linux/mm/kasan/kasan.c
<<
>>
Prefs
   1/*
   2 * This file contains shadow memory manipulation code.
   3 *
   4 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
   5 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
   6 *
   7 * Some code borrowed from https://github.com/xairy/kasan-prototype by
   8 *        Andrey Konovalov <andreyknvl@gmail.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17#define DISABLE_BRANCH_PROFILING
  18
  19#include <linux/export.h>
  20#include <linux/interrupt.h>
  21#include <linux/init.h>
  22#include <linux/kasan.h>
  23#include <linux/kernel.h>
  24#include <linux/kmemleak.h>
  25#include <linux/linkage.h>
  26#include <linux/memblock.h>
  27#include <linux/memory.h>
  28#include <linux/mm.h>
  29#include <linux/module.h>
  30#include <linux/printk.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/slab.h>
  34#include <linux/stacktrace.h>
  35#include <linux/string.h>
  36#include <linux/types.h>
  37#include <linux/vmalloc.h>
  38#include <linux/bug.h>
  39
  40#include "kasan.h"
  41#include "../slab.h"
  42
  43void kasan_enable_current(void)
  44{
  45        current->kasan_depth++;
  46}
  47
  48void kasan_disable_current(void)
  49{
  50        current->kasan_depth--;
  51}
  52
  53/*
  54 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
  55 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
  56 */
  57static void kasan_poison_shadow(const void *address, size_t size, u8 value)
  58{
  59        void *shadow_start, *shadow_end;
  60
  61        shadow_start = kasan_mem_to_shadow(address);
  62        shadow_end = kasan_mem_to_shadow(address + size);
  63
  64        memset(shadow_start, value, shadow_end - shadow_start);
  65}
  66
  67void kasan_unpoison_shadow(const void *address, size_t size)
  68{
  69        kasan_poison_shadow(address, size, 0);
  70
  71        if (size & KASAN_SHADOW_MASK) {
  72                u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
  73                *shadow = size & KASAN_SHADOW_MASK;
  74        }
  75}
  76
  77static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
  78{
  79        void *base = task_stack_page(task);
  80        size_t size = sp - base;
  81
  82        kasan_unpoison_shadow(base, size);
  83}
  84
  85/* Unpoison the entire stack for a task. */
  86void kasan_unpoison_task_stack(struct task_struct *task)
  87{
  88        __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
  89}
  90
  91/* Unpoison the stack for the current task beyond a watermark sp value. */
  92asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
  93{
  94        /*
  95         * Calculate the task stack base address.  Avoid using 'current'
  96         * because this function is called by early resume code which hasn't
  97         * yet set up the percpu register (%gs).
  98         */
  99        void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
 100
 101        kasan_unpoison_shadow(base, watermark - base);
 102}
 103
 104/*
 105 * Clear all poison for the region between the current SP and a provided
 106 * watermark value, as is sometimes required prior to hand-crafted asm function
 107 * returns in the middle of functions.
 108 */
 109void kasan_unpoison_stack_above_sp_to(const void *watermark)
 110{
 111        const void *sp = __builtin_frame_address(0);
 112        size_t size = watermark - sp;
 113
 114        if (WARN_ON(sp > watermark))
 115                return;
 116        kasan_unpoison_shadow(sp, size);
 117}
 118
 119/*
 120 * All functions below always inlined so compiler could
 121 * perform better optimizations in each of __asan_loadX/__assn_storeX
 122 * depending on memory access size X.
 123 */
 124
 125static __always_inline bool memory_is_poisoned_1(unsigned long addr)
 126{
 127        s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
 128
 129        if (unlikely(shadow_value)) {
 130                s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
 131                return unlikely(last_accessible_byte >= shadow_value);
 132        }
 133
 134        return false;
 135}
 136
 137static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
 138                                                unsigned long size)
 139{
 140        u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
 141
 142        /*
 143         * Access crosses 8(shadow size)-byte boundary. Such access maps
 144         * into 2 shadow bytes, so we need to check them both.
 145         */
 146        if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
 147                return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
 148
 149        return memory_is_poisoned_1(addr + size - 1);
 150}
 151
 152static __always_inline bool memory_is_poisoned_16(unsigned long addr)
 153{
 154        u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
 155
 156        /* Unaligned 16-bytes access maps into 3 shadow bytes. */
 157        if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
 158                return *shadow_addr || memory_is_poisoned_1(addr + 15);
 159
 160        return *shadow_addr;
 161}
 162
 163static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
 164                                        size_t size)
 165{
 166        while (size) {
 167                if (unlikely(*start))
 168                        return (unsigned long)start;
 169                start++;
 170                size--;
 171        }
 172
 173        return 0;
 174}
 175
 176static __always_inline unsigned long memory_is_nonzero(const void *start,
 177                                                const void *end)
 178{
 179        unsigned int words;
 180        unsigned long ret;
 181        unsigned int prefix = (unsigned long)start % 8;
 182
 183        if (end - start <= 16)
 184                return bytes_is_nonzero(start, end - start);
 185
 186        if (prefix) {
 187                prefix = 8 - prefix;
 188                ret = bytes_is_nonzero(start, prefix);
 189                if (unlikely(ret))
 190                        return ret;
 191                start += prefix;
 192        }
 193
 194        words = (end - start) / 8;
 195        while (words) {
 196                if (unlikely(*(u64 *)start))
 197                        return bytes_is_nonzero(start, 8);
 198                start += 8;
 199                words--;
 200        }
 201
 202        return bytes_is_nonzero(start, (end - start) % 8);
 203}
 204
 205static __always_inline bool memory_is_poisoned_n(unsigned long addr,
 206                                                size_t size)
 207{
 208        unsigned long ret;
 209
 210        ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
 211                        kasan_mem_to_shadow((void *)addr + size - 1) + 1);
 212
 213        if (unlikely(ret)) {
 214                unsigned long last_byte = addr + size - 1;
 215                s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
 216
 217                if (unlikely(ret != (unsigned long)last_shadow ||
 218                        ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
 219                        return true;
 220        }
 221        return false;
 222}
 223
 224static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
 225{
 226        if (__builtin_constant_p(size)) {
 227                switch (size) {
 228                case 1:
 229                        return memory_is_poisoned_1(addr);
 230                case 2:
 231                case 4:
 232                case 8:
 233                        return memory_is_poisoned_2_4_8(addr, size);
 234                case 16:
 235                        return memory_is_poisoned_16(addr);
 236                default:
 237                        BUILD_BUG();
 238                }
 239        }
 240
 241        return memory_is_poisoned_n(addr, size);
 242}
 243
 244static __always_inline void check_memory_region_inline(unsigned long addr,
 245                                                size_t size, bool write,
 246                                                unsigned long ret_ip)
 247{
 248        if (unlikely(size == 0))
 249                return;
 250
 251        if (unlikely((void *)addr <
 252                kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
 253                kasan_report(addr, size, write, ret_ip);
 254                return;
 255        }
 256
 257        if (likely(!memory_is_poisoned(addr, size)))
 258                return;
 259
 260        kasan_report(addr, size, write, ret_ip);
 261}
 262
 263static void check_memory_region(unsigned long addr,
 264                                size_t size, bool write,
 265                                unsigned long ret_ip)
 266{
 267        check_memory_region_inline(addr, size, write, ret_ip);
 268}
 269
 270void kasan_check_read(const volatile void *p, unsigned int size)
 271{
 272        check_memory_region((unsigned long)p, size, false, _RET_IP_);
 273}
 274EXPORT_SYMBOL(kasan_check_read);
 275
 276void kasan_check_write(const volatile void *p, unsigned int size)
 277{
 278        check_memory_region((unsigned long)p, size, true, _RET_IP_);
 279}
 280EXPORT_SYMBOL(kasan_check_write);
 281
 282#undef memset
 283void *memset(void *addr, int c, size_t len)
 284{
 285        check_memory_region((unsigned long)addr, len, true, _RET_IP_);
 286
 287        return __memset(addr, c, len);
 288}
 289
 290#undef memmove
 291void *memmove(void *dest, const void *src, size_t len)
 292{
 293        check_memory_region((unsigned long)src, len, false, _RET_IP_);
 294        check_memory_region((unsigned long)dest, len, true, _RET_IP_);
 295
 296        return __memmove(dest, src, len);
 297}
 298
 299#undef memcpy
 300void *memcpy(void *dest, const void *src, size_t len)
 301{
 302        check_memory_region((unsigned long)src, len, false, _RET_IP_);
 303        check_memory_region((unsigned long)dest, len, true, _RET_IP_);
 304
 305        return __memcpy(dest, src, len);
 306}
 307
 308void kasan_alloc_pages(struct page *page, unsigned int order)
 309{
 310        if (likely(!PageHighMem(page)))
 311                kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
 312}
 313
 314void kasan_free_pages(struct page *page, unsigned int order)
 315{
 316        if (likely(!PageHighMem(page)))
 317                kasan_poison_shadow(page_address(page),
 318                                PAGE_SIZE << order,
 319                                KASAN_FREE_PAGE);
 320}
 321
 322/*
 323 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 324 * For larger allocations larger redzones are used.
 325 */
 326static unsigned int optimal_redzone(unsigned int object_size)
 327{
 328        return
 329                object_size <= 64        - 16   ? 16 :
 330                object_size <= 128       - 32   ? 32 :
 331                object_size <= 512       - 64   ? 64 :
 332                object_size <= 4096      - 128  ? 128 :
 333                object_size <= (1 << 14) - 256  ? 256 :
 334                object_size <= (1 << 15) - 512  ? 512 :
 335                object_size <= (1 << 16) - 1024 ? 1024 : 2048;
 336}
 337
 338void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
 339                        slab_flags_t *flags)
 340{
 341        unsigned int orig_size = *size;
 342        int redzone_adjust;
 343
 344        /* Add alloc meta. */
 345        cache->kasan_info.alloc_meta_offset = *size;
 346        *size += sizeof(struct kasan_alloc_meta);
 347
 348        /* Add free meta. */
 349        if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
 350            cache->object_size < sizeof(struct kasan_free_meta)) {
 351                cache->kasan_info.free_meta_offset = *size;
 352                *size += sizeof(struct kasan_free_meta);
 353        }
 354        redzone_adjust = optimal_redzone(cache->object_size) -
 355                (*size - cache->object_size);
 356
 357        if (redzone_adjust > 0)
 358                *size += redzone_adjust;
 359
 360        *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
 361                        max(*size, cache->object_size +
 362                                        optimal_redzone(cache->object_size)));
 363
 364        /*
 365         * If the metadata doesn't fit, don't enable KASAN at all.
 366         */
 367        if (*size <= cache->kasan_info.alloc_meta_offset ||
 368                        *size <= cache->kasan_info.free_meta_offset) {
 369                cache->kasan_info.alloc_meta_offset = 0;
 370                cache->kasan_info.free_meta_offset = 0;
 371                *size = orig_size;
 372                return;
 373        }
 374
 375        *flags |= SLAB_KASAN;
 376}
 377
 378void kasan_cache_shrink(struct kmem_cache *cache)
 379{
 380        quarantine_remove_cache(cache);
 381}
 382
 383void kasan_cache_shutdown(struct kmem_cache *cache)
 384{
 385        if (!__kmem_cache_empty(cache))
 386                quarantine_remove_cache(cache);
 387}
 388
 389size_t kasan_metadata_size(struct kmem_cache *cache)
 390{
 391        return (cache->kasan_info.alloc_meta_offset ?
 392                sizeof(struct kasan_alloc_meta) : 0) +
 393                (cache->kasan_info.free_meta_offset ?
 394                sizeof(struct kasan_free_meta) : 0);
 395}
 396
 397void kasan_poison_slab(struct page *page)
 398{
 399        kasan_poison_shadow(page_address(page),
 400                        PAGE_SIZE << compound_order(page),
 401                        KASAN_KMALLOC_REDZONE);
 402}
 403
 404void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
 405{
 406        kasan_unpoison_shadow(object, cache->object_size);
 407}
 408
 409void kasan_poison_object_data(struct kmem_cache *cache, void *object)
 410{
 411        kasan_poison_shadow(object,
 412                        round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
 413                        KASAN_KMALLOC_REDZONE);
 414}
 415
 416static inline int in_irqentry_text(unsigned long ptr)
 417{
 418        return (ptr >= (unsigned long)&__irqentry_text_start &&
 419                ptr < (unsigned long)&__irqentry_text_end) ||
 420                (ptr >= (unsigned long)&__softirqentry_text_start &&
 421                 ptr < (unsigned long)&__softirqentry_text_end);
 422}
 423
 424static inline void filter_irq_stacks(struct stack_trace *trace)
 425{
 426        int i;
 427
 428        if (!trace->nr_entries)
 429                return;
 430        for (i = 0; i < trace->nr_entries; i++)
 431                if (in_irqentry_text(trace->entries[i])) {
 432                        /* Include the irqentry function into the stack. */
 433                        trace->nr_entries = i + 1;
 434                        break;
 435                }
 436}
 437
 438static inline depot_stack_handle_t save_stack(gfp_t flags)
 439{
 440        unsigned long entries[KASAN_STACK_DEPTH];
 441        struct stack_trace trace = {
 442                .nr_entries = 0,
 443                .entries = entries,
 444                .max_entries = KASAN_STACK_DEPTH,
 445                .skip = 0
 446        };
 447
 448        save_stack_trace(&trace);
 449        filter_irq_stacks(&trace);
 450        if (trace.nr_entries != 0 &&
 451            trace.entries[trace.nr_entries-1] == ULONG_MAX)
 452                trace.nr_entries--;
 453
 454        return depot_save_stack(&trace, flags);
 455}
 456
 457static inline void set_track(struct kasan_track *track, gfp_t flags)
 458{
 459        track->pid = current->pid;
 460        track->stack = save_stack(flags);
 461}
 462
 463struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
 464                                        const void *object)
 465{
 466        BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
 467        return (void *)object + cache->kasan_info.alloc_meta_offset;
 468}
 469
 470struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
 471                                      const void *object)
 472{
 473        BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
 474        return (void *)object + cache->kasan_info.free_meta_offset;
 475}
 476
 477void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
 478{
 479        struct kasan_alloc_meta *alloc_info;
 480
 481        if (!(cache->flags & SLAB_KASAN))
 482                return;
 483
 484        alloc_info = get_alloc_info(cache, object);
 485        __memset(alloc_info, 0, sizeof(*alloc_info));
 486}
 487
 488void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
 489{
 490        kasan_kmalloc(cache, object, cache->object_size, flags);
 491}
 492
 493static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
 494                              unsigned long ip, bool quarantine)
 495{
 496        s8 shadow_byte;
 497        unsigned long rounded_up_size;
 498
 499        if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
 500            object)) {
 501                kasan_report_invalid_free(object, ip);
 502                return true;
 503        }
 504
 505        /* RCU slabs could be legally used after free within the RCU period */
 506        if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
 507                return false;
 508
 509        shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
 510        if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
 511                kasan_report_invalid_free(object, ip);
 512                return true;
 513        }
 514
 515        rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
 516        kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
 517
 518        if (!quarantine || unlikely(!(cache->flags & SLAB_KASAN)))
 519                return false;
 520
 521        set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
 522        quarantine_put(get_free_info(cache, object), cache);
 523        return true;
 524}
 525
 526bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
 527{
 528        return __kasan_slab_free(cache, object, ip, true);
 529}
 530
 531void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
 532                   gfp_t flags)
 533{
 534        unsigned long redzone_start;
 535        unsigned long redzone_end;
 536
 537        if (gfpflags_allow_blocking(flags))
 538                quarantine_reduce();
 539
 540        if (unlikely(object == NULL))
 541                return;
 542
 543        redzone_start = round_up((unsigned long)(object + size),
 544                                KASAN_SHADOW_SCALE_SIZE);
 545        redzone_end = round_up((unsigned long)object + cache->object_size,
 546                                KASAN_SHADOW_SCALE_SIZE);
 547
 548        kasan_unpoison_shadow(object, size);
 549        kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
 550                KASAN_KMALLOC_REDZONE);
 551
 552        if (cache->flags & SLAB_KASAN)
 553                set_track(&get_alloc_info(cache, object)->alloc_track, flags);
 554}
 555EXPORT_SYMBOL(kasan_kmalloc);
 556
 557void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
 558{
 559        struct page *page;
 560        unsigned long redzone_start;
 561        unsigned long redzone_end;
 562
 563        if (gfpflags_allow_blocking(flags))
 564                quarantine_reduce();
 565
 566        if (unlikely(ptr == NULL))
 567                return;
 568
 569        page = virt_to_page(ptr);
 570        redzone_start = round_up((unsigned long)(ptr + size),
 571                                KASAN_SHADOW_SCALE_SIZE);
 572        redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
 573
 574        kasan_unpoison_shadow(ptr, size);
 575        kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
 576                KASAN_PAGE_REDZONE);
 577}
 578
 579void kasan_krealloc(const void *object, size_t size, gfp_t flags)
 580{
 581        struct page *page;
 582
 583        if (unlikely(object == ZERO_SIZE_PTR))
 584                return;
 585
 586        page = virt_to_head_page(object);
 587
 588        if (unlikely(!PageSlab(page)))
 589                kasan_kmalloc_large(object, size, flags);
 590        else
 591                kasan_kmalloc(page->slab_cache, object, size, flags);
 592}
 593
 594void kasan_poison_kfree(void *ptr, unsigned long ip)
 595{
 596        struct page *page;
 597
 598        page = virt_to_head_page(ptr);
 599
 600        if (unlikely(!PageSlab(page))) {
 601                if (ptr != page_address(page)) {
 602                        kasan_report_invalid_free(ptr, ip);
 603                        return;
 604                }
 605                kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
 606                                KASAN_FREE_PAGE);
 607        } else {
 608                __kasan_slab_free(page->slab_cache, ptr, ip, false);
 609        }
 610}
 611
 612void kasan_kfree_large(void *ptr, unsigned long ip)
 613{
 614        if (ptr != page_address(virt_to_head_page(ptr)))
 615                kasan_report_invalid_free(ptr, ip);
 616        /* The object will be poisoned by page_alloc. */
 617}
 618
 619int kasan_module_alloc(void *addr, size_t size)
 620{
 621        void *ret;
 622        size_t scaled_size;
 623        size_t shadow_size;
 624        unsigned long shadow_start;
 625
 626        shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
 627        scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
 628        shadow_size = round_up(scaled_size, PAGE_SIZE);
 629
 630        if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
 631                return -EINVAL;
 632
 633        ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
 634                        shadow_start + shadow_size,
 635                        GFP_KERNEL | __GFP_ZERO,
 636                        PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
 637                        __builtin_return_address(0));
 638
 639        if (ret) {
 640                find_vm_area(addr)->flags |= VM_KASAN;
 641                kmemleak_ignore(ret);
 642                return 0;
 643        }
 644
 645        return -ENOMEM;
 646}
 647
 648void kasan_free_shadow(const struct vm_struct *vm)
 649{
 650        if (vm->flags & VM_KASAN)
 651                vfree(kasan_mem_to_shadow(vm->addr));
 652}
 653
 654static void register_global(struct kasan_global *global)
 655{
 656        size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
 657
 658        kasan_unpoison_shadow(global->beg, global->size);
 659
 660        kasan_poison_shadow(global->beg + aligned_size,
 661                global->size_with_redzone - aligned_size,
 662                KASAN_GLOBAL_REDZONE);
 663}
 664
 665void __asan_register_globals(struct kasan_global *globals, size_t size)
 666{
 667        int i;
 668
 669        for (i = 0; i < size; i++)
 670                register_global(&globals[i]);
 671}
 672EXPORT_SYMBOL(__asan_register_globals);
 673
 674void __asan_unregister_globals(struct kasan_global *globals, size_t size)
 675{
 676}
 677EXPORT_SYMBOL(__asan_unregister_globals);
 678
 679#define DEFINE_ASAN_LOAD_STORE(size)                                    \
 680        void __asan_load##size(unsigned long addr)                      \
 681        {                                                               \
 682                check_memory_region_inline(addr, size, false, _RET_IP_);\
 683        }                                                               \
 684        EXPORT_SYMBOL(__asan_load##size);                               \
 685        __alias(__asan_load##size)                                      \
 686        void __asan_load##size##_noabort(unsigned long);                \
 687        EXPORT_SYMBOL(__asan_load##size##_noabort);                     \
 688        void __asan_store##size(unsigned long addr)                     \
 689        {                                                               \
 690                check_memory_region_inline(addr, size, true, _RET_IP_); \
 691        }                                                               \
 692        EXPORT_SYMBOL(__asan_store##size);                              \
 693        __alias(__asan_store##size)                                     \
 694        void __asan_store##size##_noabort(unsigned long);               \
 695        EXPORT_SYMBOL(__asan_store##size##_noabort)
 696
 697DEFINE_ASAN_LOAD_STORE(1);
 698DEFINE_ASAN_LOAD_STORE(2);
 699DEFINE_ASAN_LOAD_STORE(4);
 700DEFINE_ASAN_LOAD_STORE(8);
 701DEFINE_ASAN_LOAD_STORE(16);
 702
 703void __asan_loadN(unsigned long addr, size_t size)
 704{
 705        check_memory_region(addr, size, false, _RET_IP_);
 706}
 707EXPORT_SYMBOL(__asan_loadN);
 708
 709__alias(__asan_loadN)
 710void __asan_loadN_noabort(unsigned long, size_t);
 711EXPORT_SYMBOL(__asan_loadN_noabort);
 712
 713void __asan_storeN(unsigned long addr, size_t size)
 714{
 715        check_memory_region(addr, size, true, _RET_IP_);
 716}
 717EXPORT_SYMBOL(__asan_storeN);
 718
 719__alias(__asan_storeN)
 720void __asan_storeN_noabort(unsigned long, size_t);
 721EXPORT_SYMBOL(__asan_storeN_noabort);
 722
 723/* to shut up compiler complaints */
 724void __asan_handle_no_return(void) {}
 725EXPORT_SYMBOL(__asan_handle_no_return);
 726
 727/* Emitted by compiler to poison large objects when they go out of scope. */
 728void __asan_poison_stack_memory(const void *addr, size_t size)
 729{
 730        /*
 731         * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
 732         * by redzones, so we simply round up size to simplify logic.
 733         */
 734        kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
 735                            KASAN_USE_AFTER_SCOPE);
 736}
 737EXPORT_SYMBOL(__asan_poison_stack_memory);
 738
 739/* Emitted by compiler to unpoison large objects when they go into scope. */
 740void __asan_unpoison_stack_memory(const void *addr, size_t size)
 741{
 742        kasan_unpoison_shadow(addr, size);
 743}
 744EXPORT_SYMBOL(__asan_unpoison_stack_memory);
 745
 746/* Emitted by compiler to poison alloca()ed objects. */
 747void __asan_alloca_poison(unsigned long addr, size_t size)
 748{
 749        size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
 750        size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
 751                        rounded_up_size;
 752        size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);
 753
 754        const void *left_redzone = (const void *)(addr -
 755                        KASAN_ALLOCA_REDZONE_SIZE);
 756        const void *right_redzone = (const void *)(addr + rounded_up_size);
 757
 758        WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
 759
 760        kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
 761                              size - rounded_down_size);
 762        kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
 763                        KASAN_ALLOCA_LEFT);
 764        kasan_poison_shadow(right_redzone,
 765                        padding_size + KASAN_ALLOCA_REDZONE_SIZE,
 766                        KASAN_ALLOCA_RIGHT);
 767}
 768EXPORT_SYMBOL(__asan_alloca_poison);
 769
 770/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
 771void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
 772{
 773        if (unlikely(!stack_top || stack_top > stack_bottom))
 774                return;
 775
 776        kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
 777}
 778EXPORT_SYMBOL(__asan_allocas_unpoison);
 779
 780/* Emitted by the compiler to [un]poison local variables. */
 781#define DEFINE_ASAN_SET_SHADOW(byte) \
 782        void __asan_set_shadow_##byte(const void *addr, size_t size)    \
 783        {                                                               \
 784                __memset((void *)addr, 0x##byte, size);                 \
 785        }                                                               \
 786        EXPORT_SYMBOL(__asan_set_shadow_##byte)
 787
 788DEFINE_ASAN_SET_SHADOW(00);
 789DEFINE_ASAN_SET_SHADOW(f1);
 790DEFINE_ASAN_SET_SHADOW(f2);
 791DEFINE_ASAN_SET_SHADOW(f3);
 792DEFINE_ASAN_SET_SHADOW(f5);
 793DEFINE_ASAN_SET_SHADOW(f8);
 794
 795#ifdef CONFIG_MEMORY_HOTPLUG
 796static bool shadow_mapped(unsigned long addr)
 797{
 798        pgd_t *pgd = pgd_offset_k(addr);
 799        p4d_t *p4d;
 800        pud_t *pud;
 801        pmd_t *pmd;
 802        pte_t *pte;
 803
 804        if (pgd_none(*pgd))
 805                return false;
 806        p4d = p4d_offset(pgd, addr);
 807        if (p4d_none(*p4d))
 808                return false;
 809        pud = pud_offset(p4d, addr);
 810        if (pud_none(*pud))
 811                return false;
 812
 813        /*
 814         * We can't use pud_large() or pud_huge(), the first one is
 815         * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
 816         * pud_bad(), if pud is bad then it's bad because it's huge.
 817         */
 818        if (pud_bad(*pud))
 819                return true;
 820        pmd = pmd_offset(pud, addr);
 821        if (pmd_none(*pmd))
 822                return false;
 823
 824        if (pmd_bad(*pmd))
 825                return true;
 826        pte = pte_offset_kernel(pmd, addr);
 827        return !pte_none(*pte);
 828}
 829
 830static int __meminit kasan_mem_notifier(struct notifier_block *nb,
 831                        unsigned long action, void *data)
 832{
 833        struct memory_notify *mem_data = data;
 834        unsigned long nr_shadow_pages, start_kaddr, shadow_start;
 835        unsigned long shadow_end, shadow_size;
 836
 837        nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
 838        start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
 839        shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
 840        shadow_size = nr_shadow_pages << PAGE_SHIFT;
 841        shadow_end = shadow_start + shadow_size;
 842
 843        if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
 844                WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
 845                return NOTIFY_BAD;
 846
 847        switch (action) {
 848        case MEM_GOING_ONLINE: {
 849                void *ret;
 850
 851                /*
 852                 * If shadow is mapped already than it must have been mapped
 853                 * during the boot. This could happen if we onlining previously
 854                 * offlined memory.
 855                 */
 856                if (shadow_mapped(shadow_start))
 857                        return NOTIFY_OK;
 858
 859                ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
 860                                        shadow_end, GFP_KERNEL,
 861                                        PAGE_KERNEL, VM_NO_GUARD,
 862                                        pfn_to_nid(mem_data->start_pfn),
 863                                        __builtin_return_address(0));
 864                if (!ret)
 865                        return NOTIFY_BAD;
 866
 867                kmemleak_ignore(ret);
 868                return NOTIFY_OK;
 869        }
 870        case MEM_CANCEL_ONLINE:
 871        case MEM_OFFLINE: {
 872                struct vm_struct *vm;
 873
 874                /*
 875                 * shadow_start was either mapped during boot by kasan_init()
 876                 * or during memory online by __vmalloc_node_range().
 877                 * In the latter case we can use vfree() to free shadow.
 878                 * Non-NULL result of the find_vm_area() will tell us if
 879                 * that was the second case.
 880                 *
 881                 * Currently it's not possible to free shadow mapped
 882                 * during boot by kasan_init(). It's because the code
 883                 * to do that hasn't been written yet. So we'll just
 884                 * leak the memory.
 885                 */
 886                vm = find_vm_area((void *)shadow_start);
 887                if (vm)
 888                        vfree((void *)shadow_start);
 889        }
 890        }
 891
 892        return NOTIFY_OK;
 893}
 894
 895static int __init kasan_memhotplug_init(void)
 896{
 897        hotplug_memory_notifier(kasan_mem_notifier, 0);
 898
 899        return 0;
 900}
 901
 902core_initcall(kasan_memhotplug_init);
 903#endif
 904