linux/net/sched/sch_qfq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
   3 *
   4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
   5 * Copyright (c) 2012 Paolo Valente.
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 as published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/bitops.h>
  15#include <linux/errno.h>
  16#include <linux/netdevice.h>
  17#include <linux/pkt_sched.h>
  18#include <net/sch_generic.h>
  19#include <net/pkt_sched.h>
  20#include <net/pkt_cls.h>
  21
  22
  23/*  Quick Fair Queueing Plus
  24    ========================
  25
  26    Sources:
  27
  28    [1] Paolo Valente,
  29    "Reducing the Execution Time of Fair-Queueing Schedulers."
  30    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
  31
  32    Sources for QFQ:
  33
  34    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
  35    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
  36
  37    See also:
  38    http://retis.sssup.it/~fabio/linux/qfq/
  39 */
  40
  41/*
  42
  43  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
  44  classes. Each aggregate is timestamped with a virtual start time S
  45  and a virtual finish time F, and scheduled according to its
  46  timestamps. S and F are computed as a function of a system virtual
  47  time function V. The classes within each aggregate are instead
  48  scheduled with DRR.
  49
  50  To speed up operations, QFQ+ divides also aggregates into a limited
  51  number of groups. Which group a class belongs to depends on the
  52  ratio between the maximum packet length for the class and the weight
  53  of the class. Groups have their own S and F. In the end, QFQ+
  54  schedules groups, then aggregates within groups, then classes within
  55  aggregates. See [1] and [2] for a full description.
  56
  57  Virtual time computations.
  58
  59  S, F and V are all computed in fixed point arithmetic with
  60  FRAC_BITS decimal bits.
  61
  62  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
  63        one bit per index.
  64  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
  65
  66  The layout of the bits is as below:
  67
  68                   [ MTU_SHIFT ][      FRAC_BITS    ]
  69                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
  70                                 ^.__grp->index = 0
  71                                 *.__grp->slot_shift
  72
  73  where MIN_SLOT_SHIFT is derived by difference from the others.
  74
  75  The max group index corresponds to Lmax/w_min, where
  76  Lmax=1<<MTU_SHIFT, w_min = 1 .
  77  From this, and knowing how many groups (MAX_INDEX) we want,
  78  we can derive the shift corresponding to each group.
  79
  80  Because we often need to compute
  81        F = S + len/w_i  and V = V + len/wsum
  82  instead of storing w_i store the value
  83        inv_w = (1<<FRAC_BITS)/w_i
  84  so we can do F = S + len * inv_w * wsum.
  85  We use W_TOT in the formulas so we can easily move between
  86  static and adaptive weight sum.
  87
  88  The per-scheduler-instance data contain all the data structures
  89  for the scheduler: bitmaps and bucket lists.
  90
  91 */
  92
  93/*
  94 * Maximum number of consecutive slots occupied by backlogged classes
  95 * inside a group.
  96 */
  97#define QFQ_MAX_SLOTS   32
  98
  99/*
 100 * Shifts used for aggregate<->group mapping.  We allow class weights that are
 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
 102 * group with the smallest index that can support the L_i / r_i configured
 103 * for the classes in the aggregate.
 104 *
 105 * grp->index is the index of the group; and grp->slot_shift
 106 * is the shift for the corresponding (scaled) sigma_i.
 107 */
 108#define QFQ_MAX_INDEX           24
 109#define QFQ_MAX_WSHIFT          10
 110
 111#define QFQ_MAX_WEIGHT          (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
 112#define QFQ_MAX_WSUM            (64*QFQ_MAX_WEIGHT)
 113
 114#define FRAC_BITS               30      /* fixed point arithmetic */
 115#define ONE_FP                  (1UL << FRAC_BITS)
 116
 117#define QFQ_MTU_SHIFT           16      /* to support TSO/GSO */
 118#define QFQ_MIN_LMAX            512     /* see qfq_slot_insert */
 119
 120#define QFQ_MAX_AGG_CLASSES     8 /* max num classes per aggregate allowed */
 121
 122/*
 123 * Possible group states.  These values are used as indexes for the bitmaps
 124 * array of struct qfq_queue.
 125 */
 126enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
 127
 128struct qfq_group;
 129
 130struct qfq_aggregate;
 131
 132struct qfq_class {
 133        struct Qdisc_class_common common;
 134
 135        unsigned int filter_cnt;
 136
 137        struct gnet_stats_basic_packed bstats;
 138        struct gnet_stats_queue qstats;
 139        struct net_rate_estimator __rcu *rate_est;
 140        struct Qdisc *qdisc;
 141        struct list_head alist;         /* Link for active-classes list. */
 142        struct qfq_aggregate *agg;      /* Parent aggregate. */
 143        int deficit;                    /* DRR deficit counter. */
 144};
 145
 146struct qfq_aggregate {
 147        struct hlist_node next; /* Link for the slot list. */
 148        u64 S, F;               /* flow timestamps (exact) */
 149
 150        /* group we belong to. In principle we would need the index,
 151         * which is log_2(lmax/weight), but we never reference it
 152         * directly, only the group.
 153         */
 154        struct qfq_group *grp;
 155
 156        /* these are copied from the flowset. */
 157        u32     class_weight; /* Weight of each class in this aggregate. */
 158        /* Max pkt size for the classes in this aggregate, DRR quantum. */
 159        int     lmax;
 160
 161        u32     inv_w;      /* ONE_FP/(sum of weights of classes in aggr.). */
 162        u32     budgetmax;  /* Max budget for this aggregate. */
 163        u32     initial_budget, budget;     /* Initial and current budget. */
 164
 165        int               num_classes;  /* Number of classes in this aggr. */
 166        struct list_head  active;       /* DRR queue of active classes. */
 167
 168        struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
 169};
 170
 171struct qfq_group {
 172        u64 S, F;                       /* group timestamps (approx). */
 173        unsigned int slot_shift;        /* Slot shift. */
 174        unsigned int index;             /* Group index. */
 175        unsigned int front;             /* Index of the front slot. */
 176        unsigned long full_slots;       /* non-empty slots */
 177
 178        /* Array of RR lists of active aggregates. */
 179        struct hlist_head slots[QFQ_MAX_SLOTS];
 180};
 181
 182struct qfq_sched {
 183        struct tcf_proto __rcu *filter_list;
 184        struct tcf_block        *block;
 185        struct Qdisc_class_hash clhash;
 186
 187        u64                     oldV, V;        /* Precise virtual times. */
 188        struct qfq_aggregate    *in_serv_agg;   /* Aggregate being served. */
 189        u32                     wsum;           /* weight sum */
 190        u32                     iwsum;          /* inverse weight sum */
 191
 192        unsigned long bitmaps[QFQ_MAX_STATE];       /* Group bitmaps. */
 193        struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
 194        u32 min_slot_shift;     /* Index of the group-0 bit in the bitmaps. */
 195
 196        u32 max_agg_classes;            /* Max number of classes per aggr. */
 197        struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
 198};
 199
 200/*
 201 * Possible reasons why the timestamps of an aggregate are updated
 202 * enqueue: the aggregate switches from idle to active and must scheduled
 203 *          for service
 204 * requeue: the aggregate finishes its budget, so it stops being served and
 205 *          must be rescheduled for service
 206 */
 207enum update_reason {enqueue, requeue};
 208
 209static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
 210{
 211        struct qfq_sched *q = qdisc_priv(sch);
 212        struct Qdisc_class_common *clc;
 213
 214        clc = qdisc_class_find(&q->clhash, classid);
 215        if (clc == NULL)
 216                return NULL;
 217        return container_of(clc, struct qfq_class, common);
 218}
 219
 220static void qfq_purge_queue(struct qfq_class *cl)
 221{
 222        unsigned int len = cl->qdisc->q.qlen;
 223        unsigned int backlog = cl->qdisc->qstats.backlog;
 224
 225        qdisc_reset(cl->qdisc);
 226        qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
 227}
 228
 229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
 230        [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
 231        [TCA_QFQ_LMAX] = { .type = NLA_U32 },
 232};
 233
 234/*
 235 * Calculate a flow index, given its weight and maximum packet length.
 236 * index = log_2(maxlen/weight) but we need to apply the scaling.
 237 * This is used only once at flow creation.
 238 */
 239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
 240{
 241        u64 slot_size = (u64)maxlen * inv_w;
 242        unsigned long size_map;
 243        int index = 0;
 244
 245        size_map = slot_size >> min_slot_shift;
 246        if (!size_map)
 247                goto out;
 248
 249        index = __fls(size_map) + 1;    /* basically a log_2 */
 250        index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
 251
 252        if (index < 0)
 253                index = 0;
 254out:
 255        pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
 256                 (unsigned long) ONE_FP/inv_w, maxlen, index);
 257
 258        return index;
 259}
 260
 261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
 262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
 263                             enum update_reason);
 264
 265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 266                         u32 lmax, u32 weight)
 267{
 268        INIT_LIST_HEAD(&agg->active);
 269        hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 270
 271        agg->lmax = lmax;
 272        agg->class_weight = weight;
 273}
 274
 275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
 276                                          u32 lmax, u32 weight)
 277{
 278        struct qfq_aggregate *agg;
 279
 280        hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
 281                if (agg->lmax == lmax && agg->class_weight == weight)
 282                        return agg;
 283
 284        return NULL;
 285}
 286
 287
 288/* Update aggregate as a function of the new number of classes. */
 289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 290                           int new_num_classes)
 291{
 292        u32 new_agg_weight;
 293
 294        if (new_num_classes == q->max_agg_classes)
 295                hlist_del_init(&agg->nonfull_next);
 296
 297        if (agg->num_classes > new_num_classes &&
 298            new_num_classes == q->max_agg_classes - 1) /* agg no more full */
 299                hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 300
 301        /* The next assignment may let
 302         * agg->initial_budget > agg->budgetmax
 303         * hold, we will take it into account in charge_actual_service().
 304         */
 305        agg->budgetmax = new_num_classes * agg->lmax;
 306        new_agg_weight = agg->class_weight * new_num_classes;
 307        agg->inv_w = ONE_FP/new_agg_weight;
 308
 309        if (agg->grp == NULL) {
 310                int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
 311                                       q->min_slot_shift);
 312                agg->grp = &q->groups[i];
 313        }
 314
 315        q->wsum +=
 316                (int) agg->class_weight * (new_num_classes - agg->num_classes);
 317        q->iwsum = ONE_FP / q->wsum;
 318
 319        agg->num_classes = new_num_classes;
 320}
 321
 322/* Add class to aggregate. */
 323static void qfq_add_to_agg(struct qfq_sched *q,
 324                           struct qfq_aggregate *agg,
 325                           struct qfq_class *cl)
 326{
 327        cl->agg = agg;
 328
 329        qfq_update_agg(q, agg, agg->num_classes+1);
 330        if (cl->qdisc->q.qlen > 0) { /* adding an active class */
 331                list_add_tail(&cl->alist, &agg->active);
 332                if (list_first_entry(&agg->active, struct qfq_class, alist) ==
 333                    cl && q->in_serv_agg != agg) /* agg was inactive */
 334                        qfq_activate_agg(q, agg, enqueue); /* schedule agg */
 335        }
 336}
 337
 338static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
 339
 340static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
 341{
 342        hlist_del_init(&agg->nonfull_next);
 343        q->wsum -= agg->class_weight;
 344        if (q->wsum != 0)
 345                q->iwsum = ONE_FP / q->wsum;
 346
 347        if (q->in_serv_agg == agg)
 348                q->in_serv_agg = qfq_choose_next_agg(q);
 349        kfree(agg);
 350}
 351
 352/* Deschedule class from within its parent aggregate. */
 353static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
 354{
 355        struct qfq_aggregate *agg = cl->agg;
 356
 357
 358        list_del(&cl->alist); /* remove from RR queue of the aggregate */
 359        if (list_empty(&agg->active)) /* agg is now inactive */
 360                qfq_deactivate_agg(q, agg);
 361}
 362
 363/* Remove class from its parent aggregate. */
 364static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 365{
 366        struct qfq_aggregate *agg = cl->agg;
 367
 368        cl->agg = NULL;
 369        if (agg->num_classes == 1) { /* agg being emptied, destroy it */
 370                qfq_destroy_agg(q, agg);
 371                return;
 372        }
 373        qfq_update_agg(q, agg, agg->num_classes-1);
 374}
 375
 376/* Deschedule class and remove it from its parent aggregate. */
 377static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 378{
 379        if (cl->qdisc->q.qlen > 0) /* class is active */
 380                qfq_deactivate_class(q, cl);
 381
 382        qfq_rm_from_agg(q, cl);
 383}
 384
 385/* Move class to a new aggregate, matching the new class weight and/or lmax */
 386static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
 387                           u32 lmax)
 388{
 389        struct qfq_sched *q = qdisc_priv(sch);
 390        struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
 391
 392        if (new_agg == NULL) { /* create new aggregate */
 393                new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
 394                if (new_agg == NULL)
 395                        return -ENOBUFS;
 396                qfq_init_agg(q, new_agg, lmax, weight);
 397        }
 398        qfq_deact_rm_from_agg(q, cl);
 399        qfq_add_to_agg(q, new_agg, cl);
 400
 401        return 0;
 402}
 403
 404static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
 405                            struct nlattr **tca, unsigned long *arg,
 406                            struct netlink_ext_ack *extack)
 407{
 408        struct qfq_sched *q = qdisc_priv(sch);
 409        struct qfq_class *cl = (struct qfq_class *)*arg;
 410        bool existing = false;
 411        struct nlattr *tb[TCA_QFQ_MAX + 1];
 412        struct qfq_aggregate *new_agg = NULL;
 413        u32 weight, lmax, inv_w;
 414        int err;
 415        int delta_w;
 416
 417        if (tca[TCA_OPTIONS] == NULL) {
 418                pr_notice("qfq: no options\n");
 419                return -EINVAL;
 420        }
 421
 422        err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy,
 423                               NULL);
 424        if (err < 0)
 425                return err;
 426
 427        if (tb[TCA_QFQ_WEIGHT]) {
 428                weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
 429                if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
 430                        pr_notice("qfq: invalid weight %u\n", weight);
 431                        return -EINVAL;
 432                }
 433        } else
 434                weight = 1;
 435
 436        if (tb[TCA_QFQ_LMAX]) {
 437                lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
 438                if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
 439                        pr_notice("qfq: invalid max length %u\n", lmax);
 440                        return -EINVAL;
 441                }
 442        } else
 443                lmax = psched_mtu(qdisc_dev(sch));
 444
 445        inv_w = ONE_FP / weight;
 446        weight = ONE_FP / inv_w;
 447
 448        if (cl != NULL &&
 449            lmax == cl->agg->lmax &&
 450            weight == cl->agg->class_weight)
 451                return 0; /* nothing to change */
 452
 453        delta_w = weight - (cl ? cl->agg->class_weight : 0);
 454
 455        if (q->wsum + delta_w > QFQ_MAX_WSUM) {
 456                pr_notice("qfq: total weight out of range (%d + %u)\n",
 457                          delta_w, q->wsum);
 458                return -EINVAL;
 459        }
 460
 461        if (cl != NULL) { /* modify existing class */
 462                if (tca[TCA_RATE]) {
 463                        err = gen_replace_estimator(&cl->bstats, NULL,
 464                                                    &cl->rate_est,
 465                                                    NULL,
 466                                                    qdisc_root_sleeping_running(sch),
 467                                                    tca[TCA_RATE]);
 468                        if (err)
 469                                return err;
 470                }
 471                existing = true;
 472                goto set_change_agg;
 473        }
 474
 475        /* create and init new class */
 476        cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
 477        if (cl == NULL)
 478                return -ENOBUFS;
 479
 480        cl->common.classid = classid;
 481        cl->deficit = lmax;
 482
 483        cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
 484                                      classid, NULL);
 485        if (cl->qdisc == NULL)
 486                cl->qdisc = &noop_qdisc;
 487
 488        if (tca[TCA_RATE]) {
 489                err = gen_new_estimator(&cl->bstats, NULL,
 490                                        &cl->rate_est,
 491                                        NULL,
 492                                        qdisc_root_sleeping_running(sch),
 493                                        tca[TCA_RATE]);
 494                if (err)
 495                        goto destroy_class;
 496        }
 497
 498        if (cl->qdisc != &noop_qdisc)
 499                qdisc_hash_add(cl->qdisc, true);
 500        sch_tree_lock(sch);
 501        qdisc_class_hash_insert(&q->clhash, &cl->common);
 502        sch_tree_unlock(sch);
 503
 504        qdisc_class_hash_grow(sch, &q->clhash);
 505
 506set_change_agg:
 507        sch_tree_lock(sch);
 508        new_agg = qfq_find_agg(q, lmax, weight);
 509        if (new_agg == NULL) { /* create new aggregate */
 510                sch_tree_unlock(sch);
 511                new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
 512                if (new_agg == NULL) {
 513                        err = -ENOBUFS;
 514                        gen_kill_estimator(&cl->rate_est);
 515                        goto destroy_class;
 516                }
 517                sch_tree_lock(sch);
 518                qfq_init_agg(q, new_agg, lmax, weight);
 519        }
 520        if (existing)
 521                qfq_deact_rm_from_agg(q, cl);
 522        qfq_add_to_agg(q, new_agg, cl);
 523        sch_tree_unlock(sch);
 524
 525        *arg = (unsigned long)cl;
 526        return 0;
 527
 528destroy_class:
 529        qdisc_destroy(cl->qdisc);
 530        kfree(cl);
 531        return err;
 532}
 533
 534static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
 535{
 536        struct qfq_sched *q = qdisc_priv(sch);
 537
 538        qfq_rm_from_agg(q, cl);
 539        gen_kill_estimator(&cl->rate_est);
 540        qdisc_destroy(cl->qdisc);
 541        kfree(cl);
 542}
 543
 544static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
 545{
 546        struct qfq_sched *q = qdisc_priv(sch);
 547        struct qfq_class *cl = (struct qfq_class *)arg;
 548
 549        if (cl->filter_cnt > 0)
 550                return -EBUSY;
 551
 552        sch_tree_lock(sch);
 553
 554        qfq_purge_queue(cl);
 555        qdisc_class_hash_remove(&q->clhash, &cl->common);
 556
 557        sch_tree_unlock(sch);
 558
 559        qfq_destroy_class(sch, cl);
 560        return 0;
 561}
 562
 563static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
 564{
 565        return (unsigned long)qfq_find_class(sch, classid);
 566}
 567
 568static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
 569                                       struct netlink_ext_ack *extack)
 570{
 571        struct qfq_sched *q = qdisc_priv(sch);
 572
 573        if (cl)
 574                return NULL;
 575
 576        return q->block;
 577}
 578
 579static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
 580                                  u32 classid)
 581{
 582        struct qfq_class *cl = qfq_find_class(sch, classid);
 583
 584        if (cl != NULL)
 585                cl->filter_cnt++;
 586
 587        return (unsigned long)cl;
 588}
 589
 590static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
 591{
 592        struct qfq_class *cl = (struct qfq_class *)arg;
 593
 594        cl->filter_cnt--;
 595}
 596
 597static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
 598                           struct Qdisc *new, struct Qdisc **old,
 599                           struct netlink_ext_ack *extack)
 600{
 601        struct qfq_class *cl = (struct qfq_class *)arg;
 602
 603        if (new == NULL) {
 604                new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
 605                                        cl->common.classid, NULL);
 606                if (new == NULL)
 607                        new = &noop_qdisc;
 608        }
 609
 610        *old = qdisc_replace(sch, new, &cl->qdisc);
 611        return 0;
 612}
 613
 614static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
 615{
 616        struct qfq_class *cl = (struct qfq_class *)arg;
 617
 618        return cl->qdisc;
 619}
 620
 621static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
 622                          struct sk_buff *skb, struct tcmsg *tcm)
 623{
 624        struct qfq_class *cl = (struct qfq_class *)arg;
 625        struct nlattr *nest;
 626
 627        tcm->tcm_parent = TC_H_ROOT;
 628        tcm->tcm_handle = cl->common.classid;
 629        tcm->tcm_info   = cl->qdisc->handle;
 630
 631        nest = nla_nest_start(skb, TCA_OPTIONS);
 632        if (nest == NULL)
 633                goto nla_put_failure;
 634        if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
 635            nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
 636                goto nla_put_failure;
 637        return nla_nest_end(skb, nest);
 638
 639nla_put_failure:
 640        nla_nest_cancel(skb, nest);
 641        return -EMSGSIZE;
 642}
 643
 644static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
 645                                struct gnet_dump *d)
 646{
 647        struct qfq_class *cl = (struct qfq_class *)arg;
 648        struct tc_qfq_stats xstats;
 649
 650        memset(&xstats, 0, sizeof(xstats));
 651
 652        xstats.weight = cl->agg->class_weight;
 653        xstats.lmax = cl->agg->lmax;
 654
 655        if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
 656                                  d, NULL, &cl->bstats) < 0 ||
 657            gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
 658            gnet_stats_copy_queue(d, NULL,
 659                                  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
 660                return -1;
 661
 662        return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
 663}
 664
 665static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
 666{
 667        struct qfq_sched *q = qdisc_priv(sch);
 668        struct qfq_class *cl;
 669        unsigned int i;
 670
 671        if (arg->stop)
 672                return;
 673
 674        for (i = 0; i < q->clhash.hashsize; i++) {
 675                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
 676                        if (arg->count < arg->skip) {
 677                                arg->count++;
 678                                continue;
 679                        }
 680                        if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
 681                                arg->stop = 1;
 682                                return;
 683                        }
 684                        arg->count++;
 685                }
 686        }
 687}
 688
 689static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
 690                                      int *qerr)
 691{
 692        struct qfq_sched *q = qdisc_priv(sch);
 693        struct qfq_class *cl;
 694        struct tcf_result res;
 695        struct tcf_proto *fl;
 696        int result;
 697
 698        if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
 699                pr_debug("qfq_classify: found %d\n", skb->priority);
 700                cl = qfq_find_class(sch, skb->priority);
 701                if (cl != NULL)
 702                        return cl;
 703        }
 704
 705        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 706        fl = rcu_dereference_bh(q->filter_list);
 707        result = tcf_classify(skb, fl, &res, false);
 708        if (result >= 0) {
 709#ifdef CONFIG_NET_CLS_ACT
 710                switch (result) {
 711                case TC_ACT_QUEUED:
 712                case TC_ACT_STOLEN:
 713                case TC_ACT_TRAP:
 714                        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
 715                        /* fall through */
 716                case TC_ACT_SHOT:
 717                        return NULL;
 718                }
 719#endif
 720                cl = (struct qfq_class *)res.class;
 721                if (cl == NULL)
 722                        cl = qfq_find_class(sch, res.classid);
 723                return cl;
 724        }
 725
 726        return NULL;
 727}
 728
 729/* Generic comparison function, handling wraparound. */
 730static inline int qfq_gt(u64 a, u64 b)
 731{
 732        return (s64)(a - b) > 0;
 733}
 734
 735/* Round a precise timestamp to its slotted value. */
 736static inline u64 qfq_round_down(u64 ts, unsigned int shift)
 737{
 738        return ts & ~((1ULL << shift) - 1);
 739}
 740
 741/* return the pointer to the group with lowest index in the bitmap */
 742static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
 743                                        unsigned long bitmap)
 744{
 745        int index = __ffs(bitmap);
 746        return &q->groups[index];
 747}
 748/* Calculate a mask to mimic what would be ffs_from(). */
 749static inline unsigned long mask_from(unsigned long bitmap, int from)
 750{
 751        return bitmap & ~((1UL << from) - 1);
 752}
 753
 754/*
 755 * The state computation relies on ER=0, IR=1, EB=2, IB=3
 756 * First compute eligibility comparing grp->S, q->V,
 757 * then check if someone is blocking us and possibly add EB
 758 */
 759static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
 760{
 761        /* if S > V we are not eligible */
 762        unsigned int state = qfq_gt(grp->S, q->V);
 763        unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
 764        struct qfq_group *next;
 765
 766        if (mask) {
 767                next = qfq_ffs(q, mask);
 768                if (qfq_gt(grp->F, next->F))
 769                        state |= EB;
 770        }
 771
 772        return state;
 773}
 774
 775
 776/*
 777 * In principle
 778 *      q->bitmaps[dst] |= q->bitmaps[src] & mask;
 779 *      q->bitmaps[src] &= ~mask;
 780 * but we should make sure that src != dst
 781 */
 782static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
 783                                   int src, int dst)
 784{
 785        q->bitmaps[dst] |= q->bitmaps[src] & mask;
 786        q->bitmaps[src] &= ~mask;
 787}
 788
 789static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
 790{
 791        unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
 792        struct qfq_group *next;
 793
 794        if (mask) {
 795                next = qfq_ffs(q, mask);
 796                if (!qfq_gt(next->F, old_F))
 797                        return;
 798        }
 799
 800        mask = (1UL << index) - 1;
 801        qfq_move_groups(q, mask, EB, ER);
 802        qfq_move_groups(q, mask, IB, IR);
 803}
 804
 805/*
 806 * perhaps
 807 *
 808        old_V ^= q->V;
 809        old_V >>= q->min_slot_shift;
 810        if (old_V) {
 811                ...
 812        }
 813 *
 814 */
 815static void qfq_make_eligible(struct qfq_sched *q)
 816{
 817        unsigned long vslot = q->V >> q->min_slot_shift;
 818        unsigned long old_vslot = q->oldV >> q->min_slot_shift;
 819
 820        if (vslot != old_vslot) {
 821                unsigned long mask;
 822                int last_flip_pos = fls(vslot ^ old_vslot);
 823
 824                if (last_flip_pos > 31) /* higher than the number of groups */
 825                        mask = ~0UL;    /* make all groups eligible */
 826                else
 827                        mask = (1UL << last_flip_pos) - 1;
 828
 829                qfq_move_groups(q, mask, IR, ER);
 830                qfq_move_groups(q, mask, IB, EB);
 831        }
 832}
 833
 834/*
 835 * The index of the slot in which the input aggregate agg is to be
 836 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
 837 * and not a '-1' because the start time of the group may be moved
 838 * backward by one slot after the aggregate has been inserted, and
 839 * this would cause non-empty slots to be right-shifted by one
 840 * position.
 841 *
 842 * QFQ+ fully satisfies this bound to the slot index if the parameters
 843 * of the classes are not changed dynamically, and if QFQ+ never
 844 * happens to postpone the service of agg unjustly, i.e., it never
 845 * happens that the aggregate becomes backlogged and eligible, or just
 846 * eligible, while an aggregate with a higher approximated finish time
 847 * is being served. In particular, in this case QFQ+ guarantees that
 848 * the timestamps of agg are low enough that the slot index is never
 849 * higher than 2. Unfortunately, QFQ+ cannot provide the same
 850 * guarantee if it happens to unjustly postpone the service of agg, or
 851 * if the parameters of some class are changed.
 852 *
 853 * As for the first event, i.e., an out-of-order service, the
 854 * upper bound to the slot index guaranteed by QFQ+ grows to
 855 * 2 +
 856 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
 857 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
 858 *
 859 * The following function deals with this problem by backward-shifting
 860 * the timestamps of agg, if needed, so as to guarantee that the slot
 861 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
 862 * cause the service of other aggregates to be postponed, yet the
 863 * worst-case guarantees of these aggregates are not violated.  In
 864 * fact, in case of no out-of-order service, the timestamps of agg
 865 * would have been even lower than they are after the backward shift,
 866 * because QFQ+ would have guaranteed a maximum value equal to 2 for
 867 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
 868 * service is postponed because of the backward-shift would have
 869 * however waited for the service of agg before being served.
 870 *
 871 * The other event that may cause the slot index to be higher than 2
 872 * for agg is a recent change of the parameters of some class. If the
 873 * weight of a class is increased or the lmax (max_pkt_size) of the
 874 * class is decreased, then a new aggregate with smaller slot size
 875 * than the original parent aggregate of the class may happen to be
 876 * activated. The activation of this aggregate should be properly
 877 * delayed to when the service of the class has finished in the ideal
 878 * system tracked by QFQ+. If the activation of the aggregate is not
 879 * delayed to this reference time instant, then this aggregate may be
 880 * unjustly served before other aggregates waiting for service. This
 881 * may cause the above bound to the slot index to be violated for some
 882 * of these unlucky aggregates.
 883 *
 884 * Instead of delaying the activation of the new aggregate, which is
 885 * quite complex, the above-discussed capping of the slot index is
 886 * used to handle also the consequences of a change of the parameters
 887 * of a class.
 888 */
 889static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
 890                            u64 roundedS)
 891{
 892        u64 slot = (roundedS - grp->S) >> grp->slot_shift;
 893        unsigned int i; /* slot index in the bucket list */
 894
 895        if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
 896                u64 deltaS = roundedS - grp->S -
 897                        ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
 898                agg->S -= deltaS;
 899                agg->F -= deltaS;
 900                slot = QFQ_MAX_SLOTS - 2;
 901        }
 902
 903        i = (grp->front + slot) % QFQ_MAX_SLOTS;
 904
 905        hlist_add_head(&agg->next, &grp->slots[i]);
 906        __set_bit(slot, &grp->full_slots);
 907}
 908
 909/* Maybe introduce hlist_first_entry?? */
 910static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
 911{
 912        return hlist_entry(grp->slots[grp->front].first,
 913                           struct qfq_aggregate, next);
 914}
 915
 916/*
 917 * remove the entry from the slot
 918 */
 919static void qfq_front_slot_remove(struct qfq_group *grp)
 920{
 921        struct qfq_aggregate *agg = qfq_slot_head(grp);
 922
 923        BUG_ON(!agg);
 924        hlist_del(&agg->next);
 925        if (hlist_empty(&grp->slots[grp->front]))
 926                __clear_bit(0, &grp->full_slots);
 927}
 928
 929/*
 930 * Returns the first aggregate in the first non-empty bucket of the
 931 * group. As a side effect, adjusts the bucket list so the first
 932 * non-empty bucket is at position 0 in full_slots.
 933 */
 934static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
 935{
 936        unsigned int i;
 937
 938        pr_debug("qfq slot_scan: grp %u full %#lx\n",
 939                 grp->index, grp->full_slots);
 940
 941        if (grp->full_slots == 0)
 942                return NULL;
 943
 944        i = __ffs(grp->full_slots);  /* zero based */
 945        if (i > 0) {
 946                grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
 947                grp->full_slots >>= i;
 948        }
 949
 950        return qfq_slot_head(grp);
 951}
 952
 953/*
 954 * adjust the bucket list. When the start time of a group decreases,
 955 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
 956 * move the objects. The mask of occupied slots must be shifted
 957 * because we use ffs() to find the first non-empty slot.
 958 * This covers decreases in the group's start time, but what about
 959 * increases of the start time ?
 960 * Here too we should make sure that i is less than 32
 961 */
 962static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
 963{
 964        unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
 965
 966        grp->full_slots <<= i;
 967        grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
 968}
 969
 970static void qfq_update_eligible(struct qfq_sched *q)
 971{
 972        struct qfq_group *grp;
 973        unsigned long ineligible;
 974
 975        ineligible = q->bitmaps[IR] | q->bitmaps[IB];
 976        if (ineligible) {
 977                if (!q->bitmaps[ER]) {
 978                        grp = qfq_ffs(q, ineligible);
 979                        if (qfq_gt(grp->S, q->V))
 980                                q->V = grp->S;
 981                }
 982                qfq_make_eligible(q);
 983        }
 984}
 985
 986/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
 987static void agg_dequeue(struct qfq_aggregate *agg,
 988                        struct qfq_class *cl, unsigned int len)
 989{
 990        qdisc_dequeue_peeked(cl->qdisc);
 991
 992        cl->deficit -= (int) len;
 993
 994        if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
 995                list_del(&cl->alist);
 996        else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
 997                cl->deficit += agg->lmax;
 998                list_move_tail(&cl->alist, &agg->active);
 999        }
1000}
1001
1002static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1003                                           struct qfq_class **cl,
1004                                           unsigned int *len)
1005{
1006        struct sk_buff *skb;
1007
1008        *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1009        skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1010        if (skb == NULL)
1011                WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1012        else
1013                *len = qdisc_pkt_len(skb);
1014
1015        return skb;
1016}
1017
1018/* Update F according to the actual service received by the aggregate. */
1019static inline void charge_actual_service(struct qfq_aggregate *agg)
1020{
1021        /* Compute the service received by the aggregate, taking into
1022         * account that, after decreasing the number of classes in
1023         * agg, it may happen that
1024         * agg->initial_budget - agg->budget > agg->bugdetmax
1025         */
1026        u32 service_received = min(agg->budgetmax,
1027                                   agg->initial_budget - agg->budget);
1028
1029        agg->F = agg->S + (u64)service_received * agg->inv_w;
1030}
1031
1032/* Assign a reasonable start time for a new aggregate in group i.
1033 * Admissible values for \hat(F) are multiples of \sigma_i
1034 * no greater than V+\sigma_i . Larger values mean that
1035 * we had a wraparound so we consider the timestamp to be stale.
1036 *
1037 * If F is not stale and F >= V then we set S = F.
1038 * Otherwise we should assign S = V, but this may violate
1039 * the ordering in EB (see [2]). So, if we have groups in ER,
1040 * set S to the F_j of the first group j which would be blocking us.
1041 * We are guaranteed not to move S backward because
1042 * otherwise our group i would still be blocked.
1043 */
1044static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1045{
1046        unsigned long mask;
1047        u64 limit, roundedF;
1048        int slot_shift = agg->grp->slot_shift;
1049
1050        roundedF = qfq_round_down(agg->F, slot_shift);
1051        limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1052
1053        if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1054                /* timestamp was stale */
1055                mask = mask_from(q->bitmaps[ER], agg->grp->index);
1056                if (mask) {
1057                        struct qfq_group *next = qfq_ffs(q, mask);
1058                        if (qfq_gt(roundedF, next->F)) {
1059                                if (qfq_gt(limit, next->F))
1060                                        agg->S = next->F;
1061                                else /* preserve timestamp correctness */
1062                                        agg->S = limit;
1063                                return;
1064                        }
1065                }
1066                agg->S = q->V;
1067        } else  /* timestamp is not stale */
1068                agg->S = agg->F;
1069}
1070
1071/* Update the timestamps of agg before scheduling/rescheduling it for
1072 * service.  In particular, assign to agg->F its maximum possible
1073 * value, i.e., the virtual finish time with which the aggregate
1074 * should be labeled if it used all its budget once in service.
1075 */
1076static inline void
1077qfq_update_agg_ts(struct qfq_sched *q,
1078                    struct qfq_aggregate *agg, enum update_reason reason)
1079{
1080        if (reason != requeue)
1081                qfq_update_start(q, agg);
1082        else /* just charge agg for the service received */
1083                agg->S = agg->F;
1084
1085        agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1086}
1087
1088static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1089
1090static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1091{
1092        struct qfq_sched *q = qdisc_priv(sch);
1093        struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1094        struct qfq_class *cl;
1095        struct sk_buff *skb = NULL;
1096        /* next-packet len, 0 means no more active classes in in-service agg */
1097        unsigned int len = 0;
1098
1099        if (in_serv_agg == NULL)
1100                return NULL;
1101
1102        if (!list_empty(&in_serv_agg->active))
1103                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1104
1105        /*
1106         * If there are no active classes in the in-service aggregate,
1107         * or if the aggregate has not enough budget to serve its next
1108         * class, then choose the next aggregate to serve.
1109         */
1110        if (len == 0 || in_serv_agg->budget < len) {
1111                charge_actual_service(in_serv_agg);
1112
1113                /* recharge the budget of the aggregate */
1114                in_serv_agg->initial_budget = in_serv_agg->budget =
1115                        in_serv_agg->budgetmax;
1116
1117                if (!list_empty(&in_serv_agg->active)) {
1118                        /*
1119                         * Still active: reschedule for
1120                         * service. Possible optimization: if no other
1121                         * aggregate is active, then there is no point
1122                         * in rescheduling this aggregate, and we can
1123                         * just keep it as the in-service one. This
1124                         * should be however a corner case, and to
1125                         * handle it, we would need to maintain an
1126                         * extra num_active_aggs field.
1127                        */
1128                        qfq_update_agg_ts(q, in_serv_agg, requeue);
1129                        qfq_schedule_agg(q, in_serv_agg);
1130                } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1131                        q->in_serv_agg = NULL;
1132                        return NULL;
1133                }
1134
1135                /*
1136                 * If we get here, there are other aggregates queued:
1137                 * choose the new aggregate to serve.
1138                 */
1139                in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1140                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1141        }
1142        if (!skb)
1143                return NULL;
1144
1145        qdisc_qstats_backlog_dec(sch, skb);
1146        sch->q.qlen--;
1147        qdisc_bstats_update(sch, skb);
1148
1149        agg_dequeue(in_serv_agg, cl, len);
1150        /* If lmax is lowered, through qfq_change_class, for a class
1151         * owning pending packets with larger size than the new value
1152         * of lmax, then the following condition may hold.
1153         */
1154        if (unlikely(in_serv_agg->budget < len))
1155                in_serv_agg->budget = 0;
1156        else
1157                in_serv_agg->budget -= len;
1158
1159        q->V += (u64)len * q->iwsum;
1160        pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1161                 len, (unsigned long long) in_serv_agg->F,
1162                 (unsigned long long) q->V);
1163
1164        return skb;
1165}
1166
1167static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1168{
1169        struct qfq_group *grp;
1170        struct qfq_aggregate *agg, *new_front_agg;
1171        u64 old_F;
1172
1173        qfq_update_eligible(q);
1174        q->oldV = q->V;
1175
1176        if (!q->bitmaps[ER])
1177                return NULL;
1178
1179        grp = qfq_ffs(q, q->bitmaps[ER]);
1180        old_F = grp->F;
1181
1182        agg = qfq_slot_head(grp);
1183
1184        /* agg starts to be served, remove it from schedule */
1185        qfq_front_slot_remove(grp);
1186
1187        new_front_agg = qfq_slot_scan(grp);
1188
1189        if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1190                __clear_bit(grp->index, &q->bitmaps[ER]);
1191        else {
1192                u64 roundedS = qfq_round_down(new_front_agg->S,
1193                                              grp->slot_shift);
1194                unsigned int s;
1195
1196                if (grp->S == roundedS)
1197                        return agg;
1198                grp->S = roundedS;
1199                grp->F = roundedS + (2ULL << grp->slot_shift);
1200                __clear_bit(grp->index, &q->bitmaps[ER]);
1201                s = qfq_calc_state(q, grp);
1202                __set_bit(grp->index, &q->bitmaps[s]);
1203        }
1204
1205        qfq_unblock_groups(q, grp->index, old_F);
1206
1207        return agg;
1208}
1209
1210static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1211                       struct sk_buff **to_free)
1212{
1213        struct qfq_sched *q = qdisc_priv(sch);
1214        struct qfq_class *cl;
1215        struct qfq_aggregate *agg;
1216        int err = 0;
1217
1218        cl = qfq_classify(skb, sch, &err);
1219        if (cl == NULL) {
1220                if (err & __NET_XMIT_BYPASS)
1221                        qdisc_qstats_drop(sch);
1222                __qdisc_drop(skb, to_free);
1223                return err;
1224        }
1225        pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1226
1227        if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1228                pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1229                         cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1230                err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1231                                     qdisc_pkt_len(skb));
1232                if (err) {
1233                        cl->qstats.drops++;
1234                        return qdisc_drop(skb, sch, to_free);
1235                }
1236        }
1237
1238        err = qdisc_enqueue(skb, cl->qdisc, to_free);
1239        if (unlikely(err != NET_XMIT_SUCCESS)) {
1240                pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1241                if (net_xmit_drop_count(err)) {
1242                        cl->qstats.drops++;
1243                        qdisc_qstats_drop(sch);
1244                }
1245                return err;
1246        }
1247
1248        bstats_update(&cl->bstats, skb);
1249        qdisc_qstats_backlog_inc(sch, skb);
1250        ++sch->q.qlen;
1251
1252        agg = cl->agg;
1253        /* if the queue was not empty, then done here */
1254        if (cl->qdisc->q.qlen != 1) {
1255                if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1256                    list_first_entry(&agg->active, struct qfq_class, alist)
1257                    == cl && cl->deficit < qdisc_pkt_len(skb))
1258                        list_move_tail(&cl->alist, &agg->active);
1259
1260                return err;
1261        }
1262
1263        /* schedule class for service within the aggregate */
1264        cl->deficit = agg->lmax;
1265        list_add_tail(&cl->alist, &agg->active);
1266
1267        if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1268            q->in_serv_agg == agg)
1269                return err; /* non-empty or in service, nothing else to do */
1270
1271        qfq_activate_agg(q, agg, enqueue);
1272
1273        return err;
1274}
1275
1276/*
1277 * Schedule aggregate according to its timestamps.
1278 */
1279static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1280{
1281        struct qfq_group *grp = agg->grp;
1282        u64 roundedS;
1283        int s;
1284
1285        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1286
1287        /*
1288         * Insert agg in the correct bucket.
1289         * If agg->S >= grp->S we don't need to adjust the
1290         * bucket list and simply go to the insertion phase.
1291         * Otherwise grp->S is decreasing, we must make room
1292         * in the bucket list, and also recompute the group state.
1293         * Finally, if there were no flows in this group and nobody
1294         * was in ER make sure to adjust V.
1295         */
1296        if (grp->full_slots) {
1297                if (!qfq_gt(grp->S, agg->S))
1298                        goto skip_update;
1299
1300                /* create a slot for this agg->S */
1301                qfq_slot_rotate(grp, roundedS);
1302                /* group was surely ineligible, remove */
1303                __clear_bit(grp->index, &q->bitmaps[IR]);
1304                __clear_bit(grp->index, &q->bitmaps[IB]);
1305        } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1306                   q->in_serv_agg == NULL)
1307                q->V = roundedS;
1308
1309        grp->S = roundedS;
1310        grp->F = roundedS + (2ULL << grp->slot_shift);
1311        s = qfq_calc_state(q, grp);
1312        __set_bit(grp->index, &q->bitmaps[s]);
1313
1314        pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1315                 s, q->bitmaps[s],
1316                 (unsigned long long) agg->S,
1317                 (unsigned long long) agg->F,
1318                 (unsigned long long) q->V);
1319
1320skip_update:
1321        qfq_slot_insert(grp, agg, roundedS);
1322}
1323
1324
1325/* Update agg ts and schedule agg for service */
1326static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1327                             enum update_reason reason)
1328{
1329        agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1330
1331        qfq_update_agg_ts(q, agg, reason);
1332        if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1333                q->in_serv_agg = agg; /* start serving this aggregate */
1334                 /* update V: to be in service, agg must be eligible */
1335                q->oldV = q->V = agg->S;
1336        } else if (agg != q->in_serv_agg)
1337                qfq_schedule_agg(q, agg);
1338}
1339
1340static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1341                            struct qfq_aggregate *agg)
1342{
1343        unsigned int i, offset;
1344        u64 roundedS;
1345
1346        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1347        offset = (roundedS - grp->S) >> grp->slot_shift;
1348
1349        i = (grp->front + offset) % QFQ_MAX_SLOTS;
1350
1351        hlist_del(&agg->next);
1352        if (hlist_empty(&grp->slots[i]))
1353                __clear_bit(offset, &grp->full_slots);
1354}
1355
1356/*
1357 * Called to forcibly deschedule an aggregate.  If the aggregate is
1358 * not in the front bucket, or if the latter has other aggregates in
1359 * the front bucket, we can simply remove the aggregate with no other
1360 * side effects.
1361 * Otherwise we must propagate the event up.
1362 */
1363static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1364{
1365        struct qfq_group *grp = agg->grp;
1366        unsigned long mask;
1367        u64 roundedS;
1368        int s;
1369
1370        if (agg == q->in_serv_agg) {
1371                charge_actual_service(agg);
1372                q->in_serv_agg = qfq_choose_next_agg(q);
1373                return;
1374        }
1375
1376        agg->F = agg->S;
1377        qfq_slot_remove(q, grp, agg);
1378
1379        if (!grp->full_slots) {
1380                __clear_bit(grp->index, &q->bitmaps[IR]);
1381                __clear_bit(grp->index, &q->bitmaps[EB]);
1382                __clear_bit(grp->index, &q->bitmaps[IB]);
1383
1384                if (test_bit(grp->index, &q->bitmaps[ER]) &&
1385                    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1386                        mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1387                        if (mask)
1388                                mask = ~((1UL << __fls(mask)) - 1);
1389                        else
1390                                mask = ~0UL;
1391                        qfq_move_groups(q, mask, EB, ER);
1392                        qfq_move_groups(q, mask, IB, IR);
1393                }
1394                __clear_bit(grp->index, &q->bitmaps[ER]);
1395        } else if (hlist_empty(&grp->slots[grp->front])) {
1396                agg = qfq_slot_scan(grp);
1397                roundedS = qfq_round_down(agg->S, grp->slot_shift);
1398                if (grp->S != roundedS) {
1399                        __clear_bit(grp->index, &q->bitmaps[ER]);
1400                        __clear_bit(grp->index, &q->bitmaps[IR]);
1401                        __clear_bit(grp->index, &q->bitmaps[EB]);
1402                        __clear_bit(grp->index, &q->bitmaps[IB]);
1403                        grp->S = roundedS;
1404                        grp->F = roundedS + (2ULL << grp->slot_shift);
1405                        s = qfq_calc_state(q, grp);
1406                        __set_bit(grp->index, &q->bitmaps[s]);
1407                }
1408        }
1409}
1410
1411static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1412{
1413        struct qfq_sched *q = qdisc_priv(sch);
1414        struct qfq_class *cl = (struct qfq_class *)arg;
1415
1416        qfq_deactivate_class(q, cl);
1417}
1418
1419static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1420                          struct netlink_ext_ack *extack)
1421{
1422        struct qfq_sched *q = qdisc_priv(sch);
1423        struct qfq_group *grp;
1424        int i, j, err;
1425        u32 max_cl_shift, maxbudg_shift, max_classes;
1426
1427        err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1428        if (err)
1429                return err;
1430
1431        err = qdisc_class_hash_init(&q->clhash);
1432        if (err < 0)
1433                return err;
1434
1435        if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1436                max_classes = QFQ_MAX_AGG_CLASSES;
1437        else
1438                max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1439        /* max_cl_shift = floor(log_2(max_classes)) */
1440        max_cl_shift = __fls(max_classes);
1441        q->max_agg_classes = 1<<max_cl_shift;
1442
1443        /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1444        maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1445        q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1446
1447        for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1448                grp = &q->groups[i];
1449                grp->index = i;
1450                grp->slot_shift = q->min_slot_shift + i;
1451                for (j = 0; j < QFQ_MAX_SLOTS; j++)
1452                        INIT_HLIST_HEAD(&grp->slots[j]);
1453        }
1454
1455        INIT_HLIST_HEAD(&q->nonfull_aggs);
1456
1457        return 0;
1458}
1459
1460static void qfq_reset_qdisc(struct Qdisc *sch)
1461{
1462        struct qfq_sched *q = qdisc_priv(sch);
1463        struct qfq_class *cl;
1464        unsigned int i;
1465
1466        for (i = 0; i < q->clhash.hashsize; i++) {
1467                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1468                        if (cl->qdisc->q.qlen > 0)
1469                                qfq_deactivate_class(q, cl);
1470
1471                        qdisc_reset(cl->qdisc);
1472                }
1473        }
1474        sch->qstats.backlog = 0;
1475        sch->q.qlen = 0;
1476}
1477
1478static void qfq_destroy_qdisc(struct Qdisc *sch)
1479{
1480        struct qfq_sched *q = qdisc_priv(sch);
1481        struct qfq_class *cl;
1482        struct hlist_node *next;
1483        unsigned int i;
1484
1485        tcf_block_put(q->block);
1486
1487        for (i = 0; i < q->clhash.hashsize; i++) {
1488                hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1489                                          common.hnode) {
1490                        qfq_destroy_class(sch, cl);
1491                }
1492        }
1493        qdisc_class_hash_destroy(&q->clhash);
1494}
1495
1496static const struct Qdisc_class_ops qfq_class_ops = {
1497        .change         = qfq_change_class,
1498        .delete         = qfq_delete_class,
1499        .find           = qfq_search_class,
1500        .tcf_block      = qfq_tcf_block,
1501        .bind_tcf       = qfq_bind_tcf,
1502        .unbind_tcf     = qfq_unbind_tcf,
1503        .graft          = qfq_graft_class,
1504        .leaf           = qfq_class_leaf,
1505        .qlen_notify    = qfq_qlen_notify,
1506        .dump           = qfq_dump_class,
1507        .dump_stats     = qfq_dump_class_stats,
1508        .walk           = qfq_walk,
1509};
1510
1511static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1512        .cl_ops         = &qfq_class_ops,
1513        .id             = "qfq",
1514        .priv_size      = sizeof(struct qfq_sched),
1515        .enqueue        = qfq_enqueue,
1516        .dequeue        = qfq_dequeue,
1517        .peek           = qdisc_peek_dequeued,
1518        .init           = qfq_init_qdisc,
1519        .reset          = qfq_reset_qdisc,
1520        .destroy        = qfq_destroy_qdisc,
1521        .owner          = THIS_MODULE,
1522};
1523
1524static int __init qfq_init(void)
1525{
1526        return register_qdisc(&qfq_qdisc_ops);
1527}
1528
1529static void __exit qfq_exit(void)
1530{
1531        unregister_qdisc(&qfq_qdisc_ops);
1532}
1533
1534module_init(qfq_init);
1535module_exit(qfq_exit);
1536MODULE_LICENSE("GPL");
1537