linux/net/sctp/auth.c
<<
>>
Prefs
   1/* SCTP kernel implementation
   2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
   3 *
   4 * This file is part of the SCTP kernel implementation
   5 *
   6 * This SCTP implementation is free software;
   7 * you can redistribute it and/or modify it under the terms of
   8 * the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2, or (at your option)
  10 * any later version.
  11 *
  12 * This SCTP implementation is distributed in the hope that it
  13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14 *                 ************************
  15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16 * See the GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with GNU CC; see the file COPYING.  If not, see
  20 * <http://www.gnu.org/licenses/>.
  21 *
  22 * Please send any bug reports or fixes you make to the
  23 * email address(es):
  24 *    lksctp developers <linux-sctp@vger.kernel.org>
  25 *
  26 * Written or modified by:
  27 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
  28 */
  29
  30#include <crypto/hash.h>
  31#include <linux/slab.h>
  32#include <linux/types.h>
  33#include <linux/scatterlist.h>
  34#include <net/sctp/sctp.h>
  35#include <net/sctp/auth.h>
  36
  37static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  38        {
  39                /* id 0 is reserved.  as all 0 */
  40                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  41        },
  42        {
  43                .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  44                .hmac_name = "hmac(sha1)",
  45                .hmac_len = SCTP_SHA1_SIG_SIZE,
  46        },
  47        {
  48                /* id 2 is reserved as well */
  49                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  50        },
  51#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
  52        {
  53                .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  54                .hmac_name = "hmac(sha256)",
  55                .hmac_len = SCTP_SHA256_SIG_SIZE,
  56        }
  57#endif
  58};
  59
  60
  61void sctp_auth_key_put(struct sctp_auth_bytes *key)
  62{
  63        if (!key)
  64                return;
  65
  66        if (refcount_dec_and_test(&key->refcnt)) {
  67                kzfree(key);
  68                SCTP_DBG_OBJCNT_DEC(keys);
  69        }
  70}
  71
  72/* Create a new key structure of a given length */
  73static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  74{
  75        struct sctp_auth_bytes *key;
  76
  77        /* Verify that we are not going to overflow INT_MAX */
  78        if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
  79                return NULL;
  80
  81        /* Allocate the shared key */
  82        key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  83        if (!key)
  84                return NULL;
  85
  86        key->len = key_len;
  87        refcount_set(&key->refcnt, 1);
  88        SCTP_DBG_OBJCNT_INC(keys);
  89
  90        return key;
  91}
  92
  93/* Create a new shared key container with a give key id */
  94struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  95{
  96        struct sctp_shared_key *new;
  97
  98        /* Allocate the shared key container */
  99        new = kzalloc(sizeof(struct sctp_shared_key), gfp);
 100        if (!new)
 101                return NULL;
 102
 103        INIT_LIST_HEAD(&new->key_list);
 104        refcount_set(&new->refcnt, 1);
 105        new->key_id = key_id;
 106
 107        return new;
 108}
 109
 110/* Free the shared key structure */
 111static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
 112{
 113        BUG_ON(!list_empty(&sh_key->key_list));
 114        sctp_auth_key_put(sh_key->key);
 115        sh_key->key = NULL;
 116        kfree(sh_key);
 117}
 118
 119void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
 120{
 121        if (refcount_dec_and_test(&sh_key->refcnt))
 122                sctp_auth_shkey_destroy(sh_key);
 123}
 124
 125void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
 126{
 127        refcount_inc(&sh_key->refcnt);
 128}
 129
 130/* Destroy the entire key list.  This is done during the
 131 * associon and endpoint free process.
 132 */
 133void sctp_auth_destroy_keys(struct list_head *keys)
 134{
 135        struct sctp_shared_key *ep_key;
 136        struct sctp_shared_key *tmp;
 137
 138        if (list_empty(keys))
 139                return;
 140
 141        key_for_each_safe(ep_key, tmp, keys) {
 142                list_del_init(&ep_key->key_list);
 143                sctp_auth_shkey_release(ep_key);
 144        }
 145}
 146
 147/* Compare two byte vectors as numbers.  Return values
 148 * are:
 149 *        0 - vectors are equal
 150 *      < 0 - vector 1 is smaller than vector2
 151 *      > 0 - vector 1 is greater than vector2
 152 *
 153 * Algorithm is:
 154 *      This is performed by selecting the numerically smaller key vector...
 155 *      If the key vectors are equal as numbers but differ in length ...
 156 *      the shorter vector is considered smaller
 157 *
 158 * Examples (with small values):
 159 *      000123456789 > 123456789 (first number is longer)
 160 *      000123456789 < 234567891 (second number is larger numerically)
 161 *      123456789 > 2345678      (first number is both larger & longer)
 162 */
 163static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
 164                              struct sctp_auth_bytes *vector2)
 165{
 166        int diff;
 167        int i;
 168        const __u8 *longer;
 169
 170        diff = vector1->len - vector2->len;
 171        if (diff) {
 172                longer = (diff > 0) ? vector1->data : vector2->data;
 173
 174                /* Check to see if the longer number is
 175                 * lead-zero padded.  If it is not, it
 176                 * is automatically larger numerically.
 177                 */
 178                for (i = 0; i < abs(diff); i++) {
 179                        if (longer[i] != 0)
 180                                return diff;
 181                }
 182        }
 183
 184        /* lengths are the same, compare numbers */
 185        return memcmp(vector1->data, vector2->data, vector1->len);
 186}
 187
 188/*
 189 * Create a key vector as described in SCTP-AUTH, Section 6.1
 190 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 191 *    parameter sent by each endpoint are concatenated as byte vectors.
 192 *    These parameters include the parameter type, parameter length, and
 193 *    the parameter value, but padding is omitted; all padding MUST be
 194 *    removed from this concatenation before proceeding with further
 195 *    computation of keys.  Parameters which were not sent are simply
 196 *    omitted from the concatenation process.  The resulting two vectors
 197 *    are called the two key vectors.
 198 */
 199static struct sctp_auth_bytes *sctp_auth_make_key_vector(
 200                        struct sctp_random_param *random,
 201                        struct sctp_chunks_param *chunks,
 202                        struct sctp_hmac_algo_param *hmacs,
 203                        gfp_t gfp)
 204{
 205        struct sctp_auth_bytes *new;
 206        __u32   len;
 207        __u32   offset = 0;
 208        __u16   random_len, hmacs_len, chunks_len = 0;
 209
 210        random_len = ntohs(random->param_hdr.length);
 211        hmacs_len = ntohs(hmacs->param_hdr.length);
 212        if (chunks)
 213                chunks_len = ntohs(chunks->param_hdr.length);
 214
 215        len = random_len + hmacs_len + chunks_len;
 216
 217        new = sctp_auth_create_key(len, gfp);
 218        if (!new)
 219                return NULL;
 220
 221        memcpy(new->data, random, random_len);
 222        offset += random_len;
 223
 224        if (chunks) {
 225                memcpy(new->data + offset, chunks, chunks_len);
 226                offset += chunks_len;
 227        }
 228
 229        memcpy(new->data + offset, hmacs, hmacs_len);
 230
 231        return new;
 232}
 233
 234
 235/* Make a key vector based on our local parameters */
 236static struct sctp_auth_bytes *sctp_auth_make_local_vector(
 237                                    const struct sctp_association *asoc,
 238                                    gfp_t gfp)
 239{
 240        return sctp_auth_make_key_vector(
 241                        (struct sctp_random_param *)asoc->c.auth_random,
 242                        (struct sctp_chunks_param *)asoc->c.auth_chunks,
 243                        (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
 244}
 245
 246/* Make a key vector based on peer's parameters */
 247static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
 248                                    const struct sctp_association *asoc,
 249                                    gfp_t gfp)
 250{
 251        return sctp_auth_make_key_vector(asoc->peer.peer_random,
 252                                         asoc->peer.peer_chunks,
 253                                         asoc->peer.peer_hmacs,
 254                                         gfp);
 255}
 256
 257
 258/* Set the value of the association shared key base on the parameters
 259 * given.  The algorithm is:
 260 *    From the endpoint pair shared keys and the key vectors the
 261 *    association shared keys are computed.  This is performed by selecting
 262 *    the numerically smaller key vector and concatenating it to the
 263 *    endpoint pair shared key, and then concatenating the numerically
 264 *    larger key vector to that.  The result of the concatenation is the
 265 *    association shared key.
 266 */
 267static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
 268                        struct sctp_shared_key *ep_key,
 269                        struct sctp_auth_bytes *first_vector,
 270                        struct sctp_auth_bytes *last_vector,
 271                        gfp_t gfp)
 272{
 273        struct sctp_auth_bytes *secret;
 274        __u32 offset = 0;
 275        __u32 auth_len;
 276
 277        auth_len = first_vector->len + last_vector->len;
 278        if (ep_key->key)
 279                auth_len += ep_key->key->len;
 280
 281        secret = sctp_auth_create_key(auth_len, gfp);
 282        if (!secret)
 283                return NULL;
 284
 285        if (ep_key->key) {
 286                memcpy(secret->data, ep_key->key->data, ep_key->key->len);
 287                offset += ep_key->key->len;
 288        }
 289
 290        memcpy(secret->data + offset, first_vector->data, first_vector->len);
 291        offset += first_vector->len;
 292
 293        memcpy(secret->data + offset, last_vector->data, last_vector->len);
 294
 295        return secret;
 296}
 297
 298/* Create an association shared key.  Follow the algorithm
 299 * described in SCTP-AUTH, Section 6.1
 300 */
 301static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
 302                                 const struct sctp_association *asoc,
 303                                 struct sctp_shared_key *ep_key,
 304                                 gfp_t gfp)
 305{
 306        struct sctp_auth_bytes *local_key_vector;
 307        struct sctp_auth_bytes *peer_key_vector;
 308        struct sctp_auth_bytes  *first_vector,
 309                                *last_vector;
 310        struct sctp_auth_bytes  *secret = NULL;
 311        int     cmp;
 312
 313
 314        /* Now we need to build the key vectors
 315         * SCTP-AUTH , Section 6.1
 316         *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 317         *    parameter sent by each endpoint are concatenated as byte vectors.
 318         *    These parameters include the parameter type, parameter length, and
 319         *    the parameter value, but padding is omitted; all padding MUST be
 320         *    removed from this concatenation before proceeding with further
 321         *    computation of keys.  Parameters which were not sent are simply
 322         *    omitted from the concatenation process.  The resulting two vectors
 323         *    are called the two key vectors.
 324         */
 325
 326        local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
 327        peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
 328
 329        if (!peer_key_vector || !local_key_vector)
 330                goto out;
 331
 332        /* Figure out the order in which the key_vectors will be
 333         * added to the endpoint shared key.
 334         * SCTP-AUTH, Section 6.1:
 335         *   This is performed by selecting the numerically smaller key
 336         *   vector and concatenating it to the endpoint pair shared
 337         *   key, and then concatenating the numerically larger key
 338         *   vector to that.  If the key vectors are equal as numbers
 339         *   but differ in length, then the concatenation order is the
 340         *   endpoint shared key, followed by the shorter key vector,
 341         *   followed by the longer key vector.  Otherwise, the key
 342         *   vectors are identical, and may be concatenated to the
 343         *   endpoint pair key in any order.
 344         */
 345        cmp = sctp_auth_compare_vectors(local_key_vector,
 346                                        peer_key_vector);
 347        if (cmp < 0) {
 348                first_vector = local_key_vector;
 349                last_vector = peer_key_vector;
 350        } else {
 351                first_vector = peer_key_vector;
 352                last_vector = local_key_vector;
 353        }
 354
 355        secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
 356                                            gfp);
 357out:
 358        sctp_auth_key_put(local_key_vector);
 359        sctp_auth_key_put(peer_key_vector);
 360
 361        return secret;
 362}
 363
 364/*
 365 * Populate the association overlay list with the list
 366 * from the endpoint.
 367 */
 368int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
 369                                struct sctp_association *asoc,
 370                                gfp_t gfp)
 371{
 372        struct sctp_shared_key *sh_key;
 373        struct sctp_shared_key *new;
 374
 375        BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
 376
 377        key_for_each(sh_key, &ep->endpoint_shared_keys) {
 378                new = sctp_auth_shkey_create(sh_key->key_id, gfp);
 379                if (!new)
 380                        goto nomem;
 381
 382                new->key = sh_key->key;
 383                sctp_auth_key_hold(new->key);
 384                list_add(&new->key_list, &asoc->endpoint_shared_keys);
 385        }
 386
 387        return 0;
 388
 389nomem:
 390        sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 391        return -ENOMEM;
 392}
 393
 394
 395/* Public interface to create the association shared key.
 396 * See code above for the algorithm.
 397 */
 398int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
 399{
 400        struct sctp_auth_bytes  *secret;
 401        struct sctp_shared_key *ep_key;
 402        struct sctp_chunk *chunk;
 403
 404        /* If we don't support AUTH, or peer is not capable
 405         * we don't need to do anything.
 406         */
 407        if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
 408                return 0;
 409
 410        /* If the key_id is non-zero and we couldn't find an
 411         * endpoint pair shared key, we can't compute the
 412         * secret.
 413         * For key_id 0, endpoint pair shared key is a NULL key.
 414         */
 415        ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
 416        BUG_ON(!ep_key);
 417
 418        secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 419        if (!secret)
 420                return -ENOMEM;
 421
 422        sctp_auth_key_put(asoc->asoc_shared_key);
 423        asoc->asoc_shared_key = secret;
 424        asoc->shkey = ep_key;
 425
 426        /* Update send queue in case any chunk already in there now
 427         * needs authenticating
 428         */
 429        list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
 430                if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
 431                        chunk->auth = 1;
 432                        if (!chunk->shkey) {
 433                                chunk->shkey = asoc->shkey;
 434                                sctp_auth_shkey_hold(chunk->shkey);
 435                        }
 436                }
 437        }
 438
 439        return 0;
 440}
 441
 442
 443/* Find the endpoint pair shared key based on the key_id */
 444struct sctp_shared_key *sctp_auth_get_shkey(
 445                                const struct sctp_association *asoc,
 446                                __u16 key_id)
 447{
 448        struct sctp_shared_key *key;
 449
 450        /* First search associations set of endpoint pair shared keys */
 451        key_for_each(key, &asoc->endpoint_shared_keys) {
 452                if (key->key_id == key_id) {
 453                        if (!key->deactivated)
 454                                return key;
 455                        break;
 456                }
 457        }
 458
 459        return NULL;
 460}
 461
 462/*
 463 * Initialize all the possible digest transforms that we can use.  Right now
 464 * now, the supported digests are SHA1 and SHA256.  We do this here once
 465 * because of the restrictiong that transforms may only be allocated in
 466 * user context.  This forces us to pre-allocated all possible transforms
 467 * at the endpoint init time.
 468 */
 469int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
 470{
 471        struct crypto_shash *tfm = NULL;
 472        __u16   id;
 473
 474        /* If AUTH extension is disabled, we are done */
 475        if (!ep->auth_enable) {
 476                ep->auth_hmacs = NULL;
 477                return 0;
 478        }
 479
 480        /* If the transforms are already allocated, we are done */
 481        if (ep->auth_hmacs)
 482                return 0;
 483
 484        /* Allocated the array of pointers to transorms */
 485        ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
 486                                 sizeof(struct crypto_shash *),
 487                                 gfp);
 488        if (!ep->auth_hmacs)
 489                return -ENOMEM;
 490
 491        for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
 492
 493                /* See is we support the id.  Supported IDs have name and
 494                 * length fields set, so that we can allocated and use
 495                 * them.  We can safely just check for name, for without the
 496                 * name, we can't allocate the TFM.
 497                 */
 498                if (!sctp_hmac_list[id].hmac_name)
 499                        continue;
 500
 501                /* If this TFM has been allocated, we are all set */
 502                if (ep->auth_hmacs[id])
 503                        continue;
 504
 505                /* Allocate the ID */
 506                tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
 507                if (IS_ERR(tfm))
 508                        goto out_err;
 509
 510                ep->auth_hmacs[id] = tfm;
 511        }
 512
 513        return 0;
 514
 515out_err:
 516        /* Clean up any successful allocations */
 517        sctp_auth_destroy_hmacs(ep->auth_hmacs);
 518        return -ENOMEM;
 519}
 520
 521/* Destroy the hmac tfm array */
 522void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
 523{
 524        int i;
 525
 526        if (!auth_hmacs)
 527                return;
 528
 529        for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
 530                crypto_free_shash(auth_hmacs[i]);
 531        }
 532        kfree(auth_hmacs);
 533}
 534
 535
 536struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
 537{
 538        return &sctp_hmac_list[hmac_id];
 539}
 540
 541/* Get an hmac description information that we can use to build
 542 * the AUTH chunk
 543 */
 544struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
 545{
 546        struct sctp_hmac_algo_param *hmacs;
 547        __u16 n_elt;
 548        __u16 id = 0;
 549        int i;
 550
 551        /* If we have a default entry, use it */
 552        if (asoc->default_hmac_id)
 553                return &sctp_hmac_list[asoc->default_hmac_id];
 554
 555        /* Since we do not have a default entry, find the first entry
 556         * we support and return that.  Do not cache that id.
 557         */
 558        hmacs = asoc->peer.peer_hmacs;
 559        if (!hmacs)
 560                return NULL;
 561
 562        n_elt = (ntohs(hmacs->param_hdr.length) -
 563                 sizeof(struct sctp_paramhdr)) >> 1;
 564        for (i = 0; i < n_elt; i++) {
 565                id = ntohs(hmacs->hmac_ids[i]);
 566
 567                /* Check the id is in the supported range. And
 568                 * see if we support the id.  Supported IDs have name and
 569                 * length fields set, so that we can allocate and use
 570                 * them.  We can safely just check for name, for without the
 571                 * name, we can't allocate the TFM.
 572                 */
 573                if (id > SCTP_AUTH_HMAC_ID_MAX ||
 574                    !sctp_hmac_list[id].hmac_name) {
 575                        id = 0;
 576                        continue;
 577                }
 578
 579                break;
 580        }
 581
 582        if (id == 0)
 583                return NULL;
 584
 585        return &sctp_hmac_list[id];
 586}
 587
 588static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
 589{
 590        int  found = 0;
 591        int  i;
 592
 593        for (i = 0; i < n_elts; i++) {
 594                if (hmac_id == hmacs[i]) {
 595                        found = 1;
 596                        break;
 597                }
 598        }
 599
 600        return found;
 601}
 602
 603/* See if the HMAC_ID is one that we claim as supported */
 604int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
 605                                    __be16 hmac_id)
 606{
 607        struct sctp_hmac_algo_param *hmacs;
 608        __u16 n_elt;
 609
 610        if (!asoc)
 611                return 0;
 612
 613        hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
 614        n_elt = (ntohs(hmacs->param_hdr.length) -
 615                 sizeof(struct sctp_paramhdr)) >> 1;
 616
 617        return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
 618}
 619
 620
 621/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 622 * Section 6.1:
 623 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 624 *   algorithm it supports.
 625 */
 626void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
 627                                     struct sctp_hmac_algo_param *hmacs)
 628{
 629        struct sctp_endpoint *ep;
 630        __u16   id;
 631        int     i;
 632        int     n_params;
 633
 634        /* if the default id is already set, use it */
 635        if (asoc->default_hmac_id)
 636                return;
 637
 638        n_params = (ntohs(hmacs->param_hdr.length) -
 639                    sizeof(struct sctp_paramhdr)) >> 1;
 640        ep = asoc->ep;
 641        for (i = 0; i < n_params; i++) {
 642                id = ntohs(hmacs->hmac_ids[i]);
 643
 644                /* Check the id is in the supported range */
 645                if (id > SCTP_AUTH_HMAC_ID_MAX)
 646                        continue;
 647
 648                /* If this TFM has been allocated, use this id */
 649                if (ep->auth_hmacs[id]) {
 650                        asoc->default_hmac_id = id;
 651                        break;
 652                }
 653        }
 654}
 655
 656
 657/* Check to see if the given chunk is supposed to be authenticated */
 658static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
 659{
 660        unsigned short len;
 661        int found = 0;
 662        int i;
 663
 664        if (!param || param->param_hdr.length == 0)
 665                return 0;
 666
 667        len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
 668
 669        /* SCTP-AUTH, Section 3.2
 670         *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
 671         *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
 672         *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
 673         *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
 674         */
 675        for (i = 0; !found && i < len; i++) {
 676                switch (param->chunks[i]) {
 677                case SCTP_CID_INIT:
 678                case SCTP_CID_INIT_ACK:
 679                case SCTP_CID_SHUTDOWN_COMPLETE:
 680                case SCTP_CID_AUTH:
 681                        break;
 682
 683                default:
 684                        if (param->chunks[i] == chunk)
 685                                found = 1;
 686                        break;
 687                }
 688        }
 689
 690        return found;
 691}
 692
 693/* Check if peer requested that this chunk is authenticated */
 694int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
 695{
 696        if (!asoc)
 697                return 0;
 698
 699        if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
 700                return 0;
 701
 702        return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
 703}
 704
 705/* Check if we requested that peer authenticate this chunk. */
 706int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
 707{
 708        if (!asoc)
 709                return 0;
 710
 711        if (!asoc->ep->auth_enable)
 712                return 0;
 713
 714        return __sctp_auth_cid(chunk,
 715                              (struct sctp_chunks_param *)asoc->c.auth_chunks);
 716}
 717
 718/* SCTP-AUTH: Section 6.2:
 719 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 720 *    the hash function H as described by the MAC Identifier and the shared
 721 *    association key K based on the endpoint pair shared key described by
 722 *    the shared key identifier.  The 'data' used for the computation of
 723 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 724 *    zero (as shown in Figure 6) followed by all chunks that are placed
 725 *    after the AUTH chunk in the SCTP packet.
 726 */
 727void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
 728                              struct sk_buff *skb, struct sctp_auth_chunk *auth,
 729                              struct sctp_shared_key *ep_key, gfp_t gfp)
 730{
 731        struct sctp_auth_bytes *asoc_key;
 732        struct crypto_shash *tfm;
 733        __u16 key_id, hmac_id;
 734        unsigned char *end;
 735        int free_key = 0;
 736        __u8 *digest;
 737
 738        /* Extract the info we need:
 739         * - hmac id
 740         * - key id
 741         */
 742        key_id = ntohs(auth->auth_hdr.shkey_id);
 743        hmac_id = ntohs(auth->auth_hdr.hmac_id);
 744
 745        if (key_id == asoc->active_key_id)
 746                asoc_key = asoc->asoc_shared_key;
 747        else {
 748                /* ep_key can't be NULL here */
 749                asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 750                if (!asoc_key)
 751                        return;
 752
 753                free_key = 1;
 754        }
 755
 756        /* set up scatter list */
 757        end = skb_tail_pointer(skb);
 758
 759        tfm = asoc->ep->auth_hmacs[hmac_id];
 760
 761        digest = auth->auth_hdr.hmac;
 762        if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
 763                goto free;
 764
 765        {
 766                SHASH_DESC_ON_STACK(desc, tfm);
 767
 768                desc->tfm = tfm;
 769                desc->flags = 0;
 770                crypto_shash_digest(desc, (u8 *)auth,
 771                                    end - (unsigned char *)auth, digest);
 772                shash_desc_zero(desc);
 773        }
 774
 775free:
 776        if (free_key)
 777                sctp_auth_key_put(asoc_key);
 778}
 779
 780/* API Helpers */
 781
 782/* Add a chunk to the endpoint authenticated chunk list */
 783int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
 784{
 785        struct sctp_chunks_param *p = ep->auth_chunk_list;
 786        __u16 nchunks;
 787        __u16 param_len;
 788
 789        /* If this chunk is already specified, we are done */
 790        if (__sctp_auth_cid(chunk_id, p))
 791                return 0;
 792
 793        /* Check if we can add this chunk to the array */
 794        param_len = ntohs(p->param_hdr.length);
 795        nchunks = param_len - sizeof(struct sctp_paramhdr);
 796        if (nchunks == SCTP_NUM_CHUNK_TYPES)
 797                return -EINVAL;
 798
 799        p->chunks[nchunks] = chunk_id;
 800        p->param_hdr.length = htons(param_len + 1);
 801        return 0;
 802}
 803
 804/* Add hmac identifires to the endpoint list of supported hmac ids */
 805int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
 806                           struct sctp_hmacalgo *hmacs)
 807{
 808        int has_sha1 = 0;
 809        __u16 id;
 810        int i;
 811
 812        /* Scan the list looking for unsupported id.  Also make sure that
 813         * SHA1 is specified.
 814         */
 815        for (i = 0; i < hmacs->shmac_num_idents; i++) {
 816                id = hmacs->shmac_idents[i];
 817
 818                if (id > SCTP_AUTH_HMAC_ID_MAX)
 819                        return -EOPNOTSUPP;
 820
 821                if (SCTP_AUTH_HMAC_ID_SHA1 == id)
 822                        has_sha1 = 1;
 823
 824                if (!sctp_hmac_list[id].hmac_name)
 825                        return -EOPNOTSUPP;
 826        }
 827
 828        if (!has_sha1)
 829                return -EINVAL;
 830
 831        for (i = 0; i < hmacs->shmac_num_idents; i++)
 832                ep->auth_hmacs_list->hmac_ids[i] =
 833                                htons(hmacs->shmac_idents[i]);
 834        ep->auth_hmacs_list->param_hdr.length =
 835                        htons(sizeof(struct sctp_paramhdr) +
 836                        hmacs->shmac_num_idents * sizeof(__u16));
 837        return 0;
 838}
 839
 840/* Set a new shared key on either endpoint or association.  If the
 841 * the key with a same ID already exists, replace the key (remove the
 842 * old key and add a new one).
 843 */
 844int sctp_auth_set_key(struct sctp_endpoint *ep,
 845                      struct sctp_association *asoc,
 846                      struct sctp_authkey *auth_key)
 847{
 848        struct sctp_shared_key *cur_key, *shkey;
 849        struct sctp_auth_bytes *key;
 850        struct list_head *sh_keys;
 851        int replace = 0;
 852
 853        /* Try to find the given key id to see if
 854         * we are doing a replace, or adding a new key
 855         */
 856        if (asoc)
 857                sh_keys = &asoc->endpoint_shared_keys;
 858        else
 859                sh_keys = &ep->endpoint_shared_keys;
 860
 861        key_for_each(shkey, sh_keys) {
 862                if (shkey->key_id == auth_key->sca_keynumber) {
 863                        replace = 1;
 864                        break;
 865                }
 866        }
 867
 868        cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
 869        if (!cur_key)
 870                return -ENOMEM;
 871
 872        /* Create a new key data based on the info passed in */
 873        key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
 874        if (!key) {
 875                kfree(cur_key);
 876                return -ENOMEM;
 877        }
 878
 879        memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
 880        cur_key->key = key;
 881
 882        if (replace) {
 883                list_del_init(&shkey->key_list);
 884                sctp_auth_shkey_release(shkey);
 885        }
 886        list_add(&cur_key->key_list, sh_keys);
 887
 888        return 0;
 889}
 890
 891int sctp_auth_set_active_key(struct sctp_endpoint *ep,
 892                             struct sctp_association *asoc,
 893                             __u16  key_id)
 894{
 895        struct sctp_shared_key *key;
 896        struct list_head *sh_keys;
 897        int found = 0;
 898
 899        /* The key identifier MUST correst to an existing key */
 900        if (asoc)
 901                sh_keys = &asoc->endpoint_shared_keys;
 902        else
 903                sh_keys = &ep->endpoint_shared_keys;
 904
 905        key_for_each(key, sh_keys) {
 906                if (key->key_id == key_id) {
 907                        found = 1;
 908                        break;
 909                }
 910        }
 911
 912        if (!found || key->deactivated)
 913                return -EINVAL;
 914
 915        if (asoc) {
 916                asoc->active_key_id = key_id;
 917                sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
 918        } else
 919                ep->active_key_id = key_id;
 920
 921        return 0;
 922}
 923
 924int sctp_auth_del_key_id(struct sctp_endpoint *ep,
 925                         struct sctp_association *asoc,
 926                         __u16  key_id)
 927{
 928        struct sctp_shared_key *key;
 929        struct list_head *sh_keys;
 930        int found = 0;
 931
 932        /* The key identifier MUST NOT be the current active key
 933         * The key identifier MUST correst to an existing key
 934         */
 935        if (asoc) {
 936                if (asoc->active_key_id == key_id)
 937                        return -EINVAL;
 938
 939                sh_keys = &asoc->endpoint_shared_keys;
 940        } else {
 941                if (ep->active_key_id == key_id)
 942                        return -EINVAL;
 943
 944                sh_keys = &ep->endpoint_shared_keys;
 945        }
 946
 947        key_for_each(key, sh_keys) {
 948                if (key->key_id == key_id) {
 949                        found = 1;
 950                        break;
 951                }
 952        }
 953
 954        if (!found)
 955                return -EINVAL;
 956
 957        /* Delete the shared key */
 958        list_del_init(&key->key_list);
 959        sctp_auth_shkey_release(key);
 960
 961        return 0;
 962}
 963
 964int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
 965                           struct sctp_association *asoc, __u16  key_id)
 966{
 967        struct sctp_shared_key *key;
 968        struct list_head *sh_keys;
 969        int found = 0;
 970
 971        /* The key identifier MUST NOT be the current active key
 972         * The key identifier MUST correst to an existing key
 973         */
 974        if (asoc) {
 975                if (asoc->active_key_id == key_id)
 976                        return -EINVAL;
 977
 978                sh_keys = &asoc->endpoint_shared_keys;
 979        } else {
 980                if (ep->active_key_id == key_id)
 981                        return -EINVAL;
 982
 983                sh_keys = &ep->endpoint_shared_keys;
 984        }
 985
 986        key_for_each(key, sh_keys) {
 987                if (key->key_id == key_id) {
 988                        found = 1;
 989                        break;
 990                }
 991        }
 992
 993        if (!found)
 994                return -EINVAL;
 995
 996        /* refcnt == 1 and !list_empty mean it's not being used anywhere
 997         * and deactivated will be set, so it's time to notify userland
 998         * that this shkey can be freed.
 999         */
1000        if (asoc && !list_empty(&key->key_list) &&
1001            refcount_read(&key->refcnt) == 1) {
1002                struct sctp_ulpevent *ev;
1003
1004                ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
1005                                                SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1006                if (ev)
1007                        asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1008        }
1009
1010        key->deactivated = 1;
1011
1012        return 0;
1013}
1014