linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/compiler.h>
  38#include <linux/atomic.h>
  39#include <linux/irqflags.h>
  40#include <linux/preempt.h>
  41#include <linux/bottom_half.h>
  42#include <linux/lockdep.h>
  43#include <asm/processor.h>
  44#include <linux/cpumask.h>
  45
  46#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  47#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  48#define ulong2long(a)           (*(long *)(&(a)))
  49
  50/* Exported common interfaces */
  51
  52#ifdef CONFIG_PREEMPT_RCU
  53void call_rcu(struct rcu_head *head, rcu_callback_t func);
  54#else /* #ifdef CONFIG_PREEMPT_RCU */
  55#define call_rcu        call_rcu_sched
  56#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  57
  58void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
  59void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
  60void synchronize_sched(void);
  61void rcu_barrier_tasks(void);
  62
  63#ifdef CONFIG_PREEMPT_RCU
  64
  65void __rcu_read_lock(void);
  66void __rcu_read_unlock(void);
  67void synchronize_rcu(void);
  68
  69/*
  70 * Defined as a macro as it is a very low level header included from
  71 * areas that don't even know about current.  This gives the rcu_read_lock()
  72 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  73 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  74 */
  75#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
  76
  77#else /* #ifdef CONFIG_PREEMPT_RCU */
  78
  79static inline void __rcu_read_lock(void)
  80{
  81        if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
  82                preempt_disable();
  83}
  84
  85static inline void __rcu_read_unlock(void)
  86{
  87        if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
  88                preempt_enable();
  89}
  90
  91static inline void synchronize_rcu(void)
  92{
  93        synchronize_sched();
  94}
  95
  96static inline int rcu_preempt_depth(void)
  97{
  98        return 0;
  99}
 100
 101#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 102
 103/* Internal to kernel */
 104void rcu_init(void);
 105extern int rcu_scheduler_active __read_mostly;
 106void rcu_sched_qs(void);
 107void rcu_bh_qs(void);
 108void rcu_check_callbacks(int user);
 109void rcu_report_dead(unsigned int cpu);
 110void rcutree_migrate_callbacks(int cpu);
 111
 112#ifdef CONFIG_RCU_STALL_COMMON
 113void rcu_sysrq_start(void);
 114void rcu_sysrq_end(void);
 115#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 116static inline void rcu_sysrq_start(void) { }
 117static inline void rcu_sysrq_end(void) { }
 118#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 119
 120#ifdef CONFIG_NO_HZ_FULL
 121void rcu_user_enter(void);
 122void rcu_user_exit(void);
 123#else
 124static inline void rcu_user_enter(void) { }
 125static inline void rcu_user_exit(void) { }
 126#endif /* CONFIG_NO_HZ_FULL */
 127
 128#ifdef CONFIG_RCU_NOCB_CPU
 129void rcu_init_nohz(void);
 130#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 131static inline void rcu_init_nohz(void) { }
 132#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 133
 134/**
 135 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 136 * @a: Code that RCU needs to pay attention to.
 137 *
 138 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 139 * in the inner idle loop, that is, between the rcu_idle_enter() and
 140 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 141 * critical sections.  However, things like powertop need tracepoints
 142 * in the inner idle loop.
 143 *
 144 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 145 * will tell RCU that it needs to pay attention, invoke its argument
 146 * (in this example, calling the do_something_with_RCU() function),
 147 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 148 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 149 * on the order of a million or so, even on 32-bit systems).  It is
 150 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 151 * transfer control either into or out of RCU_NONIDLE()'s statement.
 152 */
 153#define RCU_NONIDLE(a) \
 154        do { \
 155                rcu_irq_enter_irqson(); \
 156                do { a; } while (0); \
 157                rcu_irq_exit_irqson(); \
 158        } while (0)
 159
 160/*
 161 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 162 * This is a macro rather than an inline function to avoid #include hell.
 163 */
 164#ifdef CONFIG_TASKS_RCU
 165#define rcu_tasks_qs(t) \
 166        do { \
 167                if (READ_ONCE((t)->rcu_tasks_holdout)) \
 168                        WRITE_ONCE((t)->rcu_tasks_holdout, false); \
 169        } while (0)
 170#define rcu_note_voluntary_context_switch(t) \
 171        do { \
 172                rcu_all_qs(); \
 173                rcu_tasks_qs(t); \
 174        } while (0)
 175void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 176void synchronize_rcu_tasks(void);
 177void exit_tasks_rcu_start(void);
 178void exit_tasks_rcu_finish(void);
 179#else /* #ifdef CONFIG_TASKS_RCU */
 180#define rcu_tasks_qs(t) do { } while (0)
 181#define rcu_note_voluntary_context_switch(t)            rcu_all_qs()
 182#define call_rcu_tasks call_rcu_sched
 183#define synchronize_rcu_tasks synchronize_sched
 184static inline void exit_tasks_rcu_start(void) { }
 185static inline void exit_tasks_rcu_finish(void) { }
 186#endif /* #else #ifdef CONFIG_TASKS_RCU */
 187
 188/**
 189 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 190 *
 191 * This macro resembles cond_resched(), except that it is defined to
 192 * report potential quiescent states to RCU-tasks even if the cond_resched()
 193 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 194 */
 195#define cond_resched_tasks_rcu_qs() \
 196do { \
 197        rcu_tasks_qs(current); \
 198        cond_resched(); \
 199} while (0)
 200
 201/*
 202 * Infrastructure to implement the synchronize_() primitives in
 203 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 204 */
 205
 206#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
 207#include <linux/rcutree.h>
 208#elif defined(CONFIG_TINY_RCU)
 209#include <linux/rcutiny.h>
 210#else
 211#error "Unknown RCU implementation specified to kernel configuration"
 212#endif
 213
 214/*
 215 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 216 * are needed for dynamic initialization and destruction of rcu_head
 217 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 218 * dynamic initialization and destruction of statically allocated rcu_head
 219 * structures.  However, rcu_head structures allocated dynamically in the
 220 * heap don't need any initialization.
 221 */
 222#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 223void init_rcu_head(struct rcu_head *head);
 224void destroy_rcu_head(struct rcu_head *head);
 225void init_rcu_head_on_stack(struct rcu_head *head);
 226void destroy_rcu_head_on_stack(struct rcu_head *head);
 227#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 228static inline void init_rcu_head(struct rcu_head *head) { }
 229static inline void destroy_rcu_head(struct rcu_head *head) { }
 230static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 231static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 232#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 233
 234#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 235bool rcu_lockdep_current_cpu_online(void);
 236#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 237static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 238#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 239
 240#ifdef CONFIG_DEBUG_LOCK_ALLOC
 241
 242static inline void rcu_lock_acquire(struct lockdep_map *map)
 243{
 244        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 245}
 246
 247static inline void rcu_lock_release(struct lockdep_map *map)
 248{
 249        lock_release(map, 1, _THIS_IP_);
 250}
 251
 252extern struct lockdep_map rcu_lock_map;
 253extern struct lockdep_map rcu_bh_lock_map;
 254extern struct lockdep_map rcu_sched_lock_map;
 255extern struct lockdep_map rcu_callback_map;
 256int debug_lockdep_rcu_enabled(void);
 257int rcu_read_lock_held(void);
 258int rcu_read_lock_bh_held(void);
 259int rcu_read_lock_sched_held(void);
 260
 261#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 262
 263# define rcu_lock_acquire(a)            do { } while (0)
 264# define rcu_lock_release(a)            do { } while (0)
 265
 266static inline int rcu_read_lock_held(void)
 267{
 268        return 1;
 269}
 270
 271static inline int rcu_read_lock_bh_held(void)
 272{
 273        return 1;
 274}
 275
 276static inline int rcu_read_lock_sched_held(void)
 277{
 278        return !preemptible();
 279}
 280#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 281
 282#ifdef CONFIG_PROVE_RCU
 283
 284/**
 285 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 286 * @c: condition to check
 287 * @s: informative message
 288 */
 289#define RCU_LOCKDEP_WARN(c, s)                                          \
 290        do {                                                            \
 291                static bool __section(.data.unlikely) __warned;         \
 292                if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
 293                        __warned = true;                                \
 294                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 295                }                                                       \
 296        } while (0)
 297
 298#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 299static inline void rcu_preempt_sleep_check(void)
 300{
 301        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 302                         "Illegal context switch in RCU read-side critical section");
 303}
 304#else /* #ifdef CONFIG_PROVE_RCU */
 305static inline void rcu_preempt_sleep_check(void) { }
 306#endif /* #else #ifdef CONFIG_PROVE_RCU */
 307
 308#define rcu_sleep_check()                                               \
 309        do {                                                            \
 310                rcu_preempt_sleep_check();                              \
 311                RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
 312                                 "Illegal context switch in RCU-bh read-side critical section"); \
 313                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 314                                 "Illegal context switch in RCU-sched read-side critical section"); \
 315        } while (0)
 316
 317#else /* #ifdef CONFIG_PROVE_RCU */
 318
 319#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
 320#define rcu_sleep_check() do { } while (0)
 321
 322#endif /* #else #ifdef CONFIG_PROVE_RCU */
 323
 324/*
 325 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 326 * and rcu_assign_pointer().  Some of these could be folded into their
 327 * callers, but they are left separate in order to ease introduction of
 328 * multiple flavors of pointers to match the multiple flavors of RCU
 329 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 330 * the future.
 331 */
 332
 333#ifdef __CHECKER__
 334#define rcu_dereference_sparse(p, space) \
 335        ((void)(((typeof(*p) space *)p) == p))
 336#else /* #ifdef __CHECKER__ */
 337#define rcu_dereference_sparse(p, space)
 338#endif /* #else #ifdef __CHECKER__ */
 339
 340#define __rcu_access_pointer(p, space) \
 341({ \
 342        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 343        rcu_dereference_sparse(p, space); \
 344        ((typeof(*p) __force __kernel *)(_________p1)); \
 345})
 346#define __rcu_dereference_check(p, c, space) \
 347({ \
 348        /* Dependency order vs. p above. */ \
 349        typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 350        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 351        rcu_dereference_sparse(p, space); \
 352        ((typeof(*p) __force __kernel *)(________p1)); \
 353})
 354#define __rcu_dereference_protected(p, c, space) \
 355({ \
 356        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 357        rcu_dereference_sparse(p, space); \
 358        ((typeof(*p) __force __kernel *)(p)); \
 359})
 360#define rcu_dereference_raw(p) \
 361({ \
 362        /* Dependency order vs. p above. */ \
 363        typeof(p) ________p1 = READ_ONCE(p); \
 364        ((typeof(*p) __force __kernel *)(________p1)); \
 365})
 366
 367/**
 368 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 369 * @v: The value to statically initialize with.
 370 */
 371#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 372
 373/**
 374 * rcu_assign_pointer() - assign to RCU-protected pointer
 375 * @p: pointer to assign to
 376 * @v: value to assign (publish)
 377 *
 378 * Assigns the specified value to the specified RCU-protected
 379 * pointer, ensuring that any concurrent RCU readers will see
 380 * any prior initialization.
 381 *
 382 * Inserts memory barriers on architectures that require them
 383 * (which is most of them), and also prevents the compiler from
 384 * reordering the code that initializes the structure after the pointer
 385 * assignment.  More importantly, this call documents which pointers
 386 * will be dereferenced by RCU read-side code.
 387 *
 388 * In some special cases, you may use RCU_INIT_POINTER() instead
 389 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 390 * to the fact that it does not constrain either the CPU or the compiler.
 391 * That said, using RCU_INIT_POINTER() when you should have used
 392 * rcu_assign_pointer() is a very bad thing that results in
 393 * impossible-to-diagnose memory corruption.  So please be careful.
 394 * See the RCU_INIT_POINTER() comment header for details.
 395 *
 396 * Note that rcu_assign_pointer() evaluates each of its arguments only
 397 * once, appearances notwithstanding.  One of the "extra" evaluations
 398 * is in typeof() and the other visible only to sparse (__CHECKER__),
 399 * neither of which actually execute the argument.  As with most cpp
 400 * macros, this execute-arguments-only-once property is important, so
 401 * please be careful when making changes to rcu_assign_pointer() and the
 402 * other macros that it invokes.
 403 */
 404#define rcu_assign_pointer(p, v)                                              \
 405({                                                                            \
 406        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 407                                                                              \
 408        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 409                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 410        else                                                                  \
 411                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 412        _r_a_p__v;                                                            \
 413})
 414
 415/**
 416 * rcu_swap_protected() - swap an RCU and a regular pointer
 417 * @rcu_ptr: RCU pointer
 418 * @ptr: regular pointer
 419 * @c: the conditions under which the dereference will take place
 420 *
 421 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
 422 * @c is the argument that is passed to the rcu_dereference_protected() call
 423 * used to read that pointer.
 424 */
 425#define rcu_swap_protected(rcu_ptr, ptr, c) do {                        \
 426        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 427        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 428        (ptr) = __tmp;                                                  \
 429} while (0)
 430
 431/**
 432 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 433 * @p: The pointer to read
 434 *
 435 * Return the value of the specified RCU-protected pointer, but omit the
 436 * lockdep checks for being in an RCU read-side critical section.  This is
 437 * useful when the value of this pointer is accessed, but the pointer is
 438 * not dereferenced, for example, when testing an RCU-protected pointer
 439 * against NULL.  Although rcu_access_pointer() may also be used in cases
 440 * where update-side locks prevent the value of the pointer from changing,
 441 * you should instead use rcu_dereference_protected() for this use case.
 442 *
 443 * It is also permissible to use rcu_access_pointer() when read-side
 444 * access to the pointer was removed at least one grace period ago, as
 445 * is the case in the context of the RCU callback that is freeing up
 446 * the data, or after a synchronize_rcu() returns.  This can be useful
 447 * when tearing down multi-linked structures after a grace period
 448 * has elapsed.
 449 */
 450#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 451
 452/**
 453 * rcu_dereference_check() - rcu_dereference with debug checking
 454 * @p: The pointer to read, prior to dereferencing
 455 * @c: The conditions under which the dereference will take place
 456 *
 457 * Do an rcu_dereference(), but check that the conditions under which the
 458 * dereference will take place are correct.  Typically the conditions
 459 * indicate the various locking conditions that should be held at that
 460 * point.  The check should return true if the conditions are satisfied.
 461 * An implicit check for being in an RCU read-side critical section
 462 * (rcu_read_lock()) is included.
 463 *
 464 * For example:
 465 *
 466 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 467 *
 468 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 469 * if either rcu_read_lock() is held, or that the lock required to replace
 470 * the bar struct at foo->bar is held.
 471 *
 472 * Note that the list of conditions may also include indications of when a lock
 473 * need not be held, for example during initialisation or destruction of the
 474 * target struct:
 475 *
 476 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 477 *                                            atomic_read(&foo->usage) == 0);
 478 *
 479 * Inserts memory barriers on architectures that require them
 480 * (currently only the Alpha), prevents the compiler from refetching
 481 * (and from merging fetches), and, more importantly, documents exactly
 482 * which pointers are protected by RCU and checks that the pointer is
 483 * annotated as __rcu.
 484 */
 485#define rcu_dereference_check(p, c) \
 486        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 487
 488/**
 489 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 490 * @p: The pointer to read, prior to dereferencing
 491 * @c: The conditions under which the dereference will take place
 492 *
 493 * This is the RCU-bh counterpart to rcu_dereference_check().
 494 */
 495#define rcu_dereference_bh_check(p, c) \
 496        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 497
 498/**
 499 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 500 * @p: The pointer to read, prior to dereferencing
 501 * @c: The conditions under which the dereference will take place
 502 *
 503 * This is the RCU-sched counterpart to rcu_dereference_check().
 504 */
 505#define rcu_dereference_sched_check(p, c) \
 506        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 507                                __rcu)
 508
 509/*
 510 * The tracing infrastructure traces RCU (we want that), but unfortunately
 511 * some of the RCU checks causes tracing to lock up the system.
 512 *
 513 * The no-tracing version of rcu_dereference_raw() must not call
 514 * rcu_read_lock_held().
 515 */
 516#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 517
 518/**
 519 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 520 * @p: The pointer to read, prior to dereferencing
 521 * @c: The conditions under which the dereference will take place
 522 *
 523 * Return the value of the specified RCU-protected pointer, but omit
 524 * the READ_ONCE().  This is useful in cases where update-side locks
 525 * prevent the value of the pointer from changing.  Please note that this
 526 * primitive does *not* prevent the compiler from repeating this reference
 527 * or combining it with other references, so it should not be used without
 528 * protection of appropriate locks.
 529 *
 530 * This function is only for update-side use.  Using this function
 531 * when protected only by rcu_read_lock() will result in infrequent
 532 * but very ugly failures.
 533 */
 534#define rcu_dereference_protected(p, c) \
 535        __rcu_dereference_protected((p), (c), __rcu)
 536
 537
 538/**
 539 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 540 * @p: The pointer to read, prior to dereferencing
 541 *
 542 * This is a simple wrapper around rcu_dereference_check().
 543 */
 544#define rcu_dereference(p) rcu_dereference_check(p, 0)
 545
 546/**
 547 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 548 * @p: The pointer to read, prior to dereferencing
 549 *
 550 * Makes rcu_dereference_check() do the dirty work.
 551 */
 552#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 553
 554/**
 555 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 556 * @p: The pointer to read, prior to dereferencing
 557 *
 558 * Makes rcu_dereference_check() do the dirty work.
 559 */
 560#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 561
 562/**
 563 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 564 * @p: The pointer to hand off
 565 *
 566 * This is simply an identity function, but it documents where a pointer
 567 * is handed off from RCU to some other synchronization mechanism, for
 568 * example, reference counting or locking.  In C11, it would map to
 569 * kill_dependency().  It could be used as follows::
 570 *
 571 *      rcu_read_lock();
 572 *      p = rcu_dereference(gp);
 573 *      long_lived = is_long_lived(p);
 574 *      if (long_lived) {
 575 *              if (!atomic_inc_not_zero(p->refcnt))
 576 *                      long_lived = false;
 577 *              else
 578 *                      p = rcu_pointer_handoff(p);
 579 *      }
 580 *      rcu_read_unlock();
 581 */
 582#define rcu_pointer_handoff(p) (p)
 583
 584/**
 585 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 586 *
 587 * When synchronize_rcu() is invoked on one CPU while other CPUs
 588 * are within RCU read-side critical sections, then the
 589 * synchronize_rcu() is guaranteed to block until after all the other
 590 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 591 * on one CPU while other CPUs are within RCU read-side critical
 592 * sections, invocation of the corresponding RCU callback is deferred
 593 * until after the all the other CPUs exit their critical sections.
 594 *
 595 * Note, however, that RCU callbacks are permitted to run concurrently
 596 * with new RCU read-side critical sections.  One way that this can happen
 597 * is via the following sequence of events: (1) CPU 0 enters an RCU
 598 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 599 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 600 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 601 * callback is invoked.  This is legal, because the RCU read-side critical
 602 * section that was running concurrently with the call_rcu() (and which
 603 * therefore might be referencing something that the corresponding RCU
 604 * callback would free up) has completed before the corresponding
 605 * RCU callback is invoked.
 606 *
 607 * RCU read-side critical sections may be nested.  Any deferred actions
 608 * will be deferred until the outermost RCU read-side critical section
 609 * completes.
 610 *
 611 * You can avoid reading and understanding the next paragraph by
 612 * following this rule: don't put anything in an rcu_read_lock() RCU
 613 * read-side critical section that would block in a !PREEMPT kernel.
 614 * But if you want the full story, read on!
 615 *
 616 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 617 * it is illegal to block while in an RCU read-side critical section.
 618 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
 619 * kernel builds, RCU read-side critical sections may be preempted,
 620 * but explicit blocking is illegal.  Finally, in preemptible RCU
 621 * implementations in real-time (with -rt patchset) kernel builds, RCU
 622 * read-side critical sections may be preempted and they may also block, but
 623 * only when acquiring spinlocks that are subject to priority inheritance.
 624 */
 625static inline void rcu_read_lock(void)
 626{
 627        __rcu_read_lock();
 628        __acquire(RCU);
 629        rcu_lock_acquire(&rcu_lock_map);
 630        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 631                         "rcu_read_lock() used illegally while idle");
 632}
 633
 634/*
 635 * So where is rcu_write_lock()?  It does not exist, as there is no
 636 * way for writers to lock out RCU readers.  This is a feature, not
 637 * a bug -- this property is what provides RCU's performance benefits.
 638 * Of course, writers must coordinate with each other.  The normal
 639 * spinlock primitives work well for this, but any other technique may be
 640 * used as well.  RCU does not care how the writers keep out of each
 641 * others' way, as long as they do so.
 642 */
 643
 644/**
 645 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 646 *
 647 * In most situations, rcu_read_unlock() is immune from deadlock.
 648 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 649 * is responsible for deboosting, which it does via rt_mutex_unlock().
 650 * Unfortunately, this function acquires the scheduler's runqueue and
 651 * priority-inheritance spinlocks.  This means that deadlock could result
 652 * if the caller of rcu_read_unlock() already holds one of these locks or
 653 * any lock that is ever acquired while holding them.
 654 *
 655 * That said, RCU readers are never priority boosted unless they were
 656 * preempted.  Therefore, one way to avoid deadlock is to make sure
 657 * that preemption never happens within any RCU read-side critical
 658 * section whose outermost rcu_read_unlock() is called with one of
 659 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 660 * a number of ways, for example, by invoking preempt_disable() before
 661 * critical section's outermost rcu_read_lock().
 662 *
 663 * Given that the set of locks acquired by rt_mutex_unlock() might change
 664 * at any time, a somewhat more future-proofed approach is to make sure
 665 * that that preemption never happens within any RCU read-side critical
 666 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 667 * This approach relies on the fact that rt_mutex_unlock() currently only
 668 * acquires irq-disabled locks.
 669 *
 670 * The second of these two approaches is best in most situations,
 671 * however, the first approach can also be useful, at least to those
 672 * developers willing to keep abreast of the set of locks acquired by
 673 * rt_mutex_unlock().
 674 *
 675 * See rcu_read_lock() for more information.
 676 */
 677static inline void rcu_read_unlock(void)
 678{
 679        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 680                         "rcu_read_unlock() used illegally while idle");
 681        __release(RCU);
 682        __rcu_read_unlock();
 683        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 684}
 685
 686/**
 687 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 688 *
 689 * This is equivalent of rcu_read_lock(), but to be used when updates
 690 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 691 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 692 * softirq handler to be a quiescent state, a process in RCU read-side
 693 * critical section must be protected by disabling softirqs. Read-side
 694 * critical sections in interrupt context can use just rcu_read_lock(),
 695 * though this should at least be commented to avoid confusing people
 696 * reading the code.
 697 *
 698 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 699 * must occur in the same context, for example, it is illegal to invoke
 700 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 701 * was invoked from some other task.
 702 */
 703static inline void rcu_read_lock_bh(void)
 704{
 705        local_bh_disable();
 706        __acquire(RCU_BH);
 707        rcu_lock_acquire(&rcu_bh_lock_map);
 708        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 709                         "rcu_read_lock_bh() used illegally while idle");
 710}
 711
 712/*
 713 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 714 *
 715 * See rcu_read_lock_bh() for more information.
 716 */
 717static inline void rcu_read_unlock_bh(void)
 718{
 719        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 720                         "rcu_read_unlock_bh() used illegally while idle");
 721        rcu_lock_release(&rcu_bh_lock_map);
 722        __release(RCU_BH);
 723        local_bh_enable();
 724}
 725
 726/**
 727 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 728 *
 729 * This is equivalent of rcu_read_lock(), but to be used when updates
 730 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 731 * Read-side critical sections can also be introduced by anything that
 732 * disables preemption, including local_irq_disable() and friends.
 733 *
 734 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 735 * must occur in the same context, for example, it is illegal to invoke
 736 * rcu_read_unlock_sched() from process context if the matching
 737 * rcu_read_lock_sched() was invoked from an NMI handler.
 738 */
 739static inline void rcu_read_lock_sched(void)
 740{
 741        preempt_disable();
 742        __acquire(RCU_SCHED);
 743        rcu_lock_acquire(&rcu_sched_lock_map);
 744        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 745                         "rcu_read_lock_sched() used illegally while idle");
 746}
 747
 748/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 749static inline notrace void rcu_read_lock_sched_notrace(void)
 750{
 751        preempt_disable_notrace();
 752        __acquire(RCU_SCHED);
 753}
 754
 755/*
 756 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 757 *
 758 * See rcu_read_lock_sched for more information.
 759 */
 760static inline void rcu_read_unlock_sched(void)
 761{
 762        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 763                         "rcu_read_unlock_sched() used illegally while idle");
 764        rcu_lock_release(&rcu_sched_lock_map);
 765        __release(RCU_SCHED);
 766        preempt_enable();
 767}
 768
 769/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 770static inline notrace void rcu_read_unlock_sched_notrace(void)
 771{
 772        __release(RCU_SCHED);
 773        preempt_enable_notrace();
 774}
 775
 776/**
 777 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 778 * @p: The pointer to be initialized.
 779 * @v: The value to initialized the pointer to.
 780 *
 781 * Initialize an RCU-protected pointer in special cases where readers
 782 * do not need ordering constraints on the CPU or the compiler.  These
 783 * special cases are:
 784 *
 785 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 786 * 2.   The caller has taken whatever steps are required to prevent
 787 *      RCU readers from concurrently accessing this pointer *or*
 788 * 3.   The referenced data structure has already been exposed to
 789 *      readers either at compile time or via rcu_assign_pointer() *and*
 790 *
 791 *      a.      You have not made *any* reader-visible changes to
 792 *              this structure since then *or*
 793 *      b.      It is OK for readers accessing this structure from its
 794 *              new location to see the old state of the structure.  (For
 795 *              example, the changes were to statistical counters or to
 796 *              other state where exact synchronization is not required.)
 797 *
 798 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 799 * result in impossible-to-diagnose memory corruption.  As in the structures
 800 * will look OK in crash dumps, but any concurrent RCU readers might
 801 * see pre-initialized values of the referenced data structure.  So
 802 * please be very careful how you use RCU_INIT_POINTER()!!!
 803 *
 804 * If you are creating an RCU-protected linked structure that is accessed
 805 * by a single external-to-structure RCU-protected pointer, then you may
 806 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 807 * pointers, but you must use rcu_assign_pointer() to initialize the
 808 * external-to-structure pointer *after* you have completely initialized
 809 * the reader-accessible portions of the linked structure.
 810 *
 811 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 812 * ordering guarantees for either the CPU or the compiler.
 813 */
 814#define RCU_INIT_POINTER(p, v) \
 815        do { \
 816                rcu_dereference_sparse(p, __rcu); \
 817                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 818        } while (0)
 819
 820/**
 821 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 822 * @p: The pointer to be initialized.
 823 * @v: The value to initialized the pointer to.
 824 *
 825 * GCC-style initialization for an RCU-protected pointer in a structure field.
 826 */
 827#define RCU_POINTER_INITIALIZER(p, v) \
 828                .p = RCU_INITIALIZER(v)
 829
 830/*
 831 * Does the specified offset indicate that the corresponding rcu_head
 832 * structure can be handled by kfree_rcu()?
 833 */
 834#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
 835
 836/*
 837 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 838 */
 839#define __kfree_rcu(head, offset) \
 840        do { \
 841                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
 842                kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
 843        } while (0)
 844
 845/**
 846 * kfree_rcu() - kfree an object after a grace period.
 847 * @ptr:        pointer to kfree
 848 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
 849 *
 850 * Many rcu callbacks functions just call kfree() on the base structure.
 851 * These functions are trivial, but their size adds up, and furthermore
 852 * when they are used in a kernel module, that module must invoke the
 853 * high-latency rcu_barrier() function at module-unload time.
 854 *
 855 * The kfree_rcu() function handles this issue.  Rather than encoding a
 856 * function address in the embedded rcu_head structure, kfree_rcu() instead
 857 * encodes the offset of the rcu_head structure within the base structure.
 858 * Because the functions are not allowed in the low-order 4096 bytes of
 859 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 860 * If the offset is larger than 4095 bytes, a compile-time error will
 861 * be generated in __kfree_rcu().  If this error is triggered, you can
 862 * either fall back to use of call_rcu() or rearrange the structure to
 863 * position the rcu_head structure into the first 4096 bytes.
 864 *
 865 * Note that the allowable offset might decrease in the future, for example,
 866 * to allow something like kmem_cache_free_rcu().
 867 *
 868 * The BUILD_BUG_ON check must not involve any function calls, hence the
 869 * checks are done in macros here.
 870 */
 871#define kfree_rcu(ptr, rcu_head)                                        \
 872        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
 873
 874
 875/*
 876 * Place this after a lock-acquisition primitive to guarantee that
 877 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 878 * if the UNLOCK and LOCK are executed by the same CPU or if the
 879 * UNLOCK and LOCK operate on the same lock variable.
 880 */
 881#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 882#define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 883#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 884#define smp_mb__after_unlock_lock()     do { } while (0)
 885#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 886
 887
 888#endif /* __LINUX_RCUPDATE_H */
 889