto out_unlock;
1086        }
1087
1088        ret = get_write_access(inode);
1089        if (ret)
1090                goto out_unlock;
1091
1092        if (mode & FALLOC_FL_PUNCH_HOLE) {
1093                ret = __gfs2_punch_hole(file, offset, len);
1094        } else {
1095                ret = gfs2_rsqa_alloc(ip);
1096                if (ret)
1097                        goto out_putw;
1098
1099                ret = __gfs2_fallocate(file, mode, offset, len);
1100
1101                if (ret)
1102                        gfs2_rs_deltree(&ip->i_res);
1103        }
1104
1105out_putw:
1106        put_write_access(inode);
1107out_unlock:
1108        gfs2_glock_dq(&gh);
1109out_uninit:
1110        gfs2_holder_uninit(&gh);
1111        inode_unlock(inode);
1112        return ret;
1113}
1114
1115static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1116                                      struct file *out, loff_t *ppos,
1117                                      size_t len, unsigned int flags)
1118{
1119        int error;
1120        struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1121
1122        error = gfs2_rsqa_alloc(ip);
1123        if (error)
1124                return (ssize_t)error;
1125
1126        gfs2_size_hint(out, *ppos, len);
1127
1128        return iter_file_splice_write(pipe, out, ppos, len, flags);
1129}
1130
1131#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1132
1133/**
1134 * gfs2_lock - acquire/release a posix lock on a file
1135 * @file: the file pointer
1136 * @cmd: either modify or retrieve lock state, possibly wait
1137 * @fl: type and range of lock
1138 *
1139 * Returns: errno
1140 */
1141
1142static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1143{
1144        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1145        struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1146        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1147
1148        if (!(fl->fl_flags & FL_POSIX))
1149                return -ENOLCK;
1150        if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1151                return -ENOLCK;
1152
1153        if (cmd == F_CANCELLK) {
1154                /* Hack: */
1155                cmd = F_SETLK;
1156                fl->fl_type = F_UNLCK;
1157        }
1158        if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
1159                if (fl->fl_type == F_UNLCK)
1160                        locks_lock_file_wait(file, fl);
1161                return -EIO;
1162        }
1163        if (IS_GETLK(cmd))
1164                return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1165        else if (fl->fl_type == F_UNLCK)
1166                return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1167        else
1168                return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1169}
1170
1171static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1172{
1173        struct gfs2_file *fp = file->private_data;
1174        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1175        struct gfs2_inode *ip = GFS2_I(file_inode(file));
1176        struct gfs2_glock *gl;
1177        unsigned int state;
1178        u16 flags;
1179        int error = 0;
1180        int sleeptime;
1181
1182        state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1183        flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1184
1185        mutex_lock(&fp->f_fl_mutex);
1186
1187        if (gfs2_holder_initialized(fl_gh)) {
1188                if (fl_gh->gh_state == state)
1189                        goto out;
1190                locks_lock_file_wait(file,
1191                                     &(struct file_lock) {
1192                                             .fl_type = F_UNLCK,
1193                                             .fl_flags = FL_FLOCK
1194                                     });
1195                gfs2_glock_dq(fl_gh);
1196                gfs2_holder_reinit(state, flags, fl_gh);
1197        } else {
1198                error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1199                                       &gfs2_flock_glops, CREATE, &gl);
1200                if (error)
1201                        goto out;
1202                gfs2_holder_init(gl, state, flags, fl_gh);
1203                gfs2_glock_put(gl);
1204        }
1205        for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1206                error = gfs2_glock_nq(fl_gh);
1207                if (error != GLR_TRYFAILED)
1208                        break;
1209                fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1210                fl_gh->gh_error = 0;
1211                msleep(sleeptime);
1212        }
1213        if (error) {
1214                gfs2_holder_uninit(fl_gh);
1215                if (error == GLR_TRYFAILED)
1216                        error = -EAGAIN;
1217        } else {
1218                error = locks_lock_file_wait(file, fl);
1219                gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1220        }
1221
1222out:
1223        mutex_unlock(&fp->f_fl_mutex);
1224        return error;
1225}
1226
1227static void do_unflock(struct file *file, struct file_lock *fl)
1228{
1229        struct gfs2_file *fp = file->private_data;
1230        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1231
1232        mutex_lock(&fp->f_fl_mutex);
1233        locks_lock_file_wait(file, fl);
1234        if (gfs2_holder_initialized(fl_gh)) {
1235                gfs2_glock_dq(fl_gh);
1236                gfs2_holder_uninit(fl_gh);
1237        }
1238        mutex_unlock(&fp->f_fl_mutex);
1239}
1240
1241/**
1242 * gfs2_flock - acquire/release a flock lock on a file
1243 * @file: the file pointer
1244 * @cmd: either modify or retrieve lock state, possibly wait
1245 * @fl: type and range of lock
1246 *
1247 * Returns: errno
1248 */
1249
1250static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1251{
1252        if (!(fl->fl_flags & FL_FLOCK))
1253                return -ENOLCK;
1254        if (fl->fl_type & LOCK_MAND)
1255                return -EOPNOTSUPP;
1256
1257        if (fl->fl_type == F_UNLCK) {
1258                do_unflock(file, fl);
1259                return 0;
1260        } else {
1261                return do_flock(file, cmd, fl);
1262        }
1263}
1264
1265const struct file_operations gfs2_file_fops = {
1266        .llseek         = gfs2_llseek,
1267        .read_iter      = gfs2_file_read_iter,
1268        .write_iter     = gfs2_file_write_iter,
1269        .unlocked_ioctl = gfs2_ioctl,
1270        .mmap           = gfs2_mmap,
1271        .open           = gfs2_open,
1272        .release        = gfs2_release,
1273        .fsync          = gfs2_fsync,
1274        .lock           = gfs2_lock,
1275        .flock          = gfs2_flock,
1276        .splice_read    = generic_file_splice_read,
1277        .splice_write   = gfs2_file_splice_write,
1278        .setlease       = simple_nosetlease,
1279        .fallocate      = gfs2_fallocate,
1280};
1281
1282const struct file_operations gfs2_dir_fops = {
1283        .iterate_shared = gfs2_readdir,
1284        .unlocked_ioctl = gfs2_ioctl,
1285        .open           = gfs2_open,
1286        .release        = gfs2_release,
1287        .fsync          = gfs2_fsync,
1288        .lock           = gfs2_lock,
1289        .flock          = gfs2_flock,
1290        .llseek         = default_llseek,
1291};
1292
1293#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1294
1295const struct file_operations gfs2_file_fops_nolock = {
1296        .llseek         = gfs2_llseek,
1297        .read_iter      = gfs2_file_read_iter,
1298        .write_iter     = gfs2_file_write_iter,
1299        .unlocked_ioctl = gfs2_ioctl,
1300        .mmap           = gfs2_mmap,
1301        .open           = gfs2_open,
1302        .release        = gfs2_release,
1303        .fsync          = gfs2_fsync,
1304        .splice_read    = generic_file_splice_read,
1305        .splice_write   = gfs2_file_splice_write,
1306        .setlease       = generic_setlease,
1307        .fallocate      = gfs2_fallocate,
1308};
1309
1310const struct file_operations gfs2_dir_fops_nolock = {
1311        .iterate_shared = gfs2_readdir,
1312        .unlocked_ioctl = gfs2_ioctl,
1313        .open           = gfs2_open,
1314        .release        = gfs2_release,
1315        .fsync          = gfs2_fsync,
1316        .llseek         = default_llseek,
1317};
1318
1319