linux/fs/ubifs/super.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS initialization and VFS superblock operations. Some
  25 * initialization stuff which is rather large and complex is placed at
  26 * corresponding subsystems, but most of it is here.
  27 */
  28
  29#include <linux/init.h>
  30#include <linux/slab.h>
  31#include <linux/module.h>
  32#include <linux/ctype.h>
  33#include <linux/kthread.h>
  34#include <linux/parser.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/math64.h>
  38#include <linux/writeback.h>
  39#include "ubifs.h"
  40
  41/*
  42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  43 * allocating too much.
  44 */
  45#define UBIFS_KMALLOC_OK (128*1024)
  46
  47/* Slab cache for UBIFS inodes */
  48static struct kmem_cache *ubifs_inode_slab;
  49
  50/* UBIFS TNC shrinker description */
  51static struct shrinker ubifs_shrinker_info = {
  52        .scan_objects = ubifs_shrink_scan,
  53        .count_objects = ubifs_shrink_count,
  54        .seeks = DEFAULT_SEEKS,
  55};
  56
  57/**
  58 * validate_inode - validate inode.
  59 * @c: UBIFS file-system description object
  60 * @inode: the inode to validate
  61 *
  62 * This is a helper function for 'ubifs_iget()' which validates various fields
  63 * of a newly built inode to make sure they contain sane values and prevent
  64 * possible vulnerabilities. Returns zero if the inode is all right and
  65 * a non-zero error code if not.
  66 */
  67static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  68{
  69        int err;
  70        const struct ubifs_inode *ui = ubifs_inode(inode);
  71
  72        if (inode->i_size > c->max_inode_sz) {
  73                ubifs_err(c, "inode is too large (%lld)",
  74                          (long long)inode->i_size);
  75                return 1;
  76        }
  77
  78        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  79                ubifs_err(c, "unknown compression type %d", ui->compr_type);
  80                return 2;
  81        }
  82
  83        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  84                return 3;
  85
  86        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  87                return 4;
  88
  89        if (ui->xattr && !S_ISREG(inode->i_mode))
  90                return 5;
  91
  92        if (!ubifs_compr_present(c, ui->compr_type)) {
  93                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
  94                           inode->i_ino, ubifs_compr_name(c, ui->compr_type));
  95        }
  96
  97        err = dbg_check_dir(c, inode);
  98        return err;
  99}
 100
 101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 102{
 103        int err;
 104        union ubifs_key key;
 105        struct ubifs_ino_node *ino;
 106        struct ubifs_info *c = sb->s_fs_info;
 107        struct inode *inode;
 108        struct ubifs_inode *ui;
 109
 110        dbg_gen("inode %lu", inum);
 111
 112        inode = iget_locked(sb, inum);
 113        if (!inode)
 114                return ERR_PTR(-ENOMEM);
 115        if (!(inode->i_state & I_NEW))
 116                return inode;
 117        ui = ubifs_inode(inode);
 118
 119        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 120        if (!ino) {
 121                err = -ENOMEM;
 122                goto out;
 123        }
 124
 125        ino_key_init(c, &key, inode->i_ino);
 126
 127        err = ubifs_tnc_lookup(c, &key, ino);
 128        if (err)
 129                goto out_ino;
 130
 131        inode->i_flags |= S_NOCMTIME;
 132#ifndef CONFIG_UBIFS_ATIME_SUPPORT
 133        inode->i_flags |= S_NOATIME;
 134#endif
 135        set_nlink(inode, le32_to_cpu(ino->nlink));
 136        i_uid_write(inode, le32_to_cpu(ino->uid));
 137        i_gid_write(inode, le32_to_cpu(ino->gid));
 138        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 139        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 140        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 141        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 142        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 143        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 144        inode->i_mode = le32_to_cpu(ino->mode);
 145        inode->i_size = le64_to_cpu(ino->size);
 146
 147        ui->data_len    = le32_to_cpu(ino->data_len);
 148        ui->flags       = le32_to_cpu(ino->flags);
 149        ui->compr_type  = le16_to_cpu(ino->compr_type);
 150        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 151        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 152        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 153        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 154        ui->synced_i_size = ui->ui_size = inode->i_size;
 155
 156        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 157
 158        err = validate_inode(c, inode);
 159        if (err)
 160                goto out_invalid;
 161
 162        switch (inode->i_mode & S_IFMT) {
 163        case S_IFREG:
 164                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 165                inode->i_op = &ubifs_file_inode_operations;
 166                inode->i_fop = &ubifs_file_operations;
 167                if (ui->xattr) {
 168                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 169                        if (!ui->data) {
 170                                err = -ENOMEM;
 171                                goto out_ino;
 172                        }
 173                        memcpy(ui->data, ino->data, ui->data_len);
 174                        ((char *)ui->data)[ui->data_len] = '\0';
 175                } else if (ui->data_len != 0) {
 176                        err = 10;
 177                        goto out_invalid;
 178                }
 179                break;
 180        case S_IFDIR:
 181                inode->i_op  = &ubifs_dir_inode_operations;
 182                inode->i_fop = &ubifs_dir_operations;
 183                if (ui->data_len != 0) {
 184                        err = 11;
 185                        goto out_invalid;
 186                }
 187                break;
 188        case S_IFLNK:
 189                inode->i_op = &ubifs_symlink_inode_operations;
 190                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 191                        err = 12;
 192                        goto out_invalid;
 193                }
 194                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 195                if (!ui->data) {
 196                        err = -ENOMEM;
 197                        goto out_ino;
 198                }
 199                memcpy(ui->data, ino->data, ui->data_len);
 200                ((char *)ui->data)[ui->data_len] = '\0';
 201                break;
 202        case S_IFBLK:
 203        case S_IFCHR:
 204        {
 205                dev_t rdev;
 206                union ubifs_dev_desc *dev;
 207
 208                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 209                if (!ui->data) {
 210                        err = -ENOMEM;
 211                        goto out_ino;
 212                }
 213
 214                dev = (union ubifs_dev_desc *)ino->data;
 215                if (ui->data_len == sizeof(dev->new))
 216                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 217                else if (ui->data_len == sizeof(dev->huge))
 218                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 219                else {
 220                        err = 13;
 221                        goto out_invalid;
 222                }
 223                memcpy(ui->data, ino->data, ui->data_len);
 224                inode->i_op = &ubifs_file_inode_operations;
 225                init_special_inode(inode, inode->i_mode, rdev);
 226                break;
 227        }
 228        case S_IFSOCK:
 229        case S_IFIFO:
 230                inode->i_op = &ubifs_file_inode_operations;
 231                init_special_inode(inode, inode->i_mode, 0);
 232                if (ui->data_len != 0) {
 233                        err = 14;
 234                        goto out_invalid;
 235                }
 236                break;
 237        default:
 238                err = 15;
 239                goto out_invalid;
 240        }
 241
 242        kfree(ino);
 243        ubifs_set_inode_flags(inode);
 244        unlock_new_inode(inode);
 245        return inode;
 246
 247out_invalid:
 248        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 249        ubifs_dump_node(c, ino);
 250        ubifs_dump_inode(c, inode);
 251        err = -EINVAL;
 252out_ino:
 253        kfree(ino);
 254out:
 255        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 256        iget_failed(inode);
 257        return ERR_PTR(err);
 258}
 259
 260static struct inode *ubifs_alloc_inode(struct super_block *sb)
 261{
 262        struct ubifs_inode *ui;
 263
 264        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 265        if (!ui)
 266                return NULL;
 267
 268        memset((void *)ui + sizeof(struct inode), 0,
 269               sizeof(struct ubifs_inode) - sizeof(struct inode));
 270        mutex_init(&ui->ui_mutex);
 271        spin_lock_init(&ui->ui_lock);
 272        return &ui->vfs_inode;
 273};
 274
 275static void ubifs_i_callback(struct rcu_head *head)
 276{
 277        struct inode *inode = container_of(head, struct inode, i_rcu);
 278        struct ubifs_inode *ui = ubifs_inode(inode);
 279        kmem_cache_free(ubifs_inode_slab, ui);
 280}
 281
 282static void ubifs_destroy_inode(struct inode *inode)
 283{
 284        struct ubifs_inode *ui = ubifs_inode(inode);
 285
 286        kfree(ui->data);
 287        call_rcu(&inode->i_rcu, ubifs_i_callback);
 288}
 289
 290/*
 291 * Note, Linux write-back code calls this without 'i_mutex'.
 292 */
 293static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 294{
 295        int err = 0;
 296        struct ubifs_info *c = inode->i_sb->s_fs_info;
 297        struct ubifs_inode *ui = ubifs_inode(inode);
 298
 299        ubifs_assert(c, !ui->xattr);
 300        if (is_bad_inode(inode))
 301                return 0;
 302
 303        mutex_lock(&ui->ui_mutex);
 304        /*
 305         * Due to races between write-back forced by budgeting
 306         * (see 'sync_some_inodes()') and background write-back, the inode may
 307         * have already been synchronized, do not do this again. This might
 308         * also happen if it was synchronized in an VFS operation, e.g.
 309         * 'ubifs_link()'.
 310         */
 311        if (!ui->dirty) {
 312                mutex_unlock(&ui->ui_mutex);
 313                return 0;
 314        }
 315
 316        /*
 317         * As an optimization, do not write orphan inodes to the media just
 318         * because this is not needed.
 319         */
 320        dbg_gen("inode %lu, mode %#x, nlink %u",
 321                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 322        if (inode->i_nlink) {
 323                err = ubifs_jnl_write_inode(c, inode);
 324                if (err)
 325                        ubifs_err(c, "can't write inode %lu, error %d",
 326                                  inode->i_ino, err);
 327                else
 328                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 329        }
 330
 331        ui->dirty = 0;
 332        mutex_unlock(&ui->ui_mutex);
 333        ubifs_release_dirty_inode_budget(c, ui);
 334        return err;
 335}
 336
 337static void ubifs_evict_inode(struct inode *inode)
 338{
 339        int err;
 340        struct ubifs_info *c = inode->i_sb->s_fs_info;
 341        struct ubifs_inode *ui = ubifs_inode(inode);
 342
 343        if (ui->xattr)
 344                /*
 345                 * Extended attribute inode deletions are fully handled in
 346                 * 'ubifs_removexattr()'. These inodes are special and have
 347                 * limited usage, so there is nothing to do here.
 348                 */
 349                goto out;
 350
 351        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 352        ubifs_assert(c, !atomic_read(&inode->i_count));
 353
 354        truncate_inode_pages_final(&inode->i_data);
 355
 356        if (inode->i_nlink)
 357                goto done;
 358
 359        if (is_bad_inode(inode))
 360                goto out;
 361
 362        ui->ui_size = inode->i_size = 0;
 363        err = ubifs_jnl_delete_inode(c, inode);
 364        if (err)
 365                /*
 366                 * Worst case we have a lost orphan inode wasting space, so a
 367                 * simple error message is OK here.
 368                 */
 369                ubifs_err(c, "can't delete inode %lu, error %d",
 370                          inode->i_ino, err);
 371
 372out:
 373        if (ui->dirty)
 374                ubifs_release_dirty_inode_budget(c, ui);
 375        else {
 376                /* We've deleted something - clean the "no space" flags */
 377                c->bi.nospace = c->bi.nospace_rp = 0;
 378                smp_wmb();
 379        }
 380done:
 381        clear_inode(inode);
 382        fscrypt_put_encryption_info(inode);
 383}
 384
 385static void ubifs_dirty_inode(struct inode *inode, int flags)
 386{
 387        struct ubifs_info *c = inode->i_sb->s_fs_info;
 388        struct ubifs_inode *ui = ubifs_inode(inode);
 389
 390        ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 391        if (!ui->dirty) {
 392                ui->dirty = 1;
 393                dbg_gen("inode %lu",  inode->i_ino);
 394        }
 395}
 396
 397static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 398{
 399        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 400        unsigned long long free;
 401        __le32 *uuid = (__le32 *)c->uuid;
 402
 403        free = ubifs_get_free_space(c);
 404        dbg_gen("free space %lld bytes (%lld blocks)",
 405                free, free >> UBIFS_BLOCK_SHIFT);
 406
 407        buf->f_type = UBIFS_SUPER_MAGIC;
 408        buf->f_bsize = UBIFS_BLOCK_SIZE;
 409        buf->f_blocks = c->block_cnt;
 410        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 411        if (free > c->report_rp_size)
 412                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 413        else
 414                buf->f_bavail = 0;
 415        buf->f_files = 0;
 416        buf->f_ffree = 0;
 417        buf->f_namelen = UBIFS_MAX_NLEN;
 418        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 419        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 420        ubifs_assert(c, buf->f_bfree <= c->block_cnt);
 421        return 0;
 422}
 423
 424static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 425{
 426        struct ubifs_info *c = root->d_sb->s_fs_info;
 427
 428        if (c->mount_opts.unmount_mode == 2)
 429                seq_puts(s, ",fast_unmount");
 430        else if (c->mount_opts.unmount_mode == 1)
 431                seq_puts(s, ",norm_unmount");
 432
 433        if (c->mount_opts.bulk_read == 2)
 434                seq_puts(s, ",bulk_read");
 435        else if (c->mount_opts.bulk_read == 1)
 436                seq_puts(s, ",no_bulk_read");
 437
 438        if (c->mount_opts.chk_data_crc == 2)
 439                seq_puts(s, ",chk_data_crc");
 440        else if (c->mount_opts.chk_data_crc == 1)
 441                seq_puts(s, ",no_chk_data_crc");
 442
 443        if (c->mount_opts.override_compr) {
 444                seq_printf(s, ",compr=%s",
 445                           ubifs_compr_name(c, c->mount_opts.compr_type));
 446        }
 447
 448        seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
 449        seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
 450
 451        return 0;
 452}
 453
 454static int ubifs_sync_fs(struct super_block *sb, int wait)
 455{
 456        int i, err;
 457        struct ubifs_info *c = sb->s_fs_info;
 458
 459        /*
 460         * Zero @wait is just an advisory thing to help the file system shove
 461         * lots of data into the queues, and there will be the second
 462         * '->sync_fs()' call, with non-zero @wait.
 463         */
 464        if (!wait)
 465                return 0;
 466
 467        /*
 468         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 469         * do this if it waits for an already running commit.
 470         */
 471        for (i = 0; i < c->jhead_cnt; i++) {
 472                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 473                if (err)
 474                        return err;
 475        }
 476
 477        /*
 478         * Strictly speaking, it is not necessary to commit the journal here,
 479         * synchronizing write-buffers would be enough. But committing makes
 480         * UBIFS free space predictions much more accurate, so we want to let
 481         * the user be able to get more accurate results of 'statfs()' after
 482         * they synchronize the file system.
 483         */
 484        err = ubifs_run_commit(c);
 485        if (err)
 486                return err;
 487
 488        return ubi_sync(c->vi.ubi_num);
 489}
 490
 491/**
 492 * init_constants_early - initialize UBIFS constants.
 493 * @c: UBIFS file-system description object
 494 *
 495 * This function initialize UBIFS constants which do not need the superblock to
 496 * be read. It also checks that the UBI volume satisfies basic UBIFS
 497 * requirements. Returns zero in case of success and a negative error code in
 498 * case of failure.
 499 */
 500static int init_constants_early(struct ubifs_info *c)
 501{
 502        if (c->vi.corrupted) {
 503                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 504                c->ro_media = 1;
 505        }
 506
 507        if (c->di.ro_mode) {
 508                ubifs_msg(c, "read-only UBI device");
 509                c->ro_media = 1;
 510        }
 511
 512        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 513                ubifs_msg(c, "static UBI volume - read-only mode");
 514                c->ro_media = 1;
 515        }
 516
 517        c->leb_cnt = c->vi.size;
 518        c->leb_size = c->vi.usable_leb_size;
 519        c->leb_start = c->di.leb_start;
 520        c->half_leb_size = c->leb_size / 2;
 521        c->min_io_size = c->di.min_io_size;
 522        c->min_io_shift = fls(c->min_io_size) - 1;
 523        c->max_write_size = c->di.max_write_size;
 524        c->max_write_shift = fls(c->max_write_size) - 1;
 525
 526        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 527                ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
 528                           c->leb_size, UBIFS_MIN_LEB_SZ);
 529                return -EINVAL;
 530        }
 531
 532        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 533                ubifs_errc(c, "too few LEBs (%d), min. is %d",
 534                           c->leb_cnt, UBIFS_MIN_LEB_CNT);
 535                return -EINVAL;
 536        }
 537
 538        if (!is_power_of_2(c->min_io_size)) {
 539                ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
 540                return -EINVAL;
 541        }
 542
 543        /*
 544         * Maximum write size has to be greater or equivalent to min. I/O
 545         * size, and be multiple of min. I/O size.
 546         */
 547        if (c->max_write_size < c->min_io_size ||
 548            c->max_write_size % c->min_io_size ||
 549            !is_power_of_2(c->max_write_size)) {
 550                ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
 551                           c->max_write_size, c->min_io_size);
 552                return -EINVAL;
 553        }
 554
 555        /*
 556         * UBIFS aligns all node to 8-byte boundary, so to make function in
 557         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 558         * less than 8.
 559         */
 560        if (c->min_io_size < 8) {
 561                c->min_io_size = 8;
 562                c->min_io_shift = 3;
 563                if (c->max_write_size < c->min_io_size) {
 564                        c->max_write_size = c->min_io_size;
 565                        c->max_write_shift = c->min_io_shift;
 566                }
 567        }
 568
 569        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 570        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 571
 572        /*
 573         * Initialize node length ranges which are mostly needed for node
 574         * length validation.
 575         */
 576        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 577        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 578        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 579        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 580        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 581        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 582
 583        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 584        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 585        c->ranges[UBIFS_ORPH_NODE].min_len =
 586                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 587        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 588        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 589        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 590        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 591        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 592        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 593        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 594        /*
 595         * Minimum indexing node size is amended later when superblock is
 596         * read and the key length is known.
 597         */
 598        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 599        /*
 600         * Maximum indexing node size is amended later when superblock is
 601         * read and the fanout is known.
 602         */
 603        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 604
 605        /*
 606         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 607         * about these values.
 608         */
 609        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 610        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 611
 612        /*
 613         * Calculate how many bytes would be wasted at the end of LEB if it was
 614         * fully filled with data nodes of maximum size. This is used in
 615         * calculations when reporting free space.
 616         */
 617        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 618
 619        /* Buffer size for bulk-reads */
 620        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 621        if (c->max_bu_buf_len > c->leb_size)
 622                c->max_bu_buf_len = c->leb_size;
 623        return 0;
 624}
 625
 626/**
 627 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 628 * @c: UBIFS file-system description object
 629 * @lnum: LEB the write-buffer was synchronized to
 630 * @free: how many free bytes left in this LEB
 631 * @pad: how many bytes were padded
 632 *
 633 * This is a callback function which is called by the I/O unit when the
 634 * write-buffer is synchronized. We need this to correctly maintain space
 635 * accounting in bud logical eraseblocks. This function returns zero in case of
 636 * success and a negative error code in case of failure.
 637 *
 638 * This function actually belongs to the journal, but we keep it here because
 639 * we want to keep it static.
 640 */
 641static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 642{
 643        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 644}
 645
 646/*
 647 * init_constants_sb - initialize UBIFS constants.
 648 * @c: UBIFS file-system description object
 649 *
 650 * This is a helper function which initializes various UBIFS constants after
 651 * the superblock has been read. It also checks various UBIFS parameters and
 652 * makes sure they are all right. Returns zero in case of success and a
 653 * negative error code in case of failure.
 654 */
 655static int init_constants_sb(struct ubifs_info *c)
 656{
 657        int tmp, err;
 658        long long tmp64;
 659
 660        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 661        c->max_znode_sz = sizeof(struct ubifs_znode) +
 662                                c->fanout * sizeof(struct ubifs_zbranch);
 663
 664        tmp = ubifs_idx_node_sz(c, 1);
 665        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 666        c->min_idx_node_sz = ALIGN(tmp, 8);
 667
 668        tmp = ubifs_idx_node_sz(c, c->fanout);
 669        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 670        c->max_idx_node_sz = ALIGN(tmp, 8);
 671
 672        /* Make sure LEB size is large enough to fit full commit */
 673        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 674        tmp = ALIGN(tmp, c->min_io_size);
 675        if (tmp > c->leb_size) {
 676                ubifs_err(c, "too small LEB size %d, at least %d needed",
 677                          c->leb_size, tmp);
 678                return -EINVAL;
 679        }
 680
 681        /*
 682         * Make sure that the log is large enough to fit reference nodes for
 683         * all buds plus one reserved LEB.
 684         */
 685        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 686        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 687        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 688        tmp /= c->leb_size;
 689        tmp += 1;
 690        if (c->log_lebs < tmp) {
 691                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 692                          c->log_lebs, tmp);
 693                return -EINVAL;
 694        }
 695
 696        /*
 697         * When budgeting we assume worst-case scenarios when the pages are not
 698         * be compressed and direntries are of the maximum size.
 699         *
 700         * Note, data, which may be stored in inodes is budgeted separately, so
 701         * it is not included into 'c->bi.inode_budget'.
 702         */
 703        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 704        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 705        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 706
 707        /*
 708         * When the amount of flash space used by buds becomes
 709         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 710         * The writers are unblocked when the commit is finished. To avoid
 711         * writers to be blocked UBIFS initiates background commit in advance,
 712         * when number of bud bytes becomes above the limit defined below.
 713         */
 714        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 715
 716        /*
 717         * Ensure minimum journal size. All the bytes in the journal heads are
 718         * considered to be used, when calculating the current journal usage.
 719         * Consequently, if the journal is too small, UBIFS will treat it as
 720         * always full.
 721         */
 722        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 723        if (c->bg_bud_bytes < tmp64)
 724                c->bg_bud_bytes = tmp64;
 725        if (c->max_bud_bytes < tmp64 + c->leb_size)
 726                c->max_bud_bytes = tmp64 + c->leb_size;
 727
 728        err = ubifs_calc_lpt_geom(c);
 729        if (err)
 730                return err;
 731
 732        /* Initialize effective LEB size used in budgeting calculations */
 733        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 734        return 0;
 735}
 736
 737/*
 738 * init_constants_master - initialize UBIFS constants.
 739 * @c: UBIFS file-system description object
 740 *
 741 * This is a helper function which initializes various UBIFS constants after
 742 * the master node has been read. It also checks various UBIFS parameters and
 743 * makes sure they are all right.
 744 */
 745static void init_constants_master(struct ubifs_info *c)
 746{
 747        long long tmp64;
 748
 749        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 750        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 751
 752        /*
 753         * Calculate total amount of FS blocks. This number is not used
 754         * internally because it does not make much sense for UBIFS, but it is
 755         * necessary to report something for the 'statfs()' call.
 756         *
 757         * Subtract the LEB reserved for GC, the LEB which is reserved for
 758         * deletions, minimum LEBs for the index, and assume only one journal
 759         * head is available.
 760         */
 761        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 762        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 763        tmp64 = ubifs_reported_space(c, tmp64);
 764        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 765}
 766
 767/**
 768 * take_gc_lnum - reserve GC LEB.
 769 * @c: UBIFS file-system description object
 770 *
 771 * This function ensures that the LEB reserved for garbage collection is marked
 772 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 773 * space to zero, because lprops may contain out-of-date information if the
 774 * file-system was un-mounted before it has been committed. This function
 775 * returns zero in case of success and a negative error code in case of
 776 * failure.
 777 */
 778static int take_gc_lnum(struct ubifs_info *c)
 779{
 780        int err;
 781
 782        if (c->gc_lnum == -1) {
 783                ubifs_err(c, "no LEB for GC");
 784                return -EINVAL;
 785        }
 786
 787        /* And we have to tell lprops that this LEB is taken */
 788        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 789                                  LPROPS_TAKEN, 0, 0);
 790        return err;
 791}
 792
 793/**
 794 * alloc_wbufs - allocate write-buffers.
 795 * @c: UBIFS file-system description object
 796 *
 797 * This helper function allocates and initializes UBIFS write-buffers. Returns
 798 * zero in case of success and %-ENOMEM in case of failure.
 799 */
 800static int alloc_wbufs(struct ubifs_info *c)
 801{
 802        int i, err;
 803
 804        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 805                            GFP_KERNEL);
 806        if (!c->jheads)
 807                return -ENOMEM;
 808
 809        /* Initialize journal heads */
 810        for (i = 0; i < c->jhead_cnt; i++) {
 811                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 812                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 813                if (err)
 814                        return err;
 815
 816                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 817                c->jheads[i].wbuf.jhead = i;
 818                c->jheads[i].grouped = 1;
 819        }
 820
 821        /*
 822         * Garbage Collector head does not need to be synchronized by timer.
 823         * Also GC head nodes are not grouped.
 824         */
 825        c->jheads[GCHD].wbuf.no_timer = 1;
 826        c->jheads[GCHD].grouped = 0;
 827
 828        return 0;
 829}
 830
 831/**
 832 * free_wbufs - free write-buffers.
 833 * @c: UBIFS file-system description object
 834 */
 835static void free_wbufs(struct ubifs_info *c)
 836{
 837        int i;
 838
 839        if (c->jheads) {
 840                for (i = 0; i < c->jhead_cnt; i++) {
 841                        kfree(c->jheads[i].wbuf.buf);
 842                        kfree(c->jheads[i].wbuf.inodes);
 843                }
 844                kfree(c->jheads);
 845                c->jheads = NULL;
 846        }
 847}
 848
 849/**
 850 * free_orphans - free orphans.
 851 * @c: UBIFS file-system description object
 852 */
 853static void free_orphans(struct ubifs_info *c)
 854{
 855        struct ubifs_orphan *orph;
 856
 857        while (c->orph_dnext) {
 858                orph = c->orph_dnext;
 859                c->orph_dnext = orph->dnext;
 860                list_del(&orph->list);
 861                kfree(orph);
 862        }
 863
 864        while (!list_empty(&c->orph_list)) {
 865                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 866                list_del(&orph->list);
 867                kfree(orph);
 868                ubifs_err(c, "orphan list not empty at unmount");
 869        }
 870
 871        vfree(c->orph_buf);
 872        c->orph_buf = NULL;
 873}
 874
 875/**
 876 * free_buds - free per-bud objects.
 877 * @c: UBIFS file-system description object
 878 */
 879static void free_buds(struct ubifs_info *c)
 880{
 881        struct ubifs_bud *bud, *n;
 882
 883        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
 884                kfree(bud);
 885}
 886
 887/**
 888 * check_volume_empty - check if the UBI volume is empty.
 889 * @c: UBIFS file-system description object
 890 *
 891 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 892 * mapped or not. The result of checking is stored in the @c->empty variable.
 893 * Returns zero in case of success and a negative error code in case of
 894 * failure.
 895 */
 896static int check_volume_empty(struct ubifs_info *c)
 897{
 898        int lnum, err;
 899
 900        c->empty = 1;
 901        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 902                err = ubifs_is_mapped(c, lnum);
 903                if (unlikely(err < 0))
 904                        return err;
 905                if (err == 1) {
 906                        c->empty = 0;
 907                        break;
 908                }
 909
 910                cond_resched();
 911        }
 912
 913        return 0;
 914}
 915
 916/*
 917 * UBIFS mount options.
 918 *
 919 * Opt_fast_unmount: do not run a journal commit before un-mounting
 920 * Opt_norm_unmount: run a journal commit before un-mounting
 921 * Opt_bulk_read: enable bulk-reads
 922 * Opt_no_bulk_read: disable bulk-reads
 923 * Opt_chk_data_crc: check CRCs when reading data nodes
 924 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 925 * Opt_override_compr: override default compressor
 926 * Opt_assert: set ubifs_assert() action
 927 * Opt_err: just end of array marker
 928 */
 929enum {
 930        Opt_fast_unmount,
 931        Opt_norm_unmount,
 932        Opt_bulk_read,
 933        Opt_no_bulk_read,
 934        Opt_chk_data_crc,
 935        Opt_no_chk_data_crc,
 936        Opt_override_compr,
 937        Opt_assert,
 938        Opt_ignore,
 939        Opt_err,
 940};
 941
 942static const match_table_t tokens = {
 943        {Opt_fast_unmount, "fast_unmount"},
 944        {Opt_norm_unmount, "norm_unmount"},
 945        {Opt_bulk_read, "bulk_read"},
 946        {Opt_no_bulk_read, "no_bulk_read"},
 947        {Opt_chk_data_crc, "chk_data_crc"},
 948        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 949        {Opt_override_compr, "compr=%s"},
 950        {Opt_ignore, "ubi=%s"},
 951        {Opt_ignore, "vol=%s"},
 952        {Opt_assert, "assert=%s"},
 953        {Opt_err, NULL},
 954};
 955
 956/**
 957 * parse_standard_option - parse a standard mount option.
 958 * @option: the option to parse
 959 *
 960 * Normally, standard mount options like "sync" are passed to file-systems as
 961 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
 962 * be present in the options string. This function tries to deal with this
 963 * situation and parse standard options. Returns 0 if the option was not
 964 * recognized, and the corresponding integer flag if it was.
 965 *
 966 * UBIFS is only interested in the "sync" option, so do not check for anything
 967 * else.
 968 */
 969static int parse_standard_option(const char *option)
 970{
 971
 972        pr_notice("UBIFS: parse %s\n", option);
 973        if (!strcmp(option, "sync"))
 974                return SB_SYNCHRONOUS;
 975        return 0;
 976}
 977
 978/**
 979 * ubifs_parse_options - parse mount parameters.
 980 * @c: UBIFS file-system description object
 981 * @options: parameters to parse
 982 * @is_remount: non-zero if this is FS re-mount
 983 *
 984 * This function parses UBIFS mount options and returns zero in case success
 985 * and a negative error code in case of failure.
 986 */
 987static int ubifs_parse_options(struct ubifs_info *c, char *options,
 988                               int is_remount)
 989{
 990        char *p;
 991        substring_t args[MAX_OPT_ARGS];
 992
 993        if (!options)
 994                return 0;
 995
 996        while ((p = strsep(&options, ","))) {
 997                int token;
 998
 999                if (!*p)
1000                        continue;
1001
1002                token = match_token(p, tokens, args);
1003                switch (token) {
1004                /*
1005                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1006                 * We accept them in order to be backward-compatible. But this
1007                 * should be removed at some point.
1008                 */
1009                case Opt_fast_unmount:
1010                        c->mount_opts.unmount_mode = 2;
1011                        break;
1012                case Opt_norm_unmount:
1013                        c->mount_opts.unmount_mode = 1;
1014                        break;
1015                case Opt_bulk_read:
1016                        c->mount_opts.bulk_read = 2;
1017                        c->bulk_read = 1;
1018                        break;
1019                case Opt_no_bulk_read:
1020                        c->mount_opts.bulk_read = 1;
1021                        c->bulk_read = 0;
1022                        break;
1023                case Opt_chk_data_crc:
1024                        c->mount_opts.chk_data_crc = 2;
1025                        c->no_chk_data_crc = 0;
1026                        break;
1027                case Opt_no_chk_data_crc:
1028                        c->mount_opts.chk_data_crc = 1;
1029                        c->no_chk_data_crc = 1;
1030                        break;
1031                case Opt_override_compr:
1032                {
1033                        char *name = match_strdup(&args[0]);
1034
1035                        if (!name)
1036                                return -ENOMEM;
1037                        if (!strcmp(name, "none"))
1038                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1039                        else if (!strcmp(name, "lzo"))
1040                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1041                        else if (!strcmp(name, "zlib"))
1042                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1043                        else {
1044                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1045                                kfree(name);
1046                                return -EINVAL;
1047                        }
1048                        kfree(name);
1049                        c->mount_opts.override_compr = 1;
1050                        c->default_compr = c->mount_opts.compr_type;
1051                        break;
1052                }
1053                case Opt_assert:
1054                {
1055                        char *act = match_strdup(&args[0]);
1056
1057                        if (!act)
1058                                return -ENOMEM;
1059                        if (!strcmp(act, "report"))
1060                                c->assert_action = ASSACT_REPORT;
1061                        else if (!strcmp(act, "read-only"))
1062                                c->assert_action = ASSACT_RO;
1063                        else if (!strcmp(act, "panic"))
1064                                c->assert_action = ASSACT_PANIC;
1065                        else {
1066                                ubifs_err(c, "unknown assert action \"%s\"", act);
1067                                kfree(act);
1068                                return -EINVAL;
1069                        }
1070                        kfree(act);
1071                        break;
1072                }
1073                case Opt_ignore:
1074                        break;
1075                default:
1076                {
1077                        unsigned long flag;
1078                        struct super_block *sb = c->vfs_sb;
1079
1080                        flag = parse_standard_option(p);
1081                        if (!flag) {
1082                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1083                                          p);
1084                                return -EINVAL;
1085                        }
1086                        sb->s_flags |= flag;
1087                        break;
1088                }
1089                }
1090        }
1091
1092        return 0;
1093}
1094
1095/**
1096 * destroy_journal - destroy journal data structures.
1097 * @c: UBIFS file-system description object
1098 *
1099 * This function destroys journal data structures including those that may have
1100 * been created by recovery functions.
1101 */
1102static void destroy_journal(struct ubifs_info *c)
1103{
1104        while (!list_empty(&c->unclean_leb_list)) {
1105                struct ubifs_unclean_leb *ucleb;
1106
1107                ucleb = list_entry(c->unclean_leb_list.next,
1108                                   struct ubifs_unclean_leb, list);
1109                list_del(&ucleb->list);
1110                kfree(ucleb);
1111        }
1112        while (!list_empty(&c->old_buds)) {
1113                struct ubifs_bud *bud;
1114
1115                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1116                list_del(&bud->list);
1117                kfree(bud);
1118        }
1119        ubifs_destroy_idx_gc(c);
1120        ubifs_destroy_size_tree(c);
1121        ubifs_tnc_close(c);
1122        free_buds(c);
1123}
1124
1125/**
1126 * bu_init - initialize bulk-read information.
1127 * @c: UBIFS file-system description object
1128 */
1129static void bu_init(struct ubifs_info *c)
1130{
1131        ubifs_assert(c, c->bulk_read == 1);
1132
1133        if (c->bu.buf)
1134                return; /* Already initialized */
1135
1136again:
1137        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1138        if (!c->bu.buf) {
1139                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1140                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1141                        goto again;
1142                }
1143
1144                /* Just disable bulk-read */
1145                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1146                           c->max_bu_buf_len);
1147                c->mount_opts.bulk_read = 1;
1148                c->bulk_read = 0;
1149                return;
1150        }
1151}
1152
1153/**
1154 * check_free_space - check if there is enough free space to mount.
1155 * @c: UBIFS file-system description object
1156 *
1157 * This function makes sure UBIFS has enough free space to be mounted in
1158 * read/write mode. UBIFS must always have some free space to allow deletions.
1159 */
1160static int check_free_space(struct ubifs_info *c)
1161{
1162        ubifs_assert(c, c->dark_wm > 0);
1163        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1164                ubifs_err(c, "insufficient free space to mount in R/W mode");
1165                ubifs_dump_budg(c, &c->bi);
1166                ubifs_dump_lprops(c);
1167                return -ENOSPC;
1168        }
1169        return 0;
1170}
1171
1172/**
1173 * mount_ubifs - mount UBIFS file-system.
1174 * @c: UBIFS file-system description object
1175 *
1176 * This function mounts UBIFS file system. Returns zero in case of success and
1177 * a negative error code in case of failure.
1178 */
1179static int mount_ubifs(struct ubifs_info *c)
1180{
1181        int err;
1182        long long x, y;
1183        size_t sz;
1184
1185        c->ro_mount = !!sb_rdonly(c->vfs_sb);
1186        /* Suppress error messages while probing if SB_SILENT is set */
1187        c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1188
1189        err = init_constants_early(c);
1190        if (err)
1191                return err;
1192
1193        err = ubifs_debugging_init(c);
1194        if (err)
1195                return err;
1196
1197        err = check_volume_empty(c);
1198        if (err)
1199                goto out_free;
1200
1201        if (c->empty && (c->ro_mount || c->ro_media)) {
1202                /*
1203                 * This UBI volume is empty, and read-only, or the file system
1204                 * is mounted read-only - we cannot format it.
1205                 */
1206                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1207                          c->ro_media ? "UBI volume" : "mount");
1208                err = -EROFS;
1209                goto out_free;
1210        }
1211
1212        if (c->ro_media && !c->ro_mount) {
1213                ubifs_err(c, "cannot mount read-write - read-only media");
1214                err = -EROFS;
1215                goto out_free;
1216        }
1217
1218        /*
1219         * The requirement for the buffer is that it should fit indexing B-tree
1220         * height amount of integers. We assume the height if the TNC tree will
1221         * never exceed 64.
1222         */
1223        err = -ENOMEM;
1224        c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1225                                         GFP_KERNEL);
1226        if (!c->bottom_up_buf)
1227                goto out_free;
1228
1229        c->sbuf = vmalloc(c->leb_size);
1230        if (!c->sbuf)
1231                goto out_free;
1232
1233        if (!c->ro_mount) {
1234                c->ileb_buf = vmalloc(c->leb_size);
1235                if (!c->ileb_buf)
1236                        goto out_free;
1237        }
1238
1239        if (c->bulk_read == 1)
1240                bu_init(c);
1241
1242        if (!c->ro_mount) {
1243                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1244                                               UBIFS_CIPHER_BLOCK_SIZE,
1245                                               GFP_KERNEL);
1246                if (!c->write_reserve_buf)
1247                        goto out_free;
1248        }
1249
1250        c->mounting = 1;
1251
1252        err = ubifs_read_superblock(c);
1253        if (err)
1254                goto out_free;
1255
1256        c->probing = 0;
1257
1258        /*
1259         * Make sure the compressor which is set as default in the superblock
1260         * or overridden by mount options is actually compiled in.
1261         */
1262        if (!ubifs_compr_present(c, c->default_compr)) {
1263                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1264                          ubifs_compr_name(c, c->default_compr));
1265                err = -ENOTSUPP;
1266                goto out_free;
1267        }
1268
1269        err = init_constants_sb(c);
1270        if (err)
1271                goto out_free;
1272
1273        sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1274        sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1275        c->cbuf = kmalloc(sz, GFP_NOFS);
1276        if (!c->cbuf) {
1277                err = -ENOMEM;
1278                goto out_free;
1279        }
1280
1281        err = alloc_wbufs(c);
1282        if (err)
1283                goto out_cbuf;
1284
1285        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1286        if (!c->ro_mount) {
1287                /* Create background thread */
1288                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1289                if (IS_ERR(c->bgt)) {
1290                        err = PTR_ERR(c->bgt);
1291                        c->bgt = NULL;
1292                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1293                                  c->bgt_name, err);
1294                        goto out_wbufs;
1295                }
1296                wake_up_process(c->bgt);
1297        }
1298
1299        err = ubifs_read_master(c);
1300        if (err)
1301                goto out_master;
1302
1303        init_constants_master(c);
1304
1305        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1306                ubifs_msg(c, "recovery needed");
1307                c->need_recovery = 1;
1308        }
1309
1310        if (c->need_recovery && !c->ro_mount) {
1311                err = ubifs_recover_inl_heads(c, c->sbuf);
1312                if (err)
1313                        goto out_master;
1314        }
1315
1316        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1317        if (err)
1318                goto out_master;
1319
1320        if (!c->ro_mount && c->space_fixup) {
1321                err = ubifs_fixup_free_space(c);
1322                if (err)
1323                        goto out_lpt;
1324        }
1325
1326        if (!c->ro_mount && !c->need_recovery) {
1327                /*
1328                 * Set the "dirty" flag so that if we reboot uncleanly we
1329                 * will notice this immediately on the next mount.
1330                 */
1331                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1332                err = ubifs_write_master(c);
1333                if (err)
1334                        goto out_lpt;
1335        }
1336
1337        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1338        if (err)
1339                goto out_lpt;
1340
1341        err = ubifs_replay_journal(c);
1342        if (err)
1343                goto out_journal;
1344
1345        /* Calculate 'min_idx_lebs' after journal replay */
1346        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1347
1348        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1349        if (err)
1350                goto out_orphans;
1351
1352        if (!c->ro_mount) {
1353                int lnum;
1354
1355                err = check_free_space(c);
1356                if (err)
1357                        goto out_orphans;
1358
1359                /* Check for enough log space */
1360                lnum = c->lhead_lnum + 1;
1361                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1362                        lnum = UBIFS_LOG_LNUM;
1363                if (lnum == c->ltail_lnum) {
1364                        err = ubifs_consolidate_log(c);
1365                        if (err)
1366                                goto out_orphans;
1367                }
1368
1369                if (c->need_recovery) {
1370                        err = ubifs_recover_size(c);
1371                        if (err)
1372                                goto out_orphans;
1373                        err = ubifs_rcvry_gc_commit(c);
1374                        if (err)
1375                                goto out_orphans;
1376                } else {
1377                        err = take_gc_lnum(c);
1378                        if (err)
1379                                goto out_orphans;
1380
1381                        /*
1382                         * GC LEB may contain garbage if there was an unclean
1383                         * reboot, and it should be un-mapped.
1384                         */
1385                        err = ubifs_leb_unmap(c, c->gc_lnum);
1386                        if (err)
1387                                goto out_orphans;
1388                }
1389
1390                err = dbg_check_lprops(c);
1391                if (err)
1392                        goto out_orphans;
1393        } else if (c->need_recovery) {
1394                err = ubifs_recover_size(c);
1395                if (err)
1396                        goto out_orphans;
1397        } else {
1398                /*
1399                 * Even if we mount read-only, we have to set space in GC LEB
1400                 * to proper value because this affects UBIFS free space
1401                 * reporting. We do not want to have a situation when
1402                 * re-mounting from R/O to R/W changes amount of free space.
1403                 */
1404                err = take_gc_lnum(c);
1405                if (err)
1406                        goto out_orphans;
1407        }
1408
1409        spin_lock(&ubifs_infos_lock);
1410        list_add_tail(&c->infos_list, &ubifs_infos);
1411        spin_unlock(&ubifs_infos_lock);
1412
1413        if (c->need_recovery) {
1414                if (c->ro_mount)
1415                        ubifs_msg(c, "recovery deferred");
1416                else {
1417                        c->need_recovery = 0;
1418                        ubifs_msg(c, "recovery completed");
1419                        /*
1420                         * GC LEB has to be empty and taken at this point. But
1421                         * the journal head LEBs may also be accounted as
1422                         * "empty taken" if they are empty.
1423                         */
1424                        ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1425                }
1426        } else
1427                ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1428
1429        err = dbg_check_filesystem(c);
1430        if (err)
1431                goto out_infos;
1432
1433        err = dbg_debugfs_init_fs(c);
1434        if (err)
1435                goto out_infos;
1436
1437        c->mounting = 0;
1438
1439        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1440                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1441                  c->ro_mount ? ", R/O mode" : "");
1442        x = (long long)c->main_lebs * c->leb_size;
1443        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1444        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1445                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1446                  c->max_write_size);
1447        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1448                  x, x >> 20, c->main_lebs,
1449                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1450        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1451                  c->report_rp_size, c->report_rp_size >> 10);
1452        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1453                  c->fmt_version, c->ro_compat_version,
1454                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1455                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1456
1457        dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1458        dbg_gen("data journal heads:  %d",
1459                c->jhead_cnt - NONDATA_JHEADS_CNT);
1460        dbg_gen("log LEBs:            %d (%d - %d)",
1461                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1462        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1463                c->lpt_lebs, c->lpt_first, c->lpt_last);
1464        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1465                c->orph_lebs, c->orph_first, c->orph_last);
1466        dbg_gen("main area LEBs:      %d (%d - %d)",
1467                c->main_lebs, c->main_first, c->leb_cnt - 1);
1468        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1469        dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1470                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1471                c->bi.old_idx_sz >> 20);
1472        dbg_gen("key hash type:       %d", c->key_hash_type);
1473        dbg_gen("tree fanout:         %d", c->fanout);
1474        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1475        dbg_gen("max. znode size      %d", c->max_znode_sz);
1476        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1477        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1478                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1479        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1480                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1481        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1482                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1483        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1484                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1485                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1486        dbg_gen("dead watermark:      %d", c->dead_wm);
1487        dbg_gen("dark watermark:      %d", c->dark_wm);
1488        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1489        x = (long long)c->main_lebs * c->dark_wm;
1490        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1491                x, x >> 10, x >> 20);
1492        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1493                c->max_bud_bytes, c->max_bud_bytes >> 10,
1494                c->max_bud_bytes >> 20);
1495        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1496                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1497                c->bg_bud_bytes >> 20);
1498        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1499                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1500        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1501        dbg_gen("commit number:       %llu", c->cmt_no);
1502
1503        return 0;
1504
1505out_infos:
1506        spin_lock(&ubifs_infos_lock);
1507        list_del(&c->infos_list);
1508        spin_unlock(&ubifs_infos_lock);
1509out_orphans:
1510        free_orphans(c);
1511out_journal:
1512        destroy_journal(c);
1513out_lpt:
1514        ubifs_lpt_free(c, 0);
1515out_master:
1516        kfree(c->mst_node);
1517        kfree(c->rcvrd_mst_node);
1518        if (c->bgt)
1519                kthread_stop(c->bgt);
1520out_wbufs:
1521        free_wbufs(c);
1522out_cbuf:
1523        kfree(c->cbuf);
1524out_free:
1525        kfree(c->write_reserve_buf);
1526        kfree(c->bu.buf);
1527        vfree(c->ileb_buf);
1528        vfree(c->sbuf);
1529        kfree(c->bottom_up_buf);
1530        ubifs_debugging_exit(c);
1531        return err;
1532}
1533
1534/**
1535 * ubifs_umount - un-mount UBIFS file-system.
1536 * @c: UBIFS file-system description object
1537 *
1538 * Note, this function is called to free allocated resourced when un-mounting,
1539 * as well as free resources when an error occurred while we were half way
1540 * through mounting (error path cleanup function). So it has to make sure the
1541 * resource was actually allocated before freeing it.
1542 */
1543static void ubifs_umount(struct ubifs_info *c)
1544{
1545        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1546                c->vi.vol_id);
1547
1548        dbg_debugfs_exit_fs(c);
1549        spin_lock(&ubifs_infos_lock);
1550        list_del(&c->infos_list);
1551        spin_unlock(&ubifs_infos_lock);
1552
1553        if (c->bgt)
1554                kthread_stop(c->bgt);
1555
1556        destroy_journal(c);
1557        free_wbufs(c);
1558        free_orphans(c);
1559        ubifs_lpt_free(c, 0);
1560
1561        kfree(c->cbuf);
1562        kfree(c->rcvrd_mst_node);
1563        kfree(c->mst_node);
1564        kfree(c->write_reserve_buf);
1565        kfree(c->bu.buf);
1566        vfree(c->ileb_buf);
1567        vfree(c->sbuf);
1568        kfree(c->bottom_up_buf);
1569        ubifs_debugging_exit(c);
1570}
1571
1572/**
1573 * ubifs_remount_rw - re-mount in read-write mode.
1574 * @c: UBIFS file-system description object
1575 *
1576 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1577 * mode. This function allocates the needed resources and re-mounts UBIFS in
1578 * read-write mode.
1579 */
1580static int ubifs_remount_rw(struct ubifs_info *c)
1581{
1582        int err, lnum;
1583
1584        if (c->rw_incompat) {
1585                ubifs_err(c, "the file-system is not R/W-compatible");
1586                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1587                          c->fmt_version, c->ro_compat_version,
1588                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1589                return -EROFS;
1590        }
1591
1592        mutex_lock(&c->umount_mutex);
1593        dbg_save_space_info(c);
1594        c->remounting_rw = 1;
1595        c->ro_mount = 0;
1596
1597        if (c->space_fixup) {
1598                err = ubifs_fixup_free_space(c);
1599                if (err)
1600                        goto out;
1601        }
1602
1603        err = check_free_space(c);
1604        if (err)
1605                goto out;
1606
1607        if (c->old_leb_cnt != c->leb_cnt) {
1608                struct ubifs_sb_node *sup;
1609
1610                sup = ubifs_read_sb_node(c);
1611                if (IS_ERR(sup)) {
1612                        err = PTR_ERR(sup);
1613                        goto out;
1614                }
1615                sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1616                err = ubifs_write_sb_node(c, sup);
1617                kfree(sup);
1618                if (err)
1619                        goto out;
1620        }
1621
1622        if (c->need_recovery) {
1623                ubifs_msg(c, "completing deferred recovery");
1624                err = ubifs_write_rcvrd_mst_node(c);
1625                if (err)
1626                        goto out;
1627                err = ubifs_recover_size(c);
1628                if (err)
1629                        goto out;
1630                err = ubifs_clean_lebs(c, c->sbuf);
1631                if (err)
1632                        goto out;
1633                err = ubifs_recover_inl_heads(c, c->sbuf);
1634                if (err)
1635                        goto out;
1636        } else {
1637                /* A readonly mount is not allowed to have orphans */
1638                ubifs_assert(c, c->tot_orphans == 0);
1639                err = ubifs_clear_orphans(c);
1640                if (err)
1641                        goto out;
1642        }
1643
1644        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1645                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1646                err = ubifs_write_master(c);
1647                if (err)
1648                        goto out;
1649        }
1650
1651        c->ileb_buf = vmalloc(c->leb_size);
1652        if (!c->ileb_buf) {
1653                err = -ENOMEM;
1654                goto out;
1655        }
1656
1657        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1658                                       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1659        if (!c->write_reserve_buf) {
1660                err = -ENOMEM;
1661                goto out;
1662        }
1663
1664        err = ubifs_lpt_init(c, 0, 1);
1665        if (err)
1666                goto out;
1667
1668        /* Create background thread */
1669        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1670        if (IS_ERR(c->bgt)) {
1671                err = PTR_ERR(c->bgt);
1672                c->bgt = NULL;
1673                ubifs_err(c, "cannot spawn \"%s\", error %d",
1674                          c->bgt_name, err);
1675                goto out;
1676        }
1677        wake_up_process(c->bgt);
1678
1679        c->orph_buf = vmalloc(c->leb_size);
1680        if (!c->orph_buf) {
1681                err = -ENOMEM;
1682                goto out;
1683        }
1684
1685        /* Check for enough log space */
1686        lnum = c->lhead_lnum + 1;
1687        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1688                lnum = UBIFS_LOG_LNUM;
1689        if (lnum == c->ltail_lnum) {
1690                err = ubifs_consolidate_log(c);
1691                if (err)
1692                        goto out;
1693        }
1694
1695        if (c->need_recovery)
1696                err = ubifs_rcvry_gc_commit(c);
1697        else
1698                err = ubifs_leb_unmap(c, c->gc_lnum);
1699        if (err)
1700                goto out;
1701
1702        dbg_gen("re-mounted read-write");
1703        c->remounting_rw = 0;
1704
1705        if (c->need_recovery) {
1706                c->need_recovery = 0;
1707                ubifs_msg(c, "deferred recovery completed");
1708        } else {
1709                /*
1710                 * Do not run the debugging space check if the were doing
1711                 * recovery, because when we saved the information we had the
1712                 * file-system in a state where the TNC and lprops has been
1713                 * modified in memory, but all the I/O operations (including a
1714                 * commit) were deferred. So the file-system was in
1715                 * "non-committed" state. Now the file-system is in committed
1716                 * state, and of course the amount of free space will change
1717                 * because, for example, the old index size was imprecise.
1718                 */
1719                err = dbg_check_space_info(c);
1720        }
1721
1722        mutex_unlock(&c->umount_mutex);
1723        return err;
1724
1725out:
1726        c->ro_mount = 1;
1727        vfree(c->orph_buf);
1728        c->orph_buf = NULL;
1729        if (c->bgt) {
1730                kthread_stop(c->bgt);
1731                c->bgt = NULL;
1732        }
1733        free_wbufs(c);
1734        kfree(c->write_reserve_buf);
1735        c->write_reserve_buf = NULL;
1736        vfree(c->ileb_buf);
1737        c->ileb_buf = NULL;
1738        ubifs_lpt_free(c, 1);
1739        c->remounting_rw = 0;
1740        mutex_unlock(&c->umount_mutex);
1741        return err;
1742}
1743
1744/**
1745 * ubifs_remount_ro - re-mount in read-only mode.
1746 * @c: UBIFS file-system description object
1747 *
1748 * We assume VFS has stopped writing. Possibly the background thread could be
1749 * running a commit, however kthread_stop will wait in that case.
1750 */
1751static void ubifs_remount_ro(struct ubifs_info *c)
1752{
1753        int i, err;
1754
1755        ubifs_assert(c, !c->need_recovery);
1756        ubifs_assert(c, !c->ro_mount);
1757
1758        mutex_lock(&c->umount_mutex);
1759        if (c->bgt) {
1760                kthread_stop(c->bgt);
1761                c->bgt = NULL;
1762        }
1763
1764        dbg_save_space_info(c);
1765
1766        for (i = 0; i < c->jhead_cnt; i++) {
1767                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1768                if (err)
1769                        ubifs_ro_mode(c, err);
1770        }
1771
1772        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1773        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1774        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1775        err = ubifs_write_master(c);
1776        if (err)
1777                ubifs_ro_mode(c, err);
1778
1779        vfree(c->orph_buf);
1780        c->orph_buf = NULL;
1781        kfree(c->write_reserve_buf);
1782        c->write_reserve_buf = NULL;
1783        vfree(c->ileb_buf);
1784        c->ileb_buf = NULL;
1785        ubifs_lpt_free(c, 1);
1786        c->ro_mount = 1;
1787        err = dbg_check_space_info(c);
1788        if (err)
1789                ubifs_ro_mode(c, err);
1790        mutex_unlock(&c->umount_mutex);
1791}
1792
1793static void ubifs_put_super(struct super_block *sb)
1794{
1795        int i;
1796        struct ubifs_info *c = sb->s_fs_info;
1797
1798        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1799
1800        /*
1801         * The following asserts are only valid if there has not been a failure
1802         * of the media. For example, there will be dirty inodes if we failed
1803         * to write them back because of I/O errors.
1804         */
1805        if (!c->ro_error) {
1806                ubifs_assert(c, c->bi.idx_growth == 0);
1807                ubifs_assert(c, c->bi.dd_growth == 0);
1808                ubifs_assert(c, c->bi.data_growth == 0);
1809        }
1810
1811        /*
1812         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1813         * and file system un-mount. Namely, it prevents the shrinker from
1814         * picking this superblock for shrinking - it will be just skipped if
1815         * the mutex is locked.
1816         */
1817        mutex_lock(&c->umount_mutex);
1818        if (!c->ro_mount) {
1819                /*
1820                 * First of all kill the background thread to make sure it does
1821                 * not interfere with un-mounting and freeing resources.
1822                 */
1823                if (c->bgt) {
1824                        kthread_stop(c->bgt);
1825                        c->bgt = NULL;
1826                }
1827
1828                /*
1829                 * On fatal errors c->ro_error is set to 1, in which case we do
1830                 * not write the master node.
1831                 */
1832                if (!c->ro_error) {
1833                        int err;
1834
1835                        /* Synchronize write-buffers */
1836                        for (i = 0; i < c->jhead_cnt; i++) {
1837                                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1838                                if (err)
1839                                        ubifs_ro_mode(c, err);
1840                        }
1841
1842                        /*
1843                         * We are being cleanly unmounted which means the
1844                         * orphans were killed - indicate this in the master
1845                         * node. Also save the reserved GC LEB number.
1846                         */
1847                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1848                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1849                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1850                        err = ubifs_write_master(c);
1851                        if (err)
1852                                /*
1853                                 * Recovery will attempt to fix the master area
1854                                 * next mount, so we just print a message and
1855                                 * continue to unmount normally.
1856                                 */
1857                                ubifs_err(c, "failed to write master node, error %d",
1858                                          err);
1859                } else {
1860                        for (i = 0; i < c->jhead_cnt; i++)
1861                                /* Make sure write-buffer timers are canceled */
1862                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1863                }
1864        }
1865
1866        ubifs_umount(c);
1867        ubi_close_volume(c->ubi);
1868        mutex_unlock(&c->umount_mutex);
1869}
1870
1871static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1872{
1873        int err;
1874        struct ubifs_info *c = sb->s_fs_info;
1875
1876        sync_filesystem(sb);
1877        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1878
1879        err = ubifs_parse_options(c, data, 1);
1880        if (err) {
1881                ubifs_err(c, "invalid or unknown remount parameter");
1882                return err;
1883        }
1884
1885        if (c->ro_mount && !(*flags & SB_RDONLY)) {
1886                if (c->ro_error) {
1887                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1888                        return -EROFS;
1889                }
1890                if (c->ro_media) {
1891                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1892                        return -EROFS;
1893                }
1894                err = ubifs_remount_rw(c);
1895                if (err)
1896                        return err;
1897        } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1898                if (c->ro_error) {
1899                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1900                        return -EROFS;
1901                }
1902                ubifs_remount_ro(c);
1903        }
1904
1905        if (c->bulk_read == 1)
1906                bu_init(c);
1907        else {
1908                dbg_gen("disable bulk-read");
1909                mutex_lock(&c->bu_mutex);
1910                kfree(c->bu.buf);
1911                c->bu.buf = NULL;
1912                mutex_unlock(&c->bu_mutex);
1913        }
1914
1915        if (!c->need_recovery)
1916                ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1917
1918        return 0;
1919}
1920
1921const struct super_operations ubifs_super_operations = {
1922        .alloc_inode   = ubifs_alloc_inode,
1923        .destroy_inode = ubifs_destroy_inode,
1924        .put_super     = ubifs_put_super,
1925        .write_inode   = ubifs_write_inode,
1926        .evict_inode   = ubifs_evict_inode,
1927        .statfs        = ubifs_statfs,
1928        .dirty_inode   = ubifs_dirty_inode,
1929        .remount_fs    = ubifs_remount_fs,
1930        .show_options  = ubifs_show_options,
1931        .sync_fs       = ubifs_sync_fs,
1932};
1933
1934/**
1935 * open_ubi - parse UBI device name string and open the UBI device.
1936 * @name: UBI volume name
1937 * @mode: UBI volume open mode
1938 *
1939 * The primary method of mounting UBIFS is by specifying the UBI volume
1940 * character device node path. However, UBIFS may also be mounted withoug any
1941 * character device node using one of the following methods:
1942 *
1943 * o ubiX_Y    - mount UBI device number X, volume Y;
1944 * o ubiY      - mount UBI device number 0, volume Y;
1945 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1946 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1947 *
1948 * Alternative '!' separator may be used instead of ':' (because some shells
1949 * like busybox may interpret ':' as an NFS host name separator). This function
1950 * returns UBI volume description object in case of success and a negative
1951 * error code in case of failure.
1952 */
1953static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1954{
1955        struct ubi_volume_desc *ubi;
1956        int dev, vol;
1957        char *endptr;
1958
1959        if (!name || !*name)
1960                return ERR_PTR(-EINVAL);
1961
1962        /* First, try to open using the device node path method */
1963        ubi = ubi_open_volume_path(name, mode);
1964        if (!IS_ERR(ubi))
1965                return ubi;
1966
1967        /* Try the "nodev" method */
1968        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1969                return ERR_PTR(-EINVAL);
1970
1971        /* ubi:NAME method */
1972        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1973                return ubi_open_volume_nm(0, name + 4, mode);
1974
1975        if (!isdigit(name[3]))
1976                return ERR_PTR(-EINVAL);
1977
1978        dev = simple_strtoul(name + 3, &endptr, 0);
1979
1980        /* ubiY method */
1981        if (*endptr == '\0')
1982                return ubi_open_volume(0, dev, mode);
1983
1984        /* ubiX_Y method */
1985        if (*endptr == '_' && isdigit(endptr[1])) {
1986                vol = simple_strtoul(endptr + 1, &endptr, 0);
1987                if (*endptr != '\0')
1988                        return ERR_PTR(-EINVAL);
1989                return ubi_open_volume(dev, vol, mode);
1990        }
1991
1992        /* ubiX:NAME method */
1993        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1994                return ubi_open_volume_nm(dev, ++endptr, mode);
1995
1996        return ERR_PTR(-EINVAL);
1997}
1998
1999static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2000{
2001        struct ubifs_info *c;
2002
2003        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2004        if (c) {
2005                spin_lock_init(&c->cnt_lock);
2006                spin_lock_init(&c->cs_lock);
2007                spin_lock_init(&c->buds_lock);
2008                spin_lock_init(&c->space_lock);
2009                spin_lock_init(&c->orphan_lock);
2010                init_rwsem(&c->commit_sem);
2011                mutex_init(&c->lp_mutex);
2012                mutex_init(&c->tnc_mutex);
2013                mutex_init(&c->log_mutex);
2014                mutex_init(&c->umount_mutex);
2015                mutex_init(&c->bu_mutex);
2016                mutex_init(&c->write_reserve_mutex);
2017                init_waitqueue_head(&c->cmt_wq);
2018                c->buds = RB_ROOT;
2019                c->old_idx = RB_ROOT;
2020                c->size_tree = RB_ROOT;
2021                c->orph_tree = RB_ROOT;
2022                INIT_LIST_HEAD(&c->infos_list);
2023                INIT_LIST_HEAD(&c->idx_gc);
2024                INIT_LIST_HEAD(&c->replay_list);
2025                INIT_LIST_HEAD(&c->replay_buds);
2026                INIT_LIST_HEAD(&c->uncat_list);
2027                INIT_LIST_HEAD(&c->empty_list);
2028                INIT_LIST_HEAD(&c->freeable_list);
2029                INIT_LIST_HEAD(&c->frdi_idx_list);
2030                INIT_LIST_HEAD(&c->unclean_leb_list);
2031                INIT_LIST_HEAD(&c->old_buds);
2032                INIT_LIST_HEAD(&c->orph_list);
2033                INIT_LIST_HEAD(&c->orph_new);
2034                c->no_chk_data_crc = 1;
2035                c->assert_action = ASSACT_RO;
2036
2037                c->highest_inum = UBIFS_FIRST_INO;
2038                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2039
2040                ubi_get_volume_info(ubi, &c->vi);
2041                ubi_get_device_info(c->vi.ubi_num, &c->di);
2042        }
2043        return c;
2044}
2045
2046static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2047{
2048        struct ubifs_info *c = sb->s_fs_info;
2049        struct inode *root;
2050        int err;
2051
2052        c->vfs_sb = sb;
2053        /* Re-open the UBI device in read-write mode */
2054        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2055        if (IS_ERR(c->ubi)) {
2056                err = PTR_ERR(c->ubi);
2057                goto out;
2058        }
2059
2060        err = ubifs_parse_options(c, data, 0);
2061        if (err)
2062                goto out_close;
2063
2064        /*
2065         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2066         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2067         * which means the user would have to wait not just for their own I/O
2068         * but the read-ahead I/O as well i.e. completely pointless.
2069         *
2070         * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2071         * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2072         * writeback happening.
2073         */
2074        err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2075                                   c->vi.vol_id);
2076        if (err)
2077                goto out_close;
2078
2079        sb->s_fs_info = c;
2080        sb->s_magic = UBIFS_SUPER_MAGIC;
2081        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2082        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2083        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2084        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2085                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2086        sb->s_op = &ubifs_super_operations;
2087#ifdef CONFIG_UBIFS_FS_XATTR
2088        sb->s_xattr = ubifs_xattr_handlers;
2089#endif
2090#ifdef CONFIG_UBIFS_FS_ENCRYPTION
2091        sb->s_cop = &ubifs_crypt_operations;
2092#endif
2093
2094        mutex_lock(&c->umount_mutex);
2095        err = mount_ubifs(c);
2096        if (err) {
2097                ubifs_assert(c, err < 0);
2098                goto out_unlock;
2099        }
2100
2101        /* Read the root inode */
2102        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2103        if (IS_ERR(root)) {
2104                err = PTR_ERR(root);
2105                goto out_umount;
2106        }
2107
2108        sb->s_root = d_make_root(root);
2109        if (!sb->s_root) {
2110                err = -ENOMEM;
2111                goto out_umount;
2112        }
2113
2114        mutex_unlock(&c->umount_mutex);
2115        return 0;
2116
2117out_umount:
2118        ubifs_umount(c);
2119out_unlock:
2120        mutex_unlock(&c->umount_mutex);
2121out_close:
2122        ubi_close_volume(c->ubi);
2123out:
2124        return err;
2125}
2126
2127static int sb_test(struct super_block *sb, void *data)
2128{
2129        struct ubifs_info *c1 = data;
2130        struct ubifs_info *c = sb->s_fs_info;
2131
2132        return c->vi.cdev == c1->vi.cdev;
2133}
2134
2135static int sb_set(struct super_block *sb, void *data)
2136{
2137        sb->s_fs_info = data;
2138        return set_anon_super(sb, NULL);
2139}
2140
2141static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2142                        const char *name, void *data)
2143{
2144        struct ubi_volume_desc *ubi;
2145        struct ubifs_info *c;
2146        struct super_block *sb;
2147        int err;
2148
2149        dbg_gen("name %s, flags %#x", name, flags);
2150
2151        /*
2152         * Get UBI device number and volume ID. Mount it read-only so far
2153         * because this might be a new mount point, and UBI allows only one
2154         * read-write user at a time.
2155         */
2156        ubi = open_ubi(name, UBI_READONLY);
2157        if (IS_ERR(ubi)) {
2158                if (!(flags & SB_SILENT))
2159                        pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2160                               current->pid, name, (int)PTR_ERR(ubi));
2161                return ERR_CAST(ubi);
2162        }
2163
2164        c = alloc_ubifs_info(ubi);
2165        if (!c) {
2166                err = -ENOMEM;
2167                goto out_close;
2168        }
2169
2170        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2171
2172        sb = sget(fs_type, sb_test, sb_set, flags, c);
2173        if (IS_ERR(sb)) {
2174                err = PTR_ERR(sb);
2175                kfree(c);
2176                goto out_close;
2177        }
2178
2179        if (sb->s_root) {
2180                struct ubifs_info *c1 = sb->s_fs_info;
2181                kfree(c);
2182                /* A new mount point for already mounted UBIFS */
2183                dbg_gen("this ubi volume is already mounted");
2184                if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2185                        err = -EBUSY;
2186                        goto out_deact;
2187                }
2188        } else {
2189                err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2190                if (err)
2191                        goto out_deact;
2192                /* We do not support atime */
2193                sb->s_flags |= SB_ACTIVE;
2194#ifndef CONFIG_UBIFS_ATIME_SUPPORT
2195                sb->s_flags |= SB_NOATIME;
2196#else
2197                ubifs_msg(c, "full atime support is enabled.");
2198#endif
2199        }
2200
2201        /* 'fill_super()' opens ubi again so we must close it here */
2202        ubi_close_volume(ubi);
2203
2204        return dget(sb->s_root);
2205
2206out_deact:
2207        deactivate_locked_super(sb);
2208out_close:
2209        ubi_close_volume(ubi);
2210        return ERR_PTR(err);
2211}
2212
2213static void kill_ubifs_super(struct super_block *s)
2214{
2215        struct ubifs_info *c = s->s_fs_info;
2216        kill_anon_super(s);
2217        kfree(c);
2218}
2219
2220static struct file_system_type ubifs_fs_type = {
2221        .name    = "ubifs",
2222        .owner   = THIS_MODULE,
2223        .mount   = ubifs_mount,
2224        .kill_sb = kill_ubifs_super,
2225};
2226MODULE_ALIAS_FS("ubifs");
2227
2228/*
2229 * Inode slab cache constructor.
2230 */
2231static void inode_slab_ctor(void *obj)
2232{
2233        struct ubifs_inode *ui = obj;
2234        inode_init_once(&ui->vfs_inode);
2235}
2236
2237static int __init ubifs_init(void)
2238{
2239        int err;
2240
2241        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2242
2243        /* Make sure node sizes are 8-byte aligned */
2244        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2245        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2246        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2247        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2248        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2249        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2250        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2251        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2252        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2253        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2254        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2255
2256        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2257        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2258        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2259        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2260        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2261        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2262
2263        /* Check min. node size */
2264        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2265        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2266        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2267        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2268
2269        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2270        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2271        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2272        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2273
2274        /* Defined node sizes */
2275        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2276        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2277        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2278        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2279
2280        /*
2281         * We use 2 bit wide bit-fields to store compression type, which should
2282         * be amended if more compressors are added. The bit-fields are:
2283         * @compr_type in 'struct ubifs_inode', @default_compr in
2284         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2285         */
2286        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2287
2288        /*
2289         * We require that PAGE_SIZE is greater-than-or-equal-to
2290         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2291         */
2292        if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2293                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2294                       current->pid, (unsigned int)PAGE_SIZE);
2295                return -EINVAL;
2296        }
2297
2298        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2299                                sizeof(struct ubifs_inode), 0,
2300                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2301                                SLAB_ACCOUNT, &inode_slab_ctor);
2302        if (!ubifs_inode_slab)
2303                return -ENOMEM;
2304
2305        err = register_shrinker(&ubifs_shrinker_info);
2306        if (err)
2307                goto out_slab;
2308
2309        err = ubifs_compressors_init();
2310        if (err)
2311                goto out_shrinker;
2312
2313        err = dbg_debugfs_init();
2314        if (err)
2315                goto out_compr;
2316
2317        err = register_filesystem(&ubifs_fs_type);
2318        if (err) {
2319                pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2320                       current->pid, err);
2321                goto out_dbg;
2322        }
2323        return 0;
2324
2325out_dbg:
2326        dbg_debugfs_exit();
2327out_compr:
2328        ubifs_compressors_exit();
2329out_shrinker:
2330        unregister_shrinker(&ubifs_shrinker_info);
2331out_slab:
2332        kmem_cache_destroy(ubifs_inode_slab);
2333        return err;
2334}
2335/* late_initcall to let compressors initialize first */
2336late_initcall(ubifs_init);
2337
2338static void __exit ubifs_exit(void)
2339{
2340        WARN_ON(!list_empty(&ubifs_infos));
2341        WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2342
2343        dbg_debugfs_exit();
2344        ubifs_compressors_exit();
2345        unregister_shrinker(&ubifs_shrinker_info);
2346
2347        /*
2348         * Make sure all delayed rcu free inodes are flushed before we
2349         * destroy cache.
2350         */
2351        rcu_barrier();
2352        kmem_cache_destroy(ubifs_inode_slab);
2353        unregister_filesystem(&ubifs_fs_type);
2354}
2355module_exit(ubifs_exit);
2356
2357MODULE_LICENSE("GPL");
2358MODULE_VERSION(__stringify(UBIFS_VERSION));
2359MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2360MODULE_DESCRIPTION("UBIFS - UBI File System");
2361