linux/net/sunrpc/auth_gss/gss_krb5_crypto.c
<<
>>
Prefs
   1/*
   2 *  linux/net/sunrpc/gss_krb5_crypto.c
   3 *
   4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
   5 *  All rights reserved.
   6 *
   7 *  Andy Adamson   <andros@umich.edu>
   8 *  Bruce Fields   <bfields@umich.edu>
   9 */
  10
  11/*
  12 * Copyright (C) 1998 by the FundsXpress, INC.
  13 *
  14 * All rights reserved.
  15 *
  16 * Export of this software from the United States of America may require
  17 * a specific license from the United States Government.  It is the
  18 * responsibility of any person or organization contemplating export to
  19 * obtain such a license before exporting.
  20 *
  21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  22 * distribute this software and its documentation for any purpose and
  23 * without fee is hereby granted, provided that the above copyright
  24 * notice appear in all copies and that both that copyright notice and
  25 * this permission notice appear in supporting documentation, and that
  26 * the name of FundsXpress. not be used in advertising or publicity pertaining
  27 * to distribution of the software without specific, written prior
  28 * permission.  FundsXpress makes no representations about the suitability of
  29 * this software for any purpose.  It is provided "as is" without express
  30 * or implied warranty.
  31 *
  32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  35 */
  36
  37#include <crypto/algapi.h>
  38#include <crypto/hash.h>
  39#include <crypto/skcipher.h>
  40#include <linux/err.h>
  41#include <linux/types.h>
  42#include <linux/mm.h>
  43#include <linux/scatterlist.h>
  44#include <linux/highmem.h>
  45#include <linux/pagemap.h>
  46#include <linux/random.h>
  47#include <linux/sunrpc/gss_krb5.h>
  48#include <linux/sunrpc/xdr.h>
  49
  50#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  51# define RPCDBG_FACILITY        RPCDBG_AUTH
  52#endif
  53
  54u32
  55krb5_encrypt(
  56        struct crypto_skcipher *tfm,
  57        void * iv,
  58        void * in,
  59        void * out,
  60        int length)
  61{
  62        u32 ret = -EINVAL;
  63        struct scatterlist sg[1];
  64        u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  65        SKCIPHER_REQUEST_ON_STACK(req, tfm);
  66
  67        if (length % crypto_skcipher_blocksize(tfm) != 0)
  68                goto out;
  69
  70        if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  71                dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
  72                        crypto_skcipher_ivsize(tfm));
  73                goto out;
  74        }
  75
  76        if (iv)
  77                memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
  78
  79        memcpy(out, in, length);
  80        sg_init_one(sg, out, length);
  81
  82        skcipher_request_set_tfm(req, tfm);
  83        skcipher_request_set_callback(req, 0, NULL, NULL);
  84        skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  85
  86        ret = crypto_skcipher_encrypt(req);
  87        skcipher_request_zero(req);
  88out:
  89        dprintk("RPC:       krb5_encrypt returns %d\n", ret);
  90        return ret;
  91}
  92
  93u32
  94krb5_decrypt(
  95     struct crypto_skcipher *tfm,
  96     void * iv,
  97     void * in,
  98     void * out,
  99     int length)
 100{
 101        u32 ret = -EINVAL;
 102        struct scatterlist sg[1];
 103        u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 104        SKCIPHER_REQUEST_ON_STACK(req, tfm);
 105
 106        if (length % crypto_skcipher_blocksize(tfm) != 0)
 107                goto out;
 108
 109        if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 110                dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 111                        crypto_skcipher_ivsize(tfm));
 112                goto out;
 113        }
 114        if (iv)
 115                memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
 116
 117        memcpy(out, in, length);
 118        sg_init_one(sg, out, length);
 119
 120        skcipher_request_set_tfm(req, tfm);
 121        skcipher_request_set_callback(req, 0, NULL, NULL);
 122        skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 123
 124        ret = crypto_skcipher_decrypt(req);
 125        skcipher_request_zero(req);
 126out:
 127        dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 128        return ret;
 129}
 130
 131static int
 132checksummer(struct scatterlist *sg, void *data)
 133{
 134        struct ahash_request *req = data;
 135
 136        ahash_request_set_crypt(req, sg, NULL, sg->length);
 137
 138        return crypto_ahash_update(req);
 139}
 140
 141static int
 142arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
 143{
 144        unsigned int ms_usage;
 145
 146        switch (usage) {
 147        case KG_USAGE_SIGN:
 148                ms_usage = 15;
 149                break;
 150        case KG_USAGE_SEAL:
 151                ms_usage = 13;
 152                break;
 153        default:
 154                return -EINVAL;
 155        }
 156        salt[0] = (ms_usage >> 0) & 0xff;
 157        salt[1] = (ms_usage >> 8) & 0xff;
 158        salt[2] = (ms_usage >> 16) & 0xff;
 159        salt[3] = (ms_usage >> 24) & 0xff;
 160
 161        return 0;
 162}
 163
 164static u32
 165make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
 166                       struct xdr_buf *body, int body_offset, u8 *cksumkey,
 167                       unsigned int usage, struct xdr_netobj *cksumout)
 168{
 169        struct scatterlist              sg[1];
 170        int err = -1;
 171        u8 *checksumdata;
 172        u8 *rc4salt;
 173        struct crypto_ahash *md5;
 174        struct crypto_ahash *hmac_md5;
 175        struct ahash_request *req;
 176
 177        if (cksumkey == NULL)
 178                return GSS_S_FAILURE;
 179
 180        if (cksumout->len < kctx->gk5e->cksumlength) {
 181                dprintk("%s: checksum buffer length, %u, too small for %s\n",
 182                        __func__, cksumout->len, kctx->gk5e->name);
 183                return GSS_S_FAILURE;
 184        }
 185
 186        rc4salt = kmalloc_array(4, sizeof(*rc4salt), GFP_NOFS);
 187        if (!rc4salt)
 188                return GSS_S_FAILURE;
 189
 190        if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
 191                dprintk("%s: invalid usage value %u\n", __func__, usage);
 192                goto out_free_rc4salt;
 193        }
 194
 195        checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 196        if (!checksumdata)
 197                goto out_free_rc4salt;
 198
 199        md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
 200        if (IS_ERR(md5))
 201                goto out_free_cksum;
 202
 203        hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
 204                                      CRYPTO_ALG_ASYNC);
 205        if (IS_ERR(hmac_md5))
 206                goto out_free_md5;
 207
 208        req = ahash_request_alloc(md5, GFP_NOFS);
 209        if (!req)
 210                goto out_free_hmac_md5;
 211
 212        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 213
 214        err = crypto_ahash_init(req);
 215        if (err)
 216                goto out;
 217        sg_init_one(sg, rc4salt, 4);
 218        ahash_request_set_crypt(req, sg, NULL, 4);
 219        err = crypto_ahash_update(req);
 220        if (err)
 221                goto out;
 222
 223        sg_init_one(sg, header, hdrlen);
 224        ahash_request_set_crypt(req, sg, NULL, hdrlen);
 225        err = crypto_ahash_update(req);
 226        if (err)
 227                goto out;
 228        err = xdr_process_buf(body, body_offset, body->len - body_offset,
 229                              checksummer, req);
 230        if (err)
 231                goto out;
 232        ahash_request_set_crypt(req, NULL, checksumdata, 0);
 233        err = crypto_ahash_final(req);
 234        if (err)
 235                goto out;
 236
 237        ahash_request_free(req);
 238        req = ahash_request_alloc(hmac_md5, GFP_NOFS);
 239        if (!req)
 240                goto out_free_hmac_md5;
 241
 242        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 243
 244        err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
 245        if (err)
 246                goto out;
 247
 248        sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
 249        ahash_request_set_crypt(req, sg, checksumdata,
 250                                crypto_ahash_digestsize(md5));
 251        err = crypto_ahash_digest(req);
 252        if (err)
 253                goto out;
 254
 255        memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 256        cksumout->len = kctx->gk5e->cksumlength;
 257out:
 258        ahash_request_free(req);
 259out_free_hmac_md5:
 260        crypto_free_ahash(hmac_md5);
 261out_free_md5:
 262        crypto_free_ahash(md5);
 263out_free_cksum:
 264        kfree(checksumdata);
 265out_free_rc4salt:
 266        kfree(rc4salt);
 267        return err ? GSS_S_FAILURE : 0;
 268}
 269
 270/*
 271 * checksum the plaintext data and hdrlen bytes of the token header
 272 * The checksum is performed over the first 8 bytes of the
 273 * gss token header and then over the data body
 274 */
 275u32
 276make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 277              struct xdr_buf *body, int body_offset, u8 *cksumkey,
 278              unsigned int usage, struct xdr_netobj *cksumout)
 279{
 280        struct crypto_ahash *tfm;
 281        struct ahash_request *req;
 282        struct scatterlist              sg[1];
 283        int err = -1;
 284        u8 *checksumdata;
 285        unsigned int checksumlen;
 286
 287        if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
 288                return make_checksum_hmac_md5(kctx, header, hdrlen,
 289                                              body, body_offset,
 290                                              cksumkey, usage, cksumout);
 291
 292        if (cksumout->len < kctx->gk5e->cksumlength) {
 293                dprintk("%s: checksum buffer length, %u, too small for %s\n",
 294                        __func__, cksumout->len, kctx->gk5e->name);
 295                return GSS_S_FAILURE;
 296        }
 297
 298        checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 299        if (checksumdata == NULL)
 300                return GSS_S_FAILURE;
 301
 302        tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 303        if (IS_ERR(tfm))
 304                goto out_free_cksum;
 305
 306        req = ahash_request_alloc(tfm, GFP_NOFS);
 307        if (!req)
 308                goto out_free_ahash;
 309
 310        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 311
 312        checksumlen = crypto_ahash_digestsize(tfm);
 313
 314        if (cksumkey != NULL) {
 315                err = crypto_ahash_setkey(tfm, cksumkey,
 316                                          kctx->gk5e->keylength);
 317                if (err)
 318                        goto out;
 319        }
 320
 321        err = crypto_ahash_init(req);
 322        if (err)
 323                goto out;
 324        sg_init_one(sg, header, hdrlen);
 325        ahash_request_set_crypt(req, sg, NULL, hdrlen);
 326        err = crypto_ahash_update(req);
 327        if (err)
 328                goto out;
 329        err = xdr_process_buf(body, body_offset, body->len - body_offset,
 330                              checksummer, req);
 331        if (err)
 332                goto out;
 333        ahash_request_set_crypt(req, NULL, checksumdata, 0);
 334        err = crypto_ahash_final(req);
 335        if (err)
 336                goto out;
 337
 338        switch (kctx->gk5e->ctype) {
 339        case CKSUMTYPE_RSA_MD5:
 340                err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
 341                                          checksumdata, checksumlen);
 342                if (err)
 343                        goto out;
 344                memcpy(cksumout->data,
 345                       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 346                       kctx->gk5e->cksumlength);
 347                break;
 348        case CKSUMTYPE_HMAC_SHA1_DES3:
 349                memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 350                break;
 351        default:
 352                BUG();
 353                break;
 354        }
 355        cksumout->len = kctx->gk5e->cksumlength;
 356out:
 357        ahash_request_free(req);
 358out_free_ahash:
 359        crypto_free_ahash(tfm);
 360out_free_cksum:
 361        kfree(checksumdata);
 362        return err ? GSS_S_FAILURE : 0;
 363}
 364
 365/*
 366 * checksum the plaintext data and hdrlen bytes of the token header
 367 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
 368 * body then over the first 16 octets of the MIC token
 369 * Inclusion of the header data in the calculation of the
 370 * checksum is optional.
 371 */
 372u32
 373make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
 374                 struct xdr_buf *body, int body_offset, u8 *cksumkey,
 375                 unsigned int usage, struct xdr_netobj *cksumout)
 376{
 377        struct crypto_ahash *tfm;
 378        struct ahash_request *req;
 379        struct scatterlist sg[1];
 380        int err = -1;
 381        u8 *checksumdata;
 382
 383        if (kctx->gk5e->keyed_cksum == 0) {
 384                dprintk("%s: expected keyed hash for %s\n",
 385                        __func__, kctx->gk5e->name);
 386                return GSS_S_FAILURE;
 387        }
 388        if (cksumkey == NULL) {
 389                dprintk("%s: no key supplied for %s\n",
 390                        __func__, kctx->gk5e->name);
 391                return GSS_S_FAILURE;
 392        }
 393
 394        checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 395        if (!checksumdata)
 396                return GSS_S_FAILURE;
 397
 398        tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 399        if (IS_ERR(tfm))
 400                goto out_free_cksum;
 401
 402        req = ahash_request_alloc(tfm, GFP_NOFS);
 403        if (!req)
 404                goto out_free_ahash;
 405
 406        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 407
 408        err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
 409        if (err)
 410                goto out;
 411
 412        err = crypto_ahash_init(req);
 413        if (err)
 414                goto out;
 415        err = xdr_process_buf(body, body_offset, body->len - body_offset,
 416                              checksummer, req);
 417        if (err)
 418                goto out;
 419        if (header != NULL) {
 420                sg_init_one(sg, header, hdrlen);
 421                ahash_request_set_crypt(req, sg, NULL, hdrlen);
 422                err = crypto_ahash_update(req);
 423                if (err)
 424                        goto out;
 425        }
 426        ahash_request_set_crypt(req, NULL, checksumdata, 0);
 427        err = crypto_ahash_final(req);
 428        if (err)
 429                goto out;
 430
 431        cksumout->len = kctx->gk5e->cksumlength;
 432
 433        switch (kctx->gk5e->ctype) {
 434        case CKSUMTYPE_HMAC_SHA1_96_AES128:
 435        case CKSUMTYPE_HMAC_SHA1_96_AES256:
 436                /* note that this truncates the hash */
 437                memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 438                break;
 439        default:
 440                BUG();
 441                break;
 442        }
 443out:
 444        ahash_request_free(req);
 445out_free_ahash:
 446        crypto_free_ahash(tfm);
 447out_free_cksum:
 448        kfree(checksumdata);
 449        return err ? GSS_S_FAILURE : 0;
 450}
 451
 452struct encryptor_desc {
 453        u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 454        struct skcipher_request *req;
 455        int pos;
 456        struct xdr_buf *outbuf;
 457        struct page **pages;
 458        struct scatterlist infrags[4];
 459        struct scatterlist outfrags[4];
 460        int fragno;
 461        int fraglen;
 462};
 463
 464static int
 465encryptor(struct scatterlist *sg, void *data)
 466{
 467        struct encryptor_desc *desc = data;
 468        struct xdr_buf *outbuf = desc->outbuf;
 469        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
 470        struct page *in_page;
 471        int thislen = desc->fraglen + sg->length;
 472        int fraglen, ret;
 473        int page_pos;
 474
 475        /* Worst case is 4 fragments: head, end of page 1, start
 476         * of page 2, tail.  Anything more is a bug. */
 477        BUG_ON(desc->fragno > 3);
 478
 479        page_pos = desc->pos - outbuf->head[0].iov_len;
 480        if (page_pos >= 0 && page_pos < outbuf->page_len) {
 481                /* pages are not in place: */
 482                int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
 483                in_page = desc->pages[i];
 484        } else {
 485                in_page = sg_page(sg);
 486        }
 487        sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 488                    sg->offset);
 489        sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 490                    sg->offset);
 491        desc->fragno++;
 492        desc->fraglen += sg->length;
 493        desc->pos += sg->length;
 494
 495        fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
 496        thislen -= fraglen;
 497
 498        if (thislen == 0)
 499                return 0;
 500
 501        sg_mark_end(&desc->infrags[desc->fragno - 1]);
 502        sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 503
 504        skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
 505                                   thislen, desc->iv);
 506
 507        ret = crypto_skcipher_encrypt(desc->req);
 508        if (ret)
 509                return ret;
 510
 511        sg_init_table(desc->infrags, 4);
 512        sg_init_table(desc->outfrags, 4);
 513
 514        if (fraglen) {
 515                sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 516                                sg->offset + sg->length - fraglen);
 517                desc->infrags[0] = desc->outfrags[0];
 518                sg_assign_page(&desc->infrags[0], in_page);
 519                desc->fragno = 1;
 520                desc->fraglen = fraglen;
 521        } else {
 522                desc->fragno = 0;
 523                desc->fraglen = 0;
 524        }
 525        return 0;
 526}
 527
 528int
 529gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
 530                    int offset, struct page **pages)
 531{
 532        int ret;
 533        struct encryptor_desc desc;
 534        SKCIPHER_REQUEST_ON_STACK(req, tfm);
 535
 536        BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
 537
 538        skcipher_request_set_tfm(req, tfm);
 539        skcipher_request_set_callback(req, 0, NULL, NULL);
 540
 541        memset(desc.iv, 0, sizeof(desc.iv));
 542        desc.req = req;
 543        desc.pos = offset;
 544        desc.outbuf = buf;
 545        desc.pages = pages;
 546        desc.fragno = 0;
 547        desc.fraglen = 0;
 548
 549        sg_init_table(desc.infrags, 4);
 550        sg_init_table(desc.outfrags, 4);
 551
 552        ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 553        skcipher_request_zero(req);
 554        return ret;
 555}
 556
 557struct decryptor_desc {
 558        u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 559        struct skcipher_request *req;
 560        struct scatterlist frags[4];
 561        int fragno;
 562        int fraglen;
 563};
 564
 565static int
 566decryptor(struct scatterlist *sg, void *data)
 567{
 568        struct decryptor_desc *desc = data;
 569        int thislen = desc->fraglen + sg->length;
 570        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
 571        int fraglen, ret;
 572
 573        /* Worst case is 4 fragments: head, end of page 1, start
 574         * of page 2, tail.  Anything more is a bug. */
 575        BUG_ON(desc->fragno > 3);
 576        sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 577                    sg->offset);
 578        desc->fragno++;
 579        desc->fraglen += sg->length;
 580
 581        fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
 582        thislen -= fraglen;
 583
 584        if (thislen == 0)
 585                return 0;
 586
 587        sg_mark_end(&desc->frags[desc->fragno - 1]);
 588
 589        skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
 590                                   thislen, desc->iv);
 591
 592        ret = crypto_skcipher_decrypt(desc->req);
 593        if (ret)
 594                return ret;
 595
 596        sg_init_table(desc->frags, 4);
 597
 598        if (fraglen) {
 599                sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 600                                sg->offset + sg->length - fraglen);
 601                desc->fragno = 1;
 602                desc->fraglen = fraglen;
 603        } else {
 604                desc->fragno = 0;
 605                desc->fraglen = 0;
 606        }
 607        return 0;
 608}
 609
 610int
 611gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
 612                    int offset)
 613{
 614        int ret;
 615        struct decryptor_desc desc;
 616        SKCIPHER_REQUEST_ON_STACK(req, tfm);
 617
 618        /* XXXJBF: */
 619        BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
 620
 621        skcipher_request_set_tfm(req, tfm);
 622        skcipher_request_set_callback(req, 0, NULL, NULL);
 623
 624        memset(desc.iv, 0, sizeof(desc.iv));
 625        desc.req = req;
 626        desc.fragno = 0;
 627        desc.fraglen = 0;
 628
 629        sg_init_table(desc.frags, 4);
 630
 631        ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 632        skcipher_request_zero(req);
 633        return ret;
 634}
 635
 636/*
 637 * This function makes the assumption that it was ultimately called
 638 * from gss_wrap().
 639 *
 640 * The client auth_gss code moves any existing tail data into a
 641 * separate page before calling gss_wrap.
 642 * The server svcauth_gss code ensures that both the head and the
 643 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 644 *
 645 * Even with that guarantee, this function may be called more than
 646 * once in the processing of gss_wrap().  The best we can do is
 647 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 648 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 649 * At run-time we can verify that a single invocation of this
 650 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 651 */
 652
 653int
 654xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 655{
 656        u8 *p;
 657
 658        if (shiftlen == 0)
 659                return 0;
 660
 661        BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
 662        BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 663
 664        p = buf->head[0].iov_base + base;
 665
 666        memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 667
 668        buf->head[0].iov_len += shiftlen;
 669        buf->len += shiftlen;
 670
 671        return 0;
 672}
 673
 674static u32
 675gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
 676                   u32 offset, u8 *iv, struct page **pages, int encrypt)
 677{
 678        u32 ret;
 679        struct scatterlist sg[1];
 680        SKCIPHER_REQUEST_ON_STACK(req, cipher);
 681        u8 *data;
 682        struct page **save_pages;
 683        u32 len = buf->len - offset;
 684
 685        if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
 686                WARN_ON(0);
 687                return -ENOMEM;
 688        }
 689        data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
 690        if (!data)
 691                return -ENOMEM;
 692
 693        /*
 694         * For encryption, we want to read from the cleartext
 695         * page cache pages, and write the encrypted data to
 696         * the supplied xdr_buf pages.
 697         */
 698        save_pages = buf->pages;
 699        if (encrypt)
 700                buf->pages = pages;
 701
 702        ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 703        buf->pages = save_pages;
 704        if (ret)
 705                goto out;
 706
 707        sg_init_one(sg, data, len);
 708
 709        skcipher_request_set_tfm(req, cipher);
 710        skcipher_request_set_callback(req, 0, NULL, NULL);
 711        skcipher_request_set_crypt(req, sg, sg, len, iv);
 712
 713        if (encrypt)
 714                ret = crypto_skcipher_encrypt(req);
 715        else
 716                ret = crypto_skcipher_decrypt(req);
 717
 718        skcipher_request_zero(req);
 719
 720        if (ret)
 721                goto out;
 722
 723        ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 724
 725out:
 726        kfree(data);
 727        return ret;
 728}
 729
 730u32
 731gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 732                     struct xdr_buf *buf, struct page **pages)
 733{
 734        u32 err;
 735        struct xdr_netobj hmac;
 736        u8 *cksumkey;
 737        u8 *ecptr;
 738        struct crypto_skcipher *cipher, *aux_cipher;
 739        int blocksize;
 740        struct page **save_pages;
 741        int nblocks, nbytes;
 742        struct encryptor_desc desc;
 743        u32 cbcbytes;
 744        unsigned int usage;
 745
 746        if (kctx->initiate) {
 747                cipher = kctx->initiator_enc;
 748                aux_cipher = kctx->initiator_enc_aux;
 749                cksumkey = kctx->initiator_integ;
 750                usage = KG_USAGE_INITIATOR_SEAL;
 751        } else {
 752                cipher = kctx->acceptor_enc;
 753                aux_cipher = kctx->acceptor_enc_aux;
 754                cksumkey = kctx->acceptor_integ;
 755                usage = KG_USAGE_ACCEPTOR_SEAL;
 756        }
 757        blocksize = crypto_skcipher_blocksize(cipher);
 758
 759        /* hide the gss token header and insert the confounder */
 760        offset += GSS_KRB5_TOK_HDR_LEN;
 761        if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
 762                return GSS_S_FAILURE;
 763        gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
 764        offset -= GSS_KRB5_TOK_HDR_LEN;
 765
 766        if (buf->tail[0].iov_base != NULL) {
 767                ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 768        } else {
 769                buf->tail[0].iov_base = buf->head[0].iov_base
 770                                                        + buf->head[0].iov_len;
 771                buf->tail[0].iov_len = 0;
 772                ecptr = buf->tail[0].iov_base;
 773        }
 774
 775        /* copy plaintext gss token header after filler (if any) */
 776        memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 777        buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 778        buf->len += GSS_KRB5_TOK_HDR_LEN;
 779
 780        /* Do the HMAC */
 781        hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
 782        hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 783
 784        /*
 785         * When we are called, pages points to the real page cache
 786         * data -- which we can't go and encrypt!  buf->pages points
 787         * to scratch pages which we are going to send off to the
 788         * client/server.  Swap in the plaintext pages to calculate
 789         * the hmac.
 790         */
 791        save_pages = buf->pages;
 792        buf->pages = pages;
 793
 794        err = make_checksum_v2(kctx, NULL, 0, buf,
 795                               offset + GSS_KRB5_TOK_HDR_LEN,
 796                               cksumkey, usage, &hmac);
 797        buf->pages = save_pages;
 798        if (err)
 799                return GSS_S_FAILURE;
 800
 801        nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
 802        nblocks = (nbytes + blocksize - 1) / blocksize;
 803        cbcbytes = 0;
 804        if (nblocks > 2)
 805                cbcbytes = (nblocks - 2) * blocksize;
 806
 807        memset(desc.iv, 0, sizeof(desc.iv));
 808
 809        if (cbcbytes) {
 810                SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 811
 812                desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
 813                desc.fragno = 0;
 814                desc.fraglen = 0;
 815                desc.pages = pages;
 816                desc.outbuf = buf;
 817                desc.req = req;
 818
 819                skcipher_request_set_tfm(req, aux_cipher);
 820                skcipher_request_set_callback(req, 0, NULL, NULL);
 821
 822                sg_init_table(desc.infrags, 4);
 823                sg_init_table(desc.outfrags, 4);
 824
 825                err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
 826                                      cbcbytes, encryptor, &desc);
 827                skcipher_request_zero(req);
 828                if (err)
 829                        goto out_err;
 830        }
 831
 832        /* Make sure IV carries forward from any CBC results. */
 833        err = gss_krb5_cts_crypt(cipher, buf,
 834                                 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
 835                                 desc.iv, pages, 1);
 836        if (err) {
 837                err = GSS_S_FAILURE;
 838                goto out_err;
 839        }
 840
 841        /* Now update buf to account for HMAC */
 842        buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 843        buf->len += kctx->gk5e->cksumlength;
 844
 845out_err:
 846        if (err)
 847                err = GSS_S_FAILURE;
 848        return err;
 849}
 850
 851u32
 852gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
 853                     u32 *headskip, u32 *tailskip)
 854{
 855        struct xdr_buf subbuf;
 856        u32 ret = 0;
 857        u8 *cksum_key;
 858        struct crypto_skcipher *cipher, *aux_cipher;
 859        struct xdr_netobj our_hmac_obj;
 860        u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 861        u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 862        int nblocks, blocksize, cbcbytes;
 863        struct decryptor_desc desc;
 864        unsigned int usage;
 865
 866        if (kctx->initiate) {
 867                cipher = kctx->acceptor_enc;
 868                aux_cipher = kctx->acceptor_enc_aux;
 869                cksum_key = kctx->acceptor_integ;
 870                usage = KG_USAGE_ACCEPTOR_SEAL;
 871        } else {
 872                cipher = kctx->initiator_enc;
 873                aux_cipher = kctx->initiator_enc_aux;
 874                cksum_key = kctx->initiator_integ;
 875                usage = KG_USAGE_INITIATOR_SEAL;
 876        }
 877        blocksize = crypto_skcipher_blocksize(cipher);
 878
 879
 880        /* create a segment skipping the header and leaving out the checksum */
 881        xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 882                                    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
 883                                     kctx->gk5e->cksumlength));
 884
 885        nblocks = (subbuf.len + blocksize - 1) / blocksize;
 886
 887        cbcbytes = 0;
 888        if (nblocks > 2)
 889                cbcbytes = (nblocks - 2) * blocksize;
 890
 891        memset(desc.iv, 0, sizeof(desc.iv));
 892
 893        if (cbcbytes) {
 894                SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 895
 896                desc.fragno = 0;
 897                desc.fraglen = 0;
 898                desc.req = req;
 899
 900                skcipher_request_set_tfm(req, aux_cipher);
 901                skcipher_request_set_callback(req, 0, NULL, NULL);
 902
 903                sg_init_table(desc.frags, 4);
 904
 905                ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
 906                skcipher_request_zero(req);
 907                if (ret)
 908                        goto out_err;
 909        }
 910
 911        /* Make sure IV carries forward from any CBC results. */
 912        ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
 913        if (ret)
 914                goto out_err;
 915
 916
 917        /* Calculate our hmac over the plaintext data */
 918        our_hmac_obj.len = sizeof(our_hmac);
 919        our_hmac_obj.data = our_hmac;
 920
 921        ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
 922                               cksum_key, usage, &our_hmac_obj);
 923        if (ret)
 924                goto out_err;
 925
 926        /* Get the packet's hmac value */
 927        ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
 928                                      pkt_hmac, kctx->gk5e->cksumlength);
 929        if (ret)
 930                goto out_err;
 931
 932        if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 933                ret = GSS_S_BAD_SIG;
 934                goto out_err;
 935        }
 936        *headskip = kctx->gk5e->conflen;
 937        *tailskip = kctx->gk5e->cksumlength;
 938out_err:
 939        if (ret && ret != GSS_S_BAD_SIG)
 940                ret = GSS_S_FAILURE;
 941        return ret;
 942}
 943
 944/*
 945 * Compute Kseq given the initial session key and the checksum.
 946 * Set the key of the given cipher.
 947 */
 948int
 949krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
 950                       unsigned char *cksum)
 951{
 952        struct crypto_shash *hmac;
 953        struct shash_desc *desc;
 954        u8 Kseq[GSS_KRB5_MAX_KEYLEN];
 955        u32 zeroconstant = 0;
 956        int err;
 957
 958        dprintk("%s: entered\n", __func__);
 959
 960        hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
 961        if (IS_ERR(hmac)) {
 962                dprintk("%s: error %ld, allocating hash '%s'\n",
 963                        __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
 964                return PTR_ERR(hmac);
 965        }
 966
 967        desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
 968                       GFP_NOFS);
 969        if (!desc) {
 970                dprintk("%s: failed to allocate shash descriptor for '%s'\n",
 971                        __func__, kctx->gk5e->cksum_name);
 972                crypto_free_shash(hmac);
 973                return -ENOMEM;
 974        }
 975
 976        desc->tfm = hmac;
 977        desc->flags = 0;
 978
 979        /* Compute intermediate Kseq from session key */
 980        err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
 981        if (err)
 982                goto out_err;
 983
 984        err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
 985        if (err)
 986                goto out_err;
 987
 988        /* Compute final Kseq from the checksum and intermediate Kseq */
 989        err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
 990        if (err)
 991                goto out_err;
 992
 993        err = crypto_shash_digest(desc, cksum, 8, Kseq);
 994        if (err)
 995                goto out_err;
 996
 997        err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
 998        if (err)
 999                goto out_err;
1000
1001        err = 0;
1002
1003out_err:
1004        kzfree(desc);
1005        crypto_free_shash(hmac);
1006        dprintk("%s: returning %d\n", __func__, err);
1007        return err;
1008}
1009
1010/*
1011 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1012 * Set the key of cipher kctx->enc.
1013 */
1014int
1015krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
1016                       s32 seqnum)
1017{
1018        struct crypto_shash *hmac;
1019        struct shash_desc *desc;
1020        u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1021        u8 zeroconstant[4] = {0};
1022        u8 seqnumarray[4];
1023        int err, i;
1024
1025        dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1026
1027        hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1028        if (IS_ERR(hmac)) {
1029                dprintk("%s: error %ld, allocating hash '%s'\n",
1030                        __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1031                return PTR_ERR(hmac);
1032        }
1033
1034        desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1035                       GFP_NOFS);
1036        if (!desc) {
1037                dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1038                        __func__, kctx->gk5e->cksum_name);
1039                crypto_free_shash(hmac);
1040                return -ENOMEM;
1041        }
1042
1043        desc->tfm = hmac;
1044        desc->flags = 0;
1045
1046        /* Compute intermediate Kcrypt from session key */
1047        for (i = 0; i < kctx->gk5e->keylength; i++)
1048                Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1049
1050        err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1051        if (err)
1052                goto out_err;
1053
1054        err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1055        if (err)
1056                goto out_err;
1057
1058        /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1059        err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1060        if (err)
1061                goto out_err;
1062
1063        seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1064        seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1065        seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1066        seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1067
1068        err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1069        if (err)
1070                goto out_err;
1071
1072        err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1073        if (err)
1074                goto out_err;
1075
1076        err = 0;
1077
1078out_err:
1079        kzfree(desc);
1080        crypto_free_shash(hmac);
1081        dprintk("%s: returning %d\n", __func__, err);
1082        return err;
1083}
1084