linux/fs/xfs/xfs_icache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_trans_resv.h"
  11#include "xfs_sb.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_inode_item.h"
  18#include "xfs_quota.h"
  19#include "xfs_trace.h"
  20#include "xfs_icache.h"
  21#include "xfs_bmap_util.h"
  22#include "xfs_dquot_item.h"
  23#include "xfs_dquot.h"
  24#include "xfs_reflink.h"
  25
  26#include <linux/kthread.h>
  27#include <linux/freezer.h>
  28#include <linux/iversion.h>
  29
  30/*
  31 * Allocate and initialise an xfs_inode.
  32 */
  33struct xfs_inode *
  34xfs_inode_alloc(
  35        struct xfs_mount        *mp,
  36        xfs_ino_t               ino)
  37{
  38        struct xfs_inode        *ip;
  39
  40        /*
  41         * if this didn't occur in transactions, we could use
  42         * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  43         * code up to do this anyway.
  44         */
  45        ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
  46        if (!ip)
  47                return NULL;
  48        if (inode_init_always(mp->m_super, VFS_I(ip))) {
  49                kmem_zone_free(xfs_inode_zone, ip);
  50                return NULL;
  51        }
  52
  53        /* VFS doesn't initialise i_mode! */
  54        VFS_I(ip)->i_mode = 0;
  55
  56        XFS_STATS_INC(mp, vn_active);
  57        ASSERT(atomic_read(&ip->i_pincount) == 0);
  58        ASSERT(!xfs_isiflocked(ip));
  59        ASSERT(ip->i_ino == 0);
  60
  61        /* initialise the xfs inode */
  62        ip->i_ino = ino;
  63        ip->i_mount = mp;
  64        memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
  65        ip->i_afp = NULL;
  66        ip->i_cowfp = NULL;
  67        ip->i_cnextents = 0;
  68        ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
  69        memset(&ip->i_df, 0, sizeof(ip->i_df));
  70        ip->i_flags = 0;
  71        ip->i_delayed_blks = 0;
  72        memset(&ip->i_d, 0, sizeof(ip->i_d));
  73
  74        return ip;
  75}
  76
  77STATIC void
  78xfs_inode_free_callback(
  79        struct rcu_head         *head)
  80{
  81        struct inode            *inode = container_of(head, struct inode, i_rcu);
  82        struct xfs_inode        *ip = XFS_I(inode);
  83
  84        switch (VFS_I(ip)->i_mode & S_IFMT) {
  85        case S_IFREG:
  86        case S_IFDIR:
  87        case S_IFLNK:
  88                xfs_idestroy_fork(ip, XFS_DATA_FORK);
  89                break;
  90        }
  91
  92        if (ip->i_afp)
  93                xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  94        if (ip->i_cowfp)
  95                xfs_idestroy_fork(ip, XFS_COW_FORK);
  96
  97        if (ip->i_itemp) {
  98                ASSERT(!test_bit(XFS_LI_IN_AIL,
  99                                 &ip->i_itemp->ili_item.li_flags));
 100                xfs_inode_item_destroy(ip);
 101                ip->i_itemp = NULL;
 102        }
 103
 104        kmem_zone_free(xfs_inode_zone, ip);
 105}
 106
 107static void
 108__xfs_inode_free(
 109        struct xfs_inode        *ip)
 110{
 111        /* asserts to verify all state is correct here */
 112        ASSERT(atomic_read(&ip->i_pincount) == 0);
 113        XFS_STATS_DEC(ip->i_mount, vn_active);
 114
 115        call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 116}
 117
 118void
 119xfs_inode_free(
 120        struct xfs_inode        *ip)
 121{
 122        ASSERT(!xfs_isiflocked(ip));
 123
 124        /*
 125         * Because we use RCU freeing we need to ensure the inode always
 126         * appears to be reclaimed with an invalid inode number when in the
 127         * free state. The ip->i_flags_lock provides the barrier against lookup
 128         * races.
 129         */
 130        spin_lock(&ip->i_flags_lock);
 131        ip->i_flags = XFS_IRECLAIM;
 132        ip->i_ino = 0;
 133        spin_unlock(&ip->i_flags_lock);
 134
 135        __xfs_inode_free(ip);
 136}
 137
 138/*
 139 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 140 * isn't a reclaim pass already in progress. By default it runs every 5s based
 141 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 142 * tunable, but that can be done if this method proves to be ineffective or too
 143 * aggressive.
 144 */
 145static void
 146xfs_reclaim_work_queue(
 147        struct xfs_mount        *mp)
 148{
 149
 150        rcu_read_lock();
 151        if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 152                queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 153                        msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 154        }
 155        rcu_read_unlock();
 156}
 157
 158/*
 159 * This is a fast pass over the inode cache to try to get reclaim moving on as
 160 * many inodes as possible in a short period of time. It kicks itself every few
 161 * seconds, as well as being kicked by the inode cache shrinker when memory
 162 * goes low. It scans as quickly as possible avoiding locked inodes or those
 163 * already being flushed, and once done schedules a future pass.
 164 */
 165void
 166xfs_reclaim_worker(
 167        struct work_struct *work)
 168{
 169        struct xfs_mount *mp = container_of(to_delayed_work(work),
 170                                        struct xfs_mount, m_reclaim_work);
 171
 172        xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
 173        xfs_reclaim_work_queue(mp);
 174}
 175
 176static void
 177xfs_perag_set_reclaim_tag(
 178        struct xfs_perag        *pag)
 179{
 180        struct xfs_mount        *mp = pag->pag_mount;
 181
 182        lockdep_assert_held(&pag->pag_ici_lock);
 183        if (pag->pag_ici_reclaimable++)
 184                return;
 185
 186        /* propagate the reclaim tag up into the perag radix tree */
 187        spin_lock(&mp->m_perag_lock);
 188        radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
 189                           XFS_ICI_RECLAIM_TAG);
 190        spin_unlock(&mp->m_perag_lock);
 191
 192        /* schedule periodic background inode reclaim */
 193        xfs_reclaim_work_queue(mp);
 194
 195        trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
 196}
 197
 198static void
 199xfs_perag_clear_reclaim_tag(
 200        struct xfs_perag        *pag)
 201{
 202        struct xfs_mount        *mp = pag->pag_mount;
 203
 204        lockdep_assert_held(&pag->pag_ici_lock);
 205        if (--pag->pag_ici_reclaimable)
 206                return;
 207
 208        /* clear the reclaim tag from the perag radix tree */
 209        spin_lock(&mp->m_perag_lock);
 210        radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
 211                             XFS_ICI_RECLAIM_TAG);
 212        spin_unlock(&mp->m_perag_lock);
 213        trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
 214}
 215
 216
 217/*
 218 * We set the inode flag atomically with the radix tree tag.
 219 * Once we get tag lookups on the radix tree, this inode flag
 220 * can go away.
 221 */
 222void
 223xfs_inode_set_reclaim_tag(
 224        struct xfs_inode        *ip)
 225{
 226        struct xfs_mount        *mp = ip->i_mount;
 227        struct xfs_perag        *pag;
 228
 229        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 230        spin_lock(&pag->pag_ici_lock);
 231        spin_lock(&ip->i_flags_lock);
 232
 233        radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
 234                           XFS_ICI_RECLAIM_TAG);
 235        xfs_perag_set_reclaim_tag(pag);
 236        __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 237
 238        spin_unlock(&ip->i_flags_lock);
 239        spin_unlock(&pag->pag_ici_lock);
 240        xfs_perag_put(pag);
 241}
 242
 243STATIC void
 244xfs_inode_clear_reclaim_tag(
 245        struct xfs_perag        *pag,
 246        xfs_ino_t               ino)
 247{
 248        radix_tree_tag_clear(&pag->pag_ici_root,
 249                             XFS_INO_TO_AGINO(pag->pag_mount, ino),
 250                             XFS_ICI_RECLAIM_TAG);
 251        xfs_perag_clear_reclaim_tag(pag);
 252}
 253
 254static void
 255xfs_inew_wait(
 256        struct xfs_inode        *ip)
 257{
 258        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
 259        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
 260
 261        do {
 262                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 263                if (!xfs_iflags_test(ip, XFS_INEW))
 264                        break;
 265                schedule();
 266        } while (true);
 267        finish_wait(wq, &wait.wq_entry);
 268}
 269
 270/*
 271 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 272 * part of the structure. This is made more complex by the fact we store
 273 * information about the on-disk values in the VFS inode and so we can't just
 274 * overwrite the values unconditionally. Hence we save the parameters we
 275 * need to retain across reinitialisation, and rewrite them into the VFS inode
 276 * after reinitialisation even if it fails.
 277 */
 278static int
 279xfs_reinit_inode(
 280        struct xfs_mount        *mp,
 281        struct inode            *inode)
 282{
 283        int             error;
 284        uint32_t        nlink = inode->i_nlink;
 285        uint32_t        generation = inode->i_generation;
 286        uint64_t        version = inode_peek_iversion(inode);
 287        umode_t         mode = inode->i_mode;
 288        dev_t           dev = inode->i_rdev;
 289
 290        error = inode_init_always(mp->m_super, inode);
 291
 292        set_nlink(inode, nlink);
 293        inode->i_generation = generation;
 294        inode_set_iversion_queried(inode, version);
 295        inode->i_mode = mode;
 296        inode->i_rdev = dev;
 297        return error;
 298}
 299
 300/*
 301 * If we are allocating a new inode, then check what was returned is
 302 * actually a free, empty inode. If we are not allocating an inode,
 303 * then check we didn't find a free inode.
 304 *
 305 * Returns:
 306 *      0               if the inode free state matches the lookup context
 307 *      -ENOENT         if the inode is free and we are not allocating
 308 *      -EFSCORRUPTED   if there is any state mismatch at all
 309 */
 310static int
 311xfs_iget_check_free_state(
 312        struct xfs_inode        *ip,
 313        int                     flags)
 314{
 315        if (flags & XFS_IGET_CREATE) {
 316                /* should be a free inode */
 317                if (VFS_I(ip)->i_mode != 0) {
 318                        xfs_warn(ip->i_mount,
 319"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
 320                                ip->i_ino, VFS_I(ip)->i_mode);
 321                        return -EFSCORRUPTED;
 322                }
 323
 324                if (ip->i_d.di_nblocks != 0) {
 325                        xfs_warn(ip->i_mount,
 326"Corruption detected! Free inode 0x%llx has blocks allocated!",
 327                                ip->i_ino);
 328                        return -EFSCORRUPTED;
 329                }
 330                return 0;
 331        }
 332
 333        /* should be an allocated inode */
 334        if (VFS_I(ip)->i_mode == 0)
 335                return -ENOENT;
 336
 337        return 0;
 338}
 339
 340/*
 341 * Check the validity of the inode we just found it the cache
 342 */
 343static int
 344xfs_iget_cache_hit(
 345        struct xfs_perag        *pag,
 346        struct xfs_inode        *ip,
 347        xfs_ino_t               ino,
 348        int                     flags,
 349        int                     lock_flags) __releases(RCU)
 350{
 351        struct inode            *inode = VFS_I(ip);
 352        struct xfs_mount        *mp = ip->i_mount;
 353        int                     error;
 354
 355        /*
 356         * check for re-use of an inode within an RCU grace period due to the
 357         * radix tree nodes not being updated yet. We monitor for this by
 358         * setting the inode number to zero before freeing the inode structure.
 359         * If the inode has been reallocated and set up, then the inode number
 360         * will not match, so check for that, too.
 361         */
 362        spin_lock(&ip->i_flags_lock);
 363        if (ip->i_ino != ino) {
 364                trace_xfs_iget_skip(ip);
 365                XFS_STATS_INC(mp, xs_ig_frecycle);
 366                error = -EAGAIN;
 367                goto out_error;
 368        }
 369
 370
 371        /*
 372         * If we are racing with another cache hit that is currently
 373         * instantiating this inode or currently recycling it out of
 374         * reclaimabe state, wait for the initialisation to complete
 375         * before continuing.
 376         *
 377         * XXX(hch): eventually we should do something equivalent to
 378         *           wait_on_inode to wait for these flags to be cleared
 379         *           instead of polling for it.
 380         */
 381        if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 382                trace_xfs_iget_skip(ip);
 383                XFS_STATS_INC(mp, xs_ig_frecycle);
 384                error = -EAGAIN;
 385                goto out_error;
 386        }
 387
 388        /*
 389         * Check the inode free state is valid. This also detects lookup
 390         * racing with unlinks.
 391         */
 392        error = xfs_iget_check_free_state(ip, flags);
 393        if (error)
 394                goto out_error;
 395
 396        /*
 397         * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 398         * Need to carefully get it back into useable state.
 399         */
 400        if (ip->i_flags & XFS_IRECLAIMABLE) {
 401                trace_xfs_iget_reclaim(ip);
 402
 403                if (flags & XFS_IGET_INCORE) {
 404                        error = -EAGAIN;
 405                        goto out_error;
 406                }
 407
 408                /*
 409                 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 410                 * from stomping over us while we recycle the inode.  We can't
 411                 * clear the radix tree reclaimable tag yet as it requires
 412                 * pag_ici_lock to be held exclusive.
 413                 */
 414                ip->i_flags |= XFS_IRECLAIM;
 415
 416                spin_unlock(&ip->i_flags_lock);
 417                rcu_read_unlock();
 418
 419                error = xfs_reinit_inode(mp, inode);
 420                if (error) {
 421                        bool wake;
 422                        /*
 423                         * Re-initializing the inode failed, and we are in deep
 424                         * trouble.  Try to re-add it to the reclaim list.
 425                         */
 426                        rcu_read_lock();
 427                        spin_lock(&ip->i_flags_lock);
 428                        wake = !!__xfs_iflags_test(ip, XFS_INEW);
 429                        ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 430                        if (wake)
 431                                wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
 432                        ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 433                        trace_xfs_iget_reclaim_fail(ip);
 434                        goto out_error;
 435                }
 436
 437                spin_lock(&pag->pag_ici_lock);
 438                spin_lock(&ip->i_flags_lock);
 439
 440                /*
 441                 * Clear the per-lifetime state in the inode as we are now
 442                 * effectively a new inode and need to return to the initial
 443                 * state before reuse occurs.
 444                 */
 445                ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 446                ip->i_flags |= XFS_INEW;
 447                xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
 448                inode->i_state = I_NEW;
 449
 450                ASSERT(!rwsem_is_locked(&inode->i_rwsem));
 451                init_rwsem(&inode->i_rwsem);
 452
 453                spin_unlock(&ip->i_flags_lock);
 454                spin_unlock(&pag->pag_ici_lock);
 455        } else {
 456                /* If the VFS inode is being torn down, pause and try again. */
 457                if (!igrab(inode)) {
 458                        trace_xfs_iget_skip(ip);
 459                        error = -EAGAIN;
 460                        goto out_error;
 461                }
 462
 463                /* We've got a live one. */
 464                spin_unlock(&ip->i_flags_lock);
 465                rcu_read_unlock();
 466                trace_xfs_iget_hit(ip);
 467        }
 468
 469        if (lock_flags != 0)
 470                xfs_ilock(ip, lock_flags);
 471
 472        if (!(flags & XFS_IGET_INCORE))
 473                xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
 474        XFS_STATS_INC(mp, xs_ig_found);
 475
 476        return 0;
 477
 478out_error:
 479        spin_unlock(&ip->i_flags_lock);
 480        rcu_read_unlock();
 481        return error;
 482}
 483
 484
 485static int
 486xfs_iget_cache_miss(
 487        struct xfs_mount        *mp,
 488        struct xfs_perag        *pag,
 489        xfs_trans_t             *tp,
 490        xfs_ino_t               ino,
 491        struct xfs_inode        **ipp,
 492        int                     flags,
 493        int                     lock_flags)
 494{
 495        struct xfs_inode        *ip;
 496        int                     error;
 497        xfs_agino_t             agino = XFS_INO_TO_AGINO(mp, ino);
 498        int                     iflags;
 499
 500        ip = xfs_inode_alloc(mp, ino);
 501        if (!ip)
 502                return -ENOMEM;
 503
 504        error = xfs_iread(mp, tp, ip, flags);
 505        if (error)
 506                goto out_destroy;
 507
 508        if (!xfs_inode_verify_forks(ip)) {
 509                error = -EFSCORRUPTED;
 510                goto out_destroy;
 511        }
 512
 513        trace_xfs_iget_miss(ip);
 514
 515
 516        /*
 517         * Check the inode free state is valid. This also detects lookup
 518         * racing with unlinks.
 519         */
 520        error = xfs_iget_check_free_state(ip, flags);
 521        if (error)
 522                goto out_destroy;
 523
 524        /*
 525         * Preload the radix tree so we can insert safely under the
 526         * write spinlock. Note that we cannot sleep inside the preload
 527         * region. Since we can be called from transaction context, don't
 528         * recurse into the file system.
 529         */
 530        if (radix_tree_preload(GFP_NOFS)) {
 531                error = -EAGAIN;
 532                goto out_destroy;
 533        }
 534
 535        /*
 536         * Because the inode hasn't been added to the radix-tree yet it can't
 537         * be found by another thread, so we can do the non-sleeping lock here.
 538         */
 539        if (lock_flags) {
 540                if (!xfs_ilock_nowait(ip, lock_flags))
 541                        BUG();
 542        }
 543
 544        /*
 545         * These values must be set before inserting the inode into the radix
 546         * tree as the moment it is inserted a concurrent lookup (allowed by the
 547         * RCU locking mechanism) can find it and that lookup must see that this
 548         * is an inode currently under construction (i.e. that XFS_INEW is set).
 549         * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 550         * memory barrier that ensures this detection works correctly at lookup
 551         * time.
 552         */
 553        iflags = XFS_INEW;
 554        if (flags & XFS_IGET_DONTCACHE)
 555                iflags |= XFS_IDONTCACHE;
 556        ip->i_udquot = NULL;
 557        ip->i_gdquot = NULL;
 558        ip->i_pdquot = NULL;
 559        xfs_iflags_set(ip, iflags);
 560
 561        /* insert the new inode */
 562        spin_lock(&pag->pag_ici_lock);
 563        error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 564        if (unlikely(error)) {
 565                WARN_ON(error != -EEXIST);
 566                XFS_STATS_INC(mp, xs_ig_dup);
 567                error = -EAGAIN;
 568                goto out_preload_end;
 569        }
 570        spin_unlock(&pag->pag_ici_lock);
 571        radix_tree_preload_end();
 572
 573        *ipp = ip;
 574        return 0;
 575
 576out_preload_end:
 577        spin_unlock(&pag->pag_ici_lock);
 578        radix_tree_preload_end();
 579        if (lock_flags)
 580                xfs_iunlock(ip, lock_flags);
 581out_destroy:
 582        __destroy_inode(VFS_I(ip));
 583        xfs_inode_free(ip);
 584        return error;
 585}
 586
 587/*
 588 * Look up an inode by number in the given file system.
 589 * The inode is looked up in the cache held in each AG.
 590 * If the inode is found in the cache, initialise the vfs inode
 591 * if necessary.
 592 *
 593 * If it is not in core, read it in from the file system's device,
 594 * add it to the cache and initialise the vfs inode.
 595 *
 596 * The inode is locked according to the value of the lock_flags parameter.
 597 * This flag parameter indicates how and if the inode's IO lock and inode lock
 598 * should be taken.
 599 *
 600 * mp -- the mount point structure for the current file system.  It points
 601 *       to the inode hash table.
 602 * tp -- a pointer to the current transaction if there is one.  This is
 603 *       simply passed through to the xfs_iread() call.
 604 * ino -- the number of the inode desired.  This is the unique identifier
 605 *        within the file system for the inode being requested.
 606 * lock_flags -- flags indicating how to lock the inode.  See the comment
 607 *               for xfs_ilock() for a list of valid values.
 608 */
 609int
 610xfs_iget(
 611        xfs_mount_t     *mp,
 612        xfs_trans_t     *tp,
 613        xfs_ino_t       ino,
 614        uint            flags,
 615        uint            lock_flags,
 616        xfs_inode_t     **ipp)
 617{
 618        xfs_inode_t     *ip;
 619        int             error;
 620        xfs_perag_t     *pag;
 621        xfs_agino_t     agino;
 622
 623        /*
 624         * xfs_reclaim_inode() uses the ILOCK to ensure an inode
 625         * doesn't get freed while it's being referenced during a
 626         * radix tree traversal here.  It assumes this function
 627         * aqcuires only the ILOCK (and therefore it has no need to
 628         * involve the IOLOCK in this synchronization).
 629         */
 630        ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 631
 632        /* reject inode numbers outside existing AGs */
 633        if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 634                return -EINVAL;
 635
 636        XFS_STATS_INC(mp, xs_ig_attempts);
 637
 638        /* get the perag structure and ensure that it's inode capable */
 639        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 640        agino = XFS_INO_TO_AGINO(mp, ino);
 641
 642again:
 643        error = 0;
 644        rcu_read_lock();
 645        ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 646
 647        if (ip) {
 648                error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 649                if (error)
 650                        goto out_error_or_again;
 651        } else {
 652                rcu_read_unlock();
 653                if (flags & XFS_IGET_INCORE) {
 654                        error = -ENODATA;
 655                        goto out_error_or_again;
 656                }
 657                XFS_STATS_INC(mp, xs_ig_missed);
 658
 659                error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 660                                                        flags, lock_flags);
 661                if (error)
 662                        goto out_error_or_again;
 663        }
 664        xfs_perag_put(pag);
 665
 666        *ipp = ip;
 667
 668        /*
 669         * If we have a real type for an on-disk inode, we can setup the inode
 670         * now.  If it's a new inode being created, xfs_ialloc will handle it.
 671         */
 672        if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 673                xfs_setup_existing_inode(ip);
 674        return 0;
 675
 676out_error_or_again:
 677        if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
 678                delay(1);
 679                goto again;
 680        }
 681        xfs_perag_put(pag);
 682        return error;
 683}
 684
 685/*
 686 * "Is this a cached inode that's also allocated?"
 687 *
 688 * Look up an inode by number in the given file system.  If the inode is
 689 * in cache and isn't in purgatory, return 1 if the inode is allocated
 690 * and 0 if it is not.  For all other cases (not in cache, being torn
 691 * down, etc.), return a negative error code.
 692 *
 693 * The caller has to prevent inode allocation and freeing activity,
 694 * presumably by locking the AGI buffer.   This is to ensure that an
 695 * inode cannot transition from allocated to freed until the caller is
 696 * ready to allow that.  If the inode is in an intermediate state (new,
 697 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 698 * inode is not in the cache, -ENOENT will be returned.  The caller must
 699 * deal with these scenarios appropriately.
 700 *
 701 * This is a specialized use case for the online scrubber; if you're
 702 * reading this, you probably want xfs_iget.
 703 */
 704int
 705xfs_icache_inode_is_allocated(
 706        struct xfs_mount        *mp,
 707        struct xfs_trans        *tp,
 708        xfs_ino_t               ino,
 709        bool                    *inuse)
 710{
 711        struct xfs_inode        *ip;
 712        int                     error;
 713
 714        error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
 715        if (error)
 716                return error;
 717
 718        *inuse = !!(VFS_I(ip)->i_mode);
 719        xfs_irele(ip);
 720        return 0;
 721}
 722
 723/*
 724 * The inode lookup is done in batches to keep the amount of lock traffic and
 725 * radix tree lookups to a minimum. The batch size is a trade off between
 726 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 727 * be too greedy.
 728 */
 729#define XFS_LOOKUP_BATCH        32
 730
 731STATIC int
 732xfs_inode_ag_walk_grab(
 733        struct xfs_inode        *ip,
 734        int                     flags)
 735{
 736        struct inode            *inode = VFS_I(ip);
 737        bool                    newinos = !!(flags & XFS_AGITER_INEW_WAIT);
 738
 739        ASSERT(rcu_read_lock_held());
 740
 741        /*
 742         * check for stale RCU freed inode
 743         *
 744         * If the inode has been reallocated, it doesn't matter if it's not in
 745         * the AG we are walking - we are walking for writeback, so if it
 746         * passes all the "valid inode" checks and is dirty, then we'll write
 747         * it back anyway.  If it has been reallocated and still being
 748         * initialised, the XFS_INEW check below will catch it.
 749         */
 750        spin_lock(&ip->i_flags_lock);
 751        if (!ip->i_ino)
 752                goto out_unlock_noent;
 753
 754        /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 755        if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
 756            __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
 757                goto out_unlock_noent;
 758        spin_unlock(&ip->i_flags_lock);
 759
 760        /* nothing to sync during shutdown */
 761        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 762                return -EFSCORRUPTED;
 763
 764        /* If we can't grab the inode, it must on it's way to reclaim. */
 765        if (!igrab(inode))
 766                return -ENOENT;
 767
 768        /* inode is valid */
 769        return 0;
 770
 771out_unlock_noent:
 772        spin_unlock(&ip->i_flags_lock);
 773        return -ENOENT;
 774}
 775
 776STATIC int
 777xfs_inode_ag_walk(
 778        struct xfs_mount        *mp,
 779        struct xfs_perag        *pag,
 780        int                     (*execute)(struct xfs_inode *ip, int flags,
 781                                           void *args),
 782        int                     flags,
 783        void                    *args,
 784        int                     tag,
 785        int                     iter_flags)
 786{
 787        uint32_t                first_index;
 788        int                     last_error = 0;
 789        int                     skipped;
 790        int                     done;
 791        int                     nr_found;
 792
 793restart:
 794        done = 0;
 795        skipped = 0;
 796        first_index = 0;
 797        nr_found = 0;
 798        do {
 799                struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 800                int             error = 0;
 801                int             i;
 802
 803                rcu_read_lock();
 804
 805                if (tag == -1)
 806                        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 807                                        (void **)batch, first_index,
 808                                        XFS_LOOKUP_BATCH);
 809                else
 810                        nr_found = radix_tree_gang_lookup_tag(
 811                                        &pag->pag_ici_root,
 812                                        (void **) batch, first_index,
 813                                        XFS_LOOKUP_BATCH, tag);
 814
 815                if (!nr_found) {
 816                        rcu_read_unlock();
 817                        break;
 818                }
 819
 820                /*
 821                 * Grab the inodes before we drop the lock. if we found
 822                 * nothing, nr == 0 and the loop will be skipped.
 823                 */
 824                for (i = 0; i < nr_found; i++) {
 825                        struct xfs_inode *ip = batch[i];
 826
 827                        if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
 828                                batch[i] = NULL;
 829
 830                        /*
 831                         * Update the index for the next lookup. Catch
 832                         * overflows into the next AG range which can occur if
 833                         * we have inodes in the last block of the AG and we
 834                         * are currently pointing to the last inode.
 835                         *
 836                         * Because we may see inodes that are from the wrong AG
 837                         * due to RCU freeing and reallocation, only update the
 838                         * index if it lies in this AG. It was a race that lead
 839                         * us to see this inode, so another lookup from the
 840                         * same index will not find it again.
 841                         */
 842                        if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 843                                continue;
 844                        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 845                        if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 846                                done = 1;
 847                }
 848
 849                /* unlock now we've grabbed the inodes. */
 850                rcu_read_unlock();
 851
 852                for (i = 0; i < nr_found; i++) {
 853                        if (!batch[i])
 854                                continue;
 855                        if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
 856                            xfs_iflags_test(batch[i], XFS_INEW))
 857                                xfs_inew_wait(batch[i]);
 858                        error = execute(batch[i], flags, args);
 859                        xfs_irele(batch[i]);
 860                        if (error == -EAGAIN) {
 861                                skipped++;
 862                                continue;
 863                        }
 864                        if (error && last_error != -EFSCORRUPTED)
 865                                last_error = error;
 866                }
 867
 868                /* bail out if the filesystem is corrupted.  */
 869                if (error == -EFSCORRUPTED)
 870                        break;
 871
 872                cond_resched();
 873
 874        } while (nr_found && !done);
 875
 876        if (skipped) {
 877                delay(1);
 878                goto restart;
 879        }
 880        return last_error;
 881}
 882
 883/*
 884 * Background scanning to trim post-EOF preallocated space. This is queued
 885 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 886 */
 887void
 888xfs_queue_eofblocks(
 889        struct xfs_mount *mp)
 890{
 891        rcu_read_lock();
 892        if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 893                queue_delayed_work(mp->m_eofblocks_workqueue,
 894                                   &mp->m_eofblocks_work,
 895                                   msecs_to_jiffies(xfs_eofb_secs * 1000));
 896        rcu_read_unlock();
 897}
 898
 899void
 900xfs_eofblocks_worker(
 901        struct work_struct *work)
 902{
 903        struct xfs_mount *mp = container_of(to_delayed_work(work),
 904                                struct xfs_mount, m_eofblocks_work);
 905        xfs_icache_free_eofblocks(mp, NULL);
 906        xfs_queue_eofblocks(mp);
 907}
 908
 909/*
 910 * Background scanning to trim preallocated CoW space. This is queued
 911 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 912 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 913 */
 914void
 915xfs_queue_cowblocks(
 916        struct xfs_mount *mp)
 917{
 918        rcu_read_lock();
 919        if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
 920                queue_delayed_work(mp->m_eofblocks_workqueue,
 921                                   &mp->m_cowblocks_work,
 922                                   msecs_to_jiffies(xfs_cowb_secs * 1000));
 923        rcu_read_unlock();
 924}
 925
 926void
 927xfs_cowblocks_worker(
 928        struct work_struct *work)
 929{
 930        struct xfs_mount *mp = container_of(to_delayed_work(work),
 931                                struct xfs_mount, m_cowblocks_work);
 932        xfs_icache_free_cowblocks(mp, NULL);
 933        xfs_queue_cowblocks(mp);
 934}
 935
 936int
 937xfs_inode_ag_iterator_flags(
 938        struct xfs_mount        *mp,
 939        int                     (*execute)(struct xfs_inode *ip, int flags,
 940                                           void *args),
 941        int                     flags,
 942        void                    *args,
 943        int                     iter_flags)
 944{
 945        struct xfs_perag        *pag;
 946        int                     error = 0;
 947        int                     last_error = 0;
 948        xfs_agnumber_t          ag;
 949
 950        ag = 0;
 951        while ((pag = xfs_perag_get(mp, ag))) {
 952                ag = pag->pag_agno + 1;
 953                error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
 954                                          iter_flags);
 955                xfs_perag_put(pag);
 956                if (error) {
 957                        last_error = error;
 958                        if (error == -EFSCORRUPTED)
 959                                break;
 960                }
 961        }
 962        return last_error;
 963}
 964
 965int
 966xfs_inode_ag_iterator(
 967        struct xfs_mount        *mp,
 968        int                     (*execute)(struct xfs_inode *ip, int flags,
 969                                           void *args),
 970        int                     flags,
 971        void                    *args)
 972{
 973        return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
 974}
 975
 976int
 977xfs_inode_ag_iterator_tag(
 978        struct xfs_mount        *mp,
 979        int                     (*execute)(struct xfs_inode *ip, int flags,
 980                                           void *args),
 981        int                     flags,
 982        void                    *args,
 983        int                     tag)
 984{
 985        struct xfs_perag        *pag;
 986        int                     error = 0;
 987        int                     last_error = 0;
 988        xfs_agnumber_t          ag;
 989
 990        ag = 0;
 991        while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
 992                ag = pag->pag_agno + 1;
 993                error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
 994                                          0);
 995                xfs_perag_put(pag);
 996                if (error) {
 997                        last_error = error;
 998                        if (error == -EFSCORRUPTED)
 999                                break;
1000                }
1001        }
1002        return last_error;
1003}
1004
1005/*
1006 * Grab the inode for reclaim exclusively.
1007 * Return 0 if we grabbed it, non-zero otherwise.
1008 */
1009STATIC int
1010xfs_reclaim_inode_grab(
1011        struct xfs_inode        *ip,
1012        int                     flags)
1013{
1014        ASSERT(rcu_read_lock_held());
1015
1016        /* quick check for stale RCU freed inode */
1017        if (!ip->i_ino)
1018                return 1;
1019
1020        /*
1021         * If we are asked for non-blocking operation, do unlocked checks to
1022         * see if the inode already is being flushed or in reclaim to avoid
1023         * lock traffic.
1024         */
1025        if ((flags & SYNC_TRYLOCK) &&
1026            __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1027                return 1;
1028
1029        /*
1030         * The radix tree lock here protects a thread in xfs_iget from racing
1031         * with us starting reclaim on the inode.  Once we have the
1032         * XFS_IRECLAIM flag set it will not touch us.
1033         *
1034         * Due to RCU lookup, we may find inodes that have been freed and only
1035         * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1036         * aren't candidates for reclaim at all, so we must check the
1037         * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1038         */
1039        spin_lock(&ip->i_flags_lock);
1040        if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1041            __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1042                /* not a reclaim candidate. */
1043                spin_unlock(&ip->i_flags_lock);
1044                return 1;
1045        }
1046        __xfs_iflags_set(ip, XFS_IRECLAIM);
1047        spin_unlock(&ip->i_flags_lock);
1048        return 0;
1049}
1050
1051/*
1052 * Inodes in different states need to be treated differently. The following
1053 * table lists the inode states and the reclaim actions necessary:
1054 *
1055 *      inode state          iflush ret         required action
1056 *      ---------------      ----------         ---------------
1057 *      bad                     -               reclaim
1058 *      shutdown                EIO             unpin and reclaim
1059 *      clean, unpinned         0               reclaim
1060 *      stale, unpinned         0               reclaim
1061 *      clean, pinned(*)        0               requeue
1062 *      stale, pinned           EAGAIN          requeue
1063 *      dirty, async            -               requeue
1064 *      dirty, sync             0               reclaim
1065 *
1066 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1067 * handled anyway given the order of checks implemented.
1068 *
1069 * Also, because we get the flush lock first, we know that any inode that has
1070 * been flushed delwri has had the flush completed by the time we check that
1071 * the inode is clean.
1072 *
1073 * Note that because the inode is flushed delayed write by AIL pushing, the
1074 * flush lock may already be held here and waiting on it can result in very
1075 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1076 * the caller should push the AIL first before trying to reclaim inodes to
1077 * minimise the amount of time spent waiting.  For background relaim, we only
1078 * bother to reclaim clean inodes anyway.
1079 *
1080 * Hence the order of actions after gaining the locks should be:
1081 *      bad             => reclaim
1082 *      shutdown        => unpin and reclaim
1083 *      pinned, async   => requeue
1084 *      pinned, sync    => unpin
1085 *      stale           => reclaim
1086 *      clean           => reclaim
1087 *      dirty, async    => requeue
1088 *      dirty, sync     => flush, wait and reclaim
1089 */
1090STATIC int
1091xfs_reclaim_inode(
1092        struct xfs_inode        *ip,
1093        struct xfs_perag        *pag,
1094        int                     sync_mode)
1095{
1096        struct xfs_buf          *bp = NULL;
1097        xfs_ino_t               ino = ip->i_ino; /* for radix_tree_delete */
1098        int                     error;
1099
1100restart:
1101        error = 0;
1102        xfs_ilock(ip, XFS_ILOCK_EXCL);
1103        if (!xfs_iflock_nowait(ip)) {
1104                if (!(sync_mode & SYNC_WAIT))
1105                        goto out;
1106                xfs_iflock(ip);
1107        }
1108
1109        if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1110                xfs_iunpin_wait(ip);
1111                /* xfs_iflush_abort() drops the flush lock */
1112                xfs_iflush_abort(ip, false);
1113                goto reclaim;
1114        }
1115        if (xfs_ipincount(ip)) {
1116                if (!(sync_mode & SYNC_WAIT))
1117                        goto out_ifunlock;
1118                xfs_iunpin_wait(ip);
1119        }
1120        if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1121                xfs_ifunlock(ip);
1122                goto reclaim;
1123        }
1124
1125        /*
1126         * Never flush out dirty data during non-blocking reclaim, as it would
1127         * just contend with AIL pushing trying to do the same job.
1128         */
1129        if (!(sync_mode & SYNC_WAIT))
1130                goto out_ifunlock;
1131
1132        /*
1133         * Now we have an inode that needs flushing.
1134         *
1135         * Note that xfs_iflush will never block on the inode buffer lock, as
1136         * xfs_ifree_cluster() can lock the inode buffer before it locks the
1137         * ip->i_lock, and we are doing the exact opposite here.  As a result,
1138         * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1139         * result in an ABBA deadlock with xfs_ifree_cluster().
1140         *
1141         * As xfs_ifree_cluser() must gather all inodes that are active in the
1142         * cache to mark them stale, if we hit this case we don't actually want
1143         * to do IO here - we want the inode marked stale so we can simply
1144         * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1145         * inode, back off and try again.  Hopefully the next pass through will
1146         * see the stale flag set on the inode.
1147         */
1148        error = xfs_iflush(ip, &bp);
1149        if (error == -EAGAIN) {
1150                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1151                /* backoff longer than in xfs_ifree_cluster */
1152                delay(2);
1153                goto restart;
1154        }
1155
1156        if (!error) {
1157                error = xfs_bwrite(bp);
1158                xfs_buf_relse(bp);
1159        }
1160
1161reclaim:
1162        ASSERT(!xfs_isiflocked(ip));
1163
1164        /*
1165         * Because we use RCU freeing we need to ensure the inode always appears
1166         * to be reclaimed with an invalid inode number when in the free state.
1167         * We do this as early as possible under the ILOCK so that
1168         * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1169         * detect races with us here. By doing this, we guarantee that once
1170         * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1171         * it will see either a valid inode that will serialise correctly, or it
1172         * will see an invalid inode that it can skip.
1173         */
1174        spin_lock(&ip->i_flags_lock);
1175        ip->i_flags = XFS_IRECLAIM;
1176        ip->i_ino = 0;
1177        spin_unlock(&ip->i_flags_lock);
1178
1179        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1180
1181        XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1182        /*
1183         * Remove the inode from the per-AG radix tree.
1184         *
1185         * Because radix_tree_delete won't complain even if the item was never
1186         * added to the tree assert that it's been there before to catch
1187         * problems with the inode life time early on.
1188         */
1189        spin_lock(&pag->pag_ici_lock);
1190        if (!radix_tree_delete(&pag->pag_ici_root,
1191                                XFS_INO_TO_AGINO(ip->i_mount, ino)))
1192                ASSERT(0);
1193        xfs_perag_clear_reclaim_tag(pag);
1194        spin_unlock(&pag->pag_ici_lock);
1195
1196        /*
1197         * Here we do an (almost) spurious inode lock in order to coordinate
1198         * with inode cache radix tree lookups.  This is because the lookup
1199         * can reference the inodes in the cache without taking references.
1200         *
1201         * We make that OK here by ensuring that we wait until the inode is
1202         * unlocked after the lookup before we go ahead and free it.
1203         */
1204        xfs_ilock(ip, XFS_ILOCK_EXCL);
1205        xfs_qm_dqdetach(ip);
1206        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1207
1208        __xfs_inode_free(ip);
1209        return error;
1210
1211out_ifunlock:
1212        xfs_ifunlock(ip);
1213out:
1214        xfs_iflags_clear(ip, XFS_IRECLAIM);
1215        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1216        /*
1217         * We could return -EAGAIN here to make reclaim rescan the inode tree in
1218         * a short while. However, this just burns CPU time scanning the tree
1219         * waiting for IO to complete and the reclaim work never goes back to
1220         * the idle state. Instead, return 0 to let the next scheduled
1221         * background reclaim attempt to reclaim the inode again.
1222         */
1223        return 0;
1224}
1225
1226/*
1227 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1228 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1229 * then a shut down during filesystem unmount reclaim walk leak all the
1230 * unreclaimed inodes.
1231 */
1232STATIC int
1233xfs_reclaim_inodes_ag(
1234        struct xfs_mount        *mp,
1235        int                     flags,
1236        int                     *nr_to_scan)
1237{
1238        struct xfs_perag        *pag;
1239        int                     error = 0;
1240        int                     last_error = 0;
1241        xfs_agnumber_t          ag;
1242        int                     trylock = flags & SYNC_TRYLOCK;
1243        int                     skipped;
1244
1245restart:
1246        ag = 0;
1247        skipped = 0;
1248        while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1249                unsigned long   first_index = 0;
1250                int             done = 0;
1251                int             nr_found = 0;
1252
1253                ag = pag->pag_agno + 1;
1254
1255                if (trylock) {
1256                        if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1257                                skipped++;
1258                                xfs_perag_put(pag);
1259                                continue;
1260                        }
1261                        first_index = pag->pag_ici_reclaim_cursor;
1262                } else
1263                        mutex_lock(&pag->pag_ici_reclaim_lock);
1264
1265                do {
1266                        struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1267                        int     i;
1268
1269                        rcu_read_lock();
1270                        nr_found = radix_tree_gang_lookup_tag(
1271                                        &pag->pag_ici_root,
1272                                        (void **)batch, first_index,
1273                                        XFS_LOOKUP_BATCH,
1274                                        XFS_ICI_RECLAIM_TAG);
1275                        if (!nr_found) {
1276                                done = 1;
1277                                rcu_read_unlock();
1278                                break;
1279                        }
1280
1281                        /*
1282                         * Grab the inodes before we drop the lock. if we found
1283                         * nothing, nr == 0 and the loop will be skipped.
1284                         */
1285                        for (i = 0; i < nr_found; i++) {
1286                                struct xfs_inode *ip = batch[i];
1287
1288                                if (done || xfs_reclaim_inode_grab(ip, flags))
1289                                        batch[i] = NULL;
1290
1291                                /*
1292                                 * Update the index for the next lookup. Catch
1293                                 * overflows into the next AG range which can
1294                                 * occur if we have inodes in the last block of
1295                                 * the AG and we are currently pointing to the
1296                                 * last inode.
1297                                 *
1298                                 * Because we may see inodes that are from the
1299                                 * wrong AG due to RCU freeing and
1300                                 * reallocation, only update the index if it
1301                                 * lies in this AG. It was a race that lead us
1302                                 * to see this inode, so another lookup from
1303                                 * the same index will not find it again.
1304                                 */
1305                                if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1306                                                                pag->pag_agno)
1307                                        continue;
1308                                first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1309                                if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1310                                        done = 1;
1311                        }
1312
1313                        /* unlock now we've grabbed the inodes. */
1314                        rcu_read_unlock();
1315
1316                        for (i = 0; i < nr_found; i++) {
1317                                if (!batch[i])
1318                                        continue;
1319                                error = xfs_reclaim_inode(batch[i], pag, flags);
1320                                if (error && last_error != -EFSCORRUPTED)
1321                                        last_error = error;
1322                        }
1323
1324                        *nr_to_scan -= XFS_LOOKUP_BATCH;
1325
1326                        cond_resched();
1327
1328                } while (nr_found && !done && *nr_to_scan > 0);
1329
1330                if (trylock && !done)
1331                        pag->pag_ici_reclaim_cursor = first_index;
1332                else
1333                        pag->pag_ici_reclaim_cursor = 0;
1334                mutex_unlock(&pag->pag_ici_reclaim_lock);
1335                xfs_perag_put(pag);
1336        }
1337
1338        /*
1339         * if we skipped any AG, and we still have scan count remaining, do
1340         * another pass this time using blocking reclaim semantics (i.e
1341         * waiting on the reclaim locks and ignoring the reclaim cursors). This
1342         * ensure that when we get more reclaimers than AGs we block rather
1343         * than spin trying to execute reclaim.
1344         */
1345        if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1346                trylock = 0;
1347                goto restart;
1348        }
1349        return last_error;
1350}
1351
1352int
1353xfs_reclaim_inodes(
1354        xfs_mount_t     *mp,
1355        int             mode)
1356{
1357        int             nr_to_scan = INT_MAX;
1358
1359        return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1360}
1361
1362/*
1363 * Scan a certain number of inodes for reclaim.
1364 *
1365 * When called we make sure that there is a background (fast) inode reclaim in
1366 * progress, while we will throttle the speed of reclaim via doing synchronous
1367 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1368 * them to be cleaned, which we hope will not be very long due to the
1369 * background walker having already kicked the IO off on those dirty inodes.
1370 */
1371long
1372xfs_reclaim_inodes_nr(
1373        struct xfs_mount        *mp,
1374        int                     nr_to_scan)
1375{
1376        /* kick background reclaimer and push the AIL */
1377        xfs_reclaim_work_queue(mp);
1378        xfs_ail_push_all(mp->m_ail);
1379
1380        return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1381}
1382
1383/*
1384 * Return the number of reclaimable inodes in the filesystem for
1385 * the shrinker to determine how much to reclaim.
1386 */
1387int
1388xfs_reclaim_inodes_count(
1389        struct xfs_mount        *mp)
1390{
1391        struct xfs_perag        *pag;
1392        xfs_agnumber_t          ag = 0;
1393        int                     reclaimable = 0;
1394
1395        while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1396                ag = pag->pag_agno + 1;
1397                reclaimable += pag->pag_ici_reclaimable;
1398                xfs_perag_put(pag);
1399        }
1400        return reclaimable;
1401}
1402
1403STATIC int
1404xfs_inode_match_id(
1405        struct xfs_inode        *ip,
1406        struct xfs_eofblocks    *eofb)
1407{
1408        if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1409            !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1410                return 0;
1411
1412        if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1413            !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1414                return 0;
1415
1416        if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1417            xfs_get_projid(ip) != eofb->eof_prid)
1418                return 0;
1419
1420        return 1;
1421}
1422
1423/*
1424 * A union-based inode filtering algorithm. Process the inode if any of the
1425 * criteria match. This is for global/internal scans only.
1426 */
1427STATIC int
1428xfs_inode_match_id_union(
1429        struct xfs_inode        *ip,
1430        struct xfs_eofblocks    *eofb)
1431{
1432        if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1433            uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1434                return 1;
1435
1436        if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1437            gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1438                return 1;
1439
1440        if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1441            xfs_get_projid(ip) == eofb->eof_prid)
1442                return 1;
1443
1444        return 0;
1445}
1446
1447STATIC int
1448xfs_inode_free_eofblocks(
1449        struct xfs_inode        *ip,
1450        int                     flags,
1451        void                    *args)
1452{
1453        int ret = 0;
1454        struct xfs_eofblocks *eofb = args;
1455        int match;
1456
1457        if (!xfs_can_free_eofblocks(ip, false)) {
1458                /* inode could be preallocated or append-only */
1459                trace_xfs_inode_free_eofblocks_invalid(ip);
1460                xfs_inode_clear_eofblocks_tag(ip);
1461                return 0;
1462        }
1463
1464        /*
1465         * If the mapping is dirty the operation can block and wait for some
1466         * time. Unless we are waiting, skip it.
1467         */
1468        if (!(flags & SYNC_WAIT) &&
1469            mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1470                return 0;
1471
1472        if (eofb) {
1473                if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1474                        match = xfs_inode_match_id_union(ip, eofb);
1475                else
1476                        match = xfs_inode_match_id(ip, eofb);
1477                if (!match)
1478                        return 0;
1479
1480                /* skip the inode if the file size is too small */
1481                if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1482                    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1483                        return 0;
1484        }
1485
1486        /*
1487         * If the caller is waiting, return -EAGAIN to keep the background
1488         * scanner moving and revisit the inode in a subsequent pass.
1489         */
1490        if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1491                if (flags & SYNC_WAIT)
1492                        ret = -EAGAIN;
1493                return ret;
1494        }
1495        ret = xfs_free_eofblocks(ip);
1496        xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1497
1498        return ret;
1499}
1500
1501static int
1502__xfs_icache_free_eofblocks(
1503        struct xfs_mount        *mp,
1504        struct xfs_eofblocks    *eofb,
1505        int                     (*execute)(struct xfs_inode *ip, int flags,
1506                                           void *args),
1507        int                     tag)
1508{
1509        int flags = SYNC_TRYLOCK;
1510
1511        if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1512                flags = SYNC_WAIT;
1513
1514        return xfs_inode_ag_iterator_tag(mp, execute, flags,
1515                                         eofb, tag);
1516}
1517
1518int
1519xfs_icache_free_eofblocks(
1520        struct xfs_mount        *mp,
1521        struct xfs_eofblocks    *eofb)
1522{
1523        return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1524                        XFS_ICI_EOFBLOCKS_TAG);
1525}
1526
1527/*
1528 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1529 * multiple quotas, we don't know exactly which quota caused an allocation
1530 * failure. We make a best effort by including each quota under low free space
1531 * conditions (less than 1% free space) in the scan.
1532 */
1533static int
1534__xfs_inode_free_quota_eofblocks(
1535        struct xfs_inode        *ip,
1536        int                     (*execute)(struct xfs_mount *mp,
1537                                           struct xfs_eofblocks *eofb))
1538{
1539        int scan = 0;
1540        struct xfs_eofblocks eofb = {0};
1541        struct xfs_dquot *dq;
1542
1543        /*
1544         * Run a sync scan to increase effectiveness and use the union filter to
1545         * cover all applicable quotas in a single scan.
1546         */
1547        eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1548
1549        if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1550                dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1551                if (dq && xfs_dquot_lowsp(dq)) {
1552                        eofb.eof_uid = VFS_I(ip)->i_uid;
1553                        eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1554                        scan = 1;
1555                }
1556        }
1557
1558        if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1559                dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1560                if (dq && xfs_dquot_lowsp(dq)) {
1561                        eofb.eof_gid = VFS_I(ip)->i_gid;
1562                        eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1563                        scan = 1;
1564                }
1565        }
1566
1567        if (scan)
1568                execute(ip->i_mount, &eofb);
1569
1570        return scan;
1571}
1572
1573int
1574xfs_inode_free_quota_eofblocks(
1575        struct xfs_inode *ip)
1576{
1577        return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1578}
1579
1580static inline unsigned long
1581xfs_iflag_for_tag(
1582        int             tag)
1583{
1584        switch (tag) {
1585        case XFS_ICI_EOFBLOCKS_TAG:
1586                return XFS_IEOFBLOCKS;
1587        case XFS_ICI_COWBLOCKS_TAG:
1588                return XFS_ICOWBLOCKS;
1589        default:
1590                ASSERT(0);
1591                return 0;
1592        }
1593}
1594
1595static void
1596__xfs_inode_set_blocks_tag(
1597        xfs_inode_t     *ip,
1598        void            (*execute)(struct xfs_mount *mp),
1599        void            (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1600                                  int error, unsigned long caller_ip),
1601        int             tag)
1602{
1603        struct xfs_mount *mp = ip->i_mount;
1604        struct xfs_perag *pag;
1605        int tagged;
1606
1607        /*
1608         * Don't bother locking the AG and looking up in the radix trees
1609         * if we already know that we have the tag set.
1610         */
1611        if (ip->i_flags & xfs_iflag_for_tag(tag))
1612                return;
1613        spin_lock(&ip->i_flags_lock);
1614        ip->i_flags |= xfs_iflag_for_tag(tag);
1615        spin_unlock(&ip->i_flags_lock);
1616
1617        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1618        spin_lock(&pag->pag_ici_lock);
1619
1620        tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1621        radix_tree_tag_set(&pag->pag_ici_root,
1622                           XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1623        if (!tagged) {
1624                /* propagate the eofblocks tag up into the perag radix tree */
1625                spin_lock(&ip->i_mount->m_perag_lock);
1626                radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1627                                   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1628                                   tag);
1629                spin_unlock(&ip->i_mount->m_perag_lock);
1630
1631                /* kick off background trimming */
1632                execute(ip->i_mount);
1633
1634                set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1635        }
1636
1637        spin_unlock(&pag->pag_ici_lock);
1638        xfs_perag_put(pag);
1639}
1640
1641void
1642xfs_inode_set_eofblocks_tag(
1643        xfs_inode_t     *ip)
1644{
1645        trace_xfs_inode_set_eofblocks_tag(ip);
1646        return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1647                        trace_xfs_perag_set_eofblocks,
1648                        XFS_ICI_EOFBLOCKS_TAG);
1649}
1650
1651static void
1652__xfs_inode_clear_blocks_tag(
1653        xfs_inode_t     *ip,
1654        void            (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1655                                    int error, unsigned long caller_ip),
1656        int             tag)
1657{
1658        struct xfs_mount *mp = ip->i_mount;
1659        struct xfs_perag *pag;
1660
1661        spin_lock(&ip->i_flags_lock);
1662        ip->i_flags &= ~xfs_iflag_for_tag(tag);
1663        spin_unlock(&ip->i_flags_lock);
1664
1665        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1666        spin_lock(&pag->pag_ici_lock);
1667
1668        radix_tree_tag_clear(&pag->pag_ici_root,
1669                             XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1670        if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1671                /* clear the eofblocks tag from the perag radix tree */
1672                spin_lock(&ip->i_mount->m_perag_lock);
1673                radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1674                                     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1675                                     tag);
1676                spin_unlock(&ip->i_mount->m_perag_lock);
1677                clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1678        }
1679
1680        spin_unlock(&pag->pag_ici_lock);
1681        xfs_perag_put(pag);
1682}
1683
1684void
1685xfs_inode_clear_eofblocks_tag(
1686        xfs_inode_t     *ip)
1687{
1688        trace_xfs_inode_clear_eofblocks_tag(ip);
1689        return __xfs_inode_clear_blocks_tag(ip,
1690                        trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1691}
1692
1693/*
1694 * Set ourselves up to free CoW blocks from this file.  If it's already clean
1695 * then we can bail out quickly, but otherwise we must back off if the file
1696 * is undergoing some kind of write.
1697 */
1698static bool
1699xfs_prep_free_cowblocks(
1700        struct xfs_inode        *ip)
1701{
1702        /*
1703         * Just clear the tag if we have an empty cow fork or none at all. It's
1704         * possible the inode was fully unshared since it was originally tagged.
1705         */
1706        if (!xfs_inode_has_cow_data(ip)) {
1707                trace_xfs_inode_free_cowblocks_invalid(ip);
1708                xfs_inode_clear_cowblocks_tag(ip);
1709                return false;
1710        }
1711
1712        /*
1713         * If the mapping is dirty or under writeback we cannot touch the
1714         * CoW fork.  Leave it alone if we're in the midst of a directio.
1715         */
1716        if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1717            mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1718            mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1719            atomic_read(&VFS_I(ip)->i_dio_count))
1720                return false;
1721
1722        return true;
1723}
1724
1725/*
1726 * Automatic CoW Reservation Freeing
1727 *
1728 * These functions automatically garbage collect leftover CoW reservations
1729 * that were made on behalf of a cowextsize hint when we start to run out
1730 * of quota or when the reservations sit around for too long.  If the file
1731 * has dirty pages or is undergoing writeback, its CoW reservations will
1732 * be retained.
1733 *
1734 * The actual garbage collection piggybacks off the same code that runs
1735 * the speculative EOF preallocation garbage collector.
1736 */
1737STATIC int
1738xfs_inode_free_cowblocks(
1739        struct xfs_inode        *ip,
1740        int                     flags,
1741        void                    *args)
1742{
1743        struct xfs_eofblocks    *eofb = args;
1744        int                     match;
1745        int                     ret = 0;
1746
1747        if (!xfs_prep_free_cowblocks(ip))
1748                return 0;
1749
1750        if (eofb) {
1751                if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1752                        match = xfs_inode_match_id_union(ip, eofb);
1753                else
1754                        match = xfs_inode_match_id(ip, eofb);
1755                if (!match)
1756                        return 0;
1757
1758                /* skip the inode if the file size is too small */
1759                if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1760                    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1761                        return 0;
1762        }
1763
1764        /* Free the CoW blocks */
1765        xfs_ilock(ip, XFS_IOLOCK_EXCL);
1766        xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1767
1768        /*
1769         * Check again, nobody else should be able to dirty blocks or change
1770         * the reflink iflag now that we have the first two locks held.
1771         */
1772        if (xfs_prep_free_cowblocks(ip))
1773                ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1774
1775        xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1776        xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1777
1778        return ret;
1779}
1780
1781int
1782xfs_icache_free_cowblocks(
1783        struct xfs_mount        *mp,
1784        struct xfs_eofblocks    *eofb)
1785{
1786        return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1787                        XFS_ICI_COWBLOCKS_TAG);
1788}
1789
1790int
1791xfs_inode_free_quota_cowblocks(
1792        struct xfs_inode *ip)
1793{
1794        return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1795}
1796
1797void
1798xfs_inode_set_cowblocks_tag(
1799        xfs_inode_t     *ip)
1800{
1801        trace_xfs_inode_set_cowblocks_tag(ip);
1802        return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1803                        trace_xfs_perag_set_cowblocks,
1804                        XFS_ICI_COWBLOCKS_TAG);
1805}
1806
1807void
1808xfs_inode_clear_cowblocks_tag(
1809        xfs_inode_t     *ip)
1810{
1811        trace_xfs_inode_clear_cowblocks_tag(ip);
1812        return __xfs_inode_clear_blocks_tag(ip,
1813                        trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1814}
1815
1816/* Disable post-EOF and CoW block auto-reclamation. */
1817void
1818xfs_icache_disable_reclaim(
1819        struct xfs_mount        *mp)
1820{
1821        cancel_delayed_work_sync(&mp->m_eofblocks_work);
1822        cancel_delayed_work_sync(&mp->m_cowblocks_work);
1823}
1824
1825/* Enable post-EOF and CoW block auto-reclamation. */
1826void
1827xfs_icache_enable_reclaim(
1828        struct xfs_mount        *mp)
1829{
1830        xfs_queue_eofblocks(mp);
1831        xfs_queue_cowblocks(mp);
1832}
1833