linux/fs/namespace.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *      Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/uaccess.h>
  24#include <linux/proc_ns.h>
  25#include <linux/magic.h>
  26#include <linux/bootmem.h>
  27#include <linux/task_work.h>
  28#include <linux/sched/task.h>
  29
  30#include "pnode.h"
  31#include "internal.h"
  32
  33/* Maximum number of mounts in a mount namespace */
  34unsigned int sysctl_mount_max __read_mostly = 100000;
  35
  36static unsigned int m_hash_mask __read_mostly;
  37static unsigned int m_hash_shift __read_mostly;
  38static unsigned int mp_hash_mask __read_mostly;
  39static unsigned int mp_hash_shift __read_mostly;
  40
  41static __initdata unsigned long mhash_entries;
  42static int __init set_mhash_entries(char *str)
  43{
  44        if (!str)
  45                return 0;
  46        mhash_entries = simple_strtoul(str, &str, 0);
  47        return 1;
  48}
  49__setup("mhash_entries=", set_mhash_entries);
  50
  51static __initdata unsigned long mphash_entries;
  52static int __init set_mphash_entries(char *str)
  53{
  54        if (!str)
  55                return 0;
  56        mphash_entries = simple_strtoul(str, &str, 0);
  57        return 1;
  58}
  59__setup("mphash_entries=", set_mphash_entries);
  60
  61static u64 event;
  62static DEFINE_IDA(mnt_id_ida);
  63static DEFINE_IDA(mnt_group_ida);
  64
  65static struct hlist_head *mount_hashtable __read_mostly;
  66static struct hlist_head *mountpoint_hashtable __read_mostly;
  67static struct kmem_cache *mnt_cache __read_mostly;
  68static DECLARE_RWSEM(namespace_sem);
  69
  70/* /sys/fs */
  71struct kobject *fs_kobj;
  72EXPORT_SYMBOL_GPL(fs_kobj);
  73
  74/*
  75 * vfsmount lock may be taken for read to prevent changes to the
  76 * vfsmount hash, ie. during mountpoint lookups or walking back
  77 * up the tree.
  78 *
  79 * It should be taken for write in all cases where the vfsmount
  80 * tree or hash is modified or when a vfsmount structure is modified.
  81 */
  82__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  83
  84static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  85{
  86        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  87        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  88        tmp = tmp + (tmp >> m_hash_shift);
  89        return &mount_hashtable[tmp & m_hash_mask];
  90}
  91
  92static inline struct hlist_head *mp_hash(struct dentry *dentry)
  93{
  94        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  95        tmp = tmp + (tmp >> mp_hash_shift);
  96        return &mountpoint_hashtable[tmp & mp_hash_mask];
  97}
  98
  99static int mnt_alloc_id(struct mount *mnt)
 100{
 101        int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 102
 103        if (res < 0)
 104                return res;
 105        mnt->mnt_id = res;
 106        return 0;
 107}
 108
 109static void mnt_free_id(struct mount *mnt)
 110{
 111        ida_free(&mnt_id_ida, mnt->mnt_id);
 112}
 113
 114/*
 115 * Allocate a new peer group ID
 116 */
 117static int mnt_alloc_group_id(struct mount *mnt)
 118{
 119        int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 120
 121        if (res < 0)
 122                return res;
 123        mnt->mnt_group_id = res;
 124        return 0;
 125}
 126
 127/*
 128 * Release a peer group ID
 129 */
 130void mnt_release_group_id(struct mount *mnt)
 131{
 132        ida_free(&mnt_group_ida, mnt->mnt_group_id);
 133        mnt->mnt_group_id = 0;
 134}
 135
 136/*
 137 * vfsmount lock must be held for read
 138 */
 139static inline void mnt_add_count(struct mount *mnt, int n)
 140{
 141#ifdef CONFIG_SMP
 142        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 143#else
 144        preempt_disable();
 145        mnt->mnt_count += n;
 146        preempt_enable();
 147#endif
 148}
 149
 150/*
 151 * vfsmount lock must be held for write
 152 */
 153unsigned int mnt_get_count(struct mount *mnt)
 154{
 155#ifdef CONFIG_SMP
 156        unsigned int count = 0;
 157        int cpu;
 158
 159        for_each_possible_cpu(cpu) {
 160                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 161        }
 162
 163        return count;
 164#else
 165        return mnt->mnt_count;
 166#endif
 167}
 168
 169static void drop_mountpoint(struct fs_pin *p)
 170{
 171        struct mount *m = container_of(p, struct mount, mnt_umount);
 172        dput(m->mnt_ex_mountpoint);
 173        pin_remove(p);
 174        mntput(&m->mnt);
 175}
 176
 177static struct mount *alloc_vfsmnt(const char *name)
 178{
 179        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 180        if (mnt) {
 181                int err;
 182
 183                err = mnt_alloc_id(mnt);
 184                if (err)
 185                        goto out_free_cache;
 186
 187                if (name) {
 188                        mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 189                        if (!mnt->mnt_devname)
 190                                goto out_free_id;
 191                }
 192
 193#ifdef CONFIG_SMP
 194                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 195                if (!mnt->mnt_pcp)
 196                        goto out_free_devname;
 197
 198                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 199#else
 200                mnt->mnt_count = 1;
 201                mnt->mnt_writers = 0;
 202#endif
 203
 204                INIT_HLIST_NODE(&mnt->mnt_hash);
 205                INIT_LIST_HEAD(&mnt->mnt_child);
 206                INIT_LIST_HEAD(&mnt->mnt_mounts);
 207                INIT_LIST_HEAD(&mnt->mnt_list);
 208                INIT_LIST_HEAD(&mnt->mnt_expire);
 209                INIT_LIST_HEAD(&mnt->mnt_share);
 210                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 211                INIT_LIST_HEAD(&mnt->mnt_slave);
 212                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 213                INIT_LIST_HEAD(&mnt->mnt_umounting);
 214                init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
 215        }
 216        return mnt;
 217
 218#ifdef CONFIG_SMP
 219out_free_devname:
 220        kfree_const(mnt->mnt_devname);
 221#endif
 222out_free_id:
 223        mnt_free_id(mnt);
 224out_free_cache:
 225        kmem_cache_free(mnt_cache, mnt);
 226        return NULL;
 227}
 228
 229/*
 230 * Most r/o checks on a fs are for operations that take
 231 * discrete amounts of time, like a write() or unlink().
 232 * We must keep track of when those operations start
 233 * (for permission checks) and when they end, so that
 234 * we can determine when writes are able to occur to
 235 * a filesystem.
 236 */
 237/*
 238 * __mnt_is_readonly: check whether a mount is read-only
 239 * @mnt: the mount to check for its write status
 240 *
 241 * This shouldn't be used directly ouside of the VFS.
 242 * It does not guarantee that the filesystem will stay
 243 * r/w, just that it is right *now*.  This can not and
 244 * should not be used in place of IS_RDONLY(inode).
 245 * mnt_want/drop_write() will _keep_ the filesystem
 246 * r/w.
 247 */
 248int __mnt_is_readonly(struct vfsmount *mnt)
 249{
 250        if (mnt->mnt_flags & MNT_READONLY)
 251                return 1;
 252        if (sb_rdonly(mnt->mnt_sb))
 253                return 1;
 254        return 0;
 255}
 256EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 257
 258static inline void mnt_inc_writers(struct mount *mnt)
 259{
 260#ifdef CONFIG_SMP
 261        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 262#else
 263        mnt->mnt_writers++;
 264#endif
 265}
 266
 267static inline void mnt_dec_writers(struct mount *mnt)
 268{
 269#ifdef CONFIG_SMP
 270        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 271#else
 272        mnt->mnt_writers--;
 273#endif
 274}
 275
 276static unsigned int mnt_get_writers(struct mount *mnt)
 277{
 278#ifdef CONFIG_SMP
 279        unsigned int count = 0;
 280        int cpu;
 281
 282        for_each_possible_cpu(cpu) {
 283                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 284        }
 285
 286        return count;
 287#else
 288        return mnt->mnt_writers;
 289#endif
 290}
 291
 292static int mnt_is_readonly(struct vfsmount *mnt)
 293{
 294        if (mnt->mnt_sb->s_readonly_remount)
 295                return 1;
 296        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 297        smp_rmb();
 298        return __mnt_is_readonly(mnt);
 299}
 300
 301/*
 302 * Most r/o & frozen checks on a fs are for operations that take discrete
 303 * amounts of time, like a write() or unlink().  We must keep track of when
 304 * those operations start (for permission checks) and when they end, so that we
 305 * can determine when writes are able to occur to a filesystem.
 306 */
 307/**
 308 * __mnt_want_write - get write access to a mount without freeze protection
 309 * @m: the mount on which to take a write
 310 *
 311 * This tells the low-level filesystem that a write is about to be performed to
 312 * it, and makes sure that writes are allowed (mnt it read-write) before
 313 * returning success. This operation does not protect against filesystem being
 314 * frozen. When the write operation is finished, __mnt_drop_write() must be
 315 * called. This is effectively a refcount.
 316 */
 317int __mnt_want_write(struct vfsmount *m)
 318{
 319        struct mount *mnt = real_mount(m);
 320        int ret = 0;
 321
 322        preempt_disable();
 323        mnt_inc_writers(mnt);
 324        /*
 325         * The store to mnt_inc_writers must be visible before we pass
 326         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 327         * incremented count after it has set MNT_WRITE_HOLD.
 328         */
 329        smp_mb();
 330        while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 331                cpu_relax();
 332        /*
 333         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 334         * be set to match its requirements. So we must not load that until
 335         * MNT_WRITE_HOLD is cleared.
 336         */
 337        smp_rmb();
 338        if (mnt_is_readonly(m)) {
 339                mnt_dec_writers(mnt);
 340                ret = -EROFS;
 341        }
 342        preempt_enable();
 343
 344        return ret;
 345}
 346
 347/**
 348 * mnt_want_write - get write access to a mount
 349 * @m: the mount on which to take a write
 350 *
 351 * This tells the low-level filesystem that a write is about to be performed to
 352 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 353 * is not frozen) before returning success.  When the write operation is
 354 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 355 */
 356int mnt_want_write(struct vfsmount *m)
 357{
 358        int ret;
 359
 360        sb_start_write(m->mnt_sb);
 361        ret = __mnt_want_write(m);
 362        if (ret)
 363                sb_end_write(m->mnt_sb);
 364        return ret;
 365}
 366EXPORT_SYMBOL_GPL(mnt_want_write);
 367
 368/**
 369 * mnt_clone_write - get write access to a mount
 370 * @mnt: the mount on which to take a write
 371 *
 372 * This is effectively like mnt_want_write, except
 373 * it must only be used to take an extra write reference
 374 * on a mountpoint that we already know has a write reference
 375 * on it. This allows some optimisation.
 376 *
 377 * After finished, mnt_drop_write must be called as usual to
 378 * drop the reference.
 379 */
 380int mnt_clone_write(struct vfsmount *mnt)
 381{
 382        /* superblock may be r/o */
 383        if (__mnt_is_readonly(mnt))
 384                return -EROFS;
 385        preempt_disable();
 386        mnt_inc_writers(real_mount(mnt));
 387        preempt_enable();
 388        return 0;
 389}
 390EXPORT_SYMBOL_GPL(mnt_clone_write);
 391
 392/**
 393 * __mnt_want_write_file - get write access to a file's mount
 394 * @file: the file who's mount on which to take a write
 395 *
 396 * This is like __mnt_want_write, but it takes a file and can
 397 * do some optimisations if the file is open for write already
 398 */
 399int __mnt_want_write_file(struct file *file)
 400{
 401        if (!(file->f_mode & FMODE_WRITER))
 402                return __mnt_want_write(file->f_path.mnt);
 403        else
 404                return mnt_clone_write(file->f_path.mnt);
 405}
 406
 407/**
 408 * mnt_want_write_file - get write access to a file's mount
 409 * @file: the file who's mount on which to take a write
 410 *
 411 * This is like mnt_want_write, but it takes a file and can
 412 * do some optimisations if the file is open for write already
 413 */
 414int mnt_want_write_file(struct file *file)
 415{
 416        int ret;
 417
 418        sb_start_write(file_inode(file)->i_sb);
 419        ret = __mnt_want_write_file(file);
 420        if (ret)
 421                sb_end_write(file_inode(file)->i_sb);
 422        return ret;
 423}
 424EXPORT_SYMBOL_GPL(mnt_want_write_file);
 425
 426/**
 427 * __mnt_drop_write - give up write access to a mount
 428 * @mnt: the mount on which to give up write access
 429 *
 430 * Tells the low-level filesystem that we are done
 431 * performing writes to it.  Must be matched with
 432 * __mnt_want_write() call above.
 433 */
 434void __mnt_drop_write(struct vfsmount *mnt)
 435{
 436        preempt_disable();
 437        mnt_dec_writers(real_mount(mnt));
 438        preempt_enable();
 439}
 440
 441/**
 442 * mnt_drop_write - give up write access to a mount
 443 * @mnt: the mount on which to give up write access
 444 *
 445 * Tells the low-level filesystem that we are done performing writes to it and
 446 * also allows filesystem to be frozen again.  Must be matched with
 447 * mnt_want_write() call above.
 448 */
 449void mnt_drop_write(struct vfsmount *mnt)
 450{
 451        __mnt_drop_write(mnt);
 452        sb_end_write(mnt->mnt_sb);
 453}
 454EXPORT_SYMBOL_GPL(mnt_drop_write);
 455
 456void __mnt_drop_write_file(struct file *file)
 457{
 458        __mnt_drop_write(file->f_path.mnt);
 459}
 460
 461void mnt_drop_write_file(struct file *file)
 462{
 463        __mnt_drop_write_file(file);
 464        sb_end_write(file_inode(file)->i_sb);
 465}
 466EXPORT_SYMBOL(mnt_drop_write_file);
 467
 468static int mnt_make_readonly(struct mount *mnt)
 469{
 470        int ret = 0;
 471
 472        lock_mount_hash();
 473        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 474        /*
 475         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 476         * should be visible before we do.
 477         */
 478        smp_mb();
 479
 480        /*
 481         * With writers on hold, if this value is zero, then there are
 482         * definitely no active writers (although held writers may subsequently
 483         * increment the count, they'll have to wait, and decrement it after
 484         * seeing MNT_READONLY).
 485         *
 486         * It is OK to have counter incremented on one CPU and decremented on
 487         * another: the sum will add up correctly. The danger would be when we
 488         * sum up each counter, if we read a counter before it is incremented,
 489         * but then read another CPU's count which it has been subsequently
 490         * decremented from -- we would see more decrements than we should.
 491         * MNT_WRITE_HOLD protects against this scenario, because
 492         * mnt_want_write first increments count, then smp_mb, then spins on
 493         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 494         * we're counting up here.
 495         */
 496        if (mnt_get_writers(mnt) > 0)
 497                ret = -EBUSY;
 498        else
 499                mnt->mnt.mnt_flags |= MNT_READONLY;
 500        /*
 501         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 502         * that become unheld will see MNT_READONLY.
 503         */
 504        smp_wmb();
 505        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 506        unlock_mount_hash();
 507        return ret;
 508}
 509
 510static void __mnt_unmake_readonly(struct mount *mnt)
 511{
 512        lock_mount_hash();
 513        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 514        unlock_mount_hash();
 515}
 516
 517int sb_prepare_remount_readonly(struct super_block *sb)
 518{
 519        struct mount *mnt;
 520        int err = 0;
 521
 522        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 523        if (atomic_long_read(&sb->s_remove_count))
 524                return -EBUSY;
 525
 526        lock_mount_hash();
 527        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 528                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 529                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 530                        smp_mb();
 531                        if (mnt_get_writers(mnt) > 0) {
 532                                err = -EBUSY;
 533                                break;
 534                        }
 535                }
 536        }
 537        if (!err && atomic_long_read(&sb->s_remove_count))
 538                err = -EBUSY;
 539
 540        if (!err) {
 541                sb->s_readonly_remount = 1;
 542                smp_wmb();
 543        }
 544        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 545                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 546                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 547        }
 548        unlock_mount_hash();
 549
 550        return err;
 551}
 552
 553static void free_vfsmnt(struct mount *mnt)
 554{
 555        kfree_const(mnt->mnt_devname);
 556#ifdef CONFIG_SMP
 557        free_percpu(mnt->mnt_pcp);
 558#endif
 559        kmem_cache_free(mnt_cache, mnt);
 560}
 561
 562static void delayed_free_vfsmnt(struct rcu_head *head)
 563{
 564        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 565}
 566
 567/* call under rcu_read_lock */
 568int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 569{
 570        struct mount *mnt;
 571        if (read_seqretry(&mount_lock, seq))
 572                return 1;
 573        if (bastard == NULL)
 574                return 0;
 575        mnt = real_mount(bastard);
 576        mnt_add_count(mnt, 1);
 577        smp_mb();                       // see mntput_no_expire()
 578        if (likely(!read_seqretry(&mount_lock, seq)))
 579                return 0;
 580        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 581                mnt_add_count(mnt, -1);
 582                return 1;
 583        }
 584        lock_mount_hash();
 585        if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 586                mnt_add_count(mnt, -1);
 587                unlock_mount_hash();
 588                return 1;
 589        }
 590        unlock_mount_hash();
 591        /* caller will mntput() */
 592        return -1;
 593}
 594
 595/* call under rcu_read_lock */
 596bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 597{
 598        int res = __legitimize_mnt(bastard, seq);
 599        if (likely(!res))
 600                return true;
 601        if (unlikely(res < 0)) {
 602                rcu_read_unlock();
 603                mntput(bastard);
 604                rcu_read_lock();
 605        }
 606        return false;
 607}
 608
 609/*
 610 * find the first mount at @dentry on vfsmount @mnt.
 611 * call under rcu_read_lock()
 612 */
 613struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 614{
 615        struct hlist_head *head = m_hash(mnt, dentry);
 616        struct mount *p;
 617
 618        hlist_for_each_entry_rcu(p, head, mnt_hash)
 619                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 620                        return p;
 621        return NULL;
 622}
 623
 624/*
 625 * lookup_mnt - Return the first child mount mounted at path
 626 *
 627 * "First" means first mounted chronologically.  If you create the
 628 * following mounts:
 629 *
 630 * mount /dev/sda1 /mnt
 631 * mount /dev/sda2 /mnt
 632 * mount /dev/sda3 /mnt
 633 *
 634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 635 * return successively the root dentry and vfsmount of /dev/sda1, then
 636 * /dev/sda2, then /dev/sda3, then NULL.
 637 *
 638 * lookup_mnt takes a reference to the found vfsmount.
 639 */
 640struct vfsmount *lookup_mnt(const struct path *path)
 641{
 642        struct mount *child_mnt;
 643        struct vfsmount *m;
 644        unsigned seq;
 645
 646        rcu_read_lock();
 647        do {
 648                seq = read_seqbegin(&mount_lock);
 649                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 650                m = child_mnt ? &child_mnt->mnt : NULL;
 651        } while (!legitimize_mnt(m, seq));
 652        rcu_read_unlock();
 653        return m;
 654}
 655
 656/*
 657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 658 *                         current mount namespace.
 659 *
 660 * The common case is dentries are not mountpoints at all and that
 661 * test is handled inline.  For the slow case when we are actually
 662 * dealing with a mountpoint of some kind, walk through all of the
 663 * mounts in the current mount namespace and test to see if the dentry
 664 * is a mountpoint.
 665 *
 666 * The mount_hashtable is not usable in the context because we
 667 * need to identify all mounts that may be in the current mount
 668 * namespace not just a mount that happens to have some specified
 669 * parent mount.
 670 */
 671bool __is_local_mountpoint(struct dentry *dentry)
 672{
 673        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 674        struct mount *mnt;
 675        bool is_covered = false;
 676
 677        if (!d_mountpoint(dentry))
 678                goto out;
 679
 680        down_read(&namespace_sem);
 681        list_for_each_entry(mnt, &ns->list, mnt_list) {
 682                is_covered = (mnt->mnt_mountpoint == dentry);
 683                if (is_covered)
 684                        break;
 685        }
 686        up_read(&namespace_sem);
 687out:
 688        return is_covered;
 689}
 690
 691static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 692{
 693        struct hlist_head *chain = mp_hash(dentry);
 694        struct mountpoint *mp;
 695
 696        hlist_for_each_entry(mp, chain, m_hash) {
 697                if (mp->m_dentry == dentry) {
 698                        /* might be worth a WARN_ON() */
 699                        if (d_unlinked(dentry))
 700                                return ERR_PTR(-ENOENT);
 701                        mp->m_count++;
 702                        return mp;
 703                }
 704        }
 705        return NULL;
 706}
 707
 708static struct mountpoint *get_mountpoint(struct dentry *dentry)
 709{
 710        struct mountpoint *mp, *new = NULL;
 711        int ret;
 712
 713        if (d_mountpoint(dentry)) {
 714mountpoint:
 715                read_seqlock_excl(&mount_lock);
 716                mp = lookup_mountpoint(dentry);
 717                read_sequnlock_excl(&mount_lock);
 718                if (mp)
 719                        goto done;
 720        }
 721
 722        if (!new)
 723                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 724        if (!new)
 725                return ERR_PTR(-ENOMEM);
 726
 727
 728        /* Exactly one processes may set d_mounted */
 729        ret = d_set_mounted(dentry);
 730
 731        /* Someone else set d_mounted? */
 732        if (ret == -EBUSY)
 733                goto mountpoint;
 734
 735        /* The dentry is not available as a mountpoint? */
 736        mp = ERR_PTR(ret);
 737        if (ret)
 738                goto done;
 739
 740        /* Add the new mountpoint to the hash table */
 741        read_seqlock_excl(&mount_lock);
 742        new->m_dentry = dentry;
 743        new->m_count = 1;
 744        hlist_add_head(&new->m_hash, mp_hash(dentry));
 745        INIT_HLIST_HEAD(&new->m_list);
 746        read_sequnlock_excl(&mount_lock);
 747
 748        mp = new;
 749        new = NULL;
 750done:
 751        kfree(new);
 752        return mp;
 753}
 754
 755static void put_mountpoint(struct mountpoint *mp)
 756{
 757        if (!--mp->m_count) {
 758                struct dentry *dentry = mp->m_dentry;
 759                BUG_ON(!hlist_empty(&mp->m_list));
 760                spin_lock(&dentry->d_lock);
 761                dentry->d_flags &= ~DCACHE_MOUNTED;
 762                spin_unlock(&dentry->d_lock);
 763                hlist_del(&mp->m_hash);
 764                kfree(mp);
 765        }
 766}
 767
 768static inline int check_mnt(struct mount *mnt)
 769{
 770        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 771}
 772
 773/*
 774 * vfsmount lock must be held for write
 775 */
 776static void touch_mnt_namespace(struct mnt_namespace *ns)
 777{
 778        if (ns) {
 779                ns->event = ++event;
 780                wake_up_interruptible(&ns->poll);
 781        }
 782}
 783
 784/*
 785 * vfsmount lock must be held for write
 786 */
 787static void __touch_mnt_namespace(struct mnt_namespace *ns)
 788{
 789        if (ns && ns->event != event) {
 790                ns->event = event;
 791                wake_up_interruptible(&ns->poll);
 792        }
 793}
 794
 795/*
 796 * vfsmount lock must be held for write
 797 */
 798static void unhash_mnt(struct mount *mnt)
 799{
 800        mnt->mnt_parent = mnt;
 801        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 802        list_del_init(&mnt->mnt_child);
 803        hlist_del_init_rcu(&mnt->mnt_hash);
 804        hlist_del_init(&mnt->mnt_mp_list);
 805        put_mountpoint(mnt->mnt_mp);
 806        mnt->mnt_mp = NULL;
 807}
 808
 809/*
 810 * vfsmount lock must be held for write
 811 */
 812static void detach_mnt(struct mount *mnt, struct path *old_path)
 813{
 814        old_path->dentry = mnt->mnt_mountpoint;
 815        old_path->mnt = &mnt->mnt_parent->mnt;
 816        unhash_mnt(mnt);
 817}
 818
 819/*
 820 * vfsmount lock must be held for write
 821 */
 822static void umount_mnt(struct mount *mnt)
 823{
 824        /* old mountpoint will be dropped when we can do that */
 825        mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
 826        unhash_mnt(mnt);
 827}
 828
 829/*
 830 * vfsmount lock must be held for write
 831 */
 832void mnt_set_mountpoint(struct mount *mnt,
 833                        struct mountpoint *mp,
 834                        struct mount *child_mnt)
 835{
 836        mp->m_count++;
 837        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 838        child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 839        child_mnt->mnt_parent = mnt;
 840        child_mnt->mnt_mp = mp;
 841        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 842}
 843
 844static void __attach_mnt(struct mount *mnt, struct mount *parent)
 845{
 846        hlist_add_head_rcu(&mnt->mnt_hash,
 847                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 848        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 849}
 850
 851/*
 852 * vfsmount lock must be held for write
 853 */
 854static void attach_mnt(struct mount *mnt,
 855                        struct mount *parent,
 856                        struct mountpoint *mp)
 857{
 858        mnt_set_mountpoint(parent, mp, mnt);
 859        __attach_mnt(mnt, parent);
 860}
 861
 862void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 863{
 864        struct mountpoint *old_mp = mnt->mnt_mp;
 865        struct dentry *old_mountpoint = mnt->mnt_mountpoint;
 866        struct mount *old_parent = mnt->mnt_parent;
 867
 868        list_del_init(&mnt->mnt_child);
 869        hlist_del_init(&mnt->mnt_mp_list);
 870        hlist_del_init_rcu(&mnt->mnt_hash);
 871
 872        attach_mnt(mnt, parent, mp);
 873
 874        put_mountpoint(old_mp);
 875
 876        /*
 877         * Safely avoid even the suggestion this code might sleep or
 878         * lock the mount hash by taking advantage of the knowledge that
 879         * mnt_change_mountpoint will not release the final reference
 880         * to a mountpoint.
 881         *
 882         * During mounting, the mount passed in as the parent mount will
 883         * continue to use the old mountpoint and during unmounting, the
 884         * old mountpoint will continue to exist until namespace_unlock,
 885         * which happens well after mnt_change_mountpoint.
 886         */
 887        spin_lock(&old_mountpoint->d_lock);
 888        old_mountpoint->d_lockref.count--;
 889        spin_unlock(&old_mountpoint->d_lock);
 890
 891        mnt_add_count(old_parent, -1);
 892}
 893
 894/*
 895 * vfsmount lock must be held for write
 896 */
 897static void commit_tree(struct mount *mnt)
 898{
 899        struct mount *parent = mnt->mnt_parent;
 900        struct mount *m;
 901        LIST_HEAD(head);
 902        struct mnt_namespace *n = parent->mnt_ns;
 903
 904        BUG_ON(parent == mnt);
 905
 906        list_add_tail(&head, &mnt->mnt_list);
 907        list_for_each_entry(m, &head, mnt_list)
 908                m->mnt_ns = n;
 909
 910        list_splice(&head, n->list.prev);
 911
 912        n->mounts += n->pending_mounts;
 913        n->pending_mounts = 0;
 914
 915        __attach_mnt(mnt, parent);
 916        touch_mnt_namespace(n);
 917}
 918
 919static struct mount *next_mnt(struct mount *p, struct mount *root)
 920{
 921        struct list_head *next = p->mnt_mounts.next;
 922        if (next == &p->mnt_mounts) {
 923                while (1) {
 924                        if (p == root)
 925                                return NULL;
 926                        next = p->mnt_child.next;
 927                        if (next != &p->mnt_parent->mnt_mounts)
 928                                break;
 929                        p = p->mnt_parent;
 930                }
 931        }
 932        return list_entry(next, struct mount, mnt_child);
 933}
 934
 935static struct mount *skip_mnt_tree(struct mount *p)
 936{
 937        struct list_head *prev = p->mnt_mounts.prev;
 938        while (prev != &p->mnt_mounts) {
 939                p = list_entry(prev, struct mount, mnt_child);
 940                prev = p->mnt_mounts.prev;
 941        }
 942        return p;
 943}
 944
 945struct vfsmount *
 946vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
 947{
 948        struct mount *mnt;
 949        struct dentry *root;
 950
 951        if (!type)
 952                return ERR_PTR(-ENODEV);
 953
 954        mnt = alloc_vfsmnt(name);
 955        if (!mnt)
 956                return ERR_PTR(-ENOMEM);
 957
 958        if (flags & SB_KERNMOUNT)
 959                mnt->mnt.mnt_flags = MNT_INTERNAL;
 960
 961        root = mount_fs(type, flags, name, data);
 962        if (IS_ERR(root)) {
 963                mnt_free_id(mnt);
 964                free_vfsmnt(mnt);
 965                return ERR_CAST(root);
 966        }
 967
 968        mnt->mnt.mnt_root = root;
 969        mnt->mnt.mnt_sb = root->d_sb;
 970        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 971        mnt->mnt_parent = mnt;
 972        lock_mount_hash();
 973        list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
 974        unlock_mount_hash();
 975        return &mnt->mnt;
 976}
 977EXPORT_SYMBOL_GPL(vfs_kern_mount);
 978
 979struct vfsmount *
 980vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
 981             const char *name, void *data)
 982{
 983        /* Until it is worked out how to pass the user namespace
 984         * through from the parent mount to the submount don't support
 985         * unprivileged mounts with submounts.
 986         */
 987        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
 988                return ERR_PTR(-EPERM);
 989
 990        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
 991}
 992EXPORT_SYMBOL_GPL(vfs_submount);
 993
 994static struct mount *clone_mnt(struct mount *old, struct dentry *root,
 995                                        int flag)
 996{
 997        struct super_block *sb = old->mnt.mnt_sb;
 998        struct mount *mnt;
 999        int err;
1000
1001        mnt = alloc_vfsmnt(old->mnt_devname);
1002        if (!mnt)
1003                return ERR_PTR(-ENOMEM);
1004
1005        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1006                mnt->mnt_group_id = 0; /* not a peer of original */
1007        else
1008                mnt->mnt_group_id = old->mnt_group_id;
1009
1010        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1011                err = mnt_alloc_group_id(mnt);
1012                if (err)
1013                        goto out_free;
1014        }
1015
1016        mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1017        mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1018        /* Don't allow unprivileged users to change mount flags */
1019        if (flag & CL_UNPRIVILEGED) {
1020                mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1021
1022                if (mnt->mnt.mnt_flags & MNT_READONLY)
1023                        mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1024
1025                if (mnt->mnt.mnt_flags & MNT_NODEV)
1026                        mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1027
1028                if (mnt->mnt.mnt_flags & MNT_NOSUID)
1029                        mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1030
1031                if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1032                        mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1033        }
1034
1035        /* Don't allow unprivileged users to reveal what is under a mount */
1036        if ((flag & CL_UNPRIVILEGED) &&
1037            (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1038                mnt->mnt.mnt_flags |= MNT_LOCKED;
1039
1040        atomic_inc(&sb->s_active);
1041        mnt->mnt.mnt_sb = sb;
1042        mnt->mnt.mnt_root = dget(root);
1043        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1044        mnt->mnt_parent = mnt;
1045        lock_mount_hash();
1046        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1047        unlock_mount_hash();
1048
1049        if ((flag & CL_SLAVE) ||
1050            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1051                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1052                mnt->mnt_master = old;
1053                CLEAR_MNT_SHARED(mnt);
1054        } else if (!(flag & CL_PRIVATE)) {
1055                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1056                        list_add(&mnt->mnt_share, &old->mnt_share);
1057                if (IS_MNT_SLAVE(old))
1058                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1059                mnt->mnt_master = old->mnt_master;
1060        } else {
1061                CLEAR_MNT_SHARED(mnt);
1062        }
1063        if (flag & CL_MAKE_SHARED)
1064                set_mnt_shared(mnt);
1065
1066        /* stick the duplicate mount on the same expiry list
1067         * as the original if that was on one */
1068        if (flag & CL_EXPIRE) {
1069                if (!list_empty(&old->mnt_expire))
1070                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1071        }
1072
1073        return mnt;
1074
1075 out_free:
1076        mnt_free_id(mnt);
1077        free_vfsmnt(mnt);
1078        return ERR_PTR(err);
1079}
1080
1081static void cleanup_mnt(struct mount *mnt)
1082{
1083        /*
1084         * This probably indicates that somebody messed
1085         * up a mnt_want/drop_write() pair.  If this
1086         * happens, the filesystem was probably unable
1087         * to make r/w->r/o transitions.
1088         */
1089        /*
1090         * The locking used to deal with mnt_count decrement provides barriers,
1091         * so mnt_get_writers() below is safe.
1092         */
1093        WARN_ON(mnt_get_writers(mnt));
1094        if (unlikely(mnt->mnt_pins.first))
1095                mnt_pin_kill(mnt);
1096        fsnotify_vfsmount_delete(&mnt->mnt);
1097        dput(mnt->mnt.mnt_root);
1098        deactivate_super(mnt->mnt.mnt_sb);
1099        mnt_free_id(mnt);
1100        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1101}
1102
1103static void __cleanup_mnt(struct rcu_head *head)
1104{
1105        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1106}
1107
1108static LLIST_HEAD(delayed_mntput_list);
1109static void delayed_mntput(struct work_struct *unused)
1110{
1111        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1112        struct mount *m, *t;
1113
1114        llist_for_each_entry_safe(m, t, node, mnt_llist)
1115                cleanup_mnt(m);
1116}
1117static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1118
1119static void mntput_no_expire(struct mount *mnt)
1120{
1121        rcu_read_lock();
1122        if (likely(READ_ONCE(mnt->mnt_ns))) {
1123                /*
1124                 * Since we don't do lock_mount_hash() here,
1125                 * ->mnt_ns can change under us.  However, if it's
1126                 * non-NULL, then there's a reference that won't
1127                 * be dropped until after an RCU delay done after
1128                 * turning ->mnt_ns NULL.  So if we observe it
1129                 * non-NULL under rcu_read_lock(), the reference
1130                 * we are dropping is not the final one.
1131                 */
1132                mnt_add_count(mnt, -1);
1133                rcu_read_unlock();
1134                return;
1135        }
1136        lock_mount_hash();
1137        /*
1138         * make sure that if __legitimize_mnt() has not seen us grab
1139         * mount_lock, we'll see their refcount increment here.
1140         */
1141        smp_mb();
1142        mnt_add_count(mnt, -1);
1143        if (mnt_get_count(mnt)) {
1144                rcu_read_unlock();
1145                unlock_mount_hash();
1146                return;
1147        }
1148        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1149                rcu_read_unlock();
1150                unlock_mount_hash();
1151                return;
1152        }
1153        mnt->mnt.mnt_flags |= MNT_DOOMED;
1154        rcu_read_unlock();
1155
1156        list_del(&mnt->mnt_instance);
1157
1158        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1159                struct mount *p, *tmp;
1160                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1161                        umount_mnt(p);
1162                }
1163        }
1164        unlock_mount_hash();
1165
1166        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1167                struct task_struct *task = current;
1168                if (likely(!(task->flags & PF_KTHREAD))) {
1169                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1170                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1171                                return;
1172                }
1173                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1174                        schedule_delayed_work(&delayed_mntput_work, 1);
1175                return;
1176        }
1177        cleanup_mnt(mnt);
1178}
1179
1180void mntput(struct vfsmount *mnt)
1181{
1182        if (mnt) {
1183                struct mount *m = real_mount(mnt);
1184                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1185                if (unlikely(m->mnt_expiry_mark))
1186                        m->mnt_expiry_mark = 0;
1187                mntput_no_expire(m);
1188        }
1189}
1190EXPORT_SYMBOL(mntput);
1191
1192struct vfsmount *mntget(struct vfsmount *mnt)
1193{
1194        if (mnt)
1195                mnt_add_count(real_mount(mnt), 1);
1196        return mnt;
1197}
1198EXPORT_SYMBOL(mntget);
1199
1200/* path_is_mountpoint() - Check if path is a mount in the current
1201 *                          namespace.
1202 *
1203 *  d_mountpoint() can only be used reliably to establish if a dentry is
1204 *  not mounted in any namespace and that common case is handled inline.
1205 *  d_mountpoint() isn't aware of the possibility there may be multiple
1206 *  mounts using a given dentry in a different namespace. This function
1207 *  checks if the passed in path is a mountpoint rather than the dentry
1208 *  alone.
1209 */
1210bool path_is_mountpoint(const struct path *path)
1211{
1212        unsigned seq;
1213        bool res;
1214
1215        if (!d_mountpoint(path->dentry))
1216                return false;
1217
1218        rcu_read_lock();
1219        do {
1220                seq = read_seqbegin(&mount_lock);
1221                res = __path_is_mountpoint(path);
1222        } while (read_seqretry(&mount_lock, seq));
1223        rcu_read_unlock();
1224
1225        return res;
1226}
1227EXPORT_SYMBOL(path_is_mountpoint);
1228
1229struct vfsmount *mnt_clone_internal(const struct path *path)
1230{
1231        struct mount *p;
1232        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233        if (IS_ERR(p))
1234                return ERR_CAST(p);
1235        p->mnt.mnt_flags |= MNT_INTERNAL;
1236        return &p->mnt;
1237}
1238
1239#ifdef CONFIG_PROC_FS
1240/* iterator; we want it to have access to namespace_sem, thus here... */
1241static void *m_start(struct seq_file *m, loff_t *pos)
1242{
1243        struct proc_mounts *p = m->private;
1244
1245        down_read(&namespace_sem);
1246        if (p->cached_event == p->ns->event) {
1247                void *v = p->cached_mount;
1248                if (*pos == p->cached_index)
1249                        return v;
1250                if (*pos == p->cached_index + 1) {
1251                        v = seq_list_next(v, &p->ns->list, &p->cached_index);
1252                        return p->cached_mount = v;
1253                }
1254        }
1255
1256        p->cached_event = p->ns->event;
1257        p->cached_mount = seq_list_start(&p->ns->list, *pos);
1258        p->cached_index = *pos;
1259        return p->cached_mount;
1260}
1261
1262static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1263{
1264        struct proc_mounts *p = m->private;
1265
1266        p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1267        p->cached_index = *pos;
1268        return p->cached_mount;
1269}
1270
1271static void m_stop(struct seq_file *m, void *v)
1272{
1273        up_read(&namespace_sem);
1274}
1275
1276static int m_show(struct seq_file *m, void *v)
1277{
1278        struct proc_mounts *p = m->private;
1279        struct mount *r = list_entry(v, struct mount, mnt_list);
1280        return p->show(m, &r->mnt);
1281}
1282
1283const struct seq_operations mounts_op = {
1284        .start  = m_start,
1285        .next   = m_next,
1286        .stop   = m_stop,
1287        .show   = m_show,
1288};
1289#endif  /* CONFIG_PROC_FS */
1290
1291/**
1292 * may_umount_tree - check if a mount tree is busy
1293 * @mnt: root of mount tree
1294 *
1295 * This is called to check if a tree of mounts has any
1296 * open files, pwds, chroots or sub mounts that are
1297 * busy.
1298 */
1299int may_umount_tree(struct vfsmount *m)
1300{
1301        struct mount *mnt = real_mount(m);
1302        int actual_refs = 0;
1303        int minimum_refs = 0;
1304        struct mount *p;
1305        BUG_ON(!m);
1306
1307        /* write lock needed for mnt_get_count */
1308        lock_mount_hash();
1309        for (p = mnt; p; p = next_mnt(p, mnt)) {
1310                actual_refs += mnt_get_count(p);
1311                minimum_refs += 2;
1312        }
1313        unlock_mount_hash();
1314
1315        if (actual_refs > minimum_refs)
1316                return 0;
1317
1318        return 1;
1319}
1320
1321EXPORT_SYMBOL(may_umount_tree);
1322
1323/**
1324 * may_umount - check if a mount point is busy
1325 * @mnt: root of mount
1326 *
1327 * This is called to check if a mount point has any
1328 * open files, pwds, chroots or sub mounts. If the
1329 * mount has sub mounts this will return busy
1330 * regardless of whether the sub mounts are busy.
1331 *
1332 * Doesn't take quota and stuff into account. IOW, in some cases it will
1333 * give false negatives. The main reason why it's here is that we need
1334 * a non-destructive way to look for easily umountable filesystems.
1335 */
1336int may_umount(struct vfsmount *mnt)
1337{
1338        int ret = 1;
1339        down_read(&namespace_sem);
1340        lock_mount_hash();
1341        if (propagate_mount_busy(real_mount(mnt), 2))
1342                ret = 0;
1343        unlock_mount_hash();
1344        up_read(&namespace_sem);
1345        return ret;
1346}
1347
1348EXPORT_SYMBOL(may_umount);
1349
1350static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
1351
1352static void namespace_unlock(void)
1353{
1354        struct hlist_head head;
1355
1356        hlist_move_list(&unmounted, &head);
1357
1358        up_write(&namespace_sem);
1359
1360        if (likely(hlist_empty(&head)))
1361                return;
1362
1363        synchronize_rcu();
1364
1365        group_pin_kill(&head);
1366}
1367
1368static inline void namespace_lock(void)
1369{
1370        down_write(&namespace_sem);
1371}
1372
1373enum umount_tree_flags {
1374        UMOUNT_SYNC = 1,
1375        UMOUNT_PROPAGATE = 2,
1376        UMOUNT_CONNECTED = 4,
1377};
1378
1379static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1380{
1381        /* Leaving mounts connected is only valid for lazy umounts */
1382        if (how & UMOUNT_SYNC)
1383                return true;
1384
1385        /* A mount without a parent has nothing to be connected to */
1386        if (!mnt_has_parent(mnt))
1387                return true;
1388
1389        /* Because the reference counting rules change when mounts are
1390         * unmounted and connected, umounted mounts may not be
1391         * connected to mounted mounts.
1392         */
1393        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1394                return true;
1395
1396        /* Has it been requested that the mount remain connected? */
1397        if (how & UMOUNT_CONNECTED)
1398                return false;
1399
1400        /* Is the mount locked such that it needs to remain connected? */
1401        if (IS_MNT_LOCKED(mnt))
1402                return false;
1403
1404        /* By default disconnect the mount */
1405        return true;
1406}
1407
1408/*
1409 * mount_lock must be held
1410 * namespace_sem must be held for write
1411 */
1412static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1413{
1414        LIST_HEAD(tmp_list);
1415        struct mount *p;
1416
1417        if (how & UMOUNT_PROPAGATE)
1418                propagate_mount_unlock(mnt);
1419
1420        /* Gather the mounts to umount */
1421        for (p = mnt; p; p = next_mnt(p, mnt)) {
1422                p->mnt.mnt_flags |= MNT_UMOUNT;
1423                list_move(&p->mnt_list, &tmp_list);
1424        }
1425
1426        /* Hide the mounts from mnt_mounts */
1427        list_for_each_entry(p, &tmp_list, mnt_list) {
1428                list_del_init(&p->mnt_child);
1429        }
1430
1431        /* Add propogated mounts to the tmp_list */
1432        if (how & UMOUNT_PROPAGATE)
1433                propagate_umount(&tmp_list);
1434
1435        while (!list_empty(&tmp_list)) {
1436                struct mnt_namespace *ns;
1437                bool disconnect;
1438                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1439                list_del_init(&p->mnt_expire);
1440                list_del_init(&p->mnt_list);
1441                ns = p->mnt_ns;
1442                if (ns) {
1443                        ns->mounts--;
1444                        __touch_mnt_namespace(ns);
1445                }
1446                p->mnt_ns = NULL;
1447                if (how & UMOUNT_SYNC)
1448                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1449
1450                disconnect = disconnect_mount(p, how);
1451
1452                pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1453                                 disconnect ? &unmounted : NULL);
1454                if (mnt_has_parent(p)) {
1455                        mnt_add_count(p->mnt_parent, -1);
1456                        if (!disconnect) {
1457                                /* Don't forget about p */
1458                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1459                        } else {
1460                                umount_mnt(p);
1461                        }
1462                }
1463                change_mnt_propagation(p, MS_PRIVATE);
1464        }
1465}
1466
1467static void shrink_submounts(struct mount *mnt);
1468
1469static int do_umount(struct mount *mnt, int flags)
1470{
1471        struct super_block *sb = mnt->mnt.mnt_sb;
1472        int retval;
1473
1474        retval = security_sb_umount(&mnt->mnt, flags);
1475        if (retval)
1476                return retval;
1477
1478        /*
1479         * Allow userspace to request a mountpoint be expired rather than
1480         * unmounting unconditionally. Unmount only happens if:
1481         *  (1) the mark is already set (the mark is cleared by mntput())
1482         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1483         */
1484        if (flags & MNT_EXPIRE) {
1485                if (&mnt->mnt == current->fs->root.mnt ||
1486                    flags & (MNT_FORCE | MNT_DETACH))
1487                        return -EINVAL;
1488
1489                /*
1490                 * probably don't strictly need the lock here if we examined
1491                 * all race cases, but it's a slowpath.
1492                 */
1493                lock_mount_hash();
1494                if (mnt_get_count(mnt) != 2) {
1495                        unlock_mount_hash();
1496                        return -EBUSY;
1497                }
1498                unlock_mount_hash();
1499
1500                if (!xchg(&mnt->mnt_expiry_mark, 1))
1501                        return -EAGAIN;
1502        }
1503
1504        /*
1505         * If we may have to abort operations to get out of this
1506         * mount, and they will themselves hold resources we must
1507         * allow the fs to do things. In the Unix tradition of
1508         * 'Gee thats tricky lets do it in userspace' the umount_begin
1509         * might fail to complete on the first run through as other tasks
1510         * must return, and the like. Thats for the mount program to worry
1511         * about for the moment.
1512         */
1513
1514        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1515                sb->s_op->umount_begin(sb);
1516        }
1517
1518        /*
1519         * No sense to grab the lock for this test, but test itself looks
1520         * somewhat bogus. Suggestions for better replacement?
1521         * Ho-hum... In principle, we might treat that as umount + switch
1522         * to rootfs. GC would eventually take care of the old vfsmount.
1523         * Actually it makes sense, especially if rootfs would contain a
1524         * /reboot - static binary that would close all descriptors and
1525         * call reboot(9). Then init(8) could umount root and exec /reboot.
1526         */
1527        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1528                /*
1529                 * Special case for "unmounting" root ...
1530                 * we just try to remount it readonly.
1531                 */
1532                if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1533                        return -EPERM;
1534                down_write(&sb->s_umount);
1535                if (!sb_rdonly(sb))
1536                        retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1537                up_write(&sb->s_umount);
1538                return retval;
1539        }
1540
1541        namespace_lock();
1542        lock_mount_hash();
1543        event++;
1544
1545        if (flags & MNT_DETACH) {
1546                if (!list_empty(&mnt->mnt_list))
1547                        umount_tree(mnt, UMOUNT_PROPAGATE);
1548                retval = 0;
1549        } else {
1550                shrink_submounts(mnt);
1551                retval = -EBUSY;
1552                if (!propagate_mount_busy(mnt, 2)) {
1553                        if (!list_empty(&mnt->mnt_list))
1554                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1555                        retval = 0;
1556                }
1557        }
1558        unlock_mount_hash();
1559        namespace_unlock();
1560        return retval;
1561}
1562
1563/*
1564 * __detach_mounts - lazily unmount all mounts on the specified dentry
1565 *
1566 * During unlink, rmdir, and d_drop it is possible to loose the path
1567 * to an existing mountpoint, and wind up leaking the mount.
1568 * detach_mounts allows lazily unmounting those mounts instead of
1569 * leaking them.
1570 *
1571 * The caller may hold dentry->d_inode->i_mutex.
1572 */
1573void __detach_mounts(struct dentry *dentry)
1574{
1575        struct mountpoint *mp;
1576        struct mount *mnt;
1577
1578        namespace_lock();
1579        lock_mount_hash();
1580        mp = lookup_mountpoint(dentry);
1581        if (IS_ERR_OR_NULL(mp))
1582                goto out_unlock;
1583
1584        event++;
1585        while (!hlist_empty(&mp->m_list)) {
1586                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1587                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1588                        hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1589                        umount_mnt(mnt);
1590                }
1591                else umount_tree(mnt, UMOUNT_CONNECTED);
1592        }
1593        put_mountpoint(mp);
1594out_unlock:
1595        unlock_mount_hash();
1596        namespace_unlock();
1597}
1598
1599/*
1600 * Is the caller allowed to modify his namespace?
1601 */
1602static inline bool may_mount(void)
1603{
1604        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1605}
1606
1607static inline bool may_mandlock(void)
1608{
1609#ifndef CONFIG_MANDATORY_FILE_LOCKING
1610        return false;
1611#endif
1612        return capable(CAP_SYS_ADMIN);
1613}
1614
1615/*
1616 * Now umount can handle mount points as well as block devices.
1617 * This is important for filesystems which use unnamed block devices.
1618 *
1619 * We now support a flag for forced unmount like the other 'big iron'
1620 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1621 */
1622
1623int ksys_umount(char __user *name, int flags)
1624{
1625        struct path path;
1626        struct mount *mnt;
1627        int retval;
1628        int lookup_flags = 0;
1629
1630        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1631                return -EINVAL;
1632
1633        if (!may_mount())
1634                return -EPERM;
1635
1636        if (!(flags & UMOUNT_NOFOLLOW))
1637                lookup_flags |= LOOKUP_FOLLOW;
1638
1639        retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1640        if (retval)
1641                goto out;
1642        mnt = real_mount(path.mnt);
1643        retval = -EINVAL;
1644        if (path.dentry != path.mnt->mnt_root)
1645                goto dput_and_out;
1646        if (!check_mnt(mnt))
1647                goto dput_and_out;
1648        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1649                goto dput_and_out;
1650        retval = -EPERM;
1651        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1652                goto dput_and_out;
1653
1654        retval = do_umount(mnt, flags);
1655dput_and_out:
1656        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1657        dput(path.dentry);
1658        mntput_no_expire(mnt);
1659out:
1660        return retval;
1661}
1662
1663SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1664{
1665        return ksys_umount(name, flags);
1666}
1667
1668#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1669
1670/*
1671 *      The 2.0 compatible umount. No flags.
1672 */
1673SYSCALL_DEFINE1(oldumount, char __user *, name)
1674{
1675        return ksys_umount(name, 0);
1676}
1677
1678#endif
1679
1680static bool is_mnt_ns_file(struct dentry *dentry)
1681{
1682        /* Is this a proxy for a mount namespace? */
1683        return dentry->d_op == &ns_dentry_operations &&
1684               dentry->d_fsdata == &mntns_operations;
1685}
1686
1687struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1688{
1689        return container_of(ns, struct mnt_namespace, ns);
1690}
1691
1692static bool mnt_ns_loop(struct dentry *dentry)
1693{
1694        /* Could bind mounting the mount namespace inode cause a
1695         * mount namespace loop?
1696         */
1697        struct mnt_namespace *mnt_ns;
1698        if (!is_mnt_ns_file(dentry))
1699                return false;
1700
1701        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1702        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1703}
1704
1705struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1706                                        int flag)
1707{
1708        struct mount *res, *p, *q, *r, *parent;
1709
1710        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1711                return ERR_PTR(-EINVAL);
1712
1713        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1714                return ERR_PTR(-EINVAL);
1715
1716        res = q = clone_mnt(mnt, dentry, flag);
1717        if (IS_ERR(q))
1718                return q;
1719
1720        q->mnt_mountpoint = mnt->mnt_mountpoint;
1721
1722        p = mnt;
1723        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1724                struct mount *s;
1725                if (!is_subdir(r->mnt_mountpoint, dentry))
1726                        continue;
1727
1728                for (s = r; s; s = next_mnt(s, r)) {
1729                        if (!(flag & CL_COPY_UNBINDABLE) &&
1730                            IS_MNT_UNBINDABLE(s)) {
1731                                s = skip_mnt_tree(s);
1732                                continue;
1733                        }
1734                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1735                            is_mnt_ns_file(s->mnt.mnt_root)) {
1736                                s = skip_mnt_tree(s);
1737                                continue;
1738                        }
1739                        while (p != s->mnt_parent) {
1740                                p = p->mnt_parent;
1741                                q = q->mnt_parent;
1742                        }
1743                        p = s;
1744                        parent = q;
1745                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1746                        if (IS_ERR(q))
1747                                goto out;
1748                        lock_mount_hash();
1749                        list_add_tail(&q->mnt_list, &res->mnt_list);
1750                        attach_mnt(q, parent, p->mnt_mp);
1751                        unlock_mount_hash();
1752                }
1753        }
1754        return res;
1755out:
1756        if (res) {
1757                lock_mount_hash();
1758                umount_tree(res, UMOUNT_SYNC);
1759                unlock_mount_hash();
1760        }
1761        return q;
1762}
1763
1764/* Caller should check returned pointer for errors */
1765
1766struct vfsmount *collect_mounts(const struct path *path)
1767{
1768        struct mount *tree;
1769        namespace_lock();
1770        if (!check_mnt(real_mount(path->mnt)))
1771                tree = ERR_PTR(-EINVAL);
1772        else
1773                tree = copy_tree(real_mount(path->mnt), path->dentry,
1774                                 CL_COPY_ALL | CL_PRIVATE);
1775        namespace_unlock();
1776        if (IS_ERR(tree))
1777                return ERR_CAST(tree);
1778        return &tree->mnt;
1779}
1780
1781void drop_collected_mounts(struct vfsmount *mnt)
1782{
1783        namespace_lock();
1784        lock_mount_hash();
1785        umount_tree(real_mount(mnt), UMOUNT_SYNC);
1786        unlock_mount_hash();
1787        namespace_unlock();
1788}
1789
1790/**
1791 * clone_private_mount - create a private clone of a path
1792 *
1793 * This creates a new vfsmount, which will be the clone of @path.  The new will
1794 * not be attached anywhere in the namespace and will be private (i.e. changes
1795 * to the originating mount won't be propagated into this).
1796 *
1797 * Release with mntput().
1798 */
1799struct vfsmount *clone_private_mount(const struct path *path)
1800{
1801        struct mount *old_mnt = real_mount(path->mnt);
1802        struct mount *new_mnt;
1803
1804        if (IS_MNT_UNBINDABLE(old_mnt))
1805                return ERR_PTR(-EINVAL);
1806
1807        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1808        if (IS_ERR(new_mnt))
1809                return ERR_CAST(new_mnt);
1810
1811        return &new_mnt->mnt;
1812}
1813EXPORT_SYMBOL_GPL(clone_private_mount);
1814
1815int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1816                   struct vfsmount *root)
1817{
1818        struct mount *mnt;
1819        int res = f(root, arg);
1820        if (res)
1821                return res;
1822        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1823                res = f(&mnt->mnt, arg);
1824                if (res)
1825                        return res;
1826        }
1827        return 0;
1828}
1829
1830static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1831{
1832        struct mount *p;
1833
1834        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1835                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1836                        mnt_release_group_id(p);
1837        }
1838}
1839
1840static int invent_group_ids(struct mount *mnt, bool recurse)
1841{
1842        struct mount *p;
1843
1844        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1845                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1846                        int err = mnt_alloc_group_id(p);
1847                        if (err) {
1848                                cleanup_group_ids(mnt, p);
1849                                return err;
1850                        }
1851                }
1852        }
1853
1854        return 0;
1855}
1856
1857int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1858{
1859        unsigned int max = READ_ONCE(sysctl_mount_max);
1860        unsigned int mounts = 0, old, pending, sum;
1861        struct mount *p;
1862
1863        for (p = mnt; p; p = next_mnt(p, mnt))
1864                mounts++;
1865
1866        old = ns->mounts;
1867        pending = ns->pending_mounts;
1868        sum = old + pending;
1869        if ((old > sum) ||
1870            (pending > sum) ||
1871            (max < sum) ||
1872            (mounts > (max - sum)))
1873                return -ENOSPC;
1874
1875        ns->pending_mounts = pending + mounts;
1876        return 0;
1877}
1878
1879/*
1880 *  @source_mnt : mount tree to be attached
1881 *  @nd         : place the mount tree @source_mnt is attached
1882 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1883 *                 store the parent mount and mountpoint dentry.
1884 *                 (done when source_mnt is moved)
1885 *
1886 *  NOTE: in the table below explains the semantics when a source mount
1887 *  of a given type is attached to a destination mount of a given type.
1888 * ---------------------------------------------------------------------------
1889 * |         BIND MOUNT OPERATION                                            |
1890 * |**************************************************************************
1891 * | source-->| shared        |       private  |       slave    | unbindable |
1892 * | dest     |               |                |                |            |
1893 * |   |      |               |                |                |            |
1894 * |   v      |               |                |                |            |
1895 * |**************************************************************************
1896 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1897 * |          |               |                |                |            |
1898 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1899 * ***************************************************************************
1900 * A bind operation clones the source mount and mounts the clone on the
1901 * destination mount.
1902 *
1903 * (++)  the cloned mount is propagated to all the mounts in the propagation
1904 *       tree of the destination mount and the cloned mount is added to
1905 *       the peer group of the source mount.
1906 * (+)   the cloned mount is created under the destination mount and is marked
1907 *       as shared. The cloned mount is added to the peer group of the source
1908 *       mount.
1909 * (+++) the mount is propagated to all the mounts in the propagation tree
1910 *       of the destination mount and the cloned mount is made slave
1911 *       of the same master as that of the source mount. The cloned mount
1912 *       is marked as 'shared and slave'.
1913 * (*)   the cloned mount is made a slave of the same master as that of the
1914 *       source mount.
1915 *
1916 * ---------------------------------------------------------------------------
1917 * |                    MOVE MOUNT OPERATION                                 |
1918 * |**************************************************************************
1919 * | source-->| shared        |       private  |       slave    | unbindable |
1920 * | dest     |               |                |                |            |
1921 * |   |      |               |                |                |            |
1922 * |   v      |               |                |                |            |
1923 * |**************************************************************************
1924 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1925 * |          |               |                |                |            |
1926 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1927 * ***************************************************************************
1928 *
1929 * (+)  the mount is moved to the destination. And is then propagated to
1930 *      all the mounts in the propagation tree of the destination mount.
1931 * (+*)  the mount is moved to the destination.
1932 * (+++)  the mount is moved to the destination and is then propagated to
1933 *      all the mounts belonging to the destination mount's propagation tree.
1934 *      the mount is marked as 'shared and slave'.
1935 * (*)  the mount continues to be a slave at the new location.
1936 *
1937 * if the source mount is a tree, the operations explained above is
1938 * applied to each mount in the tree.
1939 * Must be called without spinlocks held, since this function can sleep
1940 * in allocations.
1941 */
1942static int attach_recursive_mnt(struct mount *source_mnt,
1943                        struct mount *dest_mnt,
1944                        struct mountpoint *dest_mp,
1945                        struct path *parent_path)
1946{
1947        HLIST_HEAD(tree_list);
1948        struct mnt_namespace *ns = dest_mnt->mnt_ns;
1949        struct mountpoint *smp;
1950        struct mount *child, *p;
1951        struct hlist_node *n;
1952        int err;
1953
1954        /* Preallocate a mountpoint in case the new mounts need
1955         * to be tucked under other mounts.
1956         */
1957        smp = get_mountpoint(source_mnt->mnt.mnt_root);
1958        if (IS_ERR(smp))
1959                return PTR_ERR(smp);
1960
1961        /* Is there space to add these mounts to the mount namespace? */
1962        if (!parent_path) {
1963                err = count_mounts(ns, source_mnt);
1964                if (err)
1965                        goto out;
1966        }
1967
1968        if (IS_MNT_SHARED(dest_mnt)) {
1969                err = invent_group_ids(source_mnt, true);
1970                if (err)
1971                        goto out;
1972                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1973                lock_mount_hash();
1974                if (err)
1975                        goto out_cleanup_ids;
1976                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1977                        set_mnt_shared(p);
1978        } else {
1979                lock_mount_hash();
1980        }
1981        if (parent_path) {
1982                detach_mnt(source_mnt, parent_path);
1983                attach_mnt(source_mnt, dest_mnt, dest_mp);
1984                touch_mnt_namespace(source_mnt->mnt_ns);
1985        } else {
1986                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1987                commit_tree(source_mnt);
1988        }
1989
1990        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1991                struct mount *q;
1992                hlist_del_init(&child->mnt_hash);
1993                q = __lookup_mnt(&child->mnt_parent->mnt,
1994                                 child->mnt_mountpoint);
1995                if (q)
1996                        mnt_change_mountpoint(child, smp, q);
1997                commit_tree(child);
1998        }
1999        put_mountpoint(smp);
2000        unlock_mount_hash();
2001
2002        return 0;
2003
2004 out_cleanup_ids:
2005        while (!hlist_empty(&tree_list)) {
2006                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2007                child->mnt_parent->mnt_ns->pending_mounts = 0;
2008                umount_tree(child, UMOUNT_SYNC);
2009        }
2010        unlock_mount_hash();
2011        cleanup_group_ids(source_mnt, NULL);
2012 out:
2013        ns->pending_mounts = 0;
2014
2015        read_seqlock_excl(&mount_lock);
2016        put_mountpoint(smp);
2017        read_sequnlock_excl(&mount_lock);
2018
2019        return err;
2020}
2021
2022static struct mountpoint *lock_mount(struct path *path)
2023{
2024        struct vfsmount *mnt;
2025        struct dentry *dentry = path->dentry;
2026retry:
2027        inode_lock(dentry->d_inode);
2028        if (unlikely(cant_mount(dentry))) {
2029                inode_unlock(dentry->d_inode);
2030                return ERR_PTR(-ENOENT);
2031        }
2032        namespace_lock();
2033        mnt = lookup_mnt(path);
2034        if (likely(!mnt)) {
2035                struct mountpoint *mp = get_mountpoint(dentry);
2036                if (IS_ERR(mp)) {
2037                        namespace_unlock();
2038                        inode_unlock(dentry->d_inode);
2039                        return mp;
2040                }
2041                return mp;
2042        }
2043        namespace_unlock();
2044        inode_unlock(path->dentry->d_inode);
2045        path_put(path);
2046        path->mnt = mnt;
2047        dentry = path->dentry = dget(mnt->mnt_root);
2048        goto retry;
2049}
2050
2051static void unlock_mount(struct mountpoint *where)
2052{
2053        struct dentry *dentry = where->m_dentry;
2054
2055        read_seqlock_excl(&mount_lock);
2056        put_mountpoint(where);
2057        read_sequnlock_excl(&mount_lock);
2058
2059        namespace_unlock();
2060        inode_unlock(dentry->d_inode);
2061}
2062
2063static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2064{
2065        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2066                return -EINVAL;
2067
2068        if (d_is_dir(mp->m_dentry) !=
2069              d_is_dir(mnt->mnt.mnt_root))
2070                return -ENOTDIR;
2071
2072        return attach_recursive_mnt(mnt, p, mp, NULL);
2073}
2074
2075/*
2076 * Sanity check the flags to change_mnt_propagation.
2077 */
2078
2079static int flags_to_propagation_type(int ms_flags)
2080{
2081        int type = ms_flags & ~(MS_REC | MS_SILENT);
2082
2083        /* Fail if any non-propagation flags are set */
2084        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2085                return 0;
2086        /* Only one propagation flag should be set */
2087        if (!is_power_of_2(type))
2088                return 0;
2089        return type;
2090}
2091
2092/*
2093 * recursively change the type of the mountpoint.
2094 */
2095static int do_change_type(struct path *path, int ms_flags)
2096{
2097        struct mount *m;
2098        struct mount *mnt = real_mount(path->mnt);
2099        int recurse = ms_flags & MS_REC;
2100        int type;
2101        int err = 0;
2102
2103        if (path->dentry != path->mnt->mnt_root)
2104                return -EINVAL;
2105
2106        type = flags_to_propagation_type(ms_flags);
2107        if (!type)
2108                return -EINVAL;
2109
2110        namespace_lock();
2111        if (type == MS_SHARED) {
2112                err = invent_group_ids(mnt, recurse);
2113                if (err)
2114                        goto out_unlock;
2115        }
2116
2117        lock_mount_hash();
2118        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2119                change_mnt_propagation(m, type);
2120        unlock_mount_hash();
2121
2122 out_unlock:
2123        namespace_unlock();
2124        return err;
2125}
2126
2127static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2128{
2129        struct mount *child;
2130        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2131                if (!is_subdir(child->mnt_mountpoint, dentry))
2132                        continue;
2133
2134                if (child->mnt.mnt_flags & MNT_LOCKED)
2135                        return true;
2136        }
2137        return false;
2138}
2139
2140/*
2141 * do loopback mount.
2142 */
2143static int do_loopback(struct path *path, const char *old_name,
2144                                int recurse)
2145{
2146        struct path old_path;
2147        struct mount *mnt = NULL, *old, *parent;
2148        struct mountpoint *mp;
2149        int err;
2150        if (!old_name || !*old_name)
2151                return -EINVAL;
2152        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2153        if (err)
2154                return err;
2155
2156        err = -EINVAL;
2157        if (mnt_ns_loop(old_path.dentry))
2158                goto out;
2159
2160        mp = lock_mount(path);
2161        err = PTR_ERR(mp);
2162        if (IS_ERR(mp))
2163                goto out;
2164
2165        old = real_mount(old_path.mnt);
2166        parent = real_mount(path->mnt);
2167
2168        err = -EINVAL;
2169        if (IS_MNT_UNBINDABLE(old))
2170                goto out2;
2171
2172        if (!check_mnt(parent))
2173                goto out2;
2174
2175        if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2176                goto out2;
2177
2178        if (!recurse && has_locked_children(old, old_path.dentry))
2179                goto out2;
2180
2181        if (recurse)
2182                mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2183        else
2184                mnt = clone_mnt(old, old_path.dentry, 0);
2185
2186        if (IS_ERR(mnt)) {
2187                err = PTR_ERR(mnt);
2188                goto out2;
2189        }
2190
2191        mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2192
2193        err = graft_tree(mnt, parent, mp);
2194        if (err) {
2195                lock_mount_hash();
2196                umount_tree(mnt, UMOUNT_SYNC);
2197                unlock_mount_hash();
2198        }
2199out2:
2200        unlock_mount(mp);
2201out:
2202        path_put(&old_path);
2203        return err;
2204}
2205
2206static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2207{
2208        int error = 0;
2209        int readonly_request = 0;
2210
2211        if (ms_flags & MS_RDONLY)
2212                readonly_request = 1;
2213        if (readonly_request == __mnt_is_readonly(mnt))
2214                return 0;
2215
2216        if (readonly_request)
2217                error = mnt_make_readonly(real_mount(mnt));
2218        else
2219                __mnt_unmake_readonly(real_mount(mnt));
2220        return error;
2221}
2222
2223/*
2224 * change filesystem flags. dir should be a physical root of filesystem.
2225 * If you've mounted a non-root directory somewhere and want to do remount
2226 * on it - tough luck.
2227 */
2228static int do_remount(struct path *path, int ms_flags, int sb_flags,
2229                      int mnt_flags, void *data)
2230{
2231        int err;
2232        struct super_block *sb = path->mnt->mnt_sb;
2233        struct mount *mnt = real_mount(path->mnt);
2234
2235        if (!check_mnt(mnt))
2236                return -EINVAL;
2237
2238        if (path->dentry != path->mnt->mnt_root)
2239                return -EINVAL;
2240
2241        /* Don't allow changing of locked mnt flags.
2242         *
2243         * No locks need to be held here while testing the various
2244         * MNT_LOCK flags because those flags can never be cleared
2245         * once they are set.
2246         */
2247        if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2248            !(mnt_flags & MNT_READONLY)) {
2249                return -EPERM;
2250        }
2251        if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2252            !(mnt_flags & MNT_NODEV)) {
2253                return -EPERM;
2254        }
2255        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2256            !(mnt_flags & MNT_NOSUID)) {
2257                return -EPERM;
2258        }
2259        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2260            !(mnt_flags & MNT_NOEXEC)) {
2261                return -EPERM;
2262        }
2263        if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2264            ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2265                return -EPERM;
2266        }
2267
2268        err = security_sb_remount(sb, data);
2269        if (err)
2270                return err;
2271
2272        down_write(&sb->s_umount);
2273        if (ms_flags & MS_BIND)
2274                err = change_mount_flags(path->mnt, ms_flags);
2275        else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2276                err = -EPERM;
2277        else
2278                err = do_remount_sb(sb, sb_flags, data, 0);
2279        if (!err) {
2280                lock_mount_hash();
2281                mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2282                mnt->mnt.mnt_flags = mnt_flags;
2283                touch_mnt_namespace(mnt->mnt_ns);
2284                unlock_mount_hash();
2285        }
2286        up_write(&sb->s_umount);
2287        return err;
2288}
2289
2290static inline int tree_contains_unbindable(struct mount *mnt)
2291{
2292        struct mount *p;
2293        for (p = mnt; p; p = next_mnt(p, mnt)) {
2294                if (IS_MNT_UNBINDABLE(p))
2295                        return 1;
2296        }
2297        return 0;
2298}
2299
2300static int do_move_mount(struct path *path, const char *old_name)
2301{
2302        struct path old_path, parent_path;
2303        struct mount *p;
2304        struct mount *old;
2305        struct mountpoint *mp;
2306        int err;
2307        if (!old_name || !*old_name)
2308                return -EINVAL;
2309        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2310        if (err)
2311                return err;
2312
2313        mp = lock_mount(path);
2314        err = PTR_ERR(mp);
2315        if (IS_ERR(mp))
2316                goto out;
2317
2318        old = real_mount(old_path.mnt);
2319        p = real_mount(path->mnt);
2320
2321        err = -EINVAL;
2322        if (!check_mnt(p) || !check_mnt(old))
2323                goto out1;
2324
2325        if (old->mnt.mnt_flags & MNT_LOCKED)
2326                goto out1;
2327
2328        err = -EINVAL;
2329        if (old_path.dentry != old_path.mnt->mnt_root)
2330                goto out1;
2331
2332        if (!mnt_has_parent(old))
2333                goto out1;
2334
2335        if (d_is_dir(path->dentry) !=
2336              d_is_dir(old_path.dentry))
2337                goto out1;
2338        /*
2339         * Don't move a mount residing in a shared parent.
2340         */
2341        if (IS_MNT_SHARED(old->mnt_parent))
2342                goto out1;
2343        /*
2344         * Don't move a mount tree containing unbindable mounts to a destination
2345         * mount which is shared.
2346         */
2347        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2348                goto out1;
2349        err = -ELOOP;
2350        for (; mnt_has_parent(p); p = p->mnt_parent)
2351                if (p == old)
2352                        goto out1;
2353
2354        err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2355        if (err)
2356                goto out1;
2357
2358        /* if the mount is moved, it should no longer be expire
2359         * automatically */
2360        list_del_init(&old->mnt_expire);
2361out1:
2362        unlock_mount(mp);
2363out:
2364        if (!err)
2365                path_put(&parent_path);
2366        path_put(&old_path);
2367        return err;
2368}
2369
2370static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2371{
2372        int err;
2373        const char *subtype = strchr(fstype, '.');
2374        if (subtype) {
2375                subtype++;
2376                err = -EINVAL;
2377                if (!subtype[0])
2378                        goto err;
2379        } else
2380                subtype = "";
2381
2382        mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2383        err = -ENOMEM;
2384        if (!mnt->mnt_sb->s_subtype)
2385                goto err;
2386        return mnt;
2387
2388 err:
2389        mntput(mnt);
2390        return ERR_PTR(err);
2391}
2392
2393/*
2394 * add a mount into a namespace's mount tree
2395 */
2396static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2397{
2398        struct mountpoint *mp;
2399        struct mount *parent;
2400        int err;
2401
2402        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2403
2404        mp = lock_mount(path);
2405        if (IS_ERR(mp))
2406                return PTR_ERR(mp);
2407
2408        parent = real_mount(path->mnt);
2409        err = -EINVAL;
2410        if (unlikely(!check_mnt(parent))) {
2411                /* that's acceptable only for automounts done in private ns */
2412                if (!(mnt_flags & MNT_SHRINKABLE))
2413                        goto unlock;
2414                /* ... and for those we'd better have mountpoint still alive */
2415                if (!parent->mnt_ns)
2416                        goto unlock;
2417        }
2418
2419        /* Refuse the same filesystem on the same mount point */
2420        err = -EBUSY;
2421        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2422            path->mnt->mnt_root == path->dentry)
2423                goto unlock;
2424
2425        err = -EINVAL;
2426        if (d_is_symlink(newmnt->mnt.mnt_root))
2427                goto unlock;
2428
2429        newmnt->mnt.mnt_flags = mnt_flags;
2430        err = graft_tree(newmnt, parent, mp);
2431
2432unlock:
2433        unlock_mount(mp);
2434        return err;
2435}
2436
2437static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2438
2439/*
2440 * create a new mount for userspace and request it to be added into the
2441 * namespace's tree
2442 */
2443static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2444                        int mnt_flags, const char *name, void *data)
2445{
2446        struct file_system_type *type;
2447        struct vfsmount *mnt;
2448        int err;
2449
2450        if (!fstype)
2451                return -EINVAL;
2452
2453        type = get_fs_type(fstype);
2454        if (!type)
2455                return -ENODEV;
2456
2457        mnt = vfs_kern_mount(type, sb_flags, name, data);
2458        if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2459            !mnt->mnt_sb->s_subtype)
2460                mnt = fs_set_subtype(mnt, fstype);
2461
2462        put_filesystem(type);
2463        if (IS_ERR(mnt))
2464                return PTR_ERR(mnt);
2465
2466        if (mount_too_revealing(mnt, &mnt_flags)) {
2467                mntput(mnt);
2468                return -EPERM;
2469        }
2470
2471        err = do_add_mount(real_mount(mnt), path, mnt_flags);
2472        if (err)
2473                mntput(mnt);
2474        return err;
2475}
2476
2477int finish_automount(struct vfsmount *m, struct path *path)
2478{
2479        struct mount *mnt = real_mount(m);
2480        int err;
2481        /* The new mount record should have at least 2 refs to prevent it being
2482         * expired before we get a chance to add it
2483         */
2484        BUG_ON(mnt_get_count(mnt) < 2);
2485
2486        if (m->mnt_sb == path->mnt->mnt_sb &&
2487            m->mnt_root == path->dentry) {
2488                err = -ELOOP;
2489                goto fail;
2490        }
2491
2492        err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2493        if (!err)
2494                return 0;
2495fail:
2496        /* remove m from any expiration list it may be on */
2497        if (!list_empty(&mnt->mnt_expire)) {
2498                namespace_lock();
2499                list_del_init(&mnt->mnt_expire);
2500                namespace_unlock();
2501        }
2502        mntput(m);
2503        mntput(m);
2504        return err;
2505}
2506
2507/**
2508 * mnt_set_expiry - Put a mount on an expiration list
2509 * @mnt: The mount to list.
2510 * @expiry_list: The list to add the mount to.
2511 */
2512void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2513{
2514        namespace_lock();
2515
2516        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2517
2518        namespace_unlock();
2519}
2520EXPORT_SYMBOL(mnt_set_expiry);
2521
2522/*
2523 * process a list of expirable mountpoints with the intent of discarding any
2524 * mountpoints that aren't in use and haven't been touched since last we came
2525 * here
2526 */
2527void mark_mounts_for_expiry(struct list_head *mounts)
2528{
2529        struct mount *mnt, *next;
2530        LIST_HEAD(graveyard);
2531
2532        if (list_empty(mounts))
2533                return;
2534
2535        namespace_lock();
2536        lock_mount_hash();
2537
2538        /* extract from the expiration list every vfsmount that matches the
2539         * following criteria:
2540         * - only referenced by its parent vfsmount
2541         * - still marked for expiry (marked on the last call here; marks are
2542         *   cleared by mntput())
2543         */
2544        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2545                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2546                        propagate_mount_busy(mnt, 1))
2547                        continue;
2548                list_move(&mnt->mnt_expire, &graveyard);
2549        }
2550        while (!list_empty(&graveyard)) {
2551                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2552                touch_mnt_namespace(mnt->mnt_ns);
2553                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2554        }
2555        unlock_mount_hash();
2556        namespace_unlock();
2557}
2558
2559EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2560
2561/*
2562 * Ripoff of 'select_parent()'
2563 *
2564 * search the list of submounts for a given mountpoint, and move any
2565 * shrinkable submounts to the 'graveyard' list.
2566 */
2567static int select_submounts(struct mount *parent, struct list_head *graveyard)
2568{
2569        struct mount *this_parent = parent;
2570        struct list_head *next;
2571        int found = 0;
2572
2573repeat:
2574        next = this_parent->mnt_mounts.next;
2575resume:
2576        while (next != &this_parent->mnt_mounts) {
2577                struct list_head *tmp = next;
2578                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2579
2580                next = tmp->next;
2581                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2582                        continue;
2583                /*
2584                 * Descend a level if the d_mounts list is non-empty.
2585                 */
2586                if (!list_empty(&mnt->mnt_mounts)) {
2587                        this_parent = mnt;
2588                        goto repeat;
2589                }
2590
2591                if (!propagate_mount_busy(mnt, 1)) {
2592                        list_move_tail(&mnt->mnt_expire, graveyard);
2593                        found++;
2594                }
2595        }
2596        /*
2597         * All done at this level ... ascend and resume the search
2598         */
2599        if (this_parent != parent) {
2600                next = this_parent->mnt_child.next;
2601                this_parent = this_parent->mnt_parent;
2602                goto resume;
2603        }
2604        return found;
2605}
2606
2607/*
2608 * process a list of expirable mountpoints with the intent of discarding any
2609 * submounts of a specific parent mountpoint
2610 *
2611 * mount_lock must be held for write
2612 */
2613static void shrink_submounts(struct mount *mnt)
2614{
2615        LIST_HEAD(graveyard);
2616        struct mount *m;
2617
2618        /* extract submounts of 'mountpoint' from the expiration list */
2619        while (select_submounts(mnt, &graveyard)) {
2620                while (!list_empty(&graveyard)) {
2621                        m = list_first_entry(&graveyard, struct mount,
2622                                                mnt_expire);
2623                        touch_mnt_namespace(m->mnt_ns);
2624                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2625                }
2626        }
2627}
2628
2629/*
2630 * Some copy_from_user() implementations do not return the exact number of
2631 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2632 * Note that this function differs from copy_from_user() in that it will oops
2633 * on bad values of `to', rather than returning a short copy.
2634 */
2635static long exact_copy_from_user(void *to, const void __user * from,
2636                                 unsigned long n)
2637{
2638        char *t = to;
2639        const char __user *f = from;
2640        char c;
2641
2642        if (!access_ok(VERIFY_READ, from, n))
2643                return n;
2644
2645        while (n) {
2646                if (__get_user(c, f)) {
2647                        memset(t, 0, n);
2648                        break;
2649                }
2650                *t++ = c;
2651                f++;
2652                n--;
2653        }
2654        return n;
2655}
2656
2657void *copy_mount_options(const void __user * data)
2658{
2659        int i;
2660        unsigned long size;
2661        char *copy;
2662
2663        if (!data)
2664                return NULL;
2665
2666        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2667        if (!copy)
2668                return ERR_PTR(-ENOMEM);
2669
2670        /* We only care that *some* data at the address the user
2671         * gave us is valid.  Just in case, we'll zero
2672         * the remainder of the page.
2673         */
2674        /* copy_from_user cannot cross TASK_SIZE ! */
2675        size = TASK_SIZE - (unsigned long)data;
2676        if (size > PAGE_SIZE)
2677                size = PAGE_SIZE;
2678
2679        i = size - exact_copy_from_user(copy, data, size);
2680        if (!i) {
2681                kfree(copy);
2682                return ERR_PTR(-EFAULT);
2683        }
2684        if (i != PAGE_SIZE)
2685                memset(copy + i, 0, PAGE_SIZE - i);
2686        return copy;
2687}
2688
2689char *copy_mount_string(const void __user *data)
2690{
2691        return data ? strndup_user(data, PAGE_SIZE) : NULL;
2692}
2693
2694/*
2695 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2696 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2697 *
2698 * data is a (void *) that can point to any structure up to
2699 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2700 * information (or be NULL).
2701 *
2702 * Pre-0.97 versions of mount() didn't have a flags word.
2703 * When the flags word was introduced its top half was required
2704 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2705 * Therefore, if this magic number is present, it carries no information
2706 * and must be discarded.
2707 */
2708long do_mount(const char *dev_name, const char __user *dir_name,
2709                const char *type_page, unsigned long flags, void *data_page)
2710{
2711        struct path path;
2712        unsigned int mnt_flags = 0, sb_flags;
2713        int retval = 0;
2714
2715        /* Discard magic */
2716        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2717                flags &= ~MS_MGC_MSK;
2718
2719        /* Basic sanity checks */
2720        if (data_page)
2721                ((char *)data_page)[PAGE_SIZE - 1] = 0;
2722
2723        if (flags & MS_NOUSER)
2724                return -EINVAL;
2725
2726        /* ... and get the mountpoint */
2727        retval = user_path(dir_name, &path);
2728        if (retval)
2729                return retval;
2730
2731        retval = security_sb_mount(dev_name, &path,
2732                                   type_page, flags, data_page);
2733        if (!retval && !may_mount())
2734                retval = -EPERM;
2735        if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2736                retval = -EPERM;
2737        if (retval)
2738                goto dput_out;
2739
2740        /* Default to relatime unless overriden */
2741        if (!(flags & MS_NOATIME))
2742                mnt_flags |= MNT_RELATIME;
2743
2744        /* Separate the per-mountpoint flags */
2745        if (flags & MS_NOSUID)
2746                mnt_flags |= MNT_NOSUID;
2747        if (flags & MS_NODEV)
2748                mnt_flags |= MNT_NODEV;
2749        if (flags & MS_NOEXEC)
2750                mnt_flags |= MNT_NOEXEC;
2751        if (flags & MS_NOATIME)
2752                mnt_flags |= MNT_NOATIME;
2753        if (flags & MS_NODIRATIME)
2754                mnt_flags |= MNT_NODIRATIME;
2755        if (flags & MS_STRICTATIME)
2756                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2757        if (flags & MS_RDONLY)
2758                mnt_flags |= MNT_READONLY;
2759
2760        /* The default atime for remount is preservation */
2761        if ((flags & MS_REMOUNT) &&
2762            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2763                       MS_STRICTATIME)) == 0)) {
2764                mnt_flags &= ~MNT_ATIME_MASK;
2765                mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2766        }
2767
2768        sb_flags = flags & (SB_RDONLY |
2769                            SB_SYNCHRONOUS |
2770                            SB_MANDLOCK |
2771                            SB_DIRSYNC |
2772                            SB_SILENT |
2773                            SB_POSIXACL |
2774                            SB_LAZYTIME |
2775                            SB_I_VERSION);
2776
2777        if (flags & MS_REMOUNT)
2778                retval = do_remount(&path, flags, sb_flags, mnt_flags,
2779                                    data_page);
2780        else if (flags & MS_BIND)
2781                retval = do_loopback(&path, dev_name, flags & MS_REC);
2782        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2783                retval = do_change_type(&path, flags);
2784        else if (flags & MS_MOVE)
2785                retval = do_move_mount(&path, dev_name);
2786        else
2787                retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2788                                      dev_name, data_page);
2789dput_out:
2790        path_put(&path);
2791        return retval;
2792}
2793
2794static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2795{
2796        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2797}
2798
2799static void dec_mnt_namespaces(struct ucounts *ucounts)
2800{
2801        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2802}
2803
2804static void free_mnt_ns(struct mnt_namespace *ns)
2805{
2806        ns_free_inum(&ns->ns);
2807        dec_mnt_namespaces(ns->ucounts);
2808        put_user_ns(ns->user_ns);
2809        kfree(ns);
2810}
2811
2812/*
2813 * Assign a sequence number so we can detect when we attempt to bind
2814 * mount a reference to an older mount namespace into the current
2815 * mount namespace, preventing reference counting loops.  A 64bit
2816 * number incrementing at 10Ghz will take 12,427 years to wrap which
2817 * is effectively never, so we can ignore the possibility.
2818 */
2819static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2820
2821static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2822{
2823        struct mnt_namespace *new_ns;
2824        struct ucounts *ucounts;
2825        int ret;
2826
2827        ucounts = inc_mnt_namespaces(user_ns);
2828        if (!ucounts)
2829                return ERR_PTR(-ENOSPC);
2830
2831        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2832        if (!new_ns) {
2833                dec_mnt_namespaces(ucounts);
2834                return ERR_PTR(-ENOMEM);
2835        }
2836        ret = ns_alloc_inum(&new_ns->ns);
2837        if (ret) {
2838                kfree(new_ns);
2839                dec_mnt_namespaces(ucounts);
2840                return ERR_PTR(ret);
2841        }
2842        new_ns->ns.ops = &mntns_operations;
2843        new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2844        atomic_set(&new_ns->count, 1);
2845        new_ns->root = NULL;
2846        INIT_LIST_HEAD(&new_ns->list);
2847        init_waitqueue_head(&new_ns->poll);
2848        new_ns->event = 0;
2849        new_ns->user_ns = get_user_ns(user_ns);
2850        new_ns->ucounts = ucounts;
2851        new_ns->mounts = 0;
2852        new_ns->pending_mounts = 0;
2853        return new_ns;
2854}
2855
2856__latent_entropy
2857struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2858                struct user_namespace *user_ns, struct fs_struct *new_fs)
2859{
2860        struct mnt_namespace *new_ns;
2861        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2862        struct mount *p, *q;
2863        struct mount *old;
2864        struct mount *new;
2865        int copy_flags;
2866
2867        BUG_ON(!ns);
2868
2869        if (likely(!(flags & CLONE_NEWNS))) {
2870                get_mnt_ns(ns);
2871                return ns;
2872        }
2873
2874        old = ns->root;
2875
2876        new_ns = alloc_mnt_ns(user_ns);
2877        if (IS_ERR(new_ns))
2878                return new_ns;
2879
2880        namespace_lock();
2881        /* First pass: copy the tree topology */
2882        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2883        if (user_ns != ns->user_ns)
2884                copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2885        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2886        if (IS_ERR(new)) {
2887                namespace_unlock();
2888                free_mnt_ns(new_ns);
2889                return ERR_CAST(new);
2890        }
2891        new_ns->root = new;
2892        list_add_tail(&new_ns->list, &new->mnt_list);
2893
2894        /*
2895         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2896         * as belonging to new namespace.  We have already acquired a private
2897         * fs_struct, so tsk->fs->lock is not needed.
2898         */
2899        p = old;
2900        q = new;
2901        while (p) {
2902                q->mnt_ns = new_ns;
2903                new_ns->mounts++;
2904                if (new_fs) {
2905                        if (&p->mnt == new_fs->root.mnt) {
2906                                new_fs->root.mnt = mntget(&q->mnt);
2907                                rootmnt = &p->mnt;
2908                        }
2909                        if (&p->mnt == new_fs->pwd.mnt) {
2910                                new_fs->pwd.mnt = mntget(&q->mnt);
2911                                pwdmnt = &p->mnt;
2912                        }
2913                }
2914                p = next_mnt(p, old);
2915                q = next_mnt(q, new);
2916                if (!q)
2917                        break;
2918                while (p->mnt.mnt_root != q->mnt.mnt_root)
2919                        p = next_mnt(p, old);
2920        }
2921        namespace_unlock();
2922
2923        if (rootmnt)
2924                mntput(rootmnt);
2925        if (pwdmnt)
2926                mntput(pwdmnt);
2927
2928        return new_ns;
2929}
2930
2931/**
2932 * create_mnt_ns - creates a private namespace and adds a root filesystem
2933 * @mnt: pointer to the new root filesystem mountpoint
2934 */
2935static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2936{
2937        struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2938        if (!IS_ERR(new_ns)) {
2939                struct mount *mnt = real_mount(m);
2940                mnt->mnt_ns = new_ns;
2941                new_ns->root = mnt;
2942                new_ns->mounts++;
2943                list_add(&mnt->mnt_list, &new_ns->list);
2944        } else {
2945                mntput(m);
2946        }
2947        return new_ns;
2948}
2949
2950struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2951{
2952        struct mnt_namespace *ns;
2953        struct super_block *s;
2954        struct path path;
2955        int err;
2956
2957        ns = create_mnt_ns(mnt);
2958        if (IS_ERR(ns))
2959                return ERR_CAST(ns);
2960
2961        err = vfs_path_lookup(mnt->mnt_root, mnt,
2962                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2963
2964        put_mnt_ns(ns);
2965
2966        if (err)
2967                return ERR_PTR(err);
2968
2969        /* trade a vfsmount reference for active sb one */
2970        s = path.mnt->mnt_sb;
2971        atomic_inc(&s->s_active);
2972        mntput(path.mnt);
2973        /* lock the sucker */
2974        down_write(&s->s_umount);
2975        /* ... and return the root of (sub)tree on it */
2976        return path.dentry;
2977}
2978EXPORT_SYMBOL(mount_subtree);
2979
2980int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
2981               unsigned long flags, void __user *data)
2982{
2983        int ret;
2984        char *kernel_type;
2985        char *kernel_dev;
2986        void *options;
2987
2988        kernel_type = copy_mount_string(type);
2989        ret = PTR_ERR(kernel_type);
2990        if (IS_ERR(kernel_type))
2991                goto out_type;
2992
2993        kernel_dev = copy_mount_string(dev_name);
2994        ret = PTR_ERR(kernel_dev);
2995        if (IS_ERR(kernel_dev))
2996                goto out_dev;
2997
2998        options = copy_mount_options(data);
2999        ret = PTR_ERR(options);
3000        if (IS_ERR(options))
3001                goto out_data;
3002
3003        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3004
3005        kfree(options);
3006out_data:
3007        kfree(kernel_dev);
3008out_dev:
3009        kfree(kernel_type);
3010out_type:
3011        return ret;
3012}
3013
3014SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3015                char __user *, type, unsigned long, flags, void __user *, data)
3016{
3017        return ksys_mount(dev_name, dir_name, type, flags, data);
3018}
3019
3020/*
3021 * Return true if path is reachable from root
3022 *
3023 * namespace_sem or mount_lock is held
3024 */
3025bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3026                         const struct path *root)
3027{
3028        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3029                dentry = mnt->mnt_mountpoint;
3030                mnt = mnt->mnt_parent;
3031        }
3032        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3033}
3034
3035bool path_is_under(const struct path *path1, const struct path *path2)
3036{
3037        bool res;
3038        read_seqlock_excl(&mount_lock);
3039        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3040        read_sequnlock_excl(&mount_lock);
3041        return res;
3042}
3043EXPORT_SYMBOL(path_is_under);
3044
3045/*
3046 * pivot_root Semantics:
3047 * Moves the root file system of the current process to the directory put_old,
3048 * makes new_root as the new root file system of the current process, and sets
3049 * root/cwd of all processes which had them on the current root to new_root.
3050 *
3051 * Restrictions:
3052 * The new_root and put_old must be directories, and  must not be on the
3053 * same file  system as the current process root. The put_old  must  be
3054 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3055 * pointed to by put_old must yield the same directory as new_root. No other
3056 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3057 *
3058 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3059 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3060 * in this situation.
3061 *
3062 * Notes:
3063 *  - we don't move root/cwd if they are not at the root (reason: if something
3064 *    cared enough to change them, it's probably wrong to force them elsewhere)
3065 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3066 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3067 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3068 *    first.
3069 */
3070SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3071                const char __user *, put_old)
3072{
3073        struct path new, old, parent_path, root_parent, root;
3074        struct mount *new_mnt, *root_mnt, *old_mnt;
3075        struct mountpoint *old_mp, *root_mp;
3076        int error;
3077
3078        if (!may_mount())
3079                return -EPERM;
3080
3081        error = user_path_dir(new_root, &new);
3082        if (error)
3083                goto out0;
3084
3085        error = user_path_dir(put_old, &old);
3086        if (error)
3087                goto out1;
3088
3089        error = security_sb_pivotroot(&old, &new);
3090        if (error)
3091                goto out2;
3092
3093        get_fs_root(current->fs, &root);
3094        old_mp = lock_mount(&old);
3095        error = PTR_ERR(old_mp);
3096        if (IS_ERR(old_mp))
3097                goto out3;
3098
3099        error = -EINVAL;
3100        new_mnt = real_mount(new.mnt);
3101        root_mnt = real_mount(root.mnt);
3102        old_mnt = real_mount(old.mnt);
3103        if (IS_MNT_SHARED(old_mnt) ||
3104                IS_MNT_SHARED(new_mnt->mnt_parent) ||
3105                IS_MNT_SHARED(root_mnt->mnt_parent))
3106                goto out4;
3107        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3108                goto out4;
3109        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3110                goto out4;
3111        error = -ENOENT;
3112        if (d_unlinked(new.dentry))
3113                goto out4;
3114        error = -EBUSY;
3115        if (new_mnt == root_mnt || old_mnt == root_mnt)
3116                goto out4; /* loop, on the same file system  */
3117        error = -EINVAL;
3118        if (root.mnt->mnt_root != root.dentry)
3119                goto out4; /* not a mountpoint */
3120        if (!mnt_has_parent(root_mnt))
3121                goto out4; /* not attached */
3122        root_mp = root_mnt->mnt_mp;
3123        if (new.mnt->mnt_root != new.dentry)
3124                goto out4; /* not a mountpoint */
3125        if (!mnt_has_parent(new_mnt))
3126                goto out4; /* not attached */
3127        /* make sure we can reach put_old from new_root */
3128        if (!is_path_reachable(old_mnt, old.dentry, &new))
3129                goto out4;
3130        /* make certain new is below the root */
3131        if (!is_path_reachable(new_mnt, new.dentry, &root))
3132                goto out4;
3133        root_mp->m_count++; /* pin it so it won't go away */
3134        lock_mount_hash();
3135        detach_mnt(new_mnt, &parent_path);
3136        detach_mnt(root_mnt, &root_parent);
3137        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3138                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3139                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3140        }
3141        /* mount old root on put_old */
3142        attach_mnt(root_mnt, old_mnt, old_mp);
3143        /* mount new_root on / */
3144        attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3145        touch_mnt_namespace(current->nsproxy->mnt_ns);
3146        /* A moved mount should not expire automatically */
3147        list_del_init(&new_mnt->mnt_expire);
3148        put_mountpoint(root_mp);
3149        unlock_mount_hash();
3150        chroot_fs_refs(&root, &new);
3151        error = 0;
3152out4:
3153        unlock_mount(old_mp);
3154        if (!error) {
3155                path_put(&root_parent);
3156                path_put(&parent_path);
3157        }
3158out3:
3159        path_put(&root);
3160out2:
3161        path_put(&old);
3162out1:
3163        path_put(&new);
3164out0:
3165        return error;
3166}
3167
3168static void __init init_mount_tree(void)
3169{
3170        struct vfsmount *mnt;
3171        struct mnt_namespace *ns;
3172        struct path root;
3173        struct file_system_type *type;
3174
3175        type = get_fs_type("rootfs");
3176        if (!type)
3177                panic("Can't find rootfs type");
3178        mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3179        put_filesystem(type);
3180        if (IS_ERR(mnt))
3181                panic("Can't create rootfs");
3182
3183        ns = create_mnt_ns(mnt);
3184        if (IS_ERR(ns))
3185                panic("Can't allocate initial namespace");
3186
3187        init_task.nsproxy->mnt_ns = ns;
3188        get_mnt_ns(ns);
3189
3190        root.mnt = mnt;
3191        root.dentry = mnt->mnt_root;
3192        mnt->mnt_flags |= MNT_LOCKED;
3193
3194        set_fs_pwd(current->fs, &root);
3195        set_fs_root(current->fs, &root);
3196}
3197
3198void __init mnt_init(void)
3199{
3200        int err;
3201
3202        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3203                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3204
3205        mount_hashtable = alloc_large_system_hash("Mount-cache",
3206                                sizeof(struct hlist_head),
3207                                mhash_entries, 19,
3208                                HASH_ZERO,
3209                                &m_hash_shift, &m_hash_mask, 0, 0);
3210        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3211                                sizeof(struct hlist_head),
3212                                mphash_entries, 19,
3213                                HASH_ZERO,
3214                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3215
3216        if (!mount_hashtable || !mountpoint_hashtable)
3217                panic("Failed to allocate mount hash table\n");
3218
3219        kernfs_init();
3220
3221        err = sysfs_init();
3222        if (err)
3223                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3224                        __func__, err);
3225        fs_kobj = kobject_create_and_add("fs", NULL);
3226        if (!fs_kobj)
3227                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3228        init_rootfs();
3229        init_mount_tree();
3230}
3231
3232void put_mnt_ns(struct mnt_namespace *ns)
3233{
3234        if (!atomic_dec_and_test(&ns->count))
3235                return;
3236        drop_collected_mounts(&ns->root->mnt);
3237        free_mnt_ns(ns);
3238}
3239
3240struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3241{
3242        struct vfsmount *mnt;
3243        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3244        if (!IS_ERR(mnt)) {
3245                /*
3246                 * it is a longterm mount, don't release mnt until
3247                 * we unmount before file sys is unregistered
3248                */
3249                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3250        }
3251        return mnt;
3252}
3253EXPORT_SYMBOL_GPL(kern_mount_data);
3254
3255void kern_unmount(struct vfsmount *mnt)
3256{
3257        /* release long term mount so mount point can be released */
3258        if (!IS_ERR_OR_NULL(mnt)) {
3259                real_mount(mnt)->mnt_ns = NULL;
3260                synchronize_rcu();      /* yecchhh... */
3261                mntput(mnt);
3262        }
3263}
3264EXPORT_SYMBOL(kern_unmount);
3265
3266bool our_mnt(struct vfsmount *mnt)
3267{
3268        return check_mnt(real_mount(mnt));
3269}
3270
3271bool current_chrooted(void)
3272{
3273        /* Does the current process have a non-standard root */
3274        struct path ns_root;
3275        struct path fs_root;
3276        bool chrooted;
3277
3278        /* Find the namespace root */
3279        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3280        ns_root.dentry = ns_root.mnt->mnt_root;
3281        path_get(&ns_root);
3282        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3283                ;
3284
3285        get_fs_root(current->fs, &fs_root);
3286
3287        chrooted = !path_equal(&fs_root, &ns_root);
3288
3289        path_put(&fs_root);
3290        path_put(&ns_root);
3291
3292        return chrooted;
3293}
3294
3295static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3296                                int *new_mnt_flags)
3297{
3298        int new_flags = *new_mnt_flags;
3299        struct mount *mnt;
3300        bool visible = false;
3301
3302        down_read(&namespace_sem);
3303        list_for_each_entry(mnt, &ns->list, mnt_list) {
3304                struct mount *child;
3305                int mnt_flags;
3306
3307                if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3308                        continue;
3309
3310                /* This mount is not fully visible if it's root directory
3311                 * is not the root directory of the filesystem.
3312                 */
3313                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3314                        continue;
3315
3316                /* A local view of the mount flags */
3317                mnt_flags = mnt->mnt.mnt_flags;
3318
3319                /* Don't miss readonly hidden in the superblock flags */
3320                if (sb_rdonly(mnt->mnt.mnt_sb))
3321                        mnt_flags |= MNT_LOCK_READONLY;
3322
3323                /* Verify the mount flags are equal to or more permissive
3324                 * than the proposed new mount.
3325                 */
3326                if ((mnt_flags & MNT_LOCK_READONLY) &&
3327                    !(new_flags & MNT_READONLY))
3328                        continue;
3329                if ((mnt_flags & MNT_LOCK_ATIME) &&
3330                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3331                        continue;
3332
3333                /* This mount is not fully visible if there are any
3334                 * locked child mounts that cover anything except for
3335                 * empty directories.
3336                 */
3337                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3338                        struct inode *inode = child->mnt_mountpoint->d_inode;
3339                        /* Only worry about locked mounts */
3340                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
3341                                continue;
3342                        /* Is the directory permanetly empty? */
3343                        if (!is_empty_dir_inode(inode))
3344                                goto next;
3345                }
3346                /* Preserve the locked attributes */
3347                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3348                                               MNT_LOCK_ATIME);
3349                visible = true;
3350                goto found;
3351        next:   ;
3352        }
3353found:
3354        up_read(&namespace_sem);
3355        return visible;
3356}
3357
3358static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3359{
3360        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3361        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3362        unsigned long s_iflags;
3363
3364        if (ns->user_ns == &init_user_ns)
3365                return false;
3366
3367        /* Can this filesystem be too revealing? */
3368        s_iflags = mnt->mnt_sb->s_iflags;
3369        if (!(s_iflags & SB_I_USERNS_VISIBLE))
3370                return false;
3371
3372        if ((s_iflags & required_iflags) != required_iflags) {
3373                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3374                          required_iflags);
3375                return true;
3376        }
3377
3378        return !mnt_already_visible(ns, mnt, new_mnt_flags);
3379}
3380
3381bool mnt_may_suid(struct vfsmount *mnt)
3382{
3383        /*
3384         * Foreign mounts (accessed via fchdir or through /proc
3385         * symlinks) are always treated as if they are nosuid.  This
3386         * prevents namespaces from trusting potentially unsafe
3387         * suid/sgid bits, file caps, or security labels that originate
3388         * in other namespaces.
3389         */
3390        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3391               current_in_userns(mnt->mnt_sb->s_user_ns);
3392}
3393
3394static struct ns_common *mntns_get(struct task_struct *task)
3395{
3396        struct ns_common *ns = NULL;
3397        struct nsproxy *nsproxy;
3398
3399        task_lock(task);
3400        nsproxy = task->nsproxy;
3401        if (nsproxy) {
3402                ns = &nsproxy->mnt_ns->ns;
3403                get_mnt_ns(to_mnt_ns(ns));
3404        }
3405        task_unlock(task);
3406
3407        return ns;
3408}
3409
3410static void mntns_put(struct ns_common *ns)
3411{
3412        put_mnt_ns(to_mnt_ns(ns));
3413}
3414
3415static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3416{
3417        struct fs_struct *fs = current->fs;
3418        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3419        struct path root;
3420        int err;
3421
3422        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3423            !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3424            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3425                return -EPERM;
3426
3427        if (fs->users != 1)
3428                return -EINVAL;
3429
3430        get_mnt_ns(mnt_ns);
3431        old_mnt_ns = nsproxy->mnt_ns;
3432        nsproxy->mnt_ns = mnt_ns;
3433
3434        /* Find the root */
3435        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3436                                "/", LOOKUP_DOWN, &root);
3437        if (err) {
3438                /* revert to old namespace */
3439                nsproxy->mnt_ns = old_mnt_ns;
3440                put_mnt_ns(mnt_ns);
3441                return err;
3442        }
3443
3444        put_mnt_ns(old_mnt_ns);
3445
3446        /* Update the pwd and root */
3447        set_fs_pwd(fs, &root);
3448        set_fs_root(fs, &root);
3449
3450        path_put(&root);
3451        return 0;
3452}
3453
3454static struct user_namespace *mntns_owner(struct ns_common *ns)
3455{
3456        return to_mnt_ns(ns)->user_ns;
3457}
3458
3459const struct proc_ns_operations mntns_operations = {
3460        .name           = "mnt",
3461        .type           = CLONE_NEWNS,
3462        .get            = mntns_get,
3463        .put            = mntns_put,
3464        .install        = mntns_install,
3465        .owner          = mntns_owner,
3466};
3467