linux/include/linux/mm.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_H
   3#define _LINUX_MM_H
   4
   5#include <linux/errno.h>
   6
   7#ifdef __KERNEL__
   8
   9#include <linux/mmdebug.h>
  10#include <linux/gfp.h>
  11#include <linux/bug.h>
  12#include <linux/list.h>
  13#include <linux/mmzone.h>
  14#include <linux/rbtree.h>
  15#include <linux/atomic.h>
  16#include <linux/debug_locks.h>
  17#include <linux/mm_types.h>
  18#include <linux/range.h>
  19#include <linux/pfn.h>
  20#include <linux/percpu-refcount.h>
  21#include <linux/bit_spinlock.h>
  22#include <linux/shrinker.h>
  23#include <linux/resource.h>
  24#include <linux/page_ext.h>
  25#include <linux/err.h>
  26#include <linux/page_ref.h>
  27#include <linux/memremap.h>
  28#include <linux/overflow.h>
  29
  30struct mempolicy;
  31struct anon_vma;
  32struct anon_vma_chain;
  33struct file_ra_state;
  34struct user_struct;
  35struct writeback_control;
  36struct bdi_writeback;
  37
  38void init_mm_internals(void);
  39
  40#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  41extern unsigned long max_mapnr;
  42
  43static inline void set_max_mapnr(unsigned long limit)
  44{
  45        max_mapnr = limit;
  46}
  47#else
  48static inline void set_max_mapnr(unsigned long limit) { }
  49#endif
  50
  51extern unsigned long totalram_pages;
  52extern void * high_memory;
  53extern int page_cluster;
  54
  55#ifdef CONFIG_SYSCTL
  56extern int sysctl_legacy_va_layout;
  57#else
  58#define sysctl_legacy_va_layout 0
  59#endif
  60
  61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  62extern const int mmap_rnd_bits_min;
  63extern const int mmap_rnd_bits_max;
  64extern int mmap_rnd_bits __read_mostly;
  65#endif
  66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  67extern const int mmap_rnd_compat_bits_min;
  68extern const int mmap_rnd_compat_bits_max;
  69extern int mmap_rnd_compat_bits __read_mostly;
  70#endif
  71
  72#include <asm/page.h>
  73#include <asm/pgtable.h>
  74#include <asm/processor.h>
  75
  76#ifndef __pa_symbol
  77#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
  78#endif
  79
  80#ifndef page_to_virt
  81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  82#endif
  83
  84#ifndef lm_alias
  85#define lm_alias(x)     __va(__pa_symbol(x))
  86#endif
  87
  88/*
  89 * To prevent common memory management code establishing
  90 * a zero page mapping on a read fault.
  91 * This macro should be defined within <asm/pgtable.h>.
  92 * s390 does this to prevent multiplexing of hardware bits
  93 * related to the physical page in case of virtualization.
  94 */
  95#ifndef mm_forbids_zeropage
  96#define mm_forbids_zeropage(X)  (0)
  97#endif
  98
  99/*
 100 * On some architectures it is expensive to call memset() for small sizes.
 101 * Those architectures should provide their own implementation of "struct page"
 102 * zeroing by defining this macro in <asm/pgtable.h>.
 103 */
 104#ifndef mm_zero_struct_page
 105#define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
 106#endif
 107
 108/*
 109 * Default maximum number of active map areas, this limits the number of vmas
 110 * per mm struct. Users can overwrite this number by sysctl but there is a
 111 * problem.
 112 *
 113 * When a program's coredump is generated as ELF format, a section is created
 114 * per a vma. In ELF, the number of sections is represented in unsigned short.
 115 * This means the number of sections should be smaller than 65535 at coredump.
 116 * Because the kernel adds some informative sections to a image of program at
 117 * generating coredump, we need some margin. The number of extra sections is
 118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 119 *
 120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
 121 * not a hard limit any more. Although some userspace tools can be surprised by
 122 * that.
 123 */
 124#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 125#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 126
 127extern int sysctl_max_map_count;
 128
 129extern unsigned long sysctl_user_reserve_kbytes;
 130extern unsigned long sysctl_admin_reserve_kbytes;
 131
 132extern int sysctl_overcommit_memory;
 133extern int sysctl_overcommit_ratio;
 134extern unsigned long sysctl_overcommit_kbytes;
 135
 136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
 137                                    size_t *, loff_t *);
 138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
 139                                    size_t *, loff_t *);
 140
 141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
 142
 143/* to align the pointer to the (next) page boundary */
 144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 145
 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 147#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
 148
 149/*
 150 * Linux kernel virtual memory manager primitives.
 151 * The idea being to have a "virtual" mm in the same way
 152 * we have a virtual fs - giving a cleaner interface to the
 153 * mm details, and allowing different kinds of memory mappings
 154 * (from shared memory to executable loading to arbitrary
 155 * mmap() functions).
 156 */
 157
 158struct vm_area_struct *vm_area_alloc(struct mm_struct *);
 159struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
 160void vm_area_free(struct vm_area_struct *);
 161
 162#ifndef CONFIG_MMU
 163extern struct rb_root nommu_region_tree;
 164extern struct rw_semaphore nommu_region_sem;
 165
 166extern unsigned int kobjsize(const void *objp);
 167#endif
 168
 169/*
 170 * vm_flags in vm_area_struct, see mm_types.h.
 171 * When changing, update also include/trace/events/mmflags.h
 172 */
 173#define VM_NONE         0x00000000
 174
 175#define VM_READ         0x00000001      /* currently active flags */
 176#define VM_WRITE        0x00000002
 177#define VM_EXEC         0x00000004
 178#define VM_SHARED       0x00000008
 179
 180/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 181#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 182#define VM_MAYWRITE     0x00000020
 183#define VM_MAYEXEC      0x00000040
 184#define VM_MAYSHARE     0x00000080
 185
 186#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 187#define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
 188#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 189#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 190#define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
 191
 192#define VM_LOCKED       0x00002000
 193#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 194
 195                                        /* Used by sys_madvise() */
 196#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 197#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 198
 199#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 200#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 201#define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
 202#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 203#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 204#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 205#define VM_SYNC         0x00800000      /* Synchronous page faults */
 206#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 207#define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
 208#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 209
 210#ifdef CONFIG_MEM_SOFT_DIRTY
 211# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 212#else
 213# define VM_SOFTDIRTY   0
 214#endif
 215
 216#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 217#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 218#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 219#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 220
 221#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
 222#define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
 223#define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
 224#define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
 225#define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
 226#define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
 227#define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
 228#define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
 229#define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
 230#define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
 231#define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
 232#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
 233
 234#ifdef CONFIG_ARCH_HAS_PKEYS
 235# define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
 236# define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
 237# define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
 238# define VM_PKEY_BIT2   VM_HIGH_ARCH_2
 239# define VM_PKEY_BIT3   VM_HIGH_ARCH_3
 240#ifdef CONFIG_PPC
 241# define VM_PKEY_BIT4  VM_HIGH_ARCH_4
 242#else
 243# define VM_PKEY_BIT4  0
 244#endif
 245#endif /* CONFIG_ARCH_HAS_PKEYS */
 246
 247#if defined(CONFIG_X86)
 248# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 249#elif defined(CONFIG_PPC)
 250# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 251#elif defined(CONFIG_PARISC)
 252# define VM_GROWSUP     VM_ARCH_1
 253#elif defined(CONFIG_IA64)
 254# define VM_GROWSUP     VM_ARCH_1
 255#elif defined(CONFIG_SPARC64)
 256# define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
 257# define VM_ARCH_CLEAR  VM_SPARC_ADI
 258#elif !defined(CONFIG_MMU)
 259# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 260#endif
 261
 262#if defined(CONFIG_X86_INTEL_MPX)
 263/* MPX specific bounds table or bounds directory */
 264# define VM_MPX         VM_HIGH_ARCH_4
 265#else
 266# define VM_MPX         VM_NONE
 267#endif
 268
 269#ifndef VM_GROWSUP
 270# define VM_GROWSUP     VM_NONE
 271#endif
 272
 273/* Bits set in the VMA until the stack is in its final location */
 274#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 275
 276#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 277#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 278#endif
 279
 280#ifdef CONFIG_STACK_GROWSUP
 281#define VM_STACK        VM_GROWSUP
 282#else
 283#define VM_STACK        VM_GROWSDOWN
 284#endif
 285
 286#define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 287
 288/*
 289 * Special vmas that are non-mergable, non-mlock()able.
 290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 291 */
 292#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 293
 294/* This mask defines which mm->def_flags a process can inherit its parent */
 295#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 296
 297/* This mask is used to clear all the VMA flags used by mlock */
 298#define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
 299
 300/* Arch-specific flags to clear when updating VM flags on protection change */
 301#ifndef VM_ARCH_CLEAR
 302# define VM_ARCH_CLEAR  VM_NONE
 303#endif
 304#define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
 305
 306/*
 307 * mapping from the currently active vm_flags protection bits (the
 308 * low four bits) to a page protection mask..
 309 */
 310extern pgprot_t protection_map[16];
 311
 312#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 313#define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
 314#define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
 315#define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
 316#define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
 317#define FAULT_FLAG_TRIED        0x20    /* Second try */
 318#define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
 319#define FAULT_FLAG_REMOTE       0x80    /* faulting for non current tsk/mm */
 320#define FAULT_FLAG_INSTRUCTION  0x100   /* The fault was during an instruction fetch */
 321
 322#define FAULT_FLAG_TRACE \
 323        { FAULT_FLAG_WRITE,             "WRITE" }, \
 324        { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
 325        { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
 326        { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
 327        { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
 328        { FAULT_FLAG_TRIED,             "TRIED" }, \
 329        { FAULT_FLAG_USER,              "USER" }, \
 330        { FAULT_FLAG_REMOTE,            "REMOTE" }, \
 331        { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }
 332
 333/*
 334 * vm_fault is filled by the the pagefault handler and passed to the vma's
 335 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 336 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 337 *
 338 * MM layer fills up gfp_mask for page allocations but fault handler might
 339 * alter it if its implementation requires a different allocation context.
 340 *
 341 * pgoff should be used in favour of virtual_address, if possible.
 342 */
 343struct vm_fault {
 344        struct vm_area_struct *vma;     /* Target VMA */
 345        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 346        gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
 347        pgoff_t pgoff;                  /* Logical page offset based on vma */
 348        unsigned long address;          /* Faulting virtual address */
 349        pmd_t *pmd;                     /* Pointer to pmd entry matching
 350                                         * the 'address' */
 351        pud_t *pud;                     /* Pointer to pud entry matching
 352                                         * the 'address'
 353                                         */
 354        pte_t orig_pte;                 /* Value of PTE at the time of fault */
 355
 356        struct page *cow_page;          /* Page handler may use for COW fault */
 357        struct mem_cgroup *memcg;       /* Cgroup cow_page belongs to */
 358        struct page *page;              /* ->fault handlers should return a
 359                                         * page here, unless VM_FAULT_NOPAGE
 360                                         * is set (which is also implied by
 361                                         * VM_FAULT_ERROR).
 362                                         */
 363        /* These three entries are valid only while holding ptl lock */
 364        pte_t *pte;                     /* Pointer to pte entry matching
 365                                         * the 'address'. NULL if the page
 366                                         * table hasn't been allocated.
 367                                         */
 368        spinlock_t *ptl;                /* Page table lock.
 369                                         * Protects pte page table if 'pte'
 370                                         * is not NULL, otherwise pmd.
 371                                         */
 372        pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
 373                                         * vm_ops->map_pages() calls
 374                                         * alloc_set_pte() from atomic context.
 375                                         * do_fault_around() pre-allocates
 376                                         * page table to avoid allocation from
 377                                         * atomic context.
 378                                         */
 379};
 380
 381/* page entry size for vm->huge_fault() */
 382enum page_entry_size {
 383        PE_SIZE_PTE = 0,
 384        PE_SIZE_PMD,
 385        PE_SIZE_PUD,
 386};
 387
 388/*
 389 * These are the virtual MM functions - opening of an area, closing and
 390 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 391 * to the functions called when a no-page or a wp-page exception occurs.
 392 */
 393struct vm_operations_struct {
 394        void (*open)(struct vm_area_struct * area);
 395        void (*close)(struct vm_area_struct * area);
 396        int (*split)(struct vm_area_struct * area, unsigned long addr);
 397        int (*mremap)(struct vm_area_struct * area);
 398        vm_fault_t (*fault)(struct vm_fault *vmf);
 399        vm_fault_t (*huge_fault)(struct vm_fault *vmf,
 400                        enum page_entry_size pe_size);
 401        void (*map_pages)(struct vm_fault *vmf,
 402                        pgoff_t start_pgoff, pgoff_t end_pgoff);
 403        unsigned long (*pagesize)(struct vm_area_struct * area);
 404
 405        /* notification that a previously read-only page is about to become
 406         * writable, if an error is returned it will cause a SIGBUS */
 407        vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
 408
 409        /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 410        vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
 411
 412        /* called by access_process_vm when get_user_pages() fails, typically
 413         * for use by special VMAs that can switch between memory and hardware
 414         */
 415        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 416                      void *buf, int len, int write);
 417
 418        /* Called by the /proc/PID/maps code to ask the vma whether it
 419         * has a special name.  Returning non-NULL will also cause this
 420         * vma to be dumped unconditionally. */
 421        const char *(*name)(struct vm_area_struct *vma);
 422
 423#ifdef CONFIG_NUMA
 424        /*
 425         * set_policy() op must add a reference to any non-NULL @new mempolicy
 426         * to hold the policy upon return.  Caller should pass NULL @new to
 427         * remove a policy and fall back to surrounding context--i.e. do not
 428         * install a MPOL_DEFAULT policy, nor the task or system default
 429         * mempolicy.
 430         */
 431        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 432
 433        /*
 434         * get_policy() op must add reference [mpol_get()] to any policy at
 435         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 436         * in mm/mempolicy.c will do this automatically.
 437         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 438         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 439         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 440         * must return NULL--i.e., do not "fallback" to task or system default
 441         * policy.
 442         */
 443        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 444                                        unsigned long addr);
 445#endif
 446        /*
 447         * Called by vm_normal_page() for special PTEs to find the
 448         * page for @addr.  This is useful if the default behavior
 449         * (using pte_page()) would not find the correct page.
 450         */
 451        struct page *(*find_special_page)(struct vm_area_struct *vma,
 452                                          unsigned long addr);
 453};
 454
 455static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
 456{
 457        static const struct vm_operations_struct dummy_vm_ops = {};
 458
 459        memset(vma, 0, sizeof(*vma));
 460        vma->vm_mm = mm;
 461        vma->vm_ops = &dummy_vm_ops;
 462        INIT_LIST_HEAD(&vma->anon_vma_chain);
 463}
 464
 465static inline void vma_set_anonymous(struct vm_area_struct *vma)
 466{
 467        vma->vm_ops = NULL;
 468}
 469
 470/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
 471#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
 472
 473struct mmu_gather;
 474struct inode;
 475
 476#define page_private(page)              ((page)->private)
 477#define set_page_private(page, v)       ((page)->private = (v))
 478
 479#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 480static inline int pmd_devmap(pmd_t pmd)
 481{
 482        return 0;
 483}
 484static inline int pud_devmap(pud_t pud)
 485{
 486        return 0;
 487}
 488static inline int pgd_devmap(pgd_t pgd)
 489{
 490        return 0;
 491}
 492#endif
 493
 494/*
 495 * FIXME: take this include out, include page-flags.h in
 496 * files which need it (119 of them)
 497 */
 498#include <linux/page-flags.h>
 499#include <linux/huge_mm.h>
 500
 501/*
 502 * Methods to modify the page usage count.
 503 *
 504 * What counts for a page usage:
 505 * - cache mapping   (page->mapping)
 506 * - private data    (page->private)
 507 * - page mapped in a task's page tables, each mapping
 508 *   is counted separately
 509 *
 510 * Also, many kernel routines increase the page count before a critical
 511 * routine so they can be sure the page doesn't go away from under them.
 512 */
 513
 514/*
 515 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 516 */
 517static inline int put_page_testzero(struct page *page)
 518{
 519        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
 520        return page_ref_dec_and_test(page);
 521}
 522
 523/*
 524 * Try to grab a ref unless the page has a refcount of zero, return false if
 525 * that is the case.
 526 * This can be called when MMU is off so it must not access
 527 * any of the virtual mappings.
 528 */
 529static inline int get_page_unless_zero(struct page *page)
 530{
 531        return page_ref_add_unless(page, 1, 0);
 532}
 533
 534extern int page_is_ram(unsigned long pfn);
 535
 536enum {
 537        REGION_INTERSECTS,
 538        REGION_DISJOINT,
 539        REGION_MIXED,
 540};
 541
 542int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
 543                      unsigned long desc);
 544
 545/* Support for virtually mapped pages */
 546struct page *vmalloc_to_page(const void *addr);
 547unsigned long vmalloc_to_pfn(const void *addr);
 548
 549/*
 550 * Determine if an address is within the vmalloc range
 551 *
 552 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 553 * is no special casing required.
 554 */
 555static inline bool is_vmalloc_addr(const void *x)
 556{
 557#ifdef CONFIG_MMU
 558        unsigned long addr = (unsigned long)x;
 559
 560        return addr >= VMALLOC_START && addr < VMALLOC_END;
 561#else
 562        return false;
 563#endif
 564}
 565#ifdef CONFIG_MMU
 566extern int is_vmalloc_or_module_addr(const void *x);
 567#else
 568static inline int is_vmalloc_or_module_addr(const void *x)
 569{
 570        return 0;
 571}
 572#endif
 573
 574extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
 575static inline void *kvmalloc(size_t size, gfp_t flags)
 576{
 577        return kvmalloc_node(size, flags, NUMA_NO_NODE);
 578}
 579static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
 580{
 581        return kvmalloc_node(size, flags | __GFP_ZERO, node);
 582}
 583static inline void *kvzalloc(size_t size, gfp_t flags)
 584{
 585        return kvmalloc(size, flags | __GFP_ZERO);
 586}
 587
 588static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 589{
 590        size_t bytes;
 591
 592        if (unlikely(check_mul_overflow(n, size, &bytes)))
 593                return NULL;
 594
 595        return kvmalloc(bytes, flags);
 596}
 597
 598static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
 599{
 600        return kvmalloc_array(n, size, flags | __GFP_ZERO);
 601}
 602
 603extern void kvfree(const void *addr);
 604
 605static inline atomic_t *compound_mapcount_ptr(struct page *page)
 606{
 607        return &page[1].compound_mapcount;
 608}
 609
 610static inline int compound_mapcount(struct page *page)
 611{
 612        VM_BUG_ON_PAGE(!PageCompound(page), page);
 613        page = compound_head(page);
 614        return atomic_read(compound_mapcount_ptr(page)) + 1;
 615}
 616
 617/*
 618 * The atomic page->_mapcount, starts from -1: so that transitions
 619 * both from it and to it can be tracked, using atomic_inc_and_test
 620 * and atomic_add_negative(-1).
 621 */
 622static inline void page_mapcount_reset(struct page *page)
 623{
 624        atomic_set(&(page)->_mapcount, -1);
 625}
 626
 627int __page_mapcount(struct page *page);
 628
 629static inline int page_mapcount(struct page *page)
 630{
 631        VM_BUG_ON_PAGE(PageSlab(page), page);
 632
 633        if (unlikely(PageCompound(page)))
 634                return __page_mapcount(page);
 635        return atomic_read(&page->_mapcount) + 1;
 636}
 637
 638#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 639int total_mapcount(struct page *page);
 640int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
 641#else
 642static inline int total_mapcount(struct page *page)
 643{
 644        return page_mapcount(page);
 645}
 646static inline int page_trans_huge_mapcount(struct page *page,
 647                                           int *total_mapcount)
 648{
 649        int mapcount = page_mapcount(page);
 650        if (total_mapcount)
 651                *total_mapcount = mapcount;
 652        return mapcount;
 653}
 654#endif
 655
 656static inline struct page *virt_to_head_page(const void *x)
 657{
 658        struct page *page = virt_to_page(x);
 659
 660        return compound_head(page);
 661}
 662
 663void __put_page(struct page *page);
 664
 665void put_pages_list(struct list_head *pages);
 666
 667void split_page(struct page *page, unsigned int order);
 668
 669/*
 670 * Compound pages have a destructor function.  Provide a
 671 * prototype for that function and accessor functions.
 672 * These are _only_ valid on the head of a compound page.
 673 */
 674typedef void compound_page_dtor(struct page *);
 675
 676/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 677enum compound_dtor_id {
 678        NULL_COMPOUND_DTOR,
 679        COMPOUND_PAGE_DTOR,
 680#ifdef CONFIG_HUGETLB_PAGE
 681        HUGETLB_PAGE_DTOR,
 682#endif
 683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 684        TRANSHUGE_PAGE_DTOR,
 685#endif
 686        NR_COMPOUND_DTORS,
 687};
 688extern compound_page_dtor * const compound_page_dtors[];
 689
 690static inline void set_compound_page_dtor(struct page *page,
 691                enum compound_dtor_id compound_dtor)
 692{
 693        VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 694        page[1].compound_dtor = compound_dtor;
 695}
 696
 697static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 698{
 699        VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 700        return compound_page_dtors[page[1].compound_dtor];
 701}
 702
 703static inline unsigned int compound_order(struct page *page)
 704{
 705        if (!PageHead(page))
 706                return 0;
 707        return page[1].compound_order;
 708}
 709
 710static inline void set_compound_order(struct page *page, unsigned int order)
 711{
 712        page[1].compound_order = order;
 713}
 714
 715void free_compound_page(struct page *page);
 716
 717#ifdef CONFIG_MMU
 718/*
 719 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 720 * servicing faults for write access.  In the normal case, do always want
 721 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 722 * that do not have writing enabled, when used by access_process_vm.
 723 */
 724static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 725{
 726        if (likely(vma->vm_flags & VM_WRITE))
 727                pte = pte_mkwrite(pte);
 728        return pte;
 729}
 730
 731vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
 732                struct page *page);
 733vm_fault_t finish_fault(struct vm_fault *vmf);
 734vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
 735#endif
 736
 737/*
 738 * Multiple processes may "see" the same page. E.g. for untouched
 739 * mappings of /dev/null, all processes see the same page full of
 740 * zeroes, and text pages of executables and shared libraries have
 741 * only one copy in memory, at most, normally.
 742 *
 743 * For the non-reserved pages, page_count(page) denotes a reference count.
 744 *   page_count() == 0 means the page is free. page->lru is then used for
 745 *   freelist management in the buddy allocator.
 746 *   page_count() > 0  means the page has been allocated.
 747 *
 748 * Pages are allocated by the slab allocator in order to provide memory
 749 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 750 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 751 * unless a particular usage is carefully commented. (the responsibility of
 752 * freeing the kmalloc memory is the caller's, of course).
 753 *
 754 * A page may be used by anyone else who does a __get_free_page().
 755 * In this case, page_count still tracks the references, and should only
 756 * be used through the normal accessor functions. The top bits of page->flags
 757 * and page->virtual store page management information, but all other fields
 758 * are unused and could be used privately, carefully. The management of this
 759 * page is the responsibility of the one who allocated it, and those who have
 760 * subsequently been given references to it.
 761 *
 762 * The other pages (we may call them "pagecache pages") are completely
 763 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 764 * The following discussion applies only to them.
 765 *
 766 * A pagecache page contains an opaque `private' member, which belongs to the
 767 * page's address_space. Usually, this is the address of a circular list of
 768 * the page's disk buffers. PG_private must be set to tell the VM to call
 769 * into the filesystem to release these pages.
 770 *
 771 * A page may belong to an inode's memory mapping. In this case, page->mapping
 772 * is the pointer to the inode, and page->index is the file offset of the page,
 773 * in units of PAGE_SIZE.
 774 *
 775 * If pagecache pages are not associated with an inode, they are said to be
 776 * anonymous pages. These may become associated with the swapcache, and in that
 777 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 778 *
 779 * In either case (swapcache or inode backed), the pagecache itself holds one
 780 * reference to the page. Setting PG_private should also increment the
 781 * refcount. The each user mapping also has a reference to the page.
 782 *
 783 * The pagecache pages are stored in a per-mapping radix tree, which is
 784 * rooted at mapping->i_pages, and indexed by offset.
 785 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 786 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 787 *
 788 * All pagecache pages may be subject to I/O:
 789 * - inode pages may need to be read from disk,
 790 * - inode pages which have been modified and are MAP_SHARED may need
 791 *   to be written back to the inode on disk,
 792 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 793 *   modified may need to be swapped out to swap space and (later) to be read
 794 *   back into memory.
 795 */
 796
 797/*
 798 * The zone field is never updated after free_area_init_core()
 799 * sets it, so none of the operations on it need to be atomic.
 800 */
 801
 802/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 803#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 804#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 805#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 806#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
 807
 808/*
 809 * Define the bit shifts to access each section.  For non-existent
 810 * sections we define the shift as 0; that plus a 0 mask ensures
 811 * the compiler will optimise away reference to them.
 812 */
 813#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 814#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 815#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 816#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 817
 818/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 819#ifdef NODE_NOT_IN_PAGE_FLAGS
 820#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 821#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 822                                                SECTIONS_PGOFF : ZONES_PGOFF)
 823#else
 824#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 825#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 826                                                NODES_PGOFF : ZONES_PGOFF)
 827#endif
 828
 829#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 830
 831#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 832#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 833#endif
 834
 835#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 836#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 837#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 838#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
 839#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 840
 841static inline enum zone_type page_zonenum(const struct page *page)
 842{
 843        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 844}
 845
 846#ifdef CONFIG_ZONE_DEVICE
 847static inline bool is_zone_device_page(const struct page *page)
 848{
 849        return page_zonenum(page) == ZONE_DEVICE;
 850}
 851#else
 852static inline bool is_zone_device_page(const struct page *page)
 853{
 854        return false;
 855}
 856#endif
 857
 858#ifdef CONFIG_DEV_PAGEMAP_OPS
 859void dev_pagemap_get_ops(void);
 860void dev_pagemap_put_ops(void);
 861void __put_devmap_managed_page(struct page *page);
 862DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
 863static inline bool put_devmap_managed_page(struct page *page)
 864{
 865        if (!static_branch_unlikely(&devmap_managed_key))
 866                return false;
 867        if (!is_zone_device_page(page))
 868                return false;
 869        switch (page->pgmap->type) {
 870        case MEMORY_DEVICE_PRIVATE:
 871        case MEMORY_DEVICE_PUBLIC:
 872        case MEMORY_DEVICE_FS_DAX:
 873                __put_devmap_managed_page(page);
 874                return true;
 875        default:
 876                break;
 877        }
 878        return false;
 879}
 880
 881static inline bool is_device_private_page(const struct page *page)
 882{
 883        return is_zone_device_page(page) &&
 884                page->pgmap->type == MEMORY_DEVICE_PRIVATE;
 885}
 886
 887static inline bool is_device_public_page(const struct page *page)
 888{
 889        return is_zone_device_page(page) &&
 890                page->pgmap->type == MEMORY_DEVICE_PUBLIC;
 891}
 892
 893#else /* CONFIG_DEV_PAGEMAP_OPS */
 894static inline void dev_pagemap_get_ops(void)
 895{
 896}
 897
 898static inline void dev_pagemap_put_ops(void)
 899{
 900}
 901
 902static inline bool put_devmap_managed_page(struct page *page)
 903{
 904        return false;
 905}
 906
 907static inline bool is_device_private_page(const struct page *page)
 908{
 909        return false;
 910}
 911
 912static inline bool is_device_public_page(const struct page *page)
 913{
 914        return false;
 915}
 916#endif /* CONFIG_DEV_PAGEMAP_OPS */
 917
 918static inline void get_page(struct page *page)
 919{
 920        page = compound_head(page);
 921        /*
 922         * Getting a normal page or the head of a compound page
 923         * requires to already have an elevated page->_refcount.
 924         */
 925        VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
 926        page_ref_inc(page);
 927}
 928
 929static inline void put_page(struct page *page)
 930{
 931        page = compound_head(page);
 932
 933        /*
 934         * For devmap managed pages we need to catch refcount transition from
 935         * 2 to 1, when refcount reach one it means the page is free and we
 936         * need to inform the device driver through callback. See
 937         * include/linux/memremap.h and HMM for details.
 938         */
 939        if (put_devmap_managed_page(page))
 940                return;
 941
 942        if (put_page_testzero(page))
 943                __put_page(page);
 944}
 945
 946#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 947#define SECTION_IN_PAGE_FLAGS
 948#endif
 949
 950/*
 951 * The identification function is mainly used by the buddy allocator for
 952 * determining if two pages could be buddies. We are not really identifying
 953 * the zone since we could be using the section number id if we do not have
 954 * node id available in page flags.
 955 * We only guarantee that it will return the same value for two combinable
 956 * pages in a zone.
 957 */
 958static inline int page_zone_id(struct page *page)
 959{
 960        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 961}
 962
 963#ifdef NODE_NOT_IN_PAGE_FLAGS
 964extern int page_to_nid(const struct page *page);
 965#else
 966static inline int page_to_nid(const struct page *page)
 967{
 968        struct page *p = (struct page *)page;
 969
 970        return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
 971}
 972#endif
 973
 974#ifdef CONFIG_NUMA_BALANCING
 975static inline int cpu_pid_to_cpupid(int cpu, int pid)
 976{
 977        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 978}
 979
 980static inline int cpupid_to_pid(int cpupid)
 981{
 982        return cpupid & LAST__PID_MASK;
 983}
 984
 985static inline int cpupid_to_cpu(int cpupid)
 986{
 987        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 988}
 989
 990static inline int cpupid_to_nid(int cpupid)
 991{
 992        return cpu_to_node(cpupid_to_cpu(cpupid));
 993}
 994
 995static inline bool cpupid_pid_unset(int cpupid)
 996{
 997        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 998}
 999
1000static inline bool cpupid_cpu_unset(int cpupid)
1001{
1002        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1003}
1004
1005static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1006{
1007        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1008}
1009
1010#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1011#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1012static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1013{
1014        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1015}
1016
1017static inline int page_cpupid_last(struct page *page)
1018{
1019        return page->_last_cpupid;
1020}
1021static inline void page_cpupid_reset_last(struct page *page)
1022{
1023        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1024}
1025#else
1026static inline int page_cpupid_last(struct page *page)
1027{
1028        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1029}
1030
1031extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1032
1033static inline void page_cpupid_reset_last(struct page *page)
1034{
1035        page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1036}
1037#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1038#else /* !CONFIG_NUMA_BALANCING */
1039static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1040{
1041        return page_to_nid(page); /* XXX */
1042}
1043
1044static inline int page_cpupid_last(struct page *page)
1045{
1046        return page_to_nid(page); /* XXX */
1047}
1048
1049static inline int cpupid_to_nid(int cpupid)
1050{
1051        return -1;
1052}
1053
1054static inline int cpupid_to_pid(int cpupid)
1055{
1056        return -1;
1057}
1058
1059static inline int cpupid_to_cpu(int cpupid)
1060{
1061        return -1;
1062}
1063
1064static inline int cpu_pid_to_cpupid(int nid, int pid)
1065{
1066        return -1;
1067}
1068
1069static inline bool cpupid_pid_unset(int cpupid)
1070{
1071        return 1;
1072}
1073
1074static inline void page_cpupid_reset_last(struct page *page)
1075{
1076}
1077
1078static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1079{
1080        return false;
1081}
1082#endif /* CONFIG_NUMA_BALANCING */
1083
1084static inline struct zone *page_zone(const struct page *page)
1085{
1086        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1087}
1088
1089static inline pg_data_t *page_pgdat(const struct page *page)
1090{
1091        return NODE_DATA(page_to_nid(page));
1092}
1093
1094#ifdef SECTION_IN_PAGE_FLAGS
1095static inline void set_page_section(struct page *page, unsigned long section)
1096{
1097        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1098        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1099}
1100
1101static inline unsigned long page_to_section(const struct page *page)
1102{
1103        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1104}
1105#endif
1106
1107static inline void set_page_zone(struct page *page, enum zone_type zone)
1108{
1109        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1110        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1111}
1112
1113static inline void set_page_node(struct page *page, unsigned long node)
1114{
1115        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1116        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1117}
1118
1119static inline void set_page_links(struct page *page, enum zone_type zone,
1120        unsigned long node, unsigned long pfn)
1121{
1122        set_page_zone(page, zone);
1123        set_page_node(page, node);
1124#ifdef SECTION_IN_PAGE_FLAGS
1125        set_page_section(page, pfn_to_section_nr(pfn));
1126#endif
1127}
1128
1129#ifdef CONFIG_MEMCG
1130static inline struct mem_cgroup *page_memcg(struct page *page)
1131{
1132        return page->mem_cgroup;
1133}
1134static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1135{
1136        WARN_ON_ONCE(!rcu_read_lock_held());
1137        return READ_ONCE(page->mem_cgroup);
1138}
1139#else
1140static inline struct mem_cgroup *page_memcg(struct page *page)
1141{
1142        return NULL;
1143}
1144static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1145{
1146        WARN_ON_ONCE(!rcu_read_lock_held());
1147        return NULL;
1148}
1149#endif
1150
1151/*
1152 * Some inline functions in vmstat.h depend on page_zone()
1153 */
1154#include <linux/vmstat.h>
1155
1156static __always_inline void *lowmem_page_address(const struct page *page)
1157{
1158        return page_to_virt(page);
1159}
1160
1161#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1162#define HASHED_PAGE_VIRTUAL
1163#endif
1164
1165#if defined(WANT_PAGE_VIRTUAL)
1166static inline void *page_address(const struct page *page)
1167{
1168        return page->virtual;
1169}
1170static inline void set_page_address(struct page *page, void *address)
1171{
1172        page->virtual = address;
1173}
1174#define page_address_init()  do { } while(0)
1175#endif
1176
1177#if defined(HASHED_PAGE_VIRTUAL)
1178void *page_address(const struct page *page);
1179void set_page_address(struct page *page, void *virtual);
1180void page_address_init(void);
1181#endif
1182
1183#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1184#define page_address(page) lowmem_page_address(page)
1185#define set_page_address(page, address)  do { } while(0)
1186#define page_address_init()  do { } while(0)
1187#endif
1188
1189extern void *page_rmapping(struct page *page);
1190extern struct anon_vma *page_anon_vma(struct page *page);
1191extern struct address_space *page_mapping(struct page *page);
1192
1193extern struct address_space *__page_file_mapping(struct page *);
1194
1195static inline
1196struct address_space *page_file_mapping(struct page *page)
1197{
1198        if (unlikely(PageSwapCache(page)))
1199                return __page_file_mapping(page);
1200
1201        return page->mapping;
1202}
1203
1204extern pgoff_t __page_file_index(struct page *page);
1205
1206/*
1207 * Return the pagecache index of the passed page.  Regular pagecache pages
1208 * use ->index whereas swapcache pages use swp_offset(->private)
1209 */
1210static inline pgoff_t page_index(struct page *page)
1211{
1212        if (unlikely(PageSwapCache(page)))
1213                return __page_file_index(page);
1214        return page->index;
1215}
1216
1217bool page_mapped(struct page *page);
1218struct address_space *page_mapping(struct page *page);
1219struct address_space *page_mapping_file(struct page *page);
1220
1221/*
1222 * Return true only if the page has been allocated with
1223 * ALLOC_NO_WATERMARKS and the low watermark was not
1224 * met implying that the system is under some pressure.
1225 */
1226static inline bool page_is_pfmemalloc(struct page *page)
1227{
1228        /*
1229         * Page index cannot be this large so this must be
1230         * a pfmemalloc page.
1231         */
1232        return page->index == -1UL;
1233}
1234
1235/*
1236 * Only to be called by the page allocator on a freshly allocated
1237 * page.
1238 */
1239static inline void set_page_pfmemalloc(struct page *page)
1240{
1241        page->index = -1UL;
1242}
1243
1244static inline void clear_page_pfmemalloc(struct page *page)
1245{
1246        page->index = 0;
1247}
1248
1249/*
1250 * Different kinds of faults, as returned by handle_mm_fault().
1251 * Used to decide whether a process gets delivered SIGBUS or
1252 * just gets major/minor fault counters bumped up.
1253 */
1254
1255#define VM_FAULT_OOM    0x0001
1256#define VM_FAULT_SIGBUS 0x0002
1257#define VM_FAULT_MAJOR  0x0004
1258#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1259#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1260#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1261#define VM_FAULT_SIGSEGV 0x0040
1262
1263#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1264#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1265#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1266#define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1267#define VM_FAULT_DONE_COW   0x1000      /* ->fault has fully handled COW */
1268#define VM_FAULT_NEEDDSYNC  0x2000      /* ->fault did not modify page tables
1269                                         * and needs fsync() to complete (for
1270                                         * synchronous page faults in DAX) */
1271
1272#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1273                         VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1274                         VM_FAULT_FALLBACK)
1275
1276#define VM_FAULT_RESULT_TRACE \
1277        { VM_FAULT_OOM,                 "OOM" }, \
1278        { VM_FAULT_SIGBUS,              "SIGBUS" }, \
1279        { VM_FAULT_MAJOR,               "MAJOR" }, \
1280        { VM_FAULT_WRITE,               "WRITE" }, \
1281        { VM_FAULT_HWPOISON,            "HWPOISON" }, \
1282        { VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" }, \
1283        { VM_FAULT_SIGSEGV,             "SIGSEGV" }, \
1284        { VM_FAULT_NOPAGE,              "NOPAGE" }, \
1285        { VM_FAULT_LOCKED,              "LOCKED" }, \
1286        { VM_FAULT_RETRY,               "RETRY" }, \
1287        { VM_FAULT_FALLBACK,            "FALLBACK" }, \
1288        { VM_FAULT_DONE_COW,            "DONE_COW" }, \
1289        { VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
1290
1291/* Encode hstate index for a hwpoisoned large page */
1292#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1293#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1294
1295/*
1296 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1297 */
1298extern void pagefault_out_of_memory(void);
1299
1300#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1301
1302/*
1303 * Flags passed to show_mem() and show_free_areas() to suppress output in
1304 * various contexts.
1305 */
1306#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1307
1308extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1309
1310extern bool can_do_mlock(void);
1311extern int user_shm_lock(size_t, struct user_struct *);
1312extern void user_shm_unlock(size_t, struct user_struct *);
1313
1314/*
1315 * Parameter block passed down to zap_pte_range in exceptional cases.
1316 */
1317struct zap_details {
1318        struct address_space *check_mapping;    /* Check page->mapping if set */
1319        pgoff_t first_index;                    /* Lowest page->index to unmap */
1320        pgoff_t last_index;                     /* Highest page->index to unmap */
1321};
1322
1323struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1324                             pte_t pte, bool with_public_device);
1325#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1326
1327struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1328                                pmd_t pmd);
1329
1330void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1331                  unsigned long size);
1332void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1333                    unsigned long size);
1334void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1335                unsigned long start, unsigned long end);
1336
1337/**
1338 * mm_walk - callbacks for walk_page_range
1339 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1340 *             this handler should only handle pud_trans_huge() puds.
1341 *             the pmd_entry or pte_entry callbacks will be used for
1342 *             regular PUDs.
1343 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1344 *             this handler is required to be able to handle
1345 *             pmd_trans_huge() pmds.  They may simply choose to
1346 *             split_huge_page() instead of handling it explicitly.
1347 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1348 * @pte_hole: if set, called for each hole at all levels
1349 * @hugetlb_entry: if set, called for each hugetlb entry
1350 * @test_walk: caller specific callback function to determine whether
1351 *             we walk over the current vma or not. Returning 0
1352 *             value means "do page table walk over the current vma,"
1353 *             and a negative one means "abort current page table walk
1354 *             right now." 1 means "skip the current vma."
1355 * @mm:        mm_struct representing the target process of page table walk
1356 * @vma:       vma currently walked (NULL if walking outside vmas)
1357 * @private:   private data for callbacks' usage
1358 *
1359 * (see the comment on walk_page_range() for more details)
1360 */
1361struct mm_walk {
1362        int (*pud_entry)(pud_t *pud, unsigned long addr,
1363                         unsigned long next, struct mm_walk *walk);
1364        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1365                         unsigned long next, struct mm_walk *walk);
1366        int (*pte_entry)(pte_t *pte, unsigned long addr,
1367                         unsigned long next, struct mm_walk *walk);
1368        int (*pte_hole)(unsigned long addr, unsigned long next,
1369                        struct mm_walk *walk);
1370        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1371                             unsigned long addr, unsigned long next,
1372                             struct mm_walk *walk);
1373        int (*test_walk)(unsigned long addr, unsigned long next,
1374                        struct mm_walk *walk);
1375        struct mm_struct *mm;
1376        struct vm_area_struct *vma;
1377        void *private;
1378};
1379
1380int walk_page_range(unsigned long addr, unsigned long end,
1381                struct mm_walk *walk);
1382int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1383void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1384                unsigned long end, unsigned long floor, unsigned long ceiling);
1385int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1386                        struct vm_area_struct *vma);
1387int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1388                             unsigned long *start, unsigned long *end,
1389                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1390int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1391        unsigned long *pfn);
1392int follow_phys(struct vm_area_struct *vma, unsigned long address,
1393                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1394int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1395                        void *buf, int len, int write);
1396
1397extern void truncate_pagecache(struct inode *inode, loff_t new);
1398extern void truncate_setsize(struct inode *inode, loff_t newsize);
1399void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1400void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1401int truncate_inode_page(struct address_space *mapping, struct page *page);
1402int generic_error_remove_page(struct address_space *mapping, struct page *page);
1403int invalidate_inode_page(struct page *page);
1404
1405#ifdef CONFIG_MMU
1406extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1407                        unsigned long address, unsigned int flags);
1408extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1409                            unsigned long address, unsigned int fault_flags,
1410                            bool *unlocked);
1411void unmap_mapping_pages(struct address_space *mapping,
1412                pgoff_t start, pgoff_t nr, bool even_cows);
1413void unmap_mapping_range(struct address_space *mapping,
1414                loff_t const holebegin, loff_t const holelen, int even_cows);
1415#else
1416static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1417                unsigned long address, unsigned int flags)
1418{
1419        /* should never happen if there's no MMU */
1420        BUG();
1421        return VM_FAULT_SIGBUS;
1422}
1423static inline int fixup_user_fault(struct task_struct *tsk,
1424                struct mm_struct *mm, unsigned long address,
1425                unsigned int fault_flags, bool *unlocked)
1426{
1427        /* should never happen if there's no MMU */
1428        BUG();
1429        return -EFAULT;
1430}
1431static inline void unmap_mapping_pages(struct address_space *mapping,
1432                pgoff_t start, pgoff_t nr, bool even_cows) { }
1433static inline void unmap_mapping_range(struct address_space *mapping,
1434                loff_t const holebegin, loff_t const holelen, int even_cows) { }
1435#endif
1436
1437static inline void unmap_shared_mapping_range(struct address_space *mapping,
1438                loff_t const holebegin, loff_t const holelen)
1439{
1440        unmap_mapping_range(mapping, holebegin, holelen, 0);
1441}
1442
1443extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1444                void *buf, int len, unsigned int gup_flags);
1445extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1446                void *buf, int len, unsigned int gup_flags);
1447extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1448                unsigned long addr, void *buf, int len, unsigned int gup_flags);
1449
1450long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1451                            unsigned long start, unsigned long nr_pages,
1452                            unsigned int gup_flags, struct page **pages,
1453                            struct vm_area_struct **vmas, int *locked);
1454long get_user_pages(unsigned long start, unsigned long nr_pages,
1455                            unsigned int gup_flags, struct page **pages,
1456                            struct vm_area_struct **vmas);
1457long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1458                    unsigned int gup_flags, struct page **pages, int *locked);
1459long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1460                    struct page **pages, unsigned int gup_flags);
1461#ifdef CONFIG_FS_DAX
1462long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1463                            unsigned int gup_flags, struct page **pages,
1464                            struct vm_area_struct **vmas);
1465#else
1466static inline long get_user_pages_longterm(unsigned long start,
1467                unsigned long nr_pages, unsigned int gup_flags,
1468                struct page **pages, struct vm_area_struct **vmas)
1469{
1470        return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1471}
1472#endif /* CONFIG_FS_DAX */
1473
1474int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1475                        struct page **pages);
1476
1477/* Container for pinned pfns / pages */
1478struct frame_vector {
1479        unsigned int nr_allocated;      /* Number of frames we have space for */
1480        unsigned int nr_frames; /* Number of frames stored in ptrs array */
1481        bool got_ref;           /* Did we pin pages by getting page ref? */
1482        bool is_pfns;           /* Does array contain pages or pfns? */
1483        void *ptrs[0];          /* Array of pinned pfns / pages. Use
1484                                 * pfns_vector_pages() or pfns_vector_pfns()
1485                                 * for access */
1486};
1487
1488struct frame_vector *frame_vector_create(unsigned int nr_frames);
1489void frame_vector_destroy(struct frame_vector *vec);
1490int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1491                     unsigned int gup_flags, struct frame_vector *vec);
1492void put_vaddr_frames(struct frame_vector *vec);
1493int frame_vector_to_pages(struct frame_vector *vec);
1494void frame_vector_to_pfns(struct frame_vector *vec);
1495
1496static inline unsigned int frame_vector_count(struct frame_vector *vec)
1497{
1498        return vec->nr_frames;
1499}
1500
1501static inline struct page **frame_vector_pages(struct frame_vector *vec)
1502{
1503        if (vec->is_pfns) {
1504                int err = frame_vector_to_pages(vec);
1505
1506                if (err)
1507                        return ERR_PTR(err);
1508        }
1509        return (struct page **)(vec->ptrs);
1510}
1511
1512static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1513{
1514        if (!vec->is_pfns)
1515                frame_vector_to_pfns(vec);
1516        return (unsigned long *)(vec->ptrs);
1517}
1518
1519struct kvec;
1520int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1521                        struct page **pages);
1522int get_kernel_page(unsigned long start, int write, struct page **pages);
1523struct page *get_dump_page(unsigned long addr);
1524
1525extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1526extern void do_invalidatepage(struct page *page, unsigned int offset,
1527                              unsigned int length);
1528
1529void __set_page_dirty(struct page *, struct address_space *, int warn);
1530int __set_page_dirty_nobuffers(struct page *page);
1531int __set_page_dirty_no_writeback(struct page *page);
1532int redirty_page_for_writepage(struct writeback_control *wbc,
1533                                struct page *page);
1534void account_page_dirtied(struct page *page, struct address_space *mapping);
1535void account_page_cleaned(struct page *page, struct address_space *mapping,
1536                          struct bdi_writeback *wb);
1537int set_page_dirty(struct page *page);
1538int set_page_dirty_lock(struct page *page);
1539void __cancel_dirty_page(struct page *page);
1540static inline void cancel_dirty_page(struct page *page)
1541{
1542        /* Avoid atomic ops, locking, etc. when not actually needed. */
1543        if (PageDirty(page))
1544                __cancel_dirty_page(page);
1545}
1546int clear_page_dirty_for_io(struct page *page);
1547
1548int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1549
1550static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1551{
1552        return !vma->vm_ops;
1553}
1554
1555#ifdef CONFIG_SHMEM
1556/*
1557 * The vma_is_shmem is not inline because it is used only by slow
1558 * paths in userfault.
1559 */
1560bool vma_is_shmem(struct vm_area_struct *vma);
1561#else
1562static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1563#endif
1564
1565int vma_is_stack_for_current(struct vm_area_struct *vma);
1566
1567extern unsigned long move_page_tables(struct vm_area_struct *vma,
1568                unsigned long old_addr, struct vm_area_struct *new_vma,
1569                unsigned long new_addr, unsigned long len,
1570                bool need_rmap_locks);
1571extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1572                              unsigned long end, pgprot_t newprot,
1573                              int dirty_accountable, int prot_numa);
1574extern int mprotect_fixup(struct vm_area_struct *vma,
1575                          struct vm_area_struct **pprev, unsigned long start,
1576                          unsigned long end, unsigned long newflags);
1577
1578/*
1579 * doesn't attempt to fault and will return short.
1580 */
1581int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1582                          struct page **pages);
1583/*
1584 * per-process(per-mm_struct) statistics.
1585 */
1586static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1587{
1588        long val = atomic_long_read(&mm->rss_stat.count[member]);
1589
1590#ifdef SPLIT_RSS_COUNTING
1591        /*
1592         * counter is updated in asynchronous manner and may go to minus.
1593         * But it's never be expected number for users.
1594         */
1595        if (val < 0)
1596                val = 0;
1597#endif
1598        return (unsigned long)val;
1599}
1600
1601static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1602{
1603        atomic_long_add(value, &mm->rss_stat.count[member]);
1604}
1605
1606static inline void inc_mm_counter(struct mm_struct *mm, int member)
1607{
1608        atomic_long_inc(&mm->rss_stat.count[member]);
1609}
1610
1611static inline void dec_mm_counter(struct mm_struct *mm, int member)
1612{
1613        atomic_long_dec(&mm->rss_stat.count[member]);
1614}
1615
1616/* Optimized variant when page is already known not to be PageAnon */
1617static inline int mm_counter_file(struct page *page)
1618{
1619        if (PageSwapBacked(page))
1620                return MM_SHMEMPAGES;
1621        return MM_FILEPAGES;
1622}
1623
1624static inline int mm_counter(struct page *page)
1625{
1626        if (PageAnon(page))
1627                return MM_ANONPAGES;
1628        return mm_counter_file(page);
1629}
1630
1631static inline unsigned long get_mm_rss(struct mm_struct *mm)
1632{
1633        return get_mm_counter(mm, MM_FILEPAGES) +
1634                get_mm_counter(mm, MM_ANONPAGES) +
1635                get_mm_counter(mm, MM_SHMEMPAGES);
1636}
1637
1638static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1639{
1640        return max(mm->hiwater_rss, get_mm_rss(mm));
1641}
1642
1643static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1644{
1645        return max(mm->hiwater_vm, mm->total_vm);
1646}
1647
1648static inline void update_hiwater_rss(struct mm_struct *mm)
1649{
1650        unsigned long _rss = get_mm_rss(mm);
1651
1652        if ((mm)->hiwater_rss < _rss)
1653                (mm)->hiwater_rss = _rss;
1654}
1655
1656static inline void update_hiwater_vm(struct mm_struct *mm)
1657{
1658        if (mm->hiwater_vm < mm->total_vm)
1659                mm->hiwater_vm = mm->total_vm;
1660}
1661
1662static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1663{
1664        mm->hiwater_rss = get_mm_rss(mm);
1665}
1666
1667static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1668                                         struct mm_struct *mm)
1669{
1670        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1671
1672        if (*maxrss < hiwater_rss)
1673                *maxrss = hiwater_rss;
1674}
1675
1676#if defined(SPLIT_RSS_COUNTING)
1677void sync_mm_rss(struct mm_struct *mm);
1678#else
1679static inline void sync_mm_rss(struct mm_struct *mm)
1680{
1681}
1682#endif
1683
1684#ifndef __HAVE_ARCH_PTE_DEVMAP
1685static inline int pte_devmap(pte_t pte)
1686{
1687        return 0;
1688}
1689#endif
1690
1691int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1692
1693extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1694                               spinlock_t **ptl);
1695static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1696                                    spinlock_t **ptl)
1697{
1698        pte_t *ptep;
1699        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1700        return ptep;
1701}
1702
1703#ifdef __PAGETABLE_P4D_FOLDED
1704static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1705                                                unsigned long address)
1706{
1707        return 0;
1708}
1709#else
1710int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1711#endif
1712
1713#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1714static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1715                                                unsigned long address)
1716{
1717        return 0;
1718}
1719static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1720static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1721
1722#else
1723int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1724
1725static inline void mm_inc_nr_puds(struct mm_struct *mm)
1726{
1727        atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1728}
1729
1730static inline void mm_dec_nr_puds(struct mm_struct *mm)
1731{
1732        atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1733}
1734#endif
1735
1736#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1737static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1738                                                unsigned long address)
1739{
1740        return 0;
1741}
1742
1743static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1744static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1745
1746#else
1747int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1748
1749static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1750{
1751        atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1752}
1753
1754static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1755{
1756        atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1757}
1758#endif
1759
1760#ifdef CONFIG_MMU
1761static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1762{
1763        atomic_long_set(&mm->pgtables_bytes, 0);
1764}
1765
1766static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1767{
1768        return atomic_long_read(&mm->pgtables_bytes);
1769}
1770
1771static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1772{
1773        atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1774}
1775
1776static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1777{
1778        atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1779}
1780#else
1781
1782static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1783static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1784{
1785        return 0;
1786}
1787
1788static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1789static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1790#endif
1791
1792int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1793int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1794
1795/*
1796 * The following ifdef needed to get the 4level-fixup.h header to work.
1797 * Remove it when 4level-fixup.h has been removed.
1798 */
1799#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1800
1801#ifndef __ARCH_HAS_5LEVEL_HACK
1802static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1803                unsigned long address)
1804{
1805        return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1806                NULL : p4d_offset(pgd, address);
1807}
1808
1809static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1810                unsigned long address)
1811{
1812        return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1813                NULL : pud_offset(p4d, address);
1814}
1815#endif /* !__ARCH_HAS_5LEVEL_HACK */
1816
1817static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1818{
1819        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1820                NULL: pmd_offset(pud, address);
1821}
1822#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1823
1824#if USE_SPLIT_PTE_PTLOCKS
1825#if ALLOC_SPLIT_PTLOCKS
1826void __init ptlock_cache_init(void);
1827extern bool ptlock_alloc(struct page *page);
1828extern void ptlock_free(struct page *page);
1829
1830static inline spinlock_t *ptlock_ptr(struct page *page)
1831{
1832        return page->ptl;
1833}
1834#else /* ALLOC_SPLIT_PTLOCKS */
1835static inline void ptlock_cache_init(void)
1836{
1837}
1838
1839static inline bool ptlock_alloc(struct page *page)
1840{
1841        return true;
1842}
1843
1844static inline void ptlock_free(struct page *page)
1845{
1846}
1847
1848static inline spinlock_t *ptlock_ptr(struct page *page)
1849{
1850        return &page->ptl;
1851}
1852#endif /* ALLOC_SPLIT_PTLOCKS */
1853
1854static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1855{
1856        return ptlock_ptr(pmd_page(*pmd));
1857}
1858
1859static inline bool ptlock_init(struct page *page)
1860{
1861        /*
1862         * prep_new_page() initialize page->private (and therefore page->ptl)
1863         * with 0. Make sure nobody took it in use in between.
1864         *
1865         * It can happen if arch try to use slab for page table allocation:
1866         * slab code uses page->slab_cache, which share storage with page->ptl.
1867         */
1868        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1869        if (!ptlock_alloc(page))
1870                return false;
1871        spin_lock_init(ptlock_ptr(page));
1872        return true;
1873}
1874
1875/* Reset page->mapping so free_pages_check won't complain. */
1876static inline void pte_lock_deinit(struct page *page)
1877{
1878        page->mapping = NULL;
1879        ptlock_free(page);
1880}
1881
1882#else   /* !USE_SPLIT_PTE_PTLOCKS */
1883/*
1884 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1885 */
1886static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1887{
1888        return &mm->page_table_lock;
1889}
1890static inline void ptlock_cache_init(void) {}
1891static inline bool ptlock_init(struct page *page) { return true; }
1892static inline void pte_lock_deinit(struct page *page) {}
1893#endif /* USE_SPLIT_PTE_PTLOCKS */
1894
1895static inline void pgtable_init(void)
1896{
1897        ptlock_cache_init();
1898        pgtable_cache_init();
1899}
1900
1901static inline bool pgtable_page_ctor(struct page *page)
1902{
1903        if (!ptlock_init(page))
1904                return false;
1905        __SetPageTable(page);
1906        inc_zone_page_state(page, NR_PAGETABLE);
1907        return true;
1908}
1909
1910static inline void pgtable_page_dtor(struct page *page)
1911{
1912        pte_lock_deinit(page);
1913        __ClearPageTable(page);
1914        dec_zone_page_state(page, NR_PAGETABLE);
1915}
1916
1917#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1918({                                                      \
1919        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1920        pte_t *__pte = pte_offset_map(pmd, address);    \
1921        *(ptlp) = __ptl;                                \
1922        spin_lock(__ptl);                               \
1923        __pte;                                          \
1924})
1925
1926#define pte_unmap_unlock(pte, ptl)      do {            \
1927        spin_unlock(ptl);                               \
1928        pte_unmap(pte);                                 \
1929} while (0)
1930
1931#define pte_alloc(mm, pmd, address)                     \
1932        (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1933
1934#define pte_alloc_map(mm, pmd, address)                 \
1935        (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1936
1937#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1938        (pte_alloc(mm, pmd, address) ?                  \
1939                 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1940
1941#define pte_alloc_kernel(pmd, address)                  \
1942        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1943                NULL: pte_offset_kernel(pmd, address))
1944
1945#if USE_SPLIT_PMD_PTLOCKS
1946
1947static struct page *pmd_to_page(pmd_t *pmd)
1948{
1949        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1950        return virt_to_page((void *)((unsigned long) pmd & mask));
1951}
1952
1953static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1954{
1955        return ptlock_ptr(pmd_to_page(pmd));
1956}
1957
1958static inline bool pgtable_pmd_page_ctor(struct page *page)
1959{
1960#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1961        page->pmd_huge_pte = NULL;
1962#endif
1963        return ptlock_init(page);
1964}
1965
1966static inline void pgtable_pmd_page_dtor(struct page *page)
1967{
1968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1969        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1970#endif
1971        ptlock_free(page);
1972}
1973
1974#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1975
1976#else
1977
1978static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1979{
1980        return &mm->page_table_lock;
1981}
1982
1983static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1984static inline void pgtable_pmd_page_dtor(struct page *page) {}
1985
1986#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1987
1988#endif
1989
1990static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1991{
1992        spinlock_t *ptl = pmd_lockptr(mm, pmd);
1993        spin_lock(ptl);
1994        return ptl;
1995}
1996
1997/*
1998 * No scalability reason to split PUD locks yet, but follow the same pattern
1999 * as the PMD locks to make it easier if we decide to.  The VM should not be
2000 * considered ready to switch to split PUD locks yet; there may be places
2001 * which need to be converted from page_table_lock.
2002 */
2003static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2004{
2005        return &mm->page_table_lock;
2006}
2007
2008static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2009{
2010        spinlock_t *ptl = pud_lockptr(mm, pud);
2011
2012        spin_lock(ptl);
2013        return ptl;
2014}
2015
2016extern void __init pagecache_init(void);
2017extern void free_area_init(unsigned long * zones_size);
2018extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2019                unsigned long zone_start_pfn, unsigned long *zholes_size);
2020extern void free_initmem(void);
2021
2022/*
2023 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2024 * into the buddy system. The freed pages will be poisoned with pattern
2025 * "poison" if it's within range [0, UCHAR_MAX].
2026 * Return pages freed into the buddy system.
2027 */
2028extern unsigned long free_reserved_area(void *start, void *end,
2029                                        int poison, char *s);
2030
2031#ifdef  CONFIG_HIGHMEM
2032/*
2033 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2034 * and totalram_pages.
2035 */
2036extern void free_highmem_page(struct page *page);
2037#endif
2038
2039extern void adjust_managed_page_count(struct page *page, long count);
2040extern void mem_init_print_info(const char *str);
2041
2042extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2043
2044/* Free the reserved page into the buddy system, so it gets managed. */
2045static inline void __free_reserved_page(struct page *page)
2046{
2047        ClearPageReserved(page);
2048        init_page_count(page);
2049        __free_page(page);
2050}
2051
2052static inline void free_reserved_page(struct page *page)
2053{
2054        __free_reserved_page(page);
2055        adjust_managed_page_count(page, 1);
2056}
2057
2058static inline void mark_page_reserved(struct page *page)
2059{
2060        SetPageReserved(page);
2061        adjust_managed_page_count(page, -1);
2062}
2063
2064/*
2065 * Default method to free all the __init memory into the buddy system.
2066 * The freed pages will be poisoned with pattern "poison" if it's within
2067 * range [0, UCHAR_MAX].
2068 * Return pages freed into the buddy system.
2069 */
2070static inline unsigned long free_initmem_default(int poison)
2071{
2072        extern char __init_begin[], __init_end[];
2073
2074        return free_reserved_area(&__init_begin, &__init_end,
2075                                  poison, "unused kernel");
2076}
2077
2078static inline unsigned long get_num_physpages(void)
2079{
2080        int nid;
2081        unsigned long phys_pages = 0;
2082
2083        for_each_online_node(nid)
2084                phys_pages += node_present_pages(nid);
2085
2086        return phys_pages;
2087}
2088
2089#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2090/*
2091 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2092 * zones, allocate the backing mem_map and account for memory holes in a more
2093 * architecture independent manner. This is a substitute for creating the
2094 * zone_sizes[] and zholes_size[] arrays and passing them to
2095 * free_area_init_node()
2096 *
2097 * An architecture is expected to register range of page frames backed by
2098 * physical memory with memblock_add[_node]() before calling
2099 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2100 * usage, an architecture is expected to do something like
2101 *
2102 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2103 *                                                       max_highmem_pfn};
2104 * for_each_valid_physical_page_range()
2105 *      memblock_add_node(base, size, nid)
2106 * free_area_init_nodes(max_zone_pfns);
2107 *
2108 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2109 * registered physical page range.  Similarly
2110 * sparse_memory_present_with_active_regions() calls memory_present() for
2111 * each range when SPARSEMEM is enabled.
2112 *
2113 * See mm/page_alloc.c for more information on each function exposed by
2114 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2115 */
2116extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2117unsigned long node_map_pfn_alignment(void);
2118unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2119                                                unsigned long end_pfn);
2120extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2121                                                unsigned long end_pfn);
2122extern void get_pfn_range_for_nid(unsigned int nid,
2123                        unsigned long *start_pfn, unsigned long *end_pfn);
2124extern unsigned long find_min_pfn_with_active_regions(void);
2125extern void free_bootmem_with_active_regions(int nid,
2126                                                unsigned long max_low_pfn);
2127extern void sparse_memory_present_with_active_regions(int nid);
2128
2129#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2130
2131#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2132    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2133static inline int __early_pfn_to_nid(unsigned long pfn,
2134                                        struct mminit_pfnnid_cache *state)
2135{
2136        return 0;
2137}
2138#else
2139/* please see mm/page_alloc.c */
2140extern int __meminit early_pfn_to_nid(unsigned long pfn);
2141/* there is a per-arch backend function. */
2142extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2143                                        struct mminit_pfnnid_cache *state);
2144#endif
2145
2146#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2147void zero_resv_unavail(void);
2148#else
2149static inline void zero_resv_unavail(void) {}
2150#endif
2151
2152extern void set_dma_reserve(unsigned long new_dma_reserve);
2153extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2154                enum memmap_context, struct vmem_altmap *);
2155extern void setup_per_zone_wmarks(void);
2156extern int __meminit init_per_zone_wmark_min(void);
2157extern void mem_init(void);
2158extern void __init mmap_init(void);
2159extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2160extern long si_mem_available(void);
2161extern void si_meminfo(struct sysinfo * val);
2162extern void si_meminfo_node(struct sysinfo *val, int nid);
2163#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2164extern unsigned long arch_reserved_kernel_pages(void);
2165#endif
2166
2167extern __printf(3, 4)
2168void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2169
2170extern void setup_per_cpu_pageset(void);
2171
2172extern void zone_pcp_update(struct zone *zone);
2173extern void zone_pcp_reset(struct zone *zone);
2174
2175/* page_alloc.c */
2176extern int min_free_kbytes;
2177extern int watermark_scale_factor;
2178
2179/* nommu.c */
2180extern atomic_long_t mmap_pages_allocated;
2181extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2182
2183/* interval_tree.c */
2184void vma_interval_tree_insert(struct vm_area_struct *node,
2185                              struct rb_root_cached *root);
2186void vma_interval_tree_insert_after(struct vm_area_struct *node,
2187                                    struct vm_area_struct *prev,
2188                                    struct rb_root_cached *root);
2189void vma_interval_tree_remove(struct vm_area_struct *node,
2190                              struct rb_root_cached *root);
2191struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2192                                unsigned long start, unsigned long last);
2193struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2194                                unsigned long start, unsigned long last);
2195
2196#define vma_interval_tree_foreach(vma, root, start, last)               \
2197        for (vma = vma_interval_tree_iter_first(root, start, last);     \
2198             vma; vma = vma_interval_tree_iter_next(vma, start, last))
2199
2200void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2201                                   struct rb_root_cached *root);
2202void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2203                                   struct rb_root_cached *root);
2204struct anon_vma_chain *
2205anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2206                                  unsigned long start, unsigned long last);
2207struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2208        struct anon_vma_chain *node, unsigned long start, unsigned long last);
2209#ifdef CONFIG_DEBUG_VM_RB
2210void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2211#endif
2212
2213#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
2214        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2215             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2216
2217/* mmap.c */
2218extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2219extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2220        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2221        struct vm_area_struct *expand);
2222static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2223        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2224{
2225        return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2226}
2227extern struct vm_area_struct *vma_merge(struct mm_struct *,
2228        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2229        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2230        struct mempolicy *, struct vm_userfaultfd_ctx);
2231extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2232extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2233        unsigned long addr, int new_below);
2234extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2235        unsigned long addr, int new_below);
2236extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2237extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2238        struct rb_node **, struct rb_node *);
2239extern void unlink_file_vma(struct vm_area_struct *);
2240extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2241        unsigned long addr, unsigned long len, pgoff_t pgoff,
2242        bool *need_rmap_locks);
2243extern void exit_mmap(struct mm_struct *);
2244
2245static inline int check_data_rlimit(unsigned long rlim,
2246                                    unsigned long new,
2247                                    unsigned long start,
2248                                    unsigned long end_data,
2249                                    unsigned long start_data)
2250{
2251        if (rlim < RLIM_INFINITY) {
2252                if (((new - start) + (end_data - start_data)) > rlim)
2253                        return -ENOSPC;
2254        }
2255
2256        return 0;
2257}
2258
2259extern int mm_take_all_locks(struct mm_struct *mm);
2260extern void mm_drop_all_locks(struct mm_struct *mm);
2261
2262extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2263extern struct file *get_mm_exe_file(struct mm_struct *mm);
2264extern struct file *get_task_exe_file(struct task_struct *task);
2265
2266extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2267extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2268
2269extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2270                                   const struct vm_special_mapping *sm);
2271extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2272                                   unsigned long addr, unsigned long len,
2273                                   unsigned long flags,
2274                                   const struct vm_special_mapping *spec);
2275/* This is an obsolete alternative to _install_special_mapping. */
2276extern int install_special_mapping(struct mm_struct *mm,
2277                                   unsigned long addr, unsigned long len,
2278                                   unsigned long flags, struct page **pages);
2279
2280extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2281
2282extern unsigned long mmap_region(struct file *file, unsigned long addr,
2283        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2284        struct list_head *uf);
2285extern unsigned long do_mmap(struct file *file, unsigned long addr,
2286        unsigned long len, unsigned long prot, unsigned long flags,
2287        vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2288        struct list_head *uf);
2289extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2290                     struct list_head *uf);
2291
2292static inline unsigned long
2293do_mmap_pgoff(struct file *file, unsigned long addr,
2294        unsigned long len, unsigned long prot, unsigned long flags,
2295        unsigned long pgoff, unsigned long *populate,
2296        struct list_head *uf)
2297{
2298        return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2299}
2300
2301#ifdef CONFIG_MMU
2302extern int __mm_populate(unsigned long addr, unsigned long len,
2303                         int ignore_errors);
2304static inline void mm_populate(unsigned long addr, unsigned long len)
2305{
2306        /* Ignore errors */
2307        (void) __mm_populate(addr, len, 1);
2308}
2309#else
2310static inline void mm_populate(unsigned long addr, unsigned long len) {}
2311#endif
2312
2313/* These take the mm semaphore themselves */
2314extern int __must_check vm_brk(unsigned long, unsigned long);
2315extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2316extern int vm_munmap(unsigned long, size_t);
2317extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2318        unsigned long, unsigned long,
2319        unsigned long, unsigned long);
2320
2321struct vm_unmapped_area_info {
2322#define VM_UNMAPPED_AREA_TOPDOWN 1
2323        unsigned long flags;
2324        unsigned long length;
2325        unsigned long low_limit;
2326        unsigned long high_limit;
2327        unsigned long align_mask;
2328        unsigned long align_offset;
2329};
2330
2331extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2332extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2333
2334/*
2335 * Search for an unmapped address range.
2336 *
2337 * We are looking for a range that:
2338 * - does not intersect with any VMA;
2339 * - is contained within the [low_limit, high_limit) interval;
2340 * - is at least the desired size.
2341 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2342 */
2343static inline unsigned long
2344vm_unmapped_area(struct vm_unmapped_area_info *info)
2345{
2346        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2347                return unmapped_area_topdown(info);
2348        else
2349                return unmapped_area(info);
2350}
2351
2352/* truncate.c */
2353extern void truncate_inode_pages(struct address_space *, loff_t);
2354extern void truncate_inode_pages_range(struct address_space *,
2355                                       loff_t lstart, loff_t lend);
2356extern void truncate_inode_pages_final(struct address_space *);
2357
2358/* generic vm_area_ops exported for stackable file systems */
2359extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2360extern void filemap_map_pages(struct vm_fault *vmf,
2361                pgoff_t start_pgoff, pgoff_t end_pgoff);
2362extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2363
2364/* mm/page-writeback.c */
2365int __must_check write_one_page(struct page *page);
2366void task_dirty_inc(struct task_struct *tsk);
2367
2368/* readahead.c */
2369#define VM_MAX_READAHEAD        128     /* kbytes */
2370#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
2371
2372int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2373                        pgoff_t offset, unsigned long nr_to_read);
2374
2375void page_cache_sync_readahead(struct address_space *mapping,
2376                               struct file_ra_state *ra,
2377                               struct file *filp,
2378                               pgoff_t offset,
2379                               unsigned long size);
2380
2381void page_cache_async_readahead(struct address_space *mapping,
2382                                struct file_ra_state *ra,
2383                                struct file *filp,
2384                                struct page *pg,
2385                                pgoff_t offset,
2386                                unsigned long size);
2387
2388extern unsigned long stack_guard_gap;
2389/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2390extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2391
2392/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2393extern int expand_downwards(struct vm_area_struct *vma,
2394                unsigned long address);
2395#if VM_GROWSUP
2396extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2397#else
2398  #define expand_upwards(vma, address) (0)
2399#endif
2400
2401/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2402extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2403extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2404                                             struct vm_area_struct **pprev);
2405
2406/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2407   NULL if none.  Assume start_addr < end_addr. */
2408static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2409{
2410        struct vm_area_struct * vma = find_vma(mm,start_addr);
2411
2412        if (vma && end_addr <= vma->vm_start)
2413                vma = NULL;
2414        return vma;
2415}
2416
2417static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2418{
2419        unsigned long vm_start = vma->vm_start;
2420
2421        if (vma->vm_flags & VM_GROWSDOWN) {
2422                vm_start -= stack_guard_gap;
2423                if (vm_start > vma->vm_start)
2424                        vm_start = 0;
2425        }
2426        return vm_start;
2427}
2428
2429static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2430{
2431        unsigned long vm_end = vma->vm_end;
2432
2433        if (vma->vm_flags & VM_GROWSUP) {
2434                vm_end += stack_guard_gap;
2435                if (vm_end < vma->vm_end)
2436                        vm_end = -PAGE_SIZE;
2437        }
2438        return vm_end;
2439}
2440
2441static inline unsigned long vma_pages(struct vm_area_struct *vma)
2442{
2443        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2444}
2445
2446/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2447static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2448                                unsigned long vm_start, unsigned long vm_end)
2449{
2450        struct vm_area_struct *vma = find_vma(mm, vm_start);
2451
2452        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2453                vma = NULL;
2454
2455        return vma;
2456}
2457
2458static inline bool range_in_vma(struct vm_area_struct *vma,
2459                                unsigned long start, unsigned long end)
2460{
2461        return (vma && vma->vm_start <= start && end <= vma->vm_end);
2462}
2463
2464#ifdef CONFIG_MMU
2465pgprot_t vm_get_page_prot(unsigned long vm_flags);
2466void vma_set_page_prot(struct vm_area_struct *vma);
2467#else
2468static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2469{
2470        return __pgprot(0);
2471}
2472static inline void vma_set_page_prot(struct vm_area_struct *vma)
2473{
2474        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2475}
2476#endif
2477
2478#ifdef CONFIG_NUMA_BALANCING
2479unsigned long change_prot_numa(struct vm_area_struct *vma,
2480                        unsigned long start, unsigned long end);
2481#endif
2482
2483struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2484int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2485                        unsigned long pfn, unsigned long size, pgprot_t);
2486int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2487int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2488                        unsigned long pfn);
2489int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2490                        unsigned long pfn, pgprot_t pgprot);
2491int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2492                        pfn_t pfn);
2493vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2494                unsigned long addr, pfn_t pfn);
2495int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2496
2497static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2498                                unsigned long addr, struct page *page)
2499{
2500        int err = vm_insert_page(vma, addr, page);
2501
2502        if (err == -ENOMEM)
2503                return VM_FAULT_OOM;
2504        if (err < 0 && err != -EBUSY)
2505                return VM_FAULT_SIGBUS;
2506
2507        return VM_FAULT_NOPAGE;
2508}
2509
2510static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2511                                unsigned long addr, pfn_t pfn)
2512{
2513        int err = vm_insert_mixed(vma, addr, pfn);
2514
2515        if (err == -ENOMEM)
2516                return VM_FAULT_OOM;
2517        if (err < 0 && err != -EBUSY)
2518                return VM_FAULT_SIGBUS;
2519
2520        return VM_FAULT_NOPAGE;
2521}
2522
2523static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2524                        unsigned long addr, unsigned long pfn)
2525{
2526        int err = vm_insert_pfn(vma, addr, pfn);
2527
2528        if (err == -ENOMEM)
2529                return VM_FAULT_OOM;
2530        if (err < 0 && err != -EBUSY)
2531                return VM_FAULT_SIGBUS;
2532
2533        return VM_FAULT_NOPAGE;
2534}
2535
2536static inline vm_fault_t vmf_error(int err)
2537{
2538        if (err == -ENOMEM)
2539                return VM_FAULT_OOM;
2540        return VM_FAULT_SIGBUS;
2541}
2542
2543struct page *follow_page_mask(struct vm_area_struct *vma,
2544                              unsigned long address, unsigned int foll_flags,
2545                              unsigned int *page_mask);
2546
2547static inline struct page *follow_page(struct vm_area_struct *vma,
2548                unsigned long address, unsigned int foll_flags)
2549{
2550        unsigned int unused_page_mask;
2551        return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2552}
2553
2554#define FOLL_WRITE      0x01    /* check pte is writable */
2555#define FOLL_TOUCH      0x02    /* mark page accessed */
2556#define FOLL_GET        0x04    /* do get_page on page */
2557#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2558#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2559#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2560                                 * and return without waiting upon it */
2561#define FOLL_POPULATE   0x40    /* fault in page */
2562#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2563#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2564#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2565#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2566#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2567#define FOLL_MLOCK      0x1000  /* lock present pages */
2568#define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2569#define FOLL_COW        0x4000  /* internal GUP flag */
2570#define FOLL_ANON       0x8000  /* don't do file mappings */
2571
2572static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2573{
2574        if (vm_fault & VM_FAULT_OOM)
2575                return -ENOMEM;
2576        if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2577                return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2578        if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2579                return -EFAULT;
2580        return 0;
2581}
2582
2583typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2584                        void *data);
2585extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2586                               unsigned long size, pte_fn_t fn, void *data);
2587
2588
2589#ifdef CONFIG_PAGE_POISONING
2590extern bool page_poisoning_enabled(void);
2591extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2592#else
2593static inline bool page_poisoning_enabled(void) { return false; }
2594static inline void kernel_poison_pages(struct page *page, int numpages,
2595                                        int enable) { }
2596#endif
2597
2598#ifdef CONFIG_DEBUG_PAGEALLOC
2599extern bool _debug_pagealloc_enabled;
2600extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2601
2602static inline bool debug_pagealloc_enabled(void)
2603{
2604        return _debug_pagealloc_enabled;
2605}
2606
2607static inline void
2608kernel_map_pages(struct page *page, int numpages, int enable)
2609{
2610        if (!debug_pagealloc_enabled())
2611                return;
2612
2613        __kernel_map_pages(page, numpages, enable);
2614}
2615#ifdef CONFIG_HIBERNATION
2616extern bool kernel_page_present(struct page *page);
2617#endif  /* CONFIG_HIBERNATION */
2618#else   /* CONFIG_DEBUG_PAGEALLOC */
2619static inline void
2620kernel_map_pages(struct page *page, int numpages, int enable) {}
2621#ifdef CONFIG_HIBERNATION
2622static inline bool kernel_page_present(struct page *page) { return true; }
2623#endif  /* CONFIG_HIBERNATION */
2624static inline bool debug_pagealloc_enabled(void)
2625{
2626        return false;
2627}
2628#endif  /* CONFIG_DEBUG_PAGEALLOC */
2629
2630#ifdef __HAVE_ARCH_GATE_AREA
2631extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2632extern int in_gate_area_no_mm(unsigned long addr);
2633extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2634#else
2635static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2636{
2637        return NULL;
2638}
2639static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2640static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2641{
2642        return 0;
2643}
2644#endif  /* __HAVE_ARCH_GATE_AREA */
2645
2646extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2647
2648#ifdef CONFIG_SYSCTL
2649extern int sysctl_drop_caches;
2650int drop_caches_sysctl_handler(struct ctl_table *, int,
2651                                        void __user *, size_t *, loff_t *);
2652#endif
2653
2654void drop_slab(void);
2655void drop_slab_node(int nid);
2656
2657#ifndef CONFIG_MMU
2658#define randomize_va_space 0
2659#else
2660extern int randomize_va_space;
2661#endif
2662
2663const char * arch_vma_name(struct vm_area_struct *vma);
2664void print_vma_addr(char *prefix, unsigned long rip);
2665
2666void *sparse_buffer_alloc(unsigned long size);
2667struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2668                struct vmem_altmap *altmap);
2669pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2670p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2671pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2672pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2673pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2674void *vmemmap_alloc_block(unsigned long size, int node);
2675struct vmem_altmap;
2676void *vmemmap_alloc_block_buf(unsigned long size, int node);
2677void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2678void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2679int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2680                               int node);
2681int vmemmap_populate(unsigned long start, unsigned long end, int node,
2682                struct vmem_altmap *altmap);
2683void vmemmap_populate_print_last(void);
2684#ifdef CONFIG_MEMORY_HOTPLUG
2685void vmemmap_free(unsigned long start, unsigned long end,
2686                struct vmem_altmap *altmap);
2687#endif
2688void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2689                                  unsigned long nr_pages);
2690
2691enum mf_flags {
2692        MF_COUNT_INCREASED = 1 << 0,
2693        MF_ACTION_REQUIRED = 1 << 1,
2694        MF_MUST_KILL = 1 << 2,
2695        MF_SOFT_OFFLINE = 1 << 3,
2696};
2697extern int memory_failure(unsigned long pfn, int flags);
2698extern void memory_failure_queue(unsigned long pfn, int flags);
2699extern int unpoison_memory(unsigned long pfn);
2700extern int get_hwpoison_page(struct page *page);
2701#define put_hwpoison_page(page) put_page(page)
2702extern int sysctl_memory_failure_early_kill;
2703extern int sysctl_memory_failure_recovery;
2704extern void shake_page(struct page *p, int access);
2705extern atomic_long_t num_poisoned_pages __read_mostly;
2706extern int soft_offline_page(struct page *page, int flags);
2707
2708
2709/*
2710 * Error handlers for various types of pages.
2711 */
2712enum mf_result {
2713        MF_IGNORED,     /* Error: cannot be handled */
2714        MF_FAILED,      /* Error: handling failed */
2715        MF_DELAYED,     /* Will be handled later */
2716        MF_RECOVERED,   /* Successfully recovered */
2717};
2718
2719enum mf_action_page_type {
2720        MF_MSG_KERNEL,
2721        MF_MSG_KERNEL_HIGH_ORDER,
2722        MF_MSG_SLAB,
2723        MF_MSG_DIFFERENT_COMPOUND,
2724        MF_MSG_POISONED_HUGE,
2725        MF_MSG_HUGE,
2726        MF_MSG_FREE_HUGE,
2727        MF_MSG_NON_PMD_HUGE,
2728        MF_MSG_UNMAP_FAILED,
2729        MF_MSG_DIRTY_SWAPCACHE,
2730        MF_MSG_CLEAN_SWAPCACHE,
2731        MF_MSG_DIRTY_MLOCKED_LRU,
2732        MF_MSG_CLEAN_MLOCKED_LRU,
2733        MF_MSG_DIRTY_UNEVICTABLE_LRU,
2734        MF_MSG_CLEAN_UNEVICTABLE_LRU,
2735        MF_MSG_DIRTY_LRU,
2736        MF_MSG_CLEAN_LRU,
2737        MF_MSG_TRUNCATED_LRU,
2738        MF_MSG_BUDDY,
2739        MF_MSG_BUDDY_2ND,
2740        MF_MSG_DAX,
2741        MF_MSG_UNKNOWN,
2742};
2743
2744#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2745extern void clear_huge_page(struct page *page,
2746                            unsigned long addr_hint,
2747                            unsigned int pages_per_huge_page);
2748extern void copy_user_huge_page(struct page *dst, struct page *src,
2749                                unsigned long addr_hint,
2750                                struct vm_area_struct *vma,
2751                                unsigned int pages_per_huge_page);
2752extern long copy_huge_page_from_user(struct page *dst_page,
2753                                const void __user *usr_src,
2754                                unsigned int pages_per_huge_page,
2755                                bool allow_pagefault);
2756#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2757
2758extern struct page_ext_operations debug_guardpage_ops;
2759
2760#ifdef CONFIG_DEBUG_PAGEALLOC
2761extern unsigned int _debug_guardpage_minorder;
2762extern bool _debug_guardpage_enabled;
2763
2764static inline unsigned int debug_guardpage_minorder(void)
2765{
2766        return _debug_guardpage_minorder;
2767}
2768
2769static inline bool debug_guardpage_enabled(void)
2770{
2771        return _debug_guardpage_enabled;
2772}
2773
2774static inline bool page_is_guard(struct page *page)
2775{
2776        struct page_ext *page_ext;
2777
2778        if (!debug_guardpage_enabled())
2779                return false;
2780
2781        page_ext = lookup_page_ext(page);
2782        if (unlikely(!page_ext))
2783                return false;
2784
2785        return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2786}
2787#else
2788static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2789static inline bool debug_guardpage_enabled(void) { return false; }
2790static inline bool page_is_guard(struct page *page) { return false; }
2791#endif /* CONFIG_DEBUG_PAGEALLOC */
2792
2793#if MAX_NUMNODES > 1
2794void __init setup_nr_node_ids(void);
2795#else
2796static inline void setup_nr_node_ids(void) {}
2797#endif
2798
2799#endif /* __KERNEL__ */
2800#endif /* _LINUX_MM_H */
2801