linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1/*
   2 * VMware vSockets Driver
   3 *
   4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 */
  15
  16/* Implementation notes:
  17 *
  18 * - There are two kinds of sockets: those created by user action (such as
  19 * calling socket(2)) and those created by incoming connection request packets.
  20 *
  21 * - There are two "global" tables, one for bound sockets (sockets that have
  22 * specified an address that they are responsible for) and one for connected
  23 * sockets (sockets that have established a connection with another socket).
  24 * These tables are "global" in that all sockets on the system are placed
  25 * within them. - Note, though, that the bound table contains an extra entry
  26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  27 * that list. The bound table is used solely for lookup of sockets when packets
  28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  29 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  30 * sockets out of the bound hash buckets will reduce the chance of collisions
  31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  32 * socket type in the hash table lookups.
  33 *
  34 * - Sockets created by user action will either be "client" sockets that
  35 * initiate a connection or "server" sockets that listen for connections; we do
  36 * not support simultaneous connects (two "client" sockets connecting).
  37 *
  38 * - "Server" sockets are referred to as listener sockets throughout this
  39 * implementation because they are in the TCP_LISTEN state.  When a
  40 * connection request is received (the second kind of socket mentioned above),
  41 * we create a new socket and refer to it as a pending socket.  These pending
  42 * sockets are placed on the pending connection list of the listener socket.
  43 * When future packets are received for the address the listener socket is
  44 * bound to, we check if the source of the packet is from one that has an
  45 * existing pending connection.  If it does, we process the packet for the
  46 * pending socket.  When that socket reaches the connected state, it is removed
  47 * from the listener socket's pending list and enqueued in the listener
  48 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  49 * from the listener socket's accept queue.  If the socket cannot be accepted
  50 * for some reason then it is marked rejected.  Once the connection is
  51 * accepted, it is owned by the user process and the responsibility for cleanup
  52 * falls with that user process.
  53 *
  54 * - It is possible that these pending sockets will never reach the connected
  55 * state; in fact, we may never receive another packet after the connection
  56 * request.  Because of this, we must schedule a cleanup function to run in the
  57 * future, after some amount of time passes where a connection should have been
  58 * established.  This function ensures that the socket is off all lists so it
  59 * cannot be retrieved, then drops all references to the socket so it is cleaned
  60 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  61 * function will also cleanup rejected sockets, those that reach the connected
  62 * state but leave it before they have been accepted.
  63 *
  64 * - Lock ordering for pending or accept queue sockets is:
  65 *
  66 *     lock_sock(listener);
  67 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  68 *
  69 * Using explicit nested locking keeps lockdep happy since normally only one
  70 * lock of a given class may be taken at a time.
  71 *
  72 * - Sockets created by user action will be cleaned up when the user process
  73 * calls close(2), causing our release implementation to be called. Our release
  74 * implementation will perform some cleanup then drop the last reference so our
  75 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  76 * perform additional cleanup that's common for both types of sockets.
  77 *
  78 * - A socket's reference count is what ensures that the structure won't be
  79 * freed.  Each entry in a list (such as the "global" bound and connected tables
  80 * and the listener socket's pending list and connected queue) ensures a
  81 * reference.  When we defer work until process context and pass a socket as our
  82 * argument, we must ensure the reference count is increased to ensure the
  83 * socket isn't freed before the function is run; the deferred function will
  84 * then drop the reference.
  85 *
  86 * - sk->sk_state uses the TCP state constants because they are widely used by
  87 * other address families and exposed to userspace tools like ss(8):
  88 *
  89 *   TCP_CLOSE - unconnected
  90 *   TCP_SYN_SENT - connecting
  91 *   TCP_ESTABLISHED - connected
  92 *   TCP_CLOSING - disconnecting
  93 *   TCP_LISTEN - listening
  94 */
  95
  96#include <linux/types.h>
  97#include <linux/bitops.h>
  98#include <linux/cred.h>
  99#include <linux/init.h>
 100#include <linux/io.h>
 101#include <linux/kernel.h>
 102#include <linux/sched/signal.h>
 103#include <linux/kmod.h>
 104#include <linux/list.h>
 105#include <linux/miscdevice.h>
 106#include <linux/module.h>
 107#include <linux/mutex.h>
 108#include <linux/net.h>
 109#include <linux/poll.h>
 110#include <linux/skbuff.h>
 111#include <linux/smp.h>
 112#include <linux/socket.h>
 113#include <linux/stddef.h>
 114#include <linux/unistd.h>
 115#include <linux/wait.h>
 116#include <linux/workqueue.h>
 117#include <net/sock.h>
 118#include <net/af_vsock.h>
 119
 120static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 121static void vsock_sk_destruct(struct sock *sk);
 122static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 123
 124/* Protocol family. */
 125static struct proto vsock_proto = {
 126        .name = "AF_VSOCK",
 127        .owner = THIS_MODULE,
 128        .obj_size = sizeof(struct vsock_sock),
 129};
 130
 131/* The default peer timeout indicates how long we will wait for a peer response
 132 * to a control message.
 133 */
 134#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 135
 136static const struct vsock_transport *transport;
 137static DEFINE_MUTEX(vsock_register_mutex);
 138
 139/**** EXPORTS ****/
 140
 141/* Get the ID of the local context.  This is transport dependent. */
 142
 143int vm_sockets_get_local_cid(void)
 144{
 145        return transport->get_local_cid();
 146}
 147EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
 148
 149/**** UTILS ****/
 150
 151/* Each bound VSocket is stored in the bind hash table and each connected
 152 * VSocket is stored in the connected hash table.
 153 *
 154 * Unbound sockets are all put on the same list attached to the end of the hash
 155 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 157 * represents the list that addr hashes to).
 158 *
 159 * Specifically, we initialize the vsock_bind_table array to a size of
 160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 163 * mods with VSOCK_HASH_SIZE to ensure this.
 164 */
 165#define MAX_PORT_RETRIES        24
 166
 167#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 168#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 169#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 170
 171/* XXX This can probably be implemented in a better way. */
 172#define VSOCK_CONN_HASH(src, dst)                               \
 173        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 174#define vsock_connected_sockets(src, dst)               \
 175        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 176#define vsock_connected_sockets_vsk(vsk)                                \
 177        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 178
 179struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 180EXPORT_SYMBOL_GPL(vsock_bind_table);
 181struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 182EXPORT_SYMBOL_GPL(vsock_connected_table);
 183DEFINE_SPINLOCK(vsock_table_lock);
 184EXPORT_SYMBOL_GPL(vsock_table_lock);
 185
 186/* Autobind this socket to the local address if necessary. */
 187static int vsock_auto_bind(struct vsock_sock *vsk)
 188{
 189        struct sock *sk = sk_vsock(vsk);
 190        struct sockaddr_vm local_addr;
 191
 192        if (vsock_addr_bound(&vsk->local_addr))
 193                return 0;
 194        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 195        return __vsock_bind(sk, &local_addr);
 196}
 197
 198static int __init vsock_init_tables(void)
 199{
 200        int i;
 201
 202        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 203                INIT_LIST_HEAD(&vsock_bind_table[i]);
 204
 205        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 206                INIT_LIST_HEAD(&vsock_connected_table[i]);
 207        return 0;
 208}
 209
 210static void __vsock_insert_bound(struct list_head *list,
 211                                 struct vsock_sock *vsk)
 212{
 213        sock_hold(&vsk->sk);
 214        list_add(&vsk->bound_table, list);
 215}
 216
 217static void __vsock_insert_connected(struct list_head *list,
 218                                     struct vsock_sock *vsk)
 219{
 220        sock_hold(&vsk->sk);
 221        list_add(&vsk->connected_table, list);
 222}
 223
 224static void __vsock_remove_bound(struct vsock_sock *vsk)
 225{
 226        list_del_init(&vsk->bound_table);
 227        sock_put(&vsk->sk);
 228}
 229
 230static void __vsock_remove_connected(struct vsock_sock *vsk)
 231{
 232        list_del_init(&vsk->connected_table);
 233        sock_put(&vsk->sk);
 234}
 235
 236static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 237{
 238        struct vsock_sock *vsk;
 239
 240        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
 241                if (addr->svm_port == vsk->local_addr.svm_port)
 242                        return sk_vsock(vsk);
 243
 244        return NULL;
 245}
 246
 247static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 248                                                  struct sockaddr_vm *dst)
 249{
 250        struct vsock_sock *vsk;
 251
 252        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 253                            connected_table) {
 254                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 255                    dst->svm_port == vsk->local_addr.svm_port) {
 256                        return sk_vsock(vsk);
 257                }
 258        }
 259
 260        return NULL;
 261}
 262
 263static void vsock_insert_unbound(struct vsock_sock *vsk)
 264{
 265        spin_lock_bh(&vsock_table_lock);
 266        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 267        spin_unlock_bh(&vsock_table_lock);
 268}
 269
 270void vsock_insert_connected(struct vsock_sock *vsk)
 271{
 272        struct list_head *list = vsock_connected_sockets(
 273                &vsk->remote_addr, &vsk->local_addr);
 274
 275        spin_lock_bh(&vsock_table_lock);
 276        __vsock_insert_connected(list, vsk);
 277        spin_unlock_bh(&vsock_table_lock);
 278}
 279EXPORT_SYMBOL_GPL(vsock_insert_connected);
 280
 281void vsock_remove_bound(struct vsock_sock *vsk)
 282{
 283        spin_lock_bh(&vsock_table_lock);
 284        __vsock_remove_bound(vsk);
 285        spin_unlock_bh(&vsock_table_lock);
 286}
 287EXPORT_SYMBOL_GPL(vsock_remove_bound);
 288
 289void vsock_remove_connected(struct vsock_sock *vsk)
 290{
 291        spin_lock_bh(&vsock_table_lock);
 292        __vsock_remove_connected(vsk);
 293        spin_unlock_bh(&vsock_table_lock);
 294}
 295EXPORT_SYMBOL_GPL(vsock_remove_connected);
 296
 297struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 298{
 299        struct sock *sk;
 300
 301        spin_lock_bh(&vsock_table_lock);
 302        sk = __vsock_find_bound_socket(addr);
 303        if (sk)
 304                sock_hold(sk);
 305
 306        spin_unlock_bh(&vsock_table_lock);
 307
 308        return sk;
 309}
 310EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 311
 312struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 313                                         struct sockaddr_vm *dst)
 314{
 315        struct sock *sk;
 316
 317        spin_lock_bh(&vsock_table_lock);
 318        sk = __vsock_find_connected_socket(src, dst);
 319        if (sk)
 320                sock_hold(sk);
 321
 322        spin_unlock_bh(&vsock_table_lock);
 323
 324        return sk;
 325}
 326EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 327
 328static bool vsock_in_bound_table(struct vsock_sock *vsk)
 329{
 330        bool ret;
 331
 332        spin_lock_bh(&vsock_table_lock);
 333        ret = __vsock_in_bound_table(vsk);
 334        spin_unlock_bh(&vsock_table_lock);
 335
 336        return ret;
 337}
 338
 339static bool vsock_in_connected_table(struct vsock_sock *vsk)
 340{
 341        bool ret;
 342
 343        spin_lock_bh(&vsock_table_lock);
 344        ret = __vsock_in_connected_table(vsk);
 345        spin_unlock_bh(&vsock_table_lock);
 346
 347        return ret;
 348}
 349
 350void vsock_remove_sock(struct vsock_sock *vsk)
 351{
 352        if (vsock_in_bound_table(vsk))
 353                vsock_remove_bound(vsk);
 354
 355        if (vsock_in_connected_table(vsk))
 356                vsock_remove_connected(vsk);
 357}
 358EXPORT_SYMBOL_GPL(vsock_remove_sock);
 359
 360void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 361{
 362        int i;
 363
 364        spin_lock_bh(&vsock_table_lock);
 365
 366        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 367                struct vsock_sock *vsk;
 368                list_for_each_entry(vsk, &vsock_connected_table[i],
 369                                    connected_table)
 370                        fn(sk_vsock(vsk));
 371        }
 372
 373        spin_unlock_bh(&vsock_table_lock);
 374}
 375EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 376
 377void vsock_add_pending(struct sock *listener, struct sock *pending)
 378{
 379        struct vsock_sock *vlistener;
 380        struct vsock_sock *vpending;
 381
 382        vlistener = vsock_sk(listener);
 383        vpending = vsock_sk(pending);
 384
 385        sock_hold(pending);
 386        sock_hold(listener);
 387        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 388}
 389EXPORT_SYMBOL_GPL(vsock_add_pending);
 390
 391void vsock_remove_pending(struct sock *listener, struct sock *pending)
 392{
 393        struct vsock_sock *vpending = vsock_sk(pending);
 394
 395        list_del_init(&vpending->pending_links);
 396        sock_put(listener);
 397        sock_put(pending);
 398}
 399EXPORT_SYMBOL_GPL(vsock_remove_pending);
 400
 401void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 402{
 403        struct vsock_sock *vlistener;
 404        struct vsock_sock *vconnected;
 405
 406        vlistener = vsock_sk(listener);
 407        vconnected = vsock_sk(connected);
 408
 409        sock_hold(connected);
 410        sock_hold(listener);
 411        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 412}
 413EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 414
 415static struct sock *vsock_dequeue_accept(struct sock *listener)
 416{
 417        struct vsock_sock *vlistener;
 418        struct vsock_sock *vconnected;
 419
 420        vlistener = vsock_sk(listener);
 421
 422        if (list_empty(&vlistener->accept_queue))
 423                return NULL;
 424
 425        vconnected = list_entry(vlistener->accept_queue.next,
 426                                struct vsock_sock, accept_queue);
 427
 428        list_del_init(&vconnected->accept_queue);
 429        sock_put(listener);
 430        /* The caller will need a reference on the connected socket so we let
 431         * it call sock_put().
 432         */
 433
 434        return sk_vsock(vconnected);
 435}
 436
 437static bool vsock_is_accept_queue_empty(struct sock *sk)
 438{
 439        struct vsock_sock *vsk = vsock_sk(sk);
 440        return list_empty(&vsk->accept_queue);
 441}
 442
 443static bool vsock_is_pending(struct sock *sk)
 444{
 445        struct vsock_sock *vsk = vsock_sk(sk);
 446        return !list_empty(&vsk->pending_links);
 447}
 448
 449static int vsock_send_shutdown(struct sock *sk, int mode)
 450{
 451        return transport->shutdown(vsock_sk(sk), mode);
 452}
 453
 454static void vsock_pending_work(struct work_struct *work)
 455{
 456        struct sock *sk;
 457        struct sock *listener;
 458        struct vsock_sock *vsk;
 459        bool cleanup;
 460
 461        vsk = container_of(work, struct vsock_sock, pending_work.work);
 462        sk = sk_vsock(vsk);
 463        listener = vsk->listener;
 464        cleanup = true;
 465
 466        lock_sock(listener);
 467        lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
 468
 469        if (vsock_is_pending(sk)) {
 470                vsock_remove_pending(listener, sk);
 471
 472                listener->sk_ack_backlog--;
 473        } else if (!vsk->rejected) {
 474                /* We are not on the pending list and accept() did not reject
 475                 * us, so we must have been accepted by our user process.  We
 476                 * just need to drop our references to the sockets and be on
 477                 * our way.
 478                 */
 479                cleanup = false;
 480                goto out;
 481        }
 482
 483        /* We need to remove ourself from the global connected sockets list so
 484         * incoming packets can't find this socket, and to reduce the reference
 485         * count.
 486         */
 487        if (vsock_in_connected_table(vsk))
 488                vsock_remove_connected(vsk);
 489
 490        sk->sk_state = TCP_CLOSE;
 491
 492out:
 493        release_sock(sk);
 494        release_sock(listener);
 495        if (cleanup)
 496                sock_put(sk);
 497
 498        sock_put(sk);
 499        sock_put(listener);
 500}
 501
 502/**** SOCKET OPERATIONS ****/
 503
 504static int __vsock_bind_stream(struct vsock_sock *vsk,
 505                               struct sockaddr_vm *addr)
 506{
 507        static u32 port = LAST_RESERVED_PORT + 1;
 508        struct sockaddr_vm new_addr;
 509
 510        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 511
 512        if (addr->svm_port == VMADDR_PORT_ANY) {
 513                bool found = false;
 514                unsigned int i;
 515
 516                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 517                        if (port <= LAST_RESERVED_PORT)
 518                                port = LAST_RESERVED_PORT + 1;
 519
 520                        new_addr.svm_port = port++;
 521
 522                        if (!__vsock_find_bound_socket(&new_addr)) {
 523                                found = true;
 524                                break;
 525                        }
 526                }
 527
 528                if (!found)
 529                        return -EADDRNOTAVAIL;
 530        } else {
 531                /* If port is in reserved range, ensure caller
 532                 * has necessary privileges.
 533                 */
 534                if (addr->svm_port <= LAST_RESERVED_PORT &&
 535                    !capable(CAP_NET_BIND_SERVICE)) {
 536                        return -EACCES;
 537                }
 538
 539                if (__vsock_find_bound_socket(&new_addr))
 540                        return -EADDRINUSE;
 541        }
 542
 543        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 544
 545        /* Remove stream sockets from the unbound list and add them to the hash
 546         * table for easy lookup by its address.  The unbound list is simply an
 547         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 548         */
 549        __vsock_remove_bound(vsk);
 550        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 551
 552        return 0;
 553}
 554
 555static int __vsock_bind_dgram(struct vsock_sock *vsk,
 556                              struct sockaddr_vm *addr)
 557{
 558        return transport->dgram_bind(vsk, addr);
 559}
 560
 561static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 562{
 563        struct vsock_sock *vsk = vsock_sk(sk);
 564        u32 cid;
 565        int retval;
 566
 567        /* First ensure this socket isn't already bound. */
 568        if (vsock_addr_bound(&vsk->local_addr))
 569                return -EINVAL;
 570
 571        /* Now bind to the provided address or select appropriate values if
 572         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 573         * like AF_INET prevents binding to a non-local IP address (in most
 574         * cases), we only allow binding to the local CID.
 575         */
 576        cid = transport->get_local_cid();
 577        if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
 578                return -EADDRNOTAVAIL;
 579
 580        switch (sk->sk_socket->type) {
 581        case SOCK_STREAM:
 582                spin_lock_bh(&vsock_table_lock);
 583                retval = __vsock_bind_stream(vsk, addr);
 584                spin_unlock_bh(&vsock_table_lock);
 585                break;
 586
 587        case SOCK_DGRAM:
 588                retval = __vsock_bind_dgram(vsk, addr);
 589                break;
 590
 591        default:
 592                retval = -EINVAL;
 593                break;
 594        }
 595
 596        return retval;
 597}
 598
 599static void vsock_connect_timeout(struct work_struct *work);
 600
 601struct sock *__vsock_create(struct net *net,
 602                            struct socket *sock,
 603                            struct sock *parent,
 604                            gfp_t priority,
 605                            unsigned short type,
 606                            int kern)
 607{
 608        struct sock *sk;
 609        struct vsock_sock *psk;
 610        struct vsock_sock *vsk;
 611
 612        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
 613        if (!sk)
 614                return NULL;
 615
 616        sock_init_data(sock, sk);
 617
 618        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 619         * non-NULL. We make sure that our sockets always have a type by
 620         * setting it here if needed.
 621         */
 622        if (!sock)
 623                sk->sk_type = type;
 624
 625        vsk = vsock_sk(sk);
 626        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 627        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 628
 629        sk->sk_destruct = vsock_sk_destruct;
 630        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 631        sock_reset_flag(sk, SOCK_DONE);
 632
 633        INIT_LIST_HEAD(&vsk->bound_table);
 634        INIT_LIST_HEAD(&vsk->connected_table);
 635        vsk->listener = NULL;
 636        INIT_LIST_HEAD(&vsk->pending_links);
 637        INIT_LIST_HEAD(&vsk->accept_queue);
 638        vsk->rejected = false;
 639        vsk->sent_request = false;
 640        vsk->ignore_connecting_rst = false;
 641        vsk->peer_shutdown = 0;
 642        INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
 643        INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
 644
 645        psk = parent ? vsock_sk(parent) : NULL;
 646        if (parent) {
 647                vsk->trusted = psk->trusted;
 648                vsk->owner = get_cred(psk->owner);
 649                vsk->connect_timeout = psk->connect_timeout;
 650        } else {
 651                vsk->trusted = capable(CAP_NET_ADMIN);
 652                vsk->owner = get_current_cred();
 653                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 654        }
 655
 656        if (transport->init(vsk, psk) < 0) {
 657                sk_free(sk);
 658                return NULL;
 659        }
 660
 661        if (sock)
 662                vsock_insert_unbound(vsk);
 663
 664        return sk;
 665}
 666EXPORT_SYMBOL_GPL(__vsock_create);
 667
 668static void __vsock_release(struct sock *sk)
 669{
 670        if (sk) {
 671                struct sk_buff *skb;
 672                struct sock *pending;
 673                struct vsock_sock *vsk;
 674
 675                vsk = vsock_sk(sk);
 676                pending = NULL; /* Compiler warning. */
 677
 678                transport->release(vsk);
 679
 680                lock_sock(sk);
 681                sock_orphan(sk);
 682                sk->sk_shutdown = SHUTDOWN_MASK;
 683
 684                while ((skb = skb_dequeue(&sk->sk_receive_queue)))
 685                        kfree_skb(skb);
 686
 687                /* Clean up any sockets that never were accepted. */
 688                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 689                        __vsock_release(pending);
 690                        sock_put(pending);
 691                }
 692
 693                release_sock(sk);
 694                sock_put(sk);
 695        }
 696}
 697
 698static void vsock_sk_destruct(struct sock *sk)
 699{
 700        struct vsock_sock *vsk = vsock_sk(sk);
 701
 702        transport->destruct(vsk);
 703
 704        /* When clearing these addresses, there's no need to set the family and
 705         * possibly register the address family with the kernel.
 706         */
 707        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 708        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 709
 710        put_cred(vsk->owner);
 711}
 712
 713static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 714{
 715        int err;
 716
 717        err = sock_queue_rcv_skb(sk, skb);
 718        if (err)
 719                kfree_skb(skb);
 720
 721        return err;
 722}
 723
 724s64 vsock_stream_has_data(struct vsock_sock *vsk)
 725{
 726        return transport->stream_has_data(vsk);
 727}
 728EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 729
 730s64 vsock_stream_has_space(struct vsock_sock *vsk)
 731{
 732        return transport->stream_has_space(vsk);
 733}
 734EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 735
 736static int vsock_release(struct socket *sock)
 737{
 738        __vsock_release(sock->sk);
 739        sock->sk = NULL;
 740        sock->state = SS_FREE;
 741
 742        return 0;
 743}
 744
 745static int
 746vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 747{
 748        int err;
 749        struct sock *sk;
 750        struct sockaddr_vm *vm_addr;
 751
 752        sk = sock->sk;
 753
 754        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 755                return -EINVAL;
 756
 757        lock_sock(sk);
 758        err = __vsock_bind(sk, vm_addr);
 759        release_sock(sk);
 760
 761        return err;
 762}
 763
 764static int vsock_getname(struct socket *sock,
 765                         struct sockaddr *addr, int peer)
 766{
 767        int err;
 768        struct sock *sk;
 769        struct vsock_sock *vsk;
 770        struct sockaddr_vm *vm_addr;
 771
 772        sk = sock->sk;
 773        vsk = vsock_sk(sk);
 774        err = 0;
 775
 776        lock_sock(sk);
 777
 778        if (peer) {
 779                if (sock->state != SS_CONNECTED) {
 780                        err = -ENOTCONN;
 781                        goto out;
 782                }
 783                vm_addr = &vsk->remote_addr;
 784        } else {
 785                vm_addr = &vsk->local_addr;
 786        }
 787
 788        if (!vm_addr) {
 789                err = -EINVAL;
 790                goto out;
 791        }
 792
 793        /* sys_getsockname() and sys_getpeername() pass us a
 794         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 795         * that macro is defined in socket.c instead of .h, so we hardcode its
 796         * value here.
 797         */
 798        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 799        memcpy(addr, vm_addr, sizeof(*vm_addr));
 800        err = sizeof(*vm_addr);
 801
 802out:
 803        release_sock(sk);
 804        return err;
 805}
 806
 807static int vsock_shutdown(struct socket *sock, int mode)
 808{
 809        int err;
 810        struct sock *sk;
 811
 812        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 813         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 814         * here like the other address families do.  Note also that the
 815         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 816         * which is what we want.
 817         */
 818        mode++;
 819
 820        if ((mode & ~SHUTDOWN_MASK) || !mode)
 821                return -EINVAL;
 822
 823        /* If this is a STREAM socket and it is not connected then bail out
 824         * immediately.  If it is a DGRAM socket then we must first kick the
 825         * socket so that it wakes up from any sleeping calls, for example
 826         * recv(), and then afterwards return the error.
 827         */
 828
 829        sk = sock->sk;
 830        if (sock->state == SS_UNCONNECTED) {
 831                err = -ENOTCONN;
 832                if (sk->sk_type == SOCK_STREAM)
 833                        return err;
 834        } else {
 835                sock->state = SS_DISCONNECTING;
 836                err = 0;
 837        }
 838
 839        /* Receive and send shutdowns are treated alike. */
 840        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 841        if (mode) {
 842                lock_sock(sk);
 843                sk->sk_shutdown |= mode;
 844                sk->sk_state_change(sk);
 845                release_sock(sk);
 846
 847                if (sk->sk_type == SOCK_STREAM) {
 848                        sock_reset_flag(sk, SOCK_DONE);
 849                        vsock_send_shutdown(sk, mode);
 850                }
 851        }
 852
 853        return err;
 854}
 855
 856static __poll_t vsock_poll(struct file *file, struct socket *sock,
 857                               poll_table *wait)
 858{
 859        struct sock *sk;
 860        __poll_t mask;
 861        struct vsock_sock *vsk;
 862
 863        sk = sock->sk;
 864        vsk = vsock_sk(sk);
 865
 866        poll_wait(file, sk_sleep(sk), wait);
 867        mask = 0;
 868
 869        if (sk->sk_err)
 870                /* Signify that there has been an error on this socket. */
 871                mask |= EPOLLERR;
 872
 873        /* INET sockets treat local write shutdown and peer write shutdown as a
 874         * case of EPOLLHUP set.
 875         */
 876        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 877            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 878             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 879                mask |= EPOLLHUP;
 880        }
 881
 882        if (sk->sk_shutdown & RCV_SHUTDOWN ||
 883            vsk->peer_shutdown & SEND_SHUTDOWN) {
 884                mask |= EPOLLRDHUP;
 885        }
 886
 887        if (sock->type == SOCK_DGRAM) {
 888                /* For datagram sockets we can read if there is something in
 889                 * the queue and write as long as the socket isn't shutdown for
 890                 * sending.
 891                 */
 892                if (!skb_queue_empty(&sk->sk_receive_queue) ||
 893                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
 894                        mask |= EPOLLIN | EPOLLRDNORM;
 895                }
 896
 897                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 898                        mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
 899
 900        } else if (sock->type == SOCK_STREAM) {
 901                lock_sock(sk);
 902
 903                /* Listening sockets that have connections in their accept
 904                 * queue can be read.
 905                 */
 906                if (sk->sk_state == TCP_LISTEN
 907                    && !vsock_is_accept_queue_empty(sk))
 908                        mask |= EPOLLIN | EPOLLRDNORM;
 909
 910                /* If there is something in the queue then we can read. */
 911                if (transport->stream_is_active(vsk) &&
 912                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
 913                        bool data_ready_now = false;
 914                        int ret = transport->notify_poll_in(
 915                                        vsk, 1, &data_ready_now);
 916                        if (ret < 0) {
 917                                mask |= EPOLLERR;
 918                        } else {
 919                                if (data_ready_now)
 920                                        mask |= EPOLLIN | EPOLLRDNORM;
 921
 922                        }
 923                }
 924
 925                /* Sockets whose connections have been closed, reset, or
 926                 * terminated should also be considered read, and we check the
 927                 * shutdown flag for that.
 928                 */
 929                if (sk->sk_shutdown & RCV_SHUTDOWN ||
 930                    vsk->peer_shutdown & SEND_SHUTDOWN) {
 931                        mask |= EPOLLIN | EPOLLRDNORM;
 932                }
 933
 934                /* Connected sockets that can produce data can be written. */
 935                if (sk->sk_state == TCP_ESTABLISHED) {
 936                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 937                                bool space_avail_now = false;
 938                                int ret = transport->notify_poll_out(
 939                                                vsk, 1, &space_avail_now);
 940                                if (ret < 0) {
 941                                        mask |= EPOLLERR;
 942                                } else {
 943                                        if (space_avail_now)
 944                                                /* Remove EPOLLWRBAND since INET
 945                                                 * sockets are not setting it.
 946                                                 */
 947                                                mask |= EPOLLOUT | EPOLLWRNORM;
 948
 949                                }
 950                        }
 951                }
 952
 953                /* Simulate INET socket poll behaviors, which sets
 954                 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
 955                 * but local send is not shutdown.
 956                 */
 957                if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
 958                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 959                                mask |= EPOLLOUT | EPOLLWRNORM;
 960
 961                }
 962
 963                release_sock(sk);
 964        }
 965
 966        return mask;
 967}
 968
 969static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
 970                               size_t len)
 971{
 972        int err;
 973        struct sock *sk;
 974        struct vsock_sock *vsk;
 975        struct sockaddr_vm *remote_addr;
 976
 977        if (msg->msg_flags & MSG_OOB)
 978                return -EOPNOTSUPP;
 979
 980        /* For now, MSG_DONTWAIT is always assumed... */
 981        err = 0;
 982        sk = sock->sk;
 983        vsk = vsock_sk(sk);
 984
 985        lock_sock(sk);
 986
 987        err = vsock_auto_bind(vsk);
 988        if (err)
 989                goto out;
 990
 991
 992        /* If the provided message contains an address, use that.  Otherwise
 993         * fall back on the socket's remote handle (if it has been connected).
 994         */
 995        if (msg->msg_name &&
 996            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
 997                            &remote_addr) == 0) {
 998                /* Ensure this address is of the right type and is a valid
 999                 * destination.
1000                 */
1001
1002                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1003                        remote_addr->svm_cid = transport->get_local_cid();
1004
1005                if (!vsock_addr_bound(remote_addr)) {
1006                        err = -EINVAL;
1007                        goto out;
1008                }
1009        } else if (sock->state == SS_CONNECTED) {
1010                remote_addr = &vsk->remote_addr;
1011
1012                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1013                        remote_addr->svm_cid = transport->get_local_cid();
1014
1015                /* XXX Should connect() or this function ensure remote_addr is
1016                 * bound?
1017                 */
1018                if (!vsock_addr_bound(&vsk->remote_addr)) {
1019                        err = -EINVAL;
1020                        goto out;
1021                }
1022        } else {
1023                err = -EINVAL;
1024                goto out;
1025        }
1026
1027        if (!transport->dgram_allow(remote_addr->svm_cid,
1028                                    remote_addr->svm_port)) {
1029                err = -EINVAL;
1030                goto out;
1031        }
1032
1033        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1034
1035out:
1036        release_sock(sk);
1037        return err;
1038}
1039
1040static int vsock_dgram_connect(struct socket *sock,
1041                               struct sockaddr *addr, int addr_len, int flags)
1042{
1043        int err;
1044        struct sock *sk;
1045        struct vsock_sock *vsk;
1046        struct sockaddr_vm *remote_addr;
1047
1048        sk = sock->sk;
1049        vsk = vsock_sk(sk);
1050
1051        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1052        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1053                lock_sock(sk);
1054                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1055                                VMADDR_PORT_ANY);
1056                sock->state = SS_UNCONNECTED;
1057                release_sock(sk);
1058                return 0;
1059        } else if (err != 0)
1060                return -EINVAL;
1061
1062        lock_sock(sk);
1063
1064        err = vsock_auto_bind(vsk);
1065        if (err)
1066                goto out;
1067
1068        if (!transport->dgram_allow(remote_addr->svm_cid,
1069                                    remote_addr->svm_port)) {
1070                err = -EINVAL;
1071                goto out;
1072        }
1073
1074        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1075        sock->state = SS_CONNECTED;
1076
1077out:
1078        release_sock(sk);
1079        return err;
1080}
1081
1082static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1083                               size_t len, int flags)
1084{
1085        return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1086}
1087
1088static const struct proto_ops vsock_dgram_ops = {
1089        .family = PF_VSOCK,
1090        .owner = THIS_MODULE,
1091        .release = vsock_release,
1092        .bind = vsock_bind,
1093        .connect = vsock_dgram_connect,
1094        .socketpair = sock_no_socketpair,
1095        .accept = sock_no_accept,
1096        .getname = vsock_getname,
1097        .poll = vsock_poll,
1098        .ioctl = sock_no_ioctl,
1099        .listen = sock_no_listen,
1100        .shutdown = vsock_shutdown,
1101        .setsockopt = sock_no_setsockopt,
1102        .getsockopt = sock_no_getsockopt,
1103        .sendmsg = vsock_dgram_sendmsg,
1104        .recvmsg = vsock_dgram_recvmsg,
1105        .mmap = sock_no_mmap,
1106        .sendpage = sock_no_sendpage,
1107};
1108
1109static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1110{
1111        if (!transport->cancel_pkt)
1112                return -EOPNOTSUPP;
1113
1114        return transport->cancel_pkt(vsk);
1115}
1116
1117static void vsock_connect_timeout(struct work_struct *work)
1118{
1119        struct sock *sk;
1120        struct vsock_sock *vsk;
1121        int cancel = 0;
1122
1123        vsk = container_of(work, struct vsock_sock, connect_work.work);
1124        sk = sk_vsock(vsk);
1125
1126        lock_sock(sk);
1127        if (sk->sk_state == TCP_SYN_SENT &&
1128            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1129                sk->sk_state = TCP_CLOSE;
1130                sk->sk_err = ETIMEDOUT;
1131                sk->sk_error_report(sk);
1132                cancel = 1;
1133        }
1134        release_sock(sk);
1135        if (cancel)
1136                vsock_transport_cancel_pkt(vsk);
1137
1138        sock_put(sk);
1139}
1140
1141static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1142                                int addr_len, int flags)
1143{
1144        int err;
1145        struct sock *sk;
1146        struct vsock_sock *vsk;
1147        struct sockaddr_vm *remote_addr;
1148        long timeout;
1149        DEFINE_WAIT(wait);
1150
1151        err = 0;
1152        sk = sock->sk;
1153        vsk = vsock_sk(sk);
1154
1155        lock_sock(sk);
1156
1157        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1158        switch (sock->state) {
1159        case SS_CONNECTED:
1160                err = -EISCONN;
1161                goto out;
1162        case SS_DISCONNECTING:
1163                err = -EINVAL;
1164                goto out;
1165        case SS_CONNECTING:
1166                /* This continues on so we can move sock into the SS_CONNECTED
1167                 * state once the connection has completed (at which point err
1168                 * will be set to zero also).  Otherwise, we will either wait
1169                 * for the connection or return -EALREADY should this be a
1170                 * non-blocking call.
1171                 */
1172                err = -EALREADY;
1173                break;
1174        default:
1175                if ((sk->sk_state == TCP_LISTEN) ||
1176                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1177                        err = -EINVAL;
1178                        goto out;
1179                }
1180
1181                /* The hypervisor and well-known contexts do not have socket
1182                 * endpoints.
1183                 */
1184                if (!transport->stream_allow(remote_addr->svm_cid,
1185                                             remote_addr->svm_port)) {
1186                        err = -ENETUNREACH;
1187                        goto out;
1188                }
1189
1190                /* Set the remote address that we are connecting to. */
1191                memcpy(&vsk->remote_addr, remote_addr,
1192                       sizeof(vsk->remote_addr));
1193
1194                err = vsock_auto_bind(vsk);
1195                if (err)
1196                        goto out;
1197
1198                sk->sk_state = TCP_SYN_SENT;
1199
1200                err = transport->connect(vsk);
1201                if (err < 0)
1202                        goto out;
1203
1204                /* Mark sock as connecting and set the error code to in
1205                 * progress in case this is a non-blocking connect.
1206                 */
1207                sock->state = SS_CONNECTING;
1208                err = -EINPROGRESS;
1209        }
1210
1211        /* The receive path will handle all communication until we are able to
1212         * enter the connected state.  Here we wait for the connection to be
1213         * completed or a notification of an error.
1214         */
1215        timeout = vsk->connect_timeout;
1216        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1217
1218        while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1219                if (flags & O_NONBLOCK) {
1220                        /* If we're not going to block, we schedule a timeout
1221                         * function to generate a timeout on the connection
1222                         * attempt, in case the peer doesn't respond in a
1223                         * timely manner. We hold on to the socket until the
1224                         * timeout fires.
1225                         */
1226                        sock_hold(sk);
1227                        schedule_delayed_work(&vsk->connect_work, timeout);
1228
1229                        /* Skip ahead to preserve error code set above. */
1230                        goto out_wait;
1231                }
1232
1233                release_sock(sk);
1234                timeout = schedule_timeout(timeout);
1235                lock_sock(sk);
1236
1237                if (signal_pending(current)) {
1238                        err = sock_intr_errno(timeout);
1239                        sk->sk_state = TCP_CLOSE;
1240                        sock->state = SS_UNCONNECTED;
1241                        vsock_transport_cancel_pkt(vsk);
1242                        goto out_wait;
1243                } else if (timeout == 0) {
1244                        err = -ETIMEDOUT;
1245                        sk->sk_state = TCP_CLOSE;
1246                        sock->state = SS_UNCONNECTED;
1247                        vsock_transport_cancel_pkt(vsk);
1248                        goto out_wait;
1249                }
1250
1251                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1252        }
1253
1254        if (sk->sk_err) {
1255                err = -sk->sk_err;
1256                sk->sk_state = TCP_CLOSE;
1257                sock->state = SS_UNCONNECTED;
1258        } else {
1259                err = 0;
1260        }
1261
1262out_wait:
1263        finish_wait(sk_sleep(sk), &wait);
1264out:
1265        release_sock(sk);
1266        return err;
1267}
1268
1269static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1270                        bool kern)
1271{
1272        struct sock *listener;
1273        int err;
1274        struct sock *connected;
1275        struct vsock_sock *vconnected;
1276        long timeout;
1277        DEFINE_WAIT(wait);
1278
1279        err = 0;
1280        listener = sock->sk;
1281
1282        lock_sock(listener);
1283
1284        if (sock->type != SOCK_STREAM) {
1285                err = -EOPNOTSUPP;
1286                goto out;
1287        }
1288
1289        if (listener->sk_state != TCP_LISTEN) {
1290                err = -EINVAL;
1291                goto out;
1292        }
1293
1294        /* Wait for children sockets to appear; these are the new sockets
1295         * created upon connection establishment.
1296         */
1297        timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1298        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1299
1300        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1301               listener->sk_err == 0) {
1302                release_sock(listener);
1303                timeout = schedule_timeout(timeout);
1304                finish_wait(sk_sleep(listener), &wait);
1305                lock_sock(listener);
1306
1307                if (signal_pending(current)) {
1308                        err = sock_intr_errno(timeout);
1309                        goto out;
1310                } else if (timeout == 0) {
1311                        err = -EAGAIN;
1312                        goto out;
1313                }
1314
1315                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1316        }
1317        finish_wait(sk_sleep(listener), &wait);
1318
1319        if (listener->sk_err)
1320                err = -listener->sk_err;
1321
1322        if (connected) {
1323                listener->sk_ack_backlog--;
1324
1325                lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1326                vconnected = vsock_sk(connected);
1327
1328                /* If the listener socket has received an error, then we should
1329                 * reject this socket and return.  Note that we simply mark the
1330                 * socket rejected, drop our reference, and let the cleanup
1331                 * function handle the cleanup; the fact that we found it in
1332                 * the listener's accept queue guarantees that the cleanup
1333                 * function hasn't run yet.
1334                 */
1335                if (err) {
1336                        vconnected->rejected = true;
1337                } else {
1338                        newsock->state = SS_CONNECTED;
1339                        sock_graft(connected, newsock);
1340                }
1341
1342                release_sock(connected);
1343                sock_put(connected);
1344        }
1345
1346out:
1347        release_sock(listener);
1348        return err;
1349}
1350
1351static int vsock_listen(struct socket *sock, int backlog)
1352{
1353        int err;
1354        struct sock *sk;
1355        struct vsock_sock *vsk;
1356
1357        sk = sock->sk;
1358
1359        lock_sock(sk);
1360
1361        if (sock->type != SOCK_STREAM) {
1362                err = -EOPNOTSUPP;
1363                goto out;
1364        }
1365
1366        if (sock->state != SS_UNCONNECTED) {
1367                err = -EINVAL;
1368                goto out;
1369        }
1370
1371        vsk = vsock_sk(sk);
1372
1373        if (!vsock_addr_bound(&vsk->local_addr)) {
1374                err = -EINVAL;
1375                goto out;
1376        }
1377
1378        sk->sk_max_ack_backlog = backlog;
1379        sk->sk_state = TCP_LISTEN;
1380
1381        err = 0;
1382
1383out:
1384        release_sock(sk);
1385        return err;
1386}
1387
1388static int vsock_stream_setsockopt(struct socket *sock,
1389                                   int level,
1390                                   int optname,
1391                                   char __user *optval,
1392                                   unsigned int optlen)
1393{
1394        int err;
1395        struct sock *sk;
1396        struct vsock_sock *vsk;
1397        u64 val;
1398
1399        if (level != AF_VSOCK)
1400                return -ENOPROTOOPT;
1401
1402#define COPY_IN(_v)                                       \
1403        do {                                              \
1404                if (optlen < sizeof(_v)) {                \
1405                        err = -EINVAL;                    \
1406                        goto exit;                        \
1407                }                                         \
1408                if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1409                        err = -EFAULT;                                  \
1410                        goto exit;                                      \
1411                }                                                       \
1412        } while (0)
1413
1414        err = 0;
1415        sk = sock->sk;
1416        vsk = vsock_sk(sk);
1417
1418        lock_sock(sk);
1419
1420        switch (optname) {
1421        case SO_VM_SOCKETS_BUFFER_SIZE:
1422                COPY_IN(val);
1423                transport->set_buffer_size(vsk, val);
1424                break;
1425
1426        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1427                COPY_IN(val);
1428                transport->set_max_buffer_size(vsk, val);
1429                break;
1430
1431        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1432                COPY_IN(val);
1433                transport->set_min_buffer_size(vsk, val);
1434                break;
1435
1436        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1437                struct timeval tv;
1438                COPY_IN(tv);
1439                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1440                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1441                        vsk->connect_timeout = tv.tv_sec * HZ +
1442                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1443                        if (vsk->connect_timeout == 0)
1444                                vsk->connect_timeout =
1445                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1446
1447                } else {
1448                        err = -ERANGE;
1449                }
1450                break;
1451        }
1452
1453        default:
1454                err = -ENOPROTOOPT;
1455                break;
1456        }
1457
1458#undef COPY_IN
1459
1460exit:
1461        release_sock(sk);
1462        return err;
1463}
1464
1465static int vsock_stream_getsockopt(struct socket *sock,
1466                                   int level, int optname,
1467                                   char __user *optval,
1468                                   int __user *optlen)
1469{
1470        int err;
1471        int len;
1472        struct sock *sk;
1473        struct vsock_sock *vsk;
1474        u64 val;
1475
1476        if (level != AF_VSOCK)
1477                return -ENOPROTOOPT;
1478
1479        err = get_user(len, optlen);
1480        if (err != 0)
1481                return err;
1482
1483#define COPY_OUT(_v)                            \
1484        do {                                    \
1485                if (len < sizeof(_v))           \
1486                        return -EINVAL;         \
1487                                                \
1488                len = sizeof(_v);               \
1489                if (copy_to_user(optval, &_v, len) != 0)        \
1490                        return -EFAULT;                         \
1491                                                                \
1492        } while (0)
1493
1494        err = 0;
1495        sk = sock->sk;
1496        vsk = vsock_sk(sk);
1497
1498        switch (optname) {
1499        case SO_VM_SOCKETS_BUFFER_SIZE:
1500                val = transport->get_buffer_size(vsk);
1501                COPY_OUT(val);
1502                break;
1503
1504        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1505                val = transport->get_max_buffer_size(vsk);
1506                COPY_OUT(val);
1507                break;
1508
1509        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1510                val = transport->get_min_buffer_size(vsk);
1511                COPY_OUT(val);
1512                break;
1513
1514        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1515                struct timeval tv;
1516                tv.tv_sec = vsk->connect_timeout / HZ;
1517                tv.tv_usec =
1518                    (vsk->connect_timeout -
1519                     tv.tv_sec * HZ) * (1000000 / HZ);
1520                COPY_OUT(tv);
1521                break;
1522        }
1523        default:
1524                return -ENOPROTOOPT;
1525        }
1526
1527        err = put_user(len, optlen);
1528        if (err != 0)
1529                return -EFAULT;
1530
1531#undef COPY_OUT
1532
1533        return 0;
1534}
1535
1536static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1537                                size_t len)
1538{
1539        struct sock *sk;
1540        struct vsock_sock *vsk;
1541        ssize_t total_written;
1542        long timeout;
1543        int err;
1544        struct vsock_transport_send_notify_data send_data;
1545        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1546
1547        sk = sock->sk;
1548        vsk = vsock_sk(sk);
1549        total_written = 0;
1550        err = 0;
1551
1552        if (msg->msg_flags & MSG_OOB)
1553                return -EOPNOTSUPP;
1554
1555        lock_sock(sk);
1556
1557        /* Callers should not provide a destination with stream sockets. */
1558        if (msg->msg_namelen) {
1559                err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1560                goto out;
1561        }
1562
1563        /* Send data only if both sides are not shutdown in the direction. */
1564        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1565            vsk->peer_shutdown & RCV_SHUTDOWN) {
1566                err = -EPIPE;
1567                goto out;
1568        }
1569
1570        if (sk->sk_state != TCP_ESTABLISHED ||
1571            !vsock_addr_bound(&vsk->local_addr)) {
1572                err = -ENOTCONN;
1573                goto out;
1574        }
1575
1576        if (!vsock_addr_bound(&vsk->remote_addr)) {
1577                err = -EDESTADDRREQ;
1578                goto out;
1579        }
1580
1581        /* Wait for room in the produce queue to enqueue our user's data. */
1582        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1583
1584        err = transport->notify_send_init(vsk, &send_data);
1585        if (err < 0)
1586                goto out;
1587
1588        while (total_written < len) {
1589                ssize_t written;
1590
1591                add_wait_queue(sk_sleep(sk), &wait);
1592                while (vsock_stream_has_space(vsk) == 0 &&
1593                       sk->sk_err == 0 &&
1594                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1595                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1596
1597                        /* Don't wait for non-blocking sockets. */
1598                        if (timeout == 0) {
1599                                err = -EAGAIN;
1600                                remove_wait_queue(sk_sleep(sk), &wait);
1601                                goto out_err;
1602                        }
1603
1604                        err = transport->notify_send_pre_block(vsk, &send_data);
1605                        if (err < 0) {
1606                                remove_wait_queue(sk_sleep(sk), &wait);
1607                                goto out_err;
1608                        }
1609
1610                        release_sock(sk);
1611                        timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1612                        lock_sock(sk);
1613                        if (signal_pending(current)) {
1614                                err = sock_intr_errno(timeout);
1615                                remove_wait_queue(sk_sleep(sk), &wait);
1616                                goto out_err;
1617                        } else if (timeout == 0) {
1618                                err = -EAGAIN;
1619                                remove_wait_queue(sk_sleep(sk), &wait);
1620                                goto out_err;
1621                        }
1622                }
1623                remove_wait_queue(sk_sleep(sk), &wait);
1624
1625                /* These checks occur both as part of and after the loop
1626                 * conditional since we need to check before and after
1627                 * sleeping.
1628                 */
1629                if (sk->sk_err) {
1630                        err = -sk->sk_err;
1631                        goto out_err;
1632                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1633                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1634                        err = -EPIPE;
1635                        goto out_err;
1636                }
1637
1638                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1639                if (err < 0)
1640                        goto out_err;
1641
1642                /* Note that enqueue will only write as many bytes as are free
1643                 * in the produce queue, so we don't need to ensure len is
1644                 * smaller than the queue size.  It is the caller's
1645                 * responsibility to check how many bytes we were able to send.
1646                 */
1647
1648                written = transport->stream_enqueue(
1649                                vsk, msg,
1650                                len - total_written);
1651                if (written < 0) {
1652                        err = -ENOMEM;
1653                        goto out_err;
1654                }
1655
1656                total_written += written;
1657
1658                err = transport->notify_send_post_enqueue(
1659                                vsk, written, &send_data);
1660                if (err < 0)
1661                        goto out_err;
1662
1663        }
1664
1665out_err:
1666        if (total_written > 0)
1667                err = total_written;
1668out:
1669        release_sock(sk);
1670        return err;
1671}
1672
1673
1674static int
1675vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1676                     int flags)
1677{
1678        struct sock *sk;
1679        struct vsock_sock *vsk;
1680        int err;
1681        size_t target;
1682        ssize_t copied;
1683        long timeout;
1684        struct vsock_transport_recv_notify_data recv_data;
1685
1686        DEFINE_WAIT(wait);
1687
1688        sk = sock->sk;
1689        vsk = vsock_sk(sk);
1690        err = 0;
1691
1692        lock_sock(sk);
1693
1694        if (sk->sk_state != TCP_ESTABLISHED) {
1695                /* Recvmsg is supposed to return 0 if a peer performs an
1696                 * orderly shutdown. Differentiate between that case and when a
1697                 * peer has not connected or a local shutdown occured with the
1698                 * SOCK_DONE flag.
1699                 */
1700                if (sock_flag(sk, SOCK_DONE))
1701                        err = 0;
1702                else
1703                        err = -ENOTCONN;
1704
1705                goto out;
1706        }
1707
1708        if (flags & MSG_OOB) {
1709                err = -EOPNOTSUPP;
1710                goto out;
1711        }
1712
1713        /* We don't check peer_shutdown flag here since peer may actually shut
1714         * down, but there can be data in the queue that a local socket can
1715         * receive.
1716         */
1717        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1718                err = 0;
1719                goto out;
1720        }
1721
1722        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1723         * is not an error.  We may as well bail out now.
1724         */
1725        if (!len) {
1726                err = 0;
1727                goto out;
1728        }
1729
1730        /* We must not copy less than target bytes into the user's buffer
1731         * before returning successfully, so we wait for the consume queue to
1732         * have that much data to consume before dequeueing.  Note that this
1733         * makes it impossible to handle cases where target is greater than the
1734         * queue size.
1735         */
1736        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1737        if (target >= transport->stream_rcvhiwat(vsk)) {
1738                err = -ENOMEM;
1739                goto out;
1740        }
1741        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1742        copied = 0;
1743
1744        err = transport->notify_recv_init(vsk, target, &recv_data);
1745        if (err < 0)
1746                goto out;
1747
1748
1749        while (1) {
1750                s64 ready;
1751
1752                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1753                ready = vsock_stream_has_data(vsk);
1754
1755                if (ready == 0) {
1756                        if (sk->sk_err != 0 ||
1757                            (sk->sk_shutdown & RCV_SHUTDOWN) ||
1758                            (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1759                                finish_wait(sk_sleep(sk), &wait);
1760                                break;
1761                        }
1762                        /* Don't wait for non-blocking sockets. */
1763                        if (timeout == 0) {
1764                                err = -EAGAIN;
1765                                finish_wait(sk_sleep(sk), &wait);
1766                                break;
1767                        }
1768
1769                        err = transport->notify_recv_pre_block(
1770                                        vsk, target, &recv_data);
1771                        if (err < 0) {
1772                                finish_wait(sk_sleep(sk), &wait);
1773                                break;
1774                        }
1775                        release_sock(sk);
1776                        timeout = schedule_timeout(timeout);
1777                        lock_sock(sk);
1778
1779                        if (signal_pending(current)) {
1780                                err = sock_intr_errno(timeout);
1781                                finish_wait(sk_sleep(sk), &wait);
1782                                break;
1783                        } else if (timeout == 0) {
1784                                err = -EAGAIN;
1785                                finish_wait(sk_sleep(sk), &wait);
1786                                break;
1787                        }
1788                } else {
1789                        ssize_t read;
1790
1791                        finish_wait(sk_sleep(sk), &wait);
1792
1793                        if (ready < 0) {
1794                                /* Invalid queue pair content. XXX This should
1795                                * be changed to a connection reset in a later
1796                                * change.
1797                                */
1798
1799                                err = -ENOMEM;
1800                                goto out;
1801                        }
1802
1803                        err = transport->notify_recv_pre_dequeue(
1804                                        vsk, target, &recv_data);
1805                        if (err < 0)
1806                                break;
1807
1808                        read = transport->stream_dequeue(
1809                                        vsk, msg,
1810                                        len - copied, flags);
1811                        if (read < 0) {
1812                                err = -ENOMEM;
1813                                break;
1814                        }
1815
1816                        copied += read;
1817
1818                        err = transport->notify_recv_post_dequeue(
1819                                        vsk, target, read,
1820                                        !(flags & MSG_PEEK), &recv_data);
1821                        if (err < 0)
1822                                goto out;
1823
1824                        if (read >= target || flags & MSG_PEEK)
1825                                break;
1826
1827                        target -= read;
1828                }
1829        }
1830
1831        if (sk->sk_err)
1832                err = -sk->sk_err;
1833        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1834                err = 0;
1835
1836        if (copied > 0)
1837                err = copied;
1838
1839out:
1840        release_sock(sk);
1841        return err;
1842}
1843
1844static const struct proto_ops vsock_stream_ops = {
1845        .family = PF_VSOCK,
1846        .owner = THIS_MODULE,
1847        .release = vsock_release,
1848        .bind = vsock_bind,
1849        .connect = vsock_stream_connect,
1850        .socketpair = sock_no_socketpair,
1851        .accept = vsock_accept,
1852        .getname = vsock_getname,
1853        .poll = vsock_poll,
1854        .ioctl = sock_no_ioctl,
1855        .listen = vsock_listen,
1856        .shutdown = vsock_shutdown,
1857        .setsockopt = vsock_stream_setsockopt,
1858        .getsockopt = vsock_stream_getsockopt,
1859        .sendmsg = vsock_stream_sendmsg,
1860        .recvmsg = vsock_stream_recvmsg,
1861        .mmap = sock_no_mmap,
1862        .sendpage = sock_no_sendpage,
1863};
1864
1865static int vsock_create(struct net *net, struct socket *sock,
1866                        int protocol, int kern)
1867{
1868        if (!sock)
1869                return -EINVAL;
1870
1871        if (protocol && protocol != PF_VSOCK)
1872                return -EPROTONOSUPPORT;
1873
1874        switch (sock->type) {
1875        case SOCK_DGRAM:
1876                sock->ops = &vsock_dgram_ops;
1877                break;
1878        case SOCK_STREAM:
1879                sock->ops = &vsock_stream_ops;
1880                break;
1881        default:
1882                return -ESOCKTNOSUPPORT;
1883        }
1884
1885        sock->state = SS_UNCONNECTED;
1886
1887        return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1888}
1889
1890static const struct net_proto_family vsock_family_ops = {
1891        .family = AF_VSOCK,
1892        .create = vsock_create,
1893        .owner = THIS_MODULE,
1894};
1895
1896static long vsock_dev_do_ioctl(struct file *filp,
1897                               unsigned int cmd, void __user *ptr)
1898{
1899        u32 __user *p = ptr;
1900        int retval = 0;
1901
1902        switch (cmd) {
1903        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1904                if (put_user(transport->get_local_cid(), p) != 0)
1905                        retval = -EFAULT;
1906                break;
1907
1908        default:
1909                pr_err("Unknown ioctl %d\n", cmd);
1910                retval = -EINVAL;
1911        }
1912
1913        return retval;
1914}
1915
1916static long vsock_dev_ioctl(struct file *filp,
1917                            unsigned int cmd, unsigned long arg)
1918{
1919        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1920}
1921
1922#ifdef CONFIG_COMPAT
1923static long vsock_dev_compat_ioctl(struct file *filp,
1924                                   unsigned int cmd, unsigned long arg)
1925{
1926        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1927}
1928#endif
1929
1930static const struct file_operations vsock_device_ops = {
1931        .owner          = THIS_MODULE,
1932        .unlocked_ioctl = vsock_dev_ioctl,
1933#ifdef CONFIG_COMPAT
1934        .compat_ioctl   = vsock_dev_compat_ioctl,
1935#endif
1936        .open           = nonseekable_open,
1937};
1938
1939static struct miscdevice vsock_device = {
1940        .name           = "vsock",
1941        .fops           = &vsock_device_ops,
1942};
1943
1944int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1945{
1946        int err = mutex_lock_interruptible(&vsock_register_mutex);
1947
1948        if (err)
1949                return err;
1950
1951        if (transport) {
1952                err = -EBUSY;
1953                goto err_busy;
1954        }
1955
1956        /* Transport must be the owner of the protocol so that it can't
1957         * unload while there are open sockets.
1958         */
1959        vsock_proto.owner = owner;
1960        transport = t;
1961
1962        vsock_device.minor = MISC_DYNAMIC_MINOR;
1963        err = misc_register(&vsock_device);
1964        if (err) {
1965                pr_err("Failed to register misc device\n");
1966                goto err_reset_transport;
1967        }
1968
1969        err = proto_register(&vsock_proto, 1);  /* we want our slab */
1970        if (err) {
1971                pr_err("Cannot register vsock protocol\n");
1972                goto err_deregister_misc;
1973        }
1974
1975        err = sock_register(&vsock_family_ops);
1976        if (err) {
1977                pr_err("could not register af_vsock (%d) address family: %d\n",
1978                       AF_VSOCK, err);
1979                goto err_unregister_proto;
1980        }
1981
1982        mutex_unlock(&vsock_register_mutex);
1983        return 0;
1984
1985err_unregister_proto:
1986        proto_unregister(&vsock_proto);
1987err_deregister_misc:
1988        misc_deregister(&vsock_device);
1989err_reset_transport:
1990        transport = NULL;
1991err_busy:
1992        mutex_unlock(&vsock_register_mutex);
1993        return err;
1994}
1995EXPORT_SYMBOL_GPL(__vsock_core_init);
1996
1997void vsock_core_exit(void)
1998{
1999        mutex_lock(&vsock_register_mutex);
2000
2001        misc_deregister(&vsock_device);
2002        sock_unregister(AF_VSOCK);
2003        proto_unregister(&vsock_proto);
2004
2005        /* We do not want the assignment below re-ordered. */
2006        mb();
2007        transport = NULL;
2008
2009        mutex_unlock(&vsock_register_mutex);
2010}
2011EXPORT_SYMBOL_GPL(vsock_core_exit);
2012
2013const struct vsock_transport *vsock_core_get_transport(void)
2014{
2015        /* vsock_register_mutex not taken since only the transport uses this
2016         * function and only while registered.
2017         */
2018        return transport;
2019}
2020EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2021
2022static void __exit vsock_exit(void)
2023{
2024        /* Do nothing.  This function makes this module removable. */
2025}
2026
2027module_init(vsock_init_tables);
2028module_exit(vsock_exit);
2029
2030MODULE_AUTHOR("VMware, Inc.");
2031MODULE_DESCRIPTION("VMware Virtual Socket Family");
2032MODULE_VERSION("1.0.2.0-k");
2033MODULE_LICENSE("GPL v2");
2034