linux/include/linux/mmzone.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <asm/page.h>
  22
  23/* Free memory management - zoned buddy allocator.  */
  24#ifndef CONFIG_FORCE_MAX_ZONEORDER
  25#define MAX_ORDER 11
  26#else
  27#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  28#endif
  29#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  30
  31/*
  32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  33 * costly to service.  That is between allocation orders which should
  34 * coalesce naturally under reasonable reclaim pressure and those which
  35 * will not.
  36 */
  37#define PAGE_ALLOC_COSTLY_ORDER 3
  38
  39enum migratetype {
  40        MIGRATE_UNMOVABLE,
  41        MIGRATE_MOVABLE,
  42        MIGRATE_RECLAIMABLE,
  43        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  44        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  45#ifdef CONFIG_CMA
  46        /*
  47         * MIGRATE_CMA migration type is designed to mimic the way
  48         * ZONE_MOVABLE works.  Only movable pages can be allocated
  49         * from MIGRATE_CMA pageblocks and page allocator never
  50         * implicitly change migration type of MIGRATE_CMA pageblock.
  51         *
  52         * The way to use it is to change migratetype of a range of
  53         * pageblocks to MIGRATE_CMA which can be done by
  54         * __free_pageblock_cma() function.  What is important though
  55         * is that a range of pageblocks must be aligned to
  56         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  57         * a single pageblock.
  58         */
  59        MIGRATE_CMA,
  60#endif
  61#ifdef CONFIG_MEMORY_ISOLATION
  62        MIGRATE_ISOLATE,        /* can't allocate from here */
  63#endif
  64        MIGRATE_TYPES
  65};
  66
  67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  68extern char * const migratetype_names[MIGRATE_TYPES];
  69
  70#ifdef CONFIG_CMA
  71#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  72#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  73#else
  74#  define is_migrate_cma(migratetype) false
  75#  define is_migrate_cma_page(_page) false
  76#endif
  77
  78static inline bool is_migrate_movable(int mt)
  79{
  80        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  81}
  82
  83#define for_each_migratetype_order(order, type) \
  84        for (order = 0; order < MAX_ORDER; order++) \
  85                for (type = 0; type < MIGRATE_TYPES; type++)
  86
  87extern int page_group_by_mobility_disabled;
  88
  89#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  90#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  91
  92#define get_pageblock_migratetype(page)                                 \
  93        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  94                        PB_migrate_end, MIGRATETYPE_MASK)
  95
  96struct free_area {
  97        struct list_head        free_list[MIGRATE_TYPES];
  98        unsigned long           nr_free;
  99};
 100
 101struct pglist_data;
 102
 103/*
 104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 105 * So add a wild amount of padding here to ensure that they fall into separate
 106 * cachelines.  There are very few zone structures in the machine, so space
 107 * consumption is not a concern here.
 108 */
 109#if defined(CONFIG_SMP)
 110struct zone_padding {
 111        char x[0];
 112} ____cacheline_internodealigned_in_smp;
 113#define ZONE_PADDING(name)      struct zone_padding name;
 114#else
 115#define ZONE_PADDING(name)
 116#endif
 117
 118#ifdef CONFIG_NUMA
 119enum numa_stat_item {
 120        NUMA_HIT,               /* allocated in intended node */
 121        NUMA_MISS,              /* allocated in non intended node */
 122        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 123        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 124        NUMA_LOCAL,             /* allocation from local node */
 125        NUMA_OTHER,             /* allocation from other node */
 126        NR_VM_NUMA_STAT_ITEMS
 127};
 128#else
 129#define NR_VM_NUMA_STAT_ITEMS 0
 130#endif
 131
 132enum zone_stat_item {
 133        /* First 128 byte cacheline (assuming 64 bit words) */
 134        NR_FREE_PAGES,
 135        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 136        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 137        NR_ZONE_ACTIVE_ANON,
 138        NR_ZONE_INACTIVE_FILE,
 139        NR_ZONE_ACTIVE_FILE,
 140        NR_ZONE_UNEVICTABLE,
 141        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 142        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 143        NR_PAGETABLE,           /* used for pagetables */
 144        NR_KERNEL_STACK_KB,     /* measured in KiB */
 145        /* Second 128 byte cacheline */
 146        NR_BOUNCE,
 147#if IS_ENABLED(CONFIG_ZSMALLOC)
 148        NR_ZSPAGES,             /* allocated in zsmalloc */
 149#endif
 150        NR_FREE_CMA_PAGES,
 151        NR_VM_ZONE_STAT_ITEMS };
 152
 153enum node_stat_item {
 154        NR_LRU_BASE,
 155        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 156        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 157        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 158        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 159        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 160        NR_SLAB_RECLAIMABLE,
 161        NR_SLAB_UNRECLAIMABLE,
 162        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 163        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 164        WORKINGSET_REFAULT,
 165        WORKINGSET_ACTIVATE,
 166        WORKINGSET_NODERECLAIM,
 167        NR_ANON_MAPPED, /* Mapped anonymous pages */
 168        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 169                           only modified from process context */
 170        NR_FILE_PAGES,
 171        NR_FILE_DIRTY,
 172        NR_WRITEBACK,
 173        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 174        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 175        NR_SHMEM_THPS,
 176        NR_SHMEM_PMDMAPPED,
 177        NR_ANON_THPS,
 178        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 179        NR_VMSCAN_WRITE,
 180        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 181        NR_DIRTIED,             /* page dirtyings since bootup */
 182        NR_WRITTEN,             /* page writings since bootup */
 183        NR_INDIRECTLY_RECLAIMABLE_BYTES, /* measured in bytes */
 184        NR_VM_NODE_STAT_ITEMS
 185};
 186
 187/*
 188 * We do arithmetic on the LRU lists in various places in the code,
 189 * so it is important to keep the active lists LRU_ACTIVE higher in
 190 * the array than the corresponding inactive lists, and to keep
 191 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 192 *
 193 * This has to be kept in sync with the statistics in zone_stat_item
 194 * above and the descriptions in vmstat_text in mm/vmstat.c
 195 */
 196#define LRU_BASE 0
 197#define LRU_ACTIVE 1
 198#define LRU_FILE 2
 199
 200enum lru_list {
 201        LRU_INACTIVE_ANON = LRU_BASE,
 202        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 203        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 204        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 205        LRU_UNEVICTABLE,
 206        NR_LRU_LISTS
 207};
 208
 209#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 210
 211#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 212
 213static inline int is_file_lru(enum lru_list lru)
 214{
 215        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 216}
 217
 218static inline int is_active_lru(enum lru_list lru)
 219{
 220        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 221}
 222
 223struct zone_reclaim_stat {
 224        /*
 225         * The pageout code in vmscan.c keeps track of how many of the
 226         * mem/swap backed and file backed pages are referenced.
 227         * The higher the rotated/scanned ratio, the more valuable
 228         * that cache is.
 229         *
 230         * The anon LRU stats live in [0], file LRU stats in [1]
 231         */
 232        unsigned long           recent_rotated[2];
 233        unsigned long           recent_scanned[2];
 234};
 235
 236struct lruvec {
 237        struct list_head                lists[NR_LRU_LISTS];
 238        struct zone_reclaim_stat        reclaim_stat;
 239        /* Evictions & activations on the inactive file list */
 240        atomic_long_t                   inactive_age;
 241        /* Refaults at the time of last reclaim cycle */
 242        unsigned long                   refaults;
 243#ifdef CONFIG_MEMCG
 244        struct pglist_data *pgdat;
 245#endif
 246};
 247
 248/* Mask used at gathering information at once (see memcontrol.c) */
 249#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 250#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 251#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 252
 253/* Isolate unmapped file */
 254#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 255/* Isolate for asynchronous migration */
 256#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 257/* Isolate unevictable pages */
 258#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 259
 260/* LRU Isolation modes. */
 261typedef unsigned __bitwise isolate_mode_t;
 262
 263enum zone_watermarks {
 264        WMARK_MIN,
 265        WMARK_LOW,
 266        WMARK_HIGH,
 267        NR_WMARK
 268};
 269
 270#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 271#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 272#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 273
 274struct per_cpu_pages {
 275        int count;              /* number of pages in the list */
 276        int high;               /* high watermark, emptying needed */
 277        int batch;              /* chunk size for buddy add/remove */
 278
 279        /* Lists of pages, one per migrate type stored on the pcp-lists */
 280        struct list_head lists[MIGRATE_PCPTYPES];
 281};
 282
 283struct per_cpu_pageset {
 284        struct per_cpu_pages pcp;
 285#ifdef CONFIG_NUMA
 286        s8 expire;
 287        u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 288#endif
 289#ifdef CONFIG_SMP
 290        s8 stat_threshold;
 291        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 292#endif
 293};
 294
 295struct per_cpu_nodestat {
 296        s8 stat_threshold;
 297        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 298};
 299
 300#endif /* !__GENERATING_BOUNDS.H */
 301
 302enum zone_type {
 303#ifdef CONFIG_ZONE_DMA
 304        /*
 305         * ZONE_DMA is used when there are devices that are not able
 306         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 307         * carve out the portion of memory that is needed for these devices.
 308         * The range is arch specific.
 309         *
 310         * Some examples
 311         *
 312         * Architecture         Limit
 313         * ---------------------------
 314         * parisc, ia64, sparc  <4G
 315         * s390                 <2G
 316         * arm                  Various
 317         * alpha                Unlimited or 0-16MB.
 318         *
 319         * i386, x86_64 and multiple other arches
 320         *                      <16M.
 321         */
 322        ZONE_DMA,
 323#endif
 324#ifdef CONFIG_ZONE_DMA32
 325        /*
 326         * x86_64 needs two ZONE_DMAs because it supports devices that are
 327         * only able to do DMA to the lower 16M but also 32 bit devices that
 328         * can only do DMA areas below 4G.
 329         */
 330        ZONE_DMA32,
 331#endif
 332        /*
 333         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 334         * performed on pages in ZONE_NORMAL if the DMA devices support
 335         * transfers to all addressable memory.
 336         */
 337        ZONE_NORMAL,
 338#ifdef CONFIG_HIGHMEM
 339        /*
 340         * A memory area that is only addressable by the kernel through
 341         * mapping portions into its own address space. This is for example
 342         * used by i386 to allow the kernel to address the memory beyond
 343         * 900MB. The kernel will set up special mappings (page
 344         * table entries on i386) for each page that the kernel needs to
 345         * access.
 346         */
 347        ZONE_HIGHMEM,
 348#endif
 349        ZONE_MOVABLE,
 350#ifdef CONFIG_ZONE_DEVICE
 351        ZONE_DEVICE,
 352#endif
 353        __MAX_NR_ZONES
 354
 355};
 356
 357#ifndef __GENERATING_BOUNDS_H
 358
 359struct zone {
 360        /* Read-mostly fields */
 361
 362        /* zone watermarks, access with *_wmark_pages(zone) macros */
 363        unsigned long watermark[NR_WMARK];
 364
 365        unsigned long nr_reserved_highatomic;
 366
 367        /*
 368         * We don't know if the memory that we're going to allocate will be
 369         * freeable or/and it will be released eventually, so to avoid totally
 370         * wasting several GB of ram we must reserve some of the lower zone
 371         * memory (otherwise we risk to run OOM on the lower zones despite
 372         * there being tons of freeable ram on the higher zones).  This array is
 373         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 374         * changes.
 375         */
 376        long lowmem_reserve[MAX_NR_ZONES];
 377
 378#ifdef CONFIG_NUMA
 379        int node;
 380#endif
 381        struct pglist_data      *zone_pgdat;
 382        struct per_cpu_pageset __percpu *pageset;
 383
 384#ifndef CONFIG_SPARSEMEM
 385        /*
 386         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 387         * In SPARSEMEM, this map is stored in struct mem_section
 388         */
 389        unsigned long           *pageblock_flags;
 390#endif /* CONFIG_SPARSEMEM */
 391
 392        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 393        unsigned long           zone_start_pfn;
 394
 395        /*
 396         * spanned_pages is the total pages spanned by the zone, including
 397         * holes, which is calculated as:
 398         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 399         *
 400         * present_pages is physical pages existing within the zone, which
 401         * is calculated as:
 402         *      present_pages = spanned_pages - absent_pages(pages in holes);
 403         *
 404         * managed_pages is present pages managed by the buddy system, which
 405         * is calculated as (reserved_pages includes pages allocated by the
 406         * bootmem allocator):
 407         *      managed_pages = present_pages - reserved_pages;
 408         *
 409         * So present_pages may be used by memory hotplug or memory power
 410         * management logic to figure out unmanaged pages by checking
 411         * (present_pages - managed_pages). And managed_pages should be used
 412         * by page allocator and vm scanner to calculate all kinds of watermarks
 413         * and thresholds.
 414         *
 415         * Locking rules:
 416         *
 417         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 418         * It is a seqlock because it has to be read outside of zone->lock,
 419         * and it is done in the main allocator path.  But, it is written
 420         * quite infrequently.
 421         *
 422         * The span_seq lock is declared along with zone->lock because it is
 423         * frequently read in proximity to zone->lock.  It's good to
 424         * give them a chance of being in the same cacheline.
 425         *
 426         * Write access to present_pages at runtime should be protected by
 427         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 428         * present_pages should get_online_mems() to get a stable value.
 429         *
 430         * Read access to managed_pages should be safe because it's unsigned
 431         * long. Write access to zone->managed_pages and totalram_pages are
 432         * protected by managed_page_count_lock at runtime. Idealy only
 433         * adjust_managed_page_count() should be used instead of directly
 434         * touching zone->managed_pages and totalram_pages.
 435         */
 436        unsigned long           managed_pages;
 437        unsigned long           spanned_pages;
 438        unsigned long           present_pages;
 439
 440        const char              *name;
 441
 442#ifdef CONFIG_MEMORY_ISOLATION
 443        /*
 444         * Number of isolated pageblock. It is used to solve incorrect
 445         * freepage counting problem due to racy retrieving migratetype
 446         * of pageblock. Protected by zone->lock.
 447         */
 448        unsigned long           nr_isolate_pageblock;
 449#endif
 450
 451#ifdef CONFIG_MEMORY_HOTPLUG
 452        /* see spanned/present_pages for more description */
 453        seqlock_t               span_seqlock;
 454#endif
 455
 456        int initialized;
 457
 458        /* Write-intensive fields used from the page allocator */
 459        ZONE_PADDING(_pad1_)
 460
 461        /* free areas of different sizes */
 462        struct free_area        free_area[MAX_ORDER];
 463
 464        /* zone flags, see below */
 465        unsigned long           flags;
 466
 467        /* Primarily protects free_area */
 468        spinlock_t              lock;
 469
 470        /* Write-intensive fields used by compaction and vmstats. */
 471        ZONE_PADDING(_pad2_)
 472
 473        /*
 474         * When free pages are below this point, additional steps are taken
 475         * when reading the number of free pages to avoid per-cpu counter
 476         * drift allowing watermarks to be breached
 477         */
 478        unsigned long percpu_drift_mark;
 479
 480#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 481        /* pfn where compaction free scanner should start */
 482        unsigned long           compact_cached_free_pfn;
 483        /* pfn where async and sync compaction migration scanner should start */
 484        unsigned long           compact_cached_migrate_pfn[2];
 485#endif
 486
 487#ifdef CONFIG_COMPACTION
 488        /*
 489         * On compaction failure, 1<<compact_defer_shift compactions
 490         * are skipped before trying again. The number attempted since
 491         * last failure is tracked with compact_considered.
 492         */
 493        unsigned int            compact_considered;
 494        unsigned int            compact_defer_shift;
 495        int                     compact_order_failed;
 496#endif
 497
 498#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 499        /* Set to true when the PG_migrate_skip bits should be cleared */
 500        bool                    compact_blockskip_flush;
 501#endif
 502
 503        bool                    contiguous;
 504
 505        ZONE_PADDING(_pad3_)
 506        /* Zone statistics */
 507        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 508        atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 509} ____cacheline_internodealigned_in_smp;
 510
 511enum pgdat_flags {
 512        PGDAT_CONGESTED,                /* pgdat has many dirty pages backed by
 513                                         * a congested BDI
 514                                         */
 515        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 516                                         * many dirty file pages at the tail
 517                                         * of the LRU.
 518                                         */
 519        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 520                                         * many pages under writeback
 521                                         */
 522        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 523};
 524
 525static inline unsigned long zone_end_pfn(const struct zone *zone)
 526{
 527        return zone->zone_start_pfn + zone->spanned_pages;
 528}
 529
 530static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 531{
 532        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 533}
 534
 535static inline bool zone_is_initialized(struct zone *zone)
 536{
 537        return zone->initialized;
 538}
 539
 540static inline bool zone_is_empty(struct zone *zone)
 541{
 542        return zone->spanned_pages == 0;
 543}
 544
 545/*
 546 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 547 * intersection with the given zone
 548 */
 549static inline bool zone_intersects(struct zone *zone,
 550                unsigned long start_pfn, unsigned long nr_pages)
 551{
 552        if (zone_is_empty(zone))
 553                return false;
 554        if (start_pfn >= zone_end_pfn(zone) ||
 555            start_pfn + nr_pages <= zone->zone_start_pfn)
 556                return false;
 557
 558        return true;
 559}
 560
 561/*
 562 * The "priority" of VM scanning is how much of the queues we will scan in one
 563 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 564 * queues ("queue_length >> 12") during an aging round.
 565 */
 566#define DEF_PRIORITY 12
 567
 568/* Maximum number of zones on a zonelist */
 569#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 570
 571enum {
 572        ZONELIST_FALLBACK,      /* zonelist with fallback */
 573#ifdef CONFIG_NUMA
 574        /*
 575         * The NUMA zonelists are doubled because we need zonelists that
 576         * restrict the allocations to a single node for __GFP_THISNODE.
 577         */
 578        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 579#endif
 580        MAX_ZONELISTS
 581};
 582
 583/*
 584 * This struct contains information about a zone in a zonelist. It is stored
 585 * here to avoid dereferences into large structures and lookups of tables
 586 */
 587struct zoneref {
 588        struct zone *zone;      /* Pointer to actual zone */
 589        int zone_idx;           /* zone_idx(zoneref->zone) */
 590};
 591
 592/*
 593 * One allocation request operates on a zonelist. A zonelist
 594 * is a list of zones, the first one is the 'goal' of the
 595 * allocation, the other zones are fallback zones, in decreasing
 596 * priority.
 597 *
 598 * To speed the reading of the zonelist, the zonerefs contain the zone index
 599 * of the entry being read. Helper functions to access information given
 600 * a struct zoneref are
 601 *
 602 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 603 * zonelist_zone_idx()  - Return the index of the zone for an entry
 604 * zonelist_node_idx()  - Return the index of the node for an entry
 605 */
 606struct zonelist {
 607        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 608};
 609
 610#ifndef CONFIG_DISCONTIGMEM
 611/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 612extern struct page *mem_map;
 613#endif
 614
 615/*
 616 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 617 * it's memory layout. On UMA machines there is a single pglist_data which
 618 * describes the whole memory.
 619 *
 620 * Memory statistics and page replacement data structures are maintained on a
 621 * per-zone basis.
 622 */
 623struct bootmem_data;
 624typedef struct pglist_data {
 625        struct zone node_zones[MAX_NR_ZONES];
 626        struct zonelist node_zonelists[MAX_ZONELISTS];
 627        int nr_zones;
 628#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 629        struct page *node_mem_map;
 630#ifdef CONFIG_PAGE_EXTENSION
 631        struct page_ext *node_page_ext;
 632#endif
 633#endif
 634#ifndef CONFIG_NO_BOOTMEM
 635        struct bootmem_data *bdata;
 636#endif
 637#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 638        /*
 639         * Must be held any time you expect node_start_pfn, node_present_pages
 640         * or node_spanned_pages stay constant.  Holding this will also
 641         * guarantee that any pfn_valid() stays that way.
 642         *
 643         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 644         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 645         * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 646         *
 647         * Nests above zone->lock and zone->span_seqlock
 648         */
 649        spinlock_t node_size_lock;
 650#endif
 651        unsigned long node_start_pfn;
 652        unsigned long node_present_pages; /* total number of physical pages */
 653        unsigned long node_spanned_pages; /* total size of physical page
 654                                             range, including holes */
 655        int node_id;
 656        wait_queue_head_t kswapd_wait;
 657        wait_queue_head_t pfmemalloc_wait;
 658        struct task_struct *kswapd;     /* Protected by
 659                                           mem_hotplug_begin/end() */
 660        int kswapd_order;
 661        enum zone_type kswapd_classzone_idx;
 662
 663        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 664
 665#ifdef CONFIG_COMPACTION
 666        int kcompactd_max_order;
 667        enum zone_type kcompactd_classzone_idx;
 668        wait_queue_head_t kcompactd_wait;
 669        struct task_struct *kcompactd;
 670#endif
 671        /*
 672         * This is a per-node reserve of pages that are not available
 673         * to userspace allocations.
 674         */
 675        unsigned long           totalreserve_pages;
 676
 677#ifdef CONFIG_NUMA
 678        /*
 679         * zone reclaim becomes active if more unmapped pages exist.
 680         */
 681        unsigned long           min_unmapped_pages;
 682        unsigned long           min_slab_pages;
 683#endif /* CONFIG_NUMA */
 684
 685        /* Write-intensive fields used by page reclaim */
 686        ZONE_PADDING(_pad1_)
 687        spinlock_t              lru_lock;
 688
 689#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 690        /*
 691         * If memory initialisation on large machines is deferred then this
 692         * is the first PFN that needs to be initialised.
 693         */
 694        unsigned long first_deferred_pfn;
 695        /* Number of non-deferred pages */
 696        unsigned long static_init_pgcnt;
 697#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 698
 699#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 700        spinlock_t split_queue_lock;
 701        struct list_head split_queue;
 702        unsigned long split_queue_len;
 703#endif
 704
 705        /* Fields commonly accessed by the page reclaim scanner */
 706        struct lruvec           lruvec;
 707
 708        unsigned long           flags;
 709
 710        ZONE_PADDING(_pad2_)
 711
 712        /* Per-node vmstats */
 713        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 714        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 715} pg_data_t;
 716
 717#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 718#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 719#ifdef CONFIG_FLAT_NODE_MEM_MAP
 720#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 721#else
 722#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 723#endif
 724#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 725
 726#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 727#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 728static inline spinlock_t *zone_lru_lock(struct zone *zone)
 729{
 730        return &zone->zone_pgdat->lru_lock;
 731}
 732
 733static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
 734{
 735        return &pgdat->lruvec;
 736}
 737
 738static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 739{
 740        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 741}
 742
 743static inline bool pgdat_is_empty(pg_data_t *pgdat)
 744{
 745        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 746}
 747
 748#include <linux/memory_hotplug.h>
 749
 750void build_all_zonelists(pg_data_t *pgdat);
 751void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 752                   enum zone_type classzone_idx);
 753bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 754                         int classzone_idx, unsigned int alloc_flags,
 755                         long free_pages);
 756bool zone_watermark_ok(struct zone *z, unsigned int order,
 757                unsigned long mark, int classzone_idx,
 758                unsigned int alloc_flags);
 759bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 760                unsigned long mark, int classzone_idx);
 761enum memmap_context {
 762        MEMMAP_EARLY,
 763        MEMMAP_HOTPLUG,
 764};
 765extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 766                                     unsigned long size);
 767
 768extern void lruvec_init(struct lruvec *lruvec);
 769
 770static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 771{
 772#ifdef CONFIG_MEMCG
 773        return lruvec->pgdat;
 774#else
 775        return container_of(lruvec, struct pglist_data, lruvec);
 776#endif
 777}
 778
 779extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 780
 781#ifdef CONFIG_HAVE_MEMORY_PRESENT
 782void memory_present(int nid, unsigned long start, unsigned long end);
 783#else
 784static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 785#endif
 786
 787#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 788int local_memory_node(int node_id);
 789#else
 790static inline int local_memory_node(int node_id) { return node_id; };
 791#endif
 792
 793/*
 794 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 795 */
 796#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 797
 798#ifdef CONFIG_ZONE_DEVICE
 799static inline bool is_dev_zone(const struct zone *zone)
 800{
 801        return zone_idx(zone) == ZONE_DEVICE;
 802}
 803#else
 804static inline bool is_dev_zone(const struct zone *zone)
 805{
 806        return false;
 807}
 808#endif
 809
 810/*
 811 * Returns true if a zone has pages managed by the buddy allocator.
 812 * All the reclaim decisions have to use this function rather than
 813 * populated_zone(). If the whole zone is reserved then we can easily
 814 * end up with populated_zone() && !managed_zone().
 815 */
 816static inline bool managed_zone(struct zone *zone)
 817{
 818        return zone->managed_pages;
 819}
 820
 821/* Returns true if a zone has memory */
 822static inline bool populated_zone(struct zone *zone)
 823{
 824        return zone->present_pages;
 825}
 826
 827#ifdef CONFIG_NUMA
 828static inline int zone_to_nid(struct zone *zone)
 829{
 830        return zone->node;
 831}
 832
 833static inline void zone_set_nid(struct zone *zone, int nid)
 834{
 835        zone->node = nid;
 836}
 837#else
 838static inline int zone_to_nid(struct zone *zone)
 839{
 840        return 0;
 841}
 842
 843static inline void zone_set_nid(struct zone *zone, int nid) {}
 844#endif
 845
 846extern int movable_zone;
 847
 848#ifdef CONFIG_HIGHMEM
 849static inline int zone_movable_is_highmem(void)
 850{
 851#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 852        return movable_zone == ZONE_HIGHMEM;
 853#else
 854        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 855#endif
 856}
 857#endif
 858
 859static inline int is_highmem_idx(enum zone_type idx)
 860{
 861#ifdef CONFIG_HIGHMEM
 862        return (idx == ZONE_HIGHMEM ||
 863                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 864#else
 865        return 0;
 866#endif
 867}
 868
 869/**
 870 * is_highmem - helper function to quickly check if a struct zone is a 
 871 *              highmem zone or not.  This is an attempt to keep references
 872 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 873 * @zone - pointer to struct zone variable
 874 */
 875static inline int is_highmem(struct zone *zone)
 876{
 877#ifdef CONFIG_HIGHMEM
 878        return is_highmem_idx(zone_idx(zone));
 879#else
 880        return 0;
 881#endif
 882}
 883
 884/* These two functions are used to setup the per zone pages min values */
 885struct ctl_table;
 886int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 887                                        void __user *, size_t *, loff_t *);
 888int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 889                                        void __user *, size_t *, loff_t *);
 890extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
 891int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 892                                        void __user *, size_t *, loff_t *);
 893int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 894                                        void __user *, size_t *, loff_t *);
 895int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 896                        void __user *, size_t *, loff_t *);
 897int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 898                        void __user *, size_t *, loff_t *);
 899
 900extern int numa_zonelist_order_handler(struct ctl_table *, int,
 901                        void __user *, size_t *, loff_t *);
 902extern char numa_zonelist_order[];
 903#define NUMA_ZONELIST_ORDER_LEN 16
 904
 905#ifndef CONFIG_NEED_MULTIPLE_NODES
 906
 907extern struct pglist_data contig_page_data;
 908#define NODE_DATA(nid)          (&contig_page_data)
 909#define NODE_MEM_MAP(nid)       mem_map
 910
 911#else /* CONFIG_NEED_MULTIPLE_NODES */
 912
 913#include <asm/mmzone.h>
 914
 915#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 916
 917extern struct pglist_data *first_online_pgdat(void);
 918extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 919extern struct zone *next_zone(struct zone *zone);
 920
 921/**
 922 * for_each_online_pgdat - helper macro to iterate over all online nodes
 923 * @pgdat - pointer to a pg_data_t variable
 924 */
 925#define for_each_online_pgdat(pgdat)                    \
 926        for (pgdat = first_online_pgdat();              \
 927             pgdat;                                     \
 928             pgdat = next_online_pgdat(pgdat))
 929/**
 930 * for_each_zone - helper macro to iterate over all memory zones
 931 * @zone - pointer to struct zone variable
 932 *
 933 * The user only needs to declare the zone variable, for_each_zone
 934 * fills it in.
 935 */
 936#define for_each_zone(zone)                             \
 937        for (zone = (first_online_pgdat())->node_zones; \
 938             zone;                                      \
 939             zone = next_zone(zone))
 940
 941#define for_each_populated_zone(zone)                   \
 942        for (zone = (first_online_pgdat())->node_zones; \
 943             zone;                                      \
 944             zone = next_zone(zone))                    \
 945                if (!populated_zone(zone))              \
 946                        ; /* do nothing */              \
 947                else
 948
 949static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 950{
 951        return zoneref->zone;
 952}
 953
 954static inline int zonelist_zone_idx(struct zoneref *zoneref)
 955{
 956        return zoneref->zone_idx;
 957}
 958
 959static inline int zonelist_node_idx(struct zoneref *zoneref)
 960{
 961        return zone_to_nid(zoneref->zone);
 962}
 963
 964struct zoneref *__next_zones_zonelist(struct zoneref *z,
 965                                        enum zone_type highest_zoneidx,
 966                                        nodemask_t *nodes);
 967
 968/**
 969 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 970 * @z - The cursor used as a starting point for the search
 971 * @highest_zoneidx - The zone index of the highest zone to return
 972 * @nodes - An optional nodemask to filter the zonelist with
 973 *
 974 * This function returns the next zone at or below a given zone index that is
 975 * within the allowed nodemask using a cursor as the starting point for the
 976 * search. The zoneref returned is a cursor that represents the current zone
 977 * being examined. It should be advanced by one before calling
 978 * next_zones_zonelist again.
 979 */
 980static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
 981                                        enum zone_type highest_zoneidx,
 982                                        nodemask_t *nodes)
 983{
 984        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
 985                return z;
 986        return __next_zones_zonelist(z, highest_zoneidx, nodes);
 987}
 988
 989/**
 990 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 991 * @zonelist - The zonelist to search for a suitable zone
 992 * @highest_zoneidx - The zone index of the highest zone to return
 993 * @nodes - An optional nodemask to filter the zonelist with
 994 * @return - Zoneref pointer for the first suitable zone found (see below)
 995 *
 996 * This function returns the first zone at or below a given zone index that is
 997 * within the allowed nodemask. The zoneref returned is a cursor that can be
 998 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 999 * one before calling.
1000 *
1001 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1002 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1003 * update due to cpuset modification.
1004 */
1005static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1006                                        enum zone_type highest_zoneidx,
1007                                        nodemask_t *nodes)
1008{
1009        return next_zones_zonelist(zonelist->_zonerefs,
1010                                                        highest_zoneidx, nodes);
1011}
1012
1013/**
1014 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1015 * @zone - The current zone in the iterator
1016 * @z - The current pointer within zonelist->zones being iterated
1017 * @zlist - The zonelist being iterated
1018 * @highidx - The zone index of the highest zone to return
1019 * @nodemask - Nodemask allowed by the allocator
1020 *
1021 * This iterator iterates though all zones at or below a given zone index and
1022 * within a given nodemask
1023 */
1024#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1025        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1026                zone;                                                   \
1027                z = next_zones_zonelist(++z, highidx, nodemask),        \
1028                        zone = zonelist_zone(z))
1029
1030#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1031        for (zone = z->zone;    \
1032                zone;                                                   \
1033                z = next_zones_zonelist(++z, highidx, nodemask),        \
1034                        zone = zonelist_zone(z))
1035
1036
1037/**
1038 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1039 * @zone - The current zone in the iterator
1040 * @z - The current pointer within zonelist->zones being iterated
1041 * @zlist - The zonelist being iterated
1042 * @highidx - The zone index of the highest zone to return
1043 *
1044 * This iterator iterates though all zones at or below a given zone index.
1045 */
1046#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1047        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1048
1049#ifdef CONFIG_SPARSEMEM
1050#include <asm/sparsemem.h>
1051#endif
1052
1053#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1054        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1055static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1056{
1057        BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1058        return 0;
1059}
1060#endif
1061
1062#ifdef CONFIG_FLATMEM
1063#define pfn_to_nid(pfn)         (0)
1064#endif
1065
1066#ifdef CONFIG_SPARSEMEM
1067
1068/*
1069 * SECTION_SHIFT                #bits space required to store a section #
1070 *
1071 * PA_SECTION_SHIFT             physical address to/from section number
1072 * PFN_SECTION_SHIFT            pfn to/from section number
1073 */
1074#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1075#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1076
1077#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1078
1079#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1080#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1081
1082#define SECTION_BLOCKFLAGS_BITS \
1083        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1084
1085#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1086#error Allocator MAX_ORDER exceeds SECTION_SIZE
1087#endif
1088
1089static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1090{
1091        return pfn >> PFN_SECTION_SHIFT;
1092}
1093static inline unsigned long section_nr_to_pfn(unsigned long sec)
1094{
1095        return sec << PFN_SECTION_SHIFT;
1096}
1097
1098#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1099#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1100
1101struct page;
1102struct page_ext;
1103struct mem_section {
1104        /*
1105         * This is, logically, a pointer to an array of struct
1106         * pages.  However, it is stored with some other magic.
1107         * (see sparse.c::sparse_init_one_section())
1108         *
1109         * Additionally during early boot we encode node id of
1110         * the location of the section here to guide allocation.
1111         * (see sparse.c::memory_present())
1112         *
1113         * Making it a UL at least makes someone do a cast
1114         * before using it wrong.
1115         */
1116        unsigned long section_mem_map;
1117
1118        /* See declaration of similar field in struct zone */
1119        unsigned long *pageblock_flags;
1120#ifdef CONFIG_PAGE_EXTENSION
1121        /*
1122         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1123         * section. (see page_ext.h about this.)
1124         */
1125        struct page_ext *page_ext;
1126        unsigned long pad;
1127#endif
1128        /*
1129         * WARNING: mem_section must be a power-of-2 in size for the
1130         * calculation and use of SECTION_ROOT_MASK to make sense.
1131         */
1132};
1133
1134#ifdef CONFIG_SPARSEMEM_EXTREME
1135#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1136#else
1137#define SECTIONS_PER_ROOT       1
1138#endif
1139
1140#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1141#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1142#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1143
1144#ifdef CONFIG_SPARSEMEM_EXTREME
1145extern struct mem_section **mem_section;
1146#else
1147extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1148#endif
1149
1150static inline struct mem_section *__nr_to_section(unsigned long nr)
1151{
1152#ifdef CONFIG_SPARSEMEM_EXTREME
1153        if (!mem_section)
1154                return NULL;
1155#endif
1156        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1157                return NULL;
1158        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1159}
1160extern int __section_nr(struct mem_section* ms);
1161extern unsigned long usemap_size(void);
1162
1163/*
1164 * We use the lower bits of the mem_map pointer to store
1165 * a little bit of information.  The pointer is calculated
1166 * as mem_map - section_nr_to_pfn(pnum).  The result is
1167 * aligned to the minimum alignment of the two values:
1168 *   1. All mem_map arrays are page-aligned.
1169 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1170 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1171 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1172 *      worst combination is powerpc with 256k pages,
1173 *      which results in PFN_SECTION_SHIFT equal 6.
1174 * To sum it up, at least 6 bits are available.
1175 */
1176#define SECTION_MARKED_PRESENT  (1UL<<0)
1177#define SECTION_HAS_MEM_MAP     (1UL<<1)
1178#define SECTION_IS_ONLINE       (1UL<<2)
1179#define SECTION_MAP_LAST_BIT    (1UL<<3)
1180#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1181#define SECTION_NID_SHIFT       3
1182
1183static inline struct page *__section_mem_map_addr(struct mem_section *section)
1184{
1185        unsigned long map = section->section_mem_map;
1186        map &= SECTION_MAP_MASK;
1187        return (struct page *)map;
1188}
1189
1190static inline int present_section(struct mem_section *section)
1191{
1192        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1193}
1194
1195static inline int present_section_nr(unsigned long nr)
1196{
1197        return present_section(__nr_to_section(nr));
1198}
1199
1200static inline int valid_section(struct mem_section *section)
1201{
1202        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1203}
1204
1205static inline int valid_section_nr(unsigned long nr)
1206{
1207        return valid_section(__nr_to_section(nr));
1208}
1209
1210static inline int online_section(struct mem_section *section)
1211{
1212        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1213}
1214
1215static inline int online_section_nr(unsigned long nr)
1216{
1217        return online_section(__nr_to_section(nr));
1218}
1219
1220#ifdef CONFIG_MEMORY_HOTPLUG
1221void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1222#ifdef CONFIG_MEMORY_HOTREMOVE
1223void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1224#endif
1225#endif
1226
1227static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1228{
1229        return __nr_to_section(pfn_to_section_nr(pfn));
1230}
1231
1232extern int __highest_present_section_nr;
1233
1234#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1235static inline int pfn_valid(unsigned long pfn)
1236{
1237        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1238                return 0;
1239        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1240}
1241#endif
1242
1243static inline int pfn_present(unsigned long pfn)
1244{
1245        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1246                return 0;
1247        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1248}
1249
1250/*
1251 * These are _only_ used during initialisation, therefore they
1252 * can use __initdata ...  They could have names to indicate
1253 * this restriction.
1254 */
1255#ifdef CONFIG_NUMA
1256#define pfn_to_nid(pfn)                                                 \
1257({                                                                      \
1258        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1259        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1260})
1261#else
1262#define pfn_to_nid(pfn)         (0)
1263#endif
1264
1265#define early_pfn_valid(pfn)    pfn_valid(pfn)
1266void sparse_init(void);
1267#else
1268#define sparse_init()   do {} while (0)
1269#define sparse_index_init(_sec, _nid)  do {} while (0)
1270#endif /* CONFIG_SPARSEMEM */
1271
1272/*
1273 * During memory init memblocks map pfns to nids. The search is expensive and
1274 * this caches recent lookups. The implementation of __early_pfn_to_nid
1275 * may treat start/end as pfns or sections.
1276 */
1277struct mminit_pfnnid_cache {
1278        unsigned long last_start;
1279        unsigned long last_end;
1280        int last_nid;
1281};
1282
1283#ifndef early_pfn_valid
1284#define early_pfn_valid(pfn)    (1)
1285#endif
1286
1287void memory_present(int nid, unsigned long start, unsigned long end);
1288
1289/*
1290 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1291 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1292 * pfn_valid_within() should be used in this case; we optimise this away
1293 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1294 */
1295#ifdef CONFIG_HOLES_IN_ZONE
1296#define pfn_valid_within(pfn) pfn_valid(pfn)
1297#else
1298#define pfn_valid_within(pfn) (1)
1299#endif
1300
1301#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1302/*
1303 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1304 * associated with it or not. This means that a struct page exists for this
1305 * pfn. The caller cannot assume the page is fully initialized in general.
1306 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1307 * will ensure the struct page is fully online and initialized. Special pages
1308 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1309 *
1310 * In FLATMEM, it is expected that holes always have valid memmap as long as
1311 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1312 * that a valid section has a memmap for the entire section.
1313 *
1314 * However, an ARM, and maybe other embedded architectures in the future
1315 * free memmap backing holes to save memory on the assumption the memmap is
1316 * never used. The page_zone linkages are then broken even though pfn_valid()
1317 * returns true. A walker of the full memmap must then do this additional
1318 * check to ensure the memmap they are looking at is sane by making sure
1319 * the zone and PFN linkages are still valid. This is expensive, but walkers
1320 * of the full memmap are extremely rare.
1321 */
1322bool memmap_valid_within(unsigned long pfn,
1323                                        struct page *page, struct zone *zone);
1324#else
1325static inline bool memmap_valid_within(unsigned long pfn,
1326                                        struct page *page, struct zone *zone)
1327{
1328        return true;
1329}
1330#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1331
1332#endif /* !__GENERATING_BOUNDS.H */
1333#endif /* !__ASSEMBLY__ */
1334#endif /* _LINUX_MMZONE_H */
1335