linux/arch/sparc/mm/init_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  arch/sparc64/mm/init.c
   4 *
   5 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   6 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   7 */
   8 
   9#include <linux/extable.h>
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/string.h>
  13#include <linux/init.h>
  14#include <linux/bootmem.h>
  15#include <linux/mm.h>
  16#include <linux/hugetlb.h>
  17#include <linux/initrd.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/poison.h>
  21#include <linux/fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/kprobes.h>
  24#include <linux/cache.h>
  25#include <linux/sort.h>
  26#include <linux/ioport.h>
  27#include <linux/percpu.h>
  28#include <linux/memblock.h>
  29#include <linux/mmzone.h>
  30#include <linux/gfp.h>
  31
  32#include <asm/head.h>
  33#include <asm/page.h>
  34#include <asm/pgalloc.h>
  35#include <asm/pgtable.h>
  36#include <asm/oplib.h>
  37#include <asm/iommu.h>
  38#include <asm/io.h>
  39#include <linux/uaccess.h>
  40#include <asm/mmu_context.h>
  41#include <asm/tlbflush.h>
  42#include <asm/dma.h>
  43#include <asm/starfire.h>
  44#include <asm/tlb.h>
  45#include <asm/spitfire.h>
  46#include <asm/sections.h>
  47#include <asm/tsb.h>
  48#include <asm/hypervisor.h>
  49#include <asm/prom.h>
  50#include <asm/mdesc.h>
  51#include <asm/cpudata.h>
  52#include <asm/setup.h>
  53#include <asm/irq.h>
  54
  55#include "init_64.h"
  56
  57unsigned long kern_linear_pte_xor[4] __read_mostly;
  58static unsigned long page_cache4v_flag;
  59
  60/* A bitmap, two bits for every 256MB of physical memory.  These two
  61 * bits determine what page size we use for kernel linear
  62 * translations.  They form an index into kern_linear_pte_xor[].  The
  63 * value in the indexed slot is XOR'd with the TLB miss virtual
  64 * address to form the resulting TTE.  The mapping is:
  65 *
  66 *      0       ==>     4MB
  67 *      1       ==>     256MB
  68 *      2       ==>     2GB
  69 *      3       ==>     16GB
  70 *
  71 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  72 * support 2GB pages, and hopefully future cpus will support the 16GB
  73 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  74 * if these larger page sizes are not supported by the cpu.
  75 *
  76 * It would be nice to determine this from the machine description
  77 * 'cpu' properties, but we need to have this table setup before the
  78 * MDESC is initialized.
  79 */
  80
  81#ifndef CONFIG_DEBUG_PAGEALLOC
  82/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  83 * Space is allocated for this right after the trap table in
  84 * arch/sparc64/kernel/head.S
  85 */
  86extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  87#endif
  88extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  89
  90static unsigned long cpu_pgsz_mask;
  91
  92#define MAX_BANKS       1024
  93
  94static struct linux_prom64_registers pavail[MAX_BANKS];
  95static int pavail_ents;
  96
  97u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
  98
  99static int cmp_p64(const void *a, const void *b)
 100{
 101        const struct linux_prom64_registers *x = a, *y = b;
 102
 103        if (x->phys_addr > y->phys_addr)
 104                return 1;
 105        if (x->phys_addr < y->phys_addr)
 106                return -1;
 107        return 0;
 108}
 109
 110static void __init read_obp_memory(const char *property,
 111                                   struct linux_prom64_registers *regs,
 112                                   int *num_ents)
 113{
 114        phandle node = prom_finddevice("/memory");
 115        int prop_size = prom_getproplen(node, property);
 116        int ents, ret, i;
 117
 118        ents = prop_size / sizeof(struct linux_prom64_registers);
 119        if (ents > MAX_BANKS) {
 120                prom_printf("The machine has more %s property entries than "
 121                            "this kernel can support (%d).\n",
 122                            property, MAX_BANKS);
 123                prom_halt();
 124        }
 125
 126        ret = prom_getproperty(node, property, (char *) regs, prop_size);
 127        if (ret == -1) {
 128                prom_printf("Couldn't get %s property from /memory.\n",
 129                                property);
 130                prom_halt();
 131        }
 132
 133        /* Sanitize what we got from the firmware, by page aligning
 134         * everything.
 135         */
 136        for (i = 0; i < ents; i++) {
 137                unsigned long base, size;
 138
 139                base = regs[i].phys_addr;
 140                size = regs[i].reg_size;
 141
 142                size &= PAGE_MASK;
 143                if (base & ~PAGE_MASK) {
 144                        unsigned long new_base = PAGE_ALIGN(base);
 145
 146                        size -= new_base - base;
 147                        if ((long) size < 0L)
 148                                size = 0UL;
 149                        base = new_base;
 150                }
 151                if (size == 0UL) {
 152                        /* If it is empty, simply get rid of it.
 153                         * This simplifies the logic of the other
 154                         * functions that process these arrays.
 155                         */
 156                        memmove(&regs[i], &regs[i + 1],
 157                                (ents - i - 1) * sizeof(regs[0]));
 158                        i--;
 159                        ents--;
 160                        continue;
 161                }
 162                regs[i].phys_addr = base;
 163                regs[i].reg_size = size;
 164        }
 165
 166        *num_ents = ents;
 167
 168        sort(regs, ents, sizeof(struct linux_prom64_registers),
 169             cmp_p64, NULL);
 170}
 171
 172/* Kernel physical address base and size in bytes.  */
 173unsigned long kern_base __read_mostly;
 174unsigned long kern_size __read_mostly;
 175
 176/* Initial ramdisk setup */
 177extern unsigned long sparc_ramdisk_image64;
 178extern unsigned int sparc_ramdisk_image;
 179extern unsigned int sparc_ramdisk_size;
 180
 181struct page *mem_map_zero __read_mostly;
 182EXPORT_SYMBOL(mem_map_zero);
 183
 184unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 185
 186unsigned long sparc64_kern_pri_context __read_mostly;
 187unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 188unsigned long sparc64_kern_sec_context __read_mostly;
 189
 190int num_kernel_image_mappings;
 191
 192#ifdef CONFIG_DEBUG_DCFLUSH
 193atomic_t dcpage_flushes = ATOMIC_INIT(0);
 194#ifdef CONFIG_SMP
 195atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 196#endif
 197#endif
 198
 199inline void flush_dcache_page_impl(struct page *page)
 200{
 201        BUG_ON(tlb_type == hypervisor);
 202#ifdef CONFIG_DEBUG_DCFLUSH
 203        atomic_inc(&dcpage_flushes);
 204#endif
 205
 206#ifdef DCACHE_ALIASING_POSSIBLE
 207        __flush_dcache_page(page_address(page),
 208                            ((tlb_type == spitfire) &&
 209                             page_mapping_file(page) != NULL));
 210#else
 211        if (page_mapping_file(page) != NULL &&
 212            tlb_type == spitfire)
 213                __flush_icache_page(__pa(page_address(page)));
 214#endif
 215}
 216
 217#define PG_dcache_dirty         PG_arch_1
 218#define PG_dcache_cpu_shift     32UL
 219#define PG_dcache_cpu_mask      \
 220        ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 221
 222#define dcache_dirty_cpu(page) \
 223        (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 224
 225static inline void set_dcache_dirty(struct page *page, int this_cpu)
 226{
 227        unsigned long mask = this_cpu;
 228        unsigned long non_cpu_bits;
 229
 230        non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 231        mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 232
 233        __asm__ __volatile__("1:\n\t"
 234                             "ldx       [%2], %%g7\n\t"
 235                             "and       %%g7, %1, %%g1\n\t"
 236                             "or        %%g1, %0, %%g1\n\t"
 237                             "casx      [%2], %%g7, %%g1\n\t"
 238                             "cmp       %%g7, %%g1\n\t"
 239                             "bne,pn    %%xcc, 1b\n\t"
 240                             " nop"
 241                             : /* no outputs */
 242                             : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 243                             : "g1", "g7");
 244}
 245
 246static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 247{
 248        unsigned long mask = (1UL << PG_dcache_dirty);
 249
 250        __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 251                             "1:\n\t"
 252                             "ldx       [%2], %%g7\n\t"
 253                             "srlx      %%g7, %4, %%g1\n\t"
 254                             "and       %%g1, %3, %%g1\n\t"
 255                             "cmp       %%g1, %0\n\t"
 256                             "bne,pn    %%icc, 2f\n\t"
 257                             " andn     %%g7, %1, %%g1\n\t"
 258                             "casx      [%2], %%g7, %%g1\n\t"
 259                             "cmp       %%g7, %%g1\n\t"
 260                             "bne,pn    %%xcc, 1b\n\t"
 261                             " nop\n"
 262                             "2:"
 263                             : /* no outputs */
 264                             : "r" (cpu), "r" (mask), "r" (&page->flags),
 265                               "i" (PG_dcache_cpu_mask),
 266                               "i" (PG_dcache_cpu_shift)
 267                             : "g1", "g7");
 268}
 269
 270static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 271{
 272        unsigned long tsb_addr = (unsigned long) ent;
 273
 274        if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 275                tsb_addr = __pa(tsb_addr);
 276
 277        __tsb_insert(tsb_addr, tag, pte);
 278}
 279
 280unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 281
 282static void flush_dcache(unsigned long pfn)
 283{
 284        struct page *page;
 285
 286        page = pfn_to_page(pfn);
 287        if (page) {
 288                unsigned long pg_flags;
 289
 290                pg_flags = page->flags;
 291                if (pg_flags & (1UL << PG_dcache_dirty)) {
 292                        int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 293                                   PG_dcache_cpu_mask);
 294                        int this_cpu = get_cpu();
 295
 296                        /* This is just to optimize away some function calls
 297                         * in the SMP case.
 298                         */
 299                        if (cpu == this_cpu)
 300                                flush_dcache_page_impl(page);
 301                        else
 302                                smp_flush_dcache_page_impl(page, cpu);
 303
 304                        clear_dcache_dirty_cpu(page, cpu);
 305
 306                        put_cpu();
 307                }
 308        }
 309}
 310
 311/* mm->context.lock must be held */
 312static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 313                                    unsigned long tsb_hash_shift, unsigned long address,
 314                                    unsigned long tte)
 315{
 316        struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 317        unsigned long tag;
 318
 319        if (unlikely(!tsb))
 320                return;
 321
 322        tsb += ((address >> tsb_hash_shift) &
 323                (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 324        tag = (address >> 22UL);
 325        tsb_insert(tsb, tag, tte);
 326}
 327
 328#ifdef CONFIG_HUGETLB_PAGE
 329static void __init add_huge_page_size(unsigned long size)
 330{
 331        unsigned int order;
 332
 333        if (size_to_hstate(size))
 334                return;
 335
 336        order = ilog2(size) - PAGE_SHIFT;
 337        hugetlb_add_hstate(order);
 338}
 339
 340static int __init hugetlbpage_init(void)
 341{
 342        add_huge_page_size(1UL << HPAGE_64K_SHIFT);
 343        add_huge_page_size(1UL << HPAGE_SHIFT);
 344        add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
 345        add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
 346
 347        return 0;
 348}
 349
 350arch_initcall(hugetlbpage_init);
 351
 352static void __init pud_huge_patch(void)
 353{
 354        struct pud_huge_patch_entry *p;
 355        unsigned long addr;
 356
 357        p = &__pud_huge_patch;
 358        addr = p->addr;
 359        *(unsigned int *)addr = p->insn;
 360
 361        __asm__ __volatile__("flush %0" : : "r" (addr));
 362}
 363
 364static int __init setup_hugepagesz(char *string)
 365{
 366        unsigned long long hugepage_size;
 367        unsigned int hugepage_shift;
 368        unsigned short hv_pgsz_idx;
 369        unsigned int hv_pgsz_mask;
 370        int rc = 0;
 371
 372        hugepage_size = memparse(string, &string);
 373        hugepage_shift = ilog2(hugepage_size);
 374
 375        switch (hugepage_shift) {
 376        case HPAGE_16GB_SHIFT:
 377                hv_pgsz_mask = HV_PGSZ_MASK_16GB;
 378                hv_pgsz_idx = HV_PGSZ_IDX_16GB;
 379                pud_huge_patch();
 380                break;
 381        case HPAGE_2GB_SHIFT:
 382                hv_pgsz_mask = HV_PGSZ_MASK_2GB;
 383                hv_pgsz_idx = HV_PGSZ_IDX_2GB;
 384                break;
 385        case HPAGE_256MB_SHIFT:
 386                hv_pgsz_mask = HV_PGSZ_MASK_256MB;
 387                hv_pgsz_idx = HV_PGSZ_IDX_256MB;
 388                break;
 389        case HPAGE_SHIFT:
 390                hv_pgsz_mask = HV_PGSZ_MASK_4MB;
 391                hv_pgsz_idx = HV_PGSZ_IDX_4MB;
 392                break;
 393        case HPAGE_64K_SHIFT:
 394                hv_pgsz_mask = HV_PGSZ_MASK_64K;
 395                hv_pgsz_idx = HV_PGSZ_IDX_64K;
 396                break;
 397        default:
 398                hv_pgsz_mask = 0;
 399        }
 400
 401        if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
 402                hugetlb_bad_size();
 403                pr_err("hugepagesz=%llu not supported by MMU.\n",
 404                        hugepage_size);
 405                goto out;
 406        }
 407
 408        add_huge_page_size(hugepage_size);
 409        rc = 1;
 410
 411out:
 412        return rc;
 413}
 414__setup("hugepagesz=", setup_hugepagesz);
 415#endif  /* CONFIG_HUGETLB_PAGE */
 416
 417void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 418{
 419        struct mm_struct *mm;
 420        unsigned long flags;
 421        bool is_huge_tsb;
 422        pte_t pte = *ptep;
 423
 424        if (tlb_type != hypervisor) {
 425                unsigned long pfn = pte_pfn(pte);
 426
 427                if (pfn_valid(pfn))
 428                        flush_dcache(pfn);
 429        }
 430
 431        mm = vma->vm_mm;
 432
 433        /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 434        if (!pte_accessible(mm, pte))
 435                return;
 436
 437        spin_lock_irqsave(&mm->context.lock, flags);
 438
 439        is_huge_tsb = false;
 440#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 441        if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
 442                unsigned long hugepage_size = PAGE_SIZE;
 443
 444                if (is_vm_hugetlb_page(vma))
 445                        hugepage_size = huge_page_size(hstate_vma(vma));
 446
 447                if (hugepage_size >= PUD_SIZE) {
 448                        unsigned long mask = 0x1ffc00000UL;
 449
 450                        /* Transfer bits [32:22] from address to resolve
 451                         * at 4M granularity.
 452                         */
 453                        pte_val(pte) &= ~mask;
 454                        pte_val(pte) |= (address & mask);
 455                } else if (hugepage_size >= PMD_SIZE) {
 456                        /* We are fabricating 8MB pages using 4MB
 457                         * real hw pages.
 458                         */
 459                        pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 460                }
 461
 462                if (hugepage_size >= PMD_SIZE) {
 463                        __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
 464                                REAL_HPAGE_SHIFT, address, pte_val(pte));
 465                        is_huge_tsb = true;
 466                }
 467        }
 468#endif
 469        if (!is_huge_tsb)
 470                __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 471                                        address, pte_val(pte));
 472
 473        spin_unlock_irqrestore(&mm->context.lock, flags);
 474}
 475
 476void flush_dcache_page(struct page *page)
 477{
 478        struct address_space *mapping;
 479        int this_cpu;
 480
 481        if (tlb_type == hypervisor)
 482                return;
 483
 484        /* Do not bother with the expensive D-cache flush if it
 485         * is merely the zero page.  The 'bigcore' testcase in GDB
 486         * causes this case to run millions of times.
 487         */
 488        if (page == ZERO_PAGE(0))
 489                return;
 490
 491        this_cpu = get_cpu();
 492
 493        mapping = page_mapping_file(page);
 494        if (mapping && !mapping_mapped(mapping)) {
 495                int dirty = test_bit(PG_dcache_dirty, &page->flags);
 496                if (dirty) {
 497                        int dirty_cpu = dcache_dirty_cpu(page);
 498
 499                        if (dirty_cpu == this_cpu)
 500                                goto out;
 501                        smp_flush_dcache_page_impl(page, dirty_cpu);
 502                }
 503                set_dcache_dirty(page, this_cpu);
 504        } else {
 505                /* We could delay the flush for the !page_mapping
 506                 * case too.  But that case is for exec env/arg
 507                 * pages and those are %99 certainly going to get
 508                 * faulted into the tlb (and thus flushed) anyways.
 509                 */
 510                flush_dcache_page_impl(page);
 511        }
 512
 513out:
 514        put_cpu();
 515}
 516EXPORT_SYMBOL(flush_dcache_page);
 517
 518void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 519{
 520        /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 521        if (tlb_type == spitfire) {
 522                unsigned long kaddr;
 523
 524                /* This code only runs on Spitfire cpus so this is
 525                 * why we can assume _PAGE_PADDR_4U.
 526                 */
 527                for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 528                        unsigned long paddr, mask = _PAGE_PADDR_4U;
 529
 530                        if (kaddr >= PAGE_OFFSET)
 531                                paddr = kaddr & mask;
 532                        else {
 533                                pgd_t *pgdp = pgd_offset_k(kaddr);
 534                                pud_t *pudp = pud_offset(pgdp, kaddr);
 535                                pmd_t *pmdp = pmd_offset(pudp, kaddr);
 536                                pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 537
 538                                paddr = pte_val(*ptep) & mask;
 539                        }
 540                        __flush_icache_page(paddr);
 541                }
 542        }
 543}
 544EXPORT_SYMBOL(flush_icache_range);
 545
 546void mmu_info(struct seq_file *m)
 547{
 548        static const char *pgsz_strings[] = {
 549                "8K", "64K", "512K", "4MB", "32MB",
 550                "256MB", "2GB", "16GB",
 551        };
 552        int i, printed;
 553
 554        if (tlb_type == cheetah)
 555                seq_printf(m, "MMU Type\t: Cheetah\n");
 556        else if (tlb_type == cheetah_plus)
 557                seq_printf(m, "MMU Type\t: Cheetah+\n");
 558        else if (tlb_type == spitfire)
 559                seq_printf(m, "MMU Type\t: Spitfire\n");
 560        else if (tlb_type == hypervisor)
 561                seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 562        else
 563                seq_printf(m, "MMU Type\t: ???\n");
 564
 565        seq_printf(m, "MMU PGSZs\t: ");
 566        printed = 0;
 567        for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 568                if (cpu_pgsz_mask & (1UL << i)) {
 569                        seq_printf(m, "%s%s",
 570                                   printed ? "," : "", pgsz_strings[i]);
 571                        printed++;
 572                }
 573        }
 574        seq_putc(m, '\n');
 575
 576#ifdef CONFIG_DEBUG_DCFLUSH
 577        seq_printf(m, "DCPageFlushes\t: %d\n",
 578                   atomic_read(&dcpage_flushes));
 579#ifdef CONFIG_SMP
 580        seq_printf(m, "DCPageFlushesXC\t: %d\n",
 581                   atomic_read(&dcpage_flushes_xcall));
 582#endif /* CONFIG_SMP */
 583#endif /* CONFIG_DEBUG_DCFLUSH */
 584}
 585
 586struct linux_prom_translation prom_trans[512] __read_mostly;
 587unsigned int prom_trans_ents __read_mostly;
 588
 589unsigned long kern_locked_tte_data;
 590
 591/* The obp translations are saved based on 8k pagesize, since obp can
 592 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 593 * HI_OBP_ADDRESS range are handled in ktlb.S.
 594 */
 595static inline int in_obp_range(unsigned long vaddr)
 596{
 597        return (vaddr >= LOW_OBP_ADDRESS &&
 598                vaddr < HI_OBP_ADDRESS);
 599}
 600
 601static int cmp_ptrans(const void *a, const void *b)
 602{
 603        const struct linux_prom_translation *x = a, *y = b;
 604
 605        if (x->virt > y->virt)
 606                return 1;
 607        if (x->virt < y->virt)
 608                return -1;
 609        return 0;
 610}
 611
 612/* Read OBP translations property into 'prom_trans[]'.  */
 613static void __init read_obp_translations(void)
 614{
 615        int n, node, ents, first, last, i;
 616
 617        node = prom_finddevice("/virtual-memory");
 618        n = prom_getproplen(node, "translations");
 619        if (unlikely(n == 0 || n == -1)) {
 620                prom_printf("prom_mappings: Couldn't get size.\n");
 621                prom_halt();
 622        }
 623        if (unlikely(n > sizeof(prom_trans))) {
 624                prom_printf("prom_mappings: Size %d is too big.\n", n);
 625                prom_halt();
 626        }
 627
 628        if ((n = prom_getproperty(node, "translations",
 629                                  (char *)&prom_trans[0],
 630                                  sizeof(prom_trans))) == -1) {
 631                prom_printf("prom_mappings: Couldn't get property.\n");
 632                prom_halt();
 633        }
 634
 635        n = n / sizeof(struct linux_prom_translation);
 636
 637        ents = n;
 638
 639        sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 640             cmp_ptrans, NULL);
 641
 642        /* Now kick out all the non-OBP entries.  */
 643        for (i = 0; i < ents; i++) {
 644                if (in_obp_range(prom_trans[i].virt))
 645                        break;
 646        }
 647        first = i;
 648        for (; i < ents; i++) {
 649                if (!in_obp_range(prom_trans[i].virt))
 650                        break;
 651        }
 652        last = i;
 653
 654        for (i = 0; i < (last - first); i++) {
 655                struct linux_prom_translation *src = &prom_trans[i + first];
 656                struct linux_prom_translation *dest = &prom_trans[i];
 657
 658                *dest = *src;
 659        }
 660        for (; i < ents; i++) {
 661                struct linux_prom_translation *dest = &prom_trans[i];
 662                dest->virt = dest->size = dest->data = 0x0UL;
 663        }
 664
 665        prom_trans_ents = last - first;
 666
 667        if (tlb_type == spitfire) {
 668                /* Clear diag TTE bits. */
 669                for (i = 0; i < prom_trans_ents; i++)
 670                        prom_trans[i].data &= ~0x0003fe0000000000UL;
 671        }
 672
 673        /* Force execute bit on.  */
 674        for (i = 0; i < prom_trans_ents; i++)
 675                prom_trans[i].data |= (tlb_type == hypervisor ?
 676                                       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 677}
 678
 679static void __init hypervisor_tlb_lock(unsigned long vaddr,
 680                                       unsigned long pte,
 681                                       unsigned long mmu)
 682{
 683        unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 684
 685        if (ret != 0) {
 686                prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 687                            "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 688                prom_halt();
 689        }
 690}
 691
 692static unsigned long kern_large_tte(unsigned long paddr);
 693
 694static void __init remap_kernel(void)
 695{
 696        unsigned long phys_page, tte_vaddr, tte_data;
 697        int i, tlb_ent = sparc64_highest_locked_tlbent();
 698
 699        tte_vaddr = (unsigned long) KERNBASE;
 700        phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 701        tte_data = kern_large_tte(phys_page);
 702
 703        kern_locked_tte_data = tte_data;
 704
 705        /* Now lock us into the TLBs via Hypervisor or OBP. */
 706        if (tlb_type == hypervisor) {
 707                for (i = 0; i < num_kernel_image_mappings; i++) {
 708                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 709                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 710                        tte_vaddr += 0x400000;
 711                        tte_data += 0x400000;
 712                }
 713        } else {
 714                for (i = 0; i < num_kernel_image_mappings; i++) {
 715                        prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 716                        prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 717                        tte_vaddr += 0x400000;
 718                        tte_data += 0x400000;
 719                }
 720                sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 721        }
 722        if (tlb_type == cheetah_plus) {
 723                sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 724                                            CTX_CHEETAH_PLUS_NUC);
 725                sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 726                sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 727        }
 728}
 729
 730
 731static void __init inherit_prom_mappings(void)
 732{
 733        /* Now fixup OBP's idea about where we really are mapped. */
 734        printk("Remapping the kernel... ");
 735        remap_kernel();
 736        printk("done.\n");
 737}
 738
 739void prom_world(int enter)
 740{
 741        if (!enter)
 742                set_fs(get_fs());
 743
 744        __asm__ __volatile__("flushw");
 745}
 746
 747void __flush_dcache_range(unsigned long start, unsigned long end)
 748{
 749        unsigned long va;
 750
 751        if (tlb_type == spitfire) {
 752                int n = 0;
 753
 754                for (va = start; va < end; va += 32) {
 755                        spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 756                        if (++n >= 512)
 757                                break;
 758                }
 759        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 760                start = __pa(start);
 761                end = __pa(end);
 762                for (va = start; va < end; va += 32)
 763                        __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 764                                             "membar #Sync"
 765                                             : /* no outputs */
 766                                             : "r" (va),
 767                                               "i" (ASI_DCACHE_INVALIDATE));
 768        }
 769}
 770EXPORT_SYMBOL(__flush_dcache_range);
 771
 772/* get_new_mmu_context() uses "cache + 1".  */
 773DEFINE_SPINLOCK(ctx_alloc_lock);
 774unsigned long tlb_context_cache = CTX_FIRST_VERSION;
 775#define MAX_CTX_NR      (1UL << CTX_NR_BITS)
 776#define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
 777DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 778DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
 779
 780static void mmu_context_wrap(void)
 781{
 782        unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
 783        unsigned long new_ver, new_ctx, old_ctx;
 784        struct mm_struct *mm;
 785        int cpu;
 786
 787        bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
 788
 789        /* Reserve kernel context */
 790        set_bit(0, mmu_context_bmap);
 791
 792        new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
 793        if (unlikely(new_ver == 0))
 794                new_ver = CTX_FIRST_VERSION;
 795        tlb_context_cache = new_ver;
 796
 797        /*
 798         * Make sure that any new mm that are added into per_cpu_secondary_mm,
 799         * are going to go through get_new_mmu_context() path.
 800         */
 801        mb();
 802
 803        /*
 804         * Updated versions to current on those CPUs that had valid secondary
 805         * contexts
 806         */
 807        for_each_online_cpu(cpu) {
 808                /*
 809                 * If a new mm is stored after we took this mm from the array,
 810                 * it will go into get_new_mmu_context() path, because we
 811                 * already bumped the version in tlb_context_cache.
 812                 */
 813                mm = per_cpu(per_cpu_secondary_mm, cpu);
 814
 815                if (unlikely(!mm || mm == &init_mm))
 816                        continue;
 817
 818                old_ctx = mm->context.sparc64_ctx_val;
 819                if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
 820                        new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
 821                        set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
 822                        mm->context.sparc64_ctx_val = new_ctx;
 823                }
 824        }
 825}
 826
 827/* Caller does TLB context flushing on local CPU if necessary.
 828 * The caller also ensures that CTX_VALID(mm->context) is false.
 829 *
 830 * We must be careful about boundary cases so that we never
 831 * let the user have CTX 0 (nucleus) or we ever use a CTX
 832 * version of zero (and thus NO_CONTEXT would not be caught
 833 * by version mis-match tests in mmu_context.h).
 834 *
 835 * Always invoked with interrupts disabled.
 836 */
 837void get_new_mmu_context(struct mm_struct *mm)
 838{
 839        unsigned long ctx, new_ctx;
 840        unsigned long orig_pgsz_bits;
 841
 842        spin_lock(&ctx_alloc_lock);
 843retry:
 844        /* wrap might have happened, test again if our context became valid */
 845        if (unlikely(CTX_VALID(mm->context)))
 846                goto out;
 847        orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 848        ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 849        new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 850        if (new_ctx >= (1 << CTX_NR_BITS)) {
 851                new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 852                if (new_ctx >= ctx) {
 853                        mmu_context_wrap();
 854                        goto retry;
 855                }
 856        }
 857        if (mm->context.sparc64_ctx_val)
 858                cpumask_clear(mm_cpumask(mm));
 859        mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 860        new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 861        tlb_context_cache = new_ctx;
 862        mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 863out:
 864        spin_unlock(&ctx_alloc_lock);
 865}
 866
 867static int numa_enabled = 1;
 868static int numa_debug;
 869
 870static int __init early_numa(char *p)
 871{
 872        if (!p)
 873                return 0;
 874
 875        if (strstr(p, "off"))
 876                numa_enabled = 0;
 877
 878        if (strstr(p, "debug"))
 879                numa_debug = 1;
 880
 881        return 0;
 882}
 883early_param("numa", early_numa);
 884
 885#define numadbg(f, a...) \
 886do {    if (numa_debug) \
 887                printk(KERN_INFO f, ## a); \
 888} while (0)
 889
 890static void __init find_ramdisk(unsigned long phys_base)
 891{
 892#ifdef CONFIG_BLK_DEV_INITRD
 893        if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 894                unsigned long ramdisk_image;
 895
 896                /* Older versions of the bootloader only supported a
 897                 * 32-bit physical address for the ramdisk image
 898                 * location, stored at sparc_ramdisk_image.  Newer
 899                 * SILO versions set sparc_ramdisk_image to zero and
 900                 * provide a full 64-bit physical address at
 901                 * sparc_ramdisk_image64.
 902                 */
 903                ramdisk_image = sparc_ramdisk_image;
 904                if (!ramdisk_image)
 905                        ramdisk_image = sparc_ramdisk_image64;
 906
 907                /* Another bootloader quirk.  The bootloader normalizes
 908                 * the physical address to KERNBASE, so we have to
 909                 * factor that back out and add in the lowest valid
 910                 * physical page address to get the true physical address.
 911                 */
 912                ramdisk_image -= KERNBASE;
 913                ramdisk_image += phys_base;
 914
 915                numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 916                        ramdisk_image, sparc_ramdisk_size);
 917
 918                initrd_start = ramdisk_image;
 919                initrd_end = ramdisk_image + sparc_ramdisk_size;
 920
 921                memblock_reserve(initrd_start, sparc_ramdisk_size);
 922
 923                initrd_start += PAGE_OFFSET;
 924                initrd_end += PAGE_OFFSET;
 925        }
 926#endif
 927}
 928
 929struct node_mem_mask {
 930        unsigned long mask;
 931        unsigned long match;
 932};
 933static struct node_mem_mask node_masks[MAX_NUMNODES];
 934static int num_node_masks;
 935
 936#ifdef CONFIG_NEED_MULTIPLE_NODES
 937
 938struct mdesc_mlgroup {
 939        u64     node;
 940        u64     latency;
 941        u64     match;
 942        u64     mask;
 943};
 944
 945static struct mdesc_mlgroup *mlgroups;
 946static int num_mlgroups;
 947
 948int numa_cpu_lookup_table[NR_CPUS];
 949cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 950
 951struct mdesc_mblock {
 952        u64     base;
 953        u64     size;
 954        u64     offset; /* RA-to-PA */
 955};
 956static struct mdesc_mblock *mblocks;
 957static int num_mblocks;
 958
 959static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
 960{
 961        struct mdesc_mblock *m = NULL;
 962        int i;
 963
 964        for (i = 0; i < num_mblocks; i++) {
 965                m = &mblocks[i];
 966
 967                if (addr >= m->base &&
 968                    addr < (m->base + m->size)) {
 969                        break;
 970                }
 971        }
 972
 973        return m;
 974}
 975
 976static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
 977{
 978        int prev_nid, new_nid;
 979
 980        prev_nid = -1;
 981        for ( ; start < end; start += PAGE_SIZE) {
 982                for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
 983                        struct node_mem_mask *p = &node_masks[new_nid];
 984
 985                        if ((start & p->mask) == p->match) {
 986                                if (prev_nid == -1)
 987                                        prev_nid = new_nid;
 988                                break;
 989                        }
 990                }
 991
 992                if (new_nid == num_node_masks) {
 993                        prev_nid = 0;
 994                        WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
 995                                  start);
 996                        break;
 997                }
 998
 999                if (prev_nid != new_nid)
1000                        break;
1001        }
1002        *nid = prev_nid;
1003
1004        return start > end ? end : start;
1005}
1006
1007static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
1008{
1009        u64 ret_end, pa_start, m_mask, m_match, m_end;
1010        struct mdesc_mblock *mblock;
1011        int _nid, i;
1012
1013        if (tlb_type != hypervisor)
1014                return memblock_nid_range_sun4u(start, end, nid);
1015
1016        mblock = addr_to_mblock(start);
1017        if (!mblock) {
1018                WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1019                          start);
1020
1021                _nid = 0;
1022                ret_end = end;
1023                goto done;
1024        }
1025
1026        pa_start = start + mblock->offset;
1027        m_match = 0;
1028        m_mask = 0;
1029
1030        for (_nid = 0; _nid < num_node_masks; _nid++) {
1031                struct node_mem_mask *const m = &node_masks[_nid];
1032
1033                if ((pa_start & m->mask) == m->match) {
1034                        m_match = m->match;
1035                        m_mask = m->mask;
1036                        break;
1037                }
1038        }
1039
1040        if (num_node_masks == _nid) {
1041                /* We could not find NUMA group, so default to 0, but lets
1042                 * search for latency group, so we could calculate the correct
1043                 * end address that we return
1044                 */
1045                _nid = 0;
1046
1047                for (i = 0; i < num_mlgroups; i++) {
1048                        struct mdesc_mlgroup *const m = &mlgroups[i];
1049
1050                        if ((pa_start & m->mask) == m->match) {
1051                                m_match = m->match;
1052                                m_mask = m->mask;
1053                                break;
1054                        }
1055                }
1056
1057                if (i == num_mlgroups) {
1058                        WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1059                                  start);
1060
1061                        ret_end = end;
1062                        goto done;
1063                }
1064        }
1065
1066        /*
1067         * Each latency group has match and mask, and each memory block has an
1068         * offset.  An address belongs to a latency group if its address matches
1069         * the following formula: ((addr + offset) & mask) == match
1070         * It is, however, slow to check every single page if it matches a
1071         * particular latency group. As optimization we calculate end value by
1072         * using bit arithmetics.
1073         */
1074        m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1075        m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1076        ret_end = m_end > end ? end : m_end;
1077
1078done:
1079        *nid = _nid;
1080        return ret_end;
1081}
1082#endif
1083
1084/* This must be invoked after performing all of the necessary
1085 * memblock_set_node() calls for 'nid'.  We need to be able to get
1086 * correct data from get_pfn_range_for_nid().
1087 */
1088static void __init allocate_node_data(int nid)
1089{
1090        struct pglist_data *p;
1091        unsigned long start_pfn, end_pfn;
1092#ifdef CONFIG_NEED_MULTIPLE_NODES
1093        unsigned long paddr;
1094
1095        paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1096        if (!paddr) {
1097                prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1098                prom_halt();
1099        }
1100        NODE_DATA(nid) = __va(paddr);
1101        memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1102
1103        NODE_DATA(nid)->node_id = nid;
1104#endif
1105
1106        p = NODE_DATA(nid);
1107
1108        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1109        p->node_start_pfn = start_pfn;
1110        p->node_spanned_pages = end_pfn - start_pfn;
1111}
1112
1113static void init_node_masks_nonnuma(void)
1114{
1115#ifdef CONFIG_NEED_MULTIPLE_NODES
1116        int i;
1117#endif
1118
1119        numadbg("Initializing tables for non-numa.\n");
1120
1121        node_masks[0].mask = 0;
1122        node_masks[0].match = 0;
1123        num_node_masks = 1;
1124
1125#ifdef CONFIG_NEED_MULTIPLE_NODES
1126        for (i = 0; i < NR_CPUS; i++)
1127                numa_cpu_lookup_table[i] = 0;
1128
1129        cpumask_setall(&numa_cpumask_lookup_table[0]);
1130#endif
1131}
1132
1133#ifdef CONFIG_NEED_MULTIPLE_NODES
1134struct pglist_data *node_data[MAX_NUMNODES];
1135
1136EXPORT_SYMBOL(numa_cpu_lookup_table);
1137EXPORT_SYMBOL(numa_cpumask_lookup_table);
1138EXPORT_SYMBOL(node_data);
1139
1140static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1141                                   u32 cfg_handle)
1142{
1143        u64 arc;
1144
1145        mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1146                u64 target = mdesc_arc_target(md, arc);
1147                const u64 *val;
1148
1149                val = mdesc_get_property(md, target,
1150                                         "cfg-handle", NULL);
1151                if (val && *val == cfg_handle)
1152                        return 0;
1153        }
1154        return -ENODEV;
1155}
1156
1157static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1158                                    u32 cfg_handle)
1159{
1160        u64 arc, candidate, best_latency = ~(u64)0;
1161
1162        candidate = MDESC_NODE_NULL;
1163        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1164                u64 target = mdesc_arc_target(md, arc);
1165                const char *name = mdesc_node_name(md, target);
1166                const u64 *val;
1167
1168                if (strcmp(name, "pio-latency-group"))
1169                        continue;
1170
1171                val = mdesc_get_property(md, target, "latency", NULL);
1172                if (!val)
1173                        continue;
1174
1175                if (*val < best_latency) {
1176                        candidate = target;
1177                        best_latency = *val;
1178                }
1179        }
1180
1181        if (candidate == MDESC_NODE_NULL)
1182                return -ENODEV;
1183
1184        return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1185}
1186
1187int of_node_to_nid(struct device_node *dp)
1188{
1189        const struct linux_prom64_registers *regs;
1190        struct mdesc_handle *md;
1191        u32 cfg_handle;
1192        int count, nid;
1193        u64 grp;
1194
1195        /* This is the right thing to do on currently supported
1196         * SUN4U NUMA platforms as well, as the PCI controller does
1197         * not sit behind any particular memory controller.
1198         */
1199        if (!mlgroups)
1200                return -1;
1201
1202        regs = of_get_property(dp, "reg", NULL);
1203        if (!regs)
1204                return -1;
1205
1206        cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1207
1208        md = mdesc_grab();
1209
1210        count = 0;
1211        nid = -1;
1212        mdesc_for_each_node_by_name(md, grp, "group") {
1213                if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1214                        nid = count;
1215                        break;
1216                }
1217                count++;
1218        }
1219
1220        mdesc_release(md);
1221
1222        return nid;
1223}
1224
1225static void __init add_node_ranges(void)
1226{
1227        struct memblock_region *reg;
1228        unsigned long prev_max;
1229
1230memblock_resized:
1231        prev_max = memblock.memory.max;
1232
1233        for_each_memblock(memory, reg) {
1234                unsigned long size = reg->size;
1235                unsigned long start, end;
1236
1237                start = reg->base;
1238                end = start + size;
1239                while (start < end) {
1240                        unsigned long this_end;
1241                        int nid;
1242
1243                        this_end = memblock_nid_range(start, end, &nid);
1244
1245                        numadbg("Setting memblock NUMA node nid[%d] "
1246                                "start[%lx] end[%lx]\n",
1247                                nid, start, this_end);
1248
1249                        memblock_set_node(start, this_end - start,
1250                                          &memblock.memory, nid);
1251                        if (memblock.memory.max != prev_max)
1252                                goto memblock_resized;
1253                        start = this_end;
1254                }
1255        }
1256}
1257
1258static int __init grab_mlgroups(struct mdesc_handle *md)
1259{
1260        unsigned long paddr;
1261        int count = 0;
1262        u64 node;
1263
1264        mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1265                count++;
1266        if (!count)
1267                return -ENOENT;
1268
1269        paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1270                          SMP_CACHE_BYTES);
1271        if (!paddr)
1272                return -ENOMEM;
1273
1274        mlgroups = __va(paddr);
1275        num_mlgroups = count;
1276
1277        count = 0;
1278        mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1279                struct mdesc_mlgroup *m = &mlgroups[count++];
1280                const u64 *val;
1281
1282                m->node = node;
1283
1284                val = mdesc_get_property(md, node, "latency", NULL);
1285                m->latency = *val;
1286                val = mdesc_get_property(md, node, "address-match", NULL);
1287                m->match = *val;
1288                val = mdesc_get_property(md, node, "address-mask", NULL);
1289                m->mask = *val;
1290
1291                numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1292                        "match[%llx] mask[%llx]\n",
1293                        count - 1, m->node, m->latency, m->match, m->mask);
1294        }
1295
1296        return 0;
1297}
1298
1299static int __init grab_mblocks(struct mdesc_handle *md)
1300{
1301        unsigned long paddr;
1302        int count = 0;
1303        u64 node;
1304
1305        mdesc_for_each_node_by_name(md, node, "mblock")
1306                count++;
1307        if (!count)
1308                return -ENOENT;
1309
1310        paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1311                          SMP_CACHE_BYTES);
1312        if (!paddr)
1313                return -ENOMEM;
1314
1315        mblocks = __va(paddr);
1316        num_mblocks = count;
1317
1318        count = 0;
1319        mdesc_for_each_node_by_name(md, node, "mblock") {
1320                struct mdesc_mblock *m = &mblocks[count++];
1321                const u64 *val;
1322
1323                val = mdesc_get_property(md, node, "base", NULL);
1324                m->base = *val;
1325                val = mdesc_get_property(md, node, "size", NULL);
1326                m->size = *val;
1327                val = mdesc_get_property(md, node,
1328                                         "address-congruence-offset", NULL);
1329
1330                /* The address-congruence-offset property is optional.
1331                 * Explicity zero it be identifty this.
1332                 */
1333                if (val)
1334                        m->offset = *val;
1335                else
1336                        m->offset = 0UL;
1337
1338                numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1339                        count - 1, m->base, m->size, m->offset);
1340        }
1341
1342        return 0;
1343}
1344
1345static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1346                                               u64 grp, cpumask_t *mask)
1347{
1348        u64 arc;
1349
1350        cpumask_clear(mask);
1351
1352        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1353                u64 target = mdesc_arc_target(md, arc);
1354                const char *name = mdesc_node_name(md, target);
1355                const u64 *id;
1356
1357                if (strcmp(name, "cpu"))
1358                        continue;
1359                id = mdesc_get_property(md, target, "id", NULL);
1360                if (*id < nr_cpu_ids)
1361                        cpumask_set_cpu(*id, mask);
1362        }
1363}
1364
1365static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1366{
1367        int i;
1368
1369        for (i = 0; i < num_mlgroups; i++) {
1370                struct mdesc_mlgroup *m = &mlgroups[i];
1371                if (m->node == node)
1372                        return m;
1373        }
1374        return NULL;
1375}
1376
1377int __node_distance(int from, int to)
1378{
1379        if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1380                pr_warn("Returning default NUMA distance value for %d->%d\n",
1381                        from, to);
1382                return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1383        }
1384        return numa_latency[from][to];
1385}
1386
1387static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1388{
1389        int i;
1390
1391        for (i = 0; i < MAX_NUMNODES; i++) {
1392                struct node_mem_mask *n = &node_masks[i];
1393
1394                if ((grp->mask == n->mask) && (grp->match == n->match))
1395                        break;
1396        }
1397        return i;
1398}
1399
1400static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1401                                                 u64 grp, int index)
1402{
1403        u64 arc;
1404
1405        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1406                int tnode;
1407                u64 target = mdesc_arc_target(md, arc);
1408                struct mdesc_mlgroup *m = find_mlgroup(target);
1409
1410                if (!m)
1411                        continue;
1412                tnode = find_best_numa_node_for_mlgroup(m);
1413                if (tnode == MAX_NUMNODES)
1414                        continue;
1415                numa_latency[index][tnode] = m->latency;
1416        }
1417}
1418
1419static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1420                                      int index)
1421{
1422        struct mdesc_mlgroup *candidate = NULL;
1423        u64 arc, best_latency = ~(u64)0;
1424        struct node_mem_mask *n;
1425
1426        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1427                u64 target = mdesc_arc_target(md, arc);
1428                struct mdesc_mlgroup *m = find_mlgroup(target);
1429                if (!m)
1430                        continue;
1431                if (m->latency < best_latency) {
1432                        candidate = m;
1433                        best_latency = m->latency;
1434                }
1435        }
1436        if (!candidate)
1437                return -ENOENT;
1438
1439        if (num_node_masks != index) {
1440                printk(KERN_ERR "Inconsistent NUMA state, "
1441                       "index[%d] != num_node_masks[%d]\n",
1442                       index, num_node_masks);
1443                return -EINVAL;
1444        }
1445
1446        n = &node_masks[num_node_masks++];
1447
1448        n->mask = candidate->mask;
1449        n->match = candidate->match;
1450
1451        numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1452                index, n->mask, n->match, candidate->latency);
1453
1454        return 0;
1455}
1456
1457static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1458                                         int index)
1459{
1460        cpumask_t mask;
1461        int cpu;
1462
1463        numa_parse_mdesc_group_cpus(md, grp, &mask);
1464
1465        for_each_cpu(cpu, &mask)
1466                numa_cpu_lookup_table[cpu] = index;
1467        cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1468
1469        if (numa_debug) {
1470                printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1471                for_each_cpu(cpu, &mask)
1472                        printk("%d ", cpu);
1473                printk("]\n");
1474        }
1475
1476        return numa_attach_mlgroup(md, grp, index);
1477}
1478
1479static int __init numa_parse_mdesc(void)
1480{
1481        struct mdesc_handle *md = mdesc_grab();
1482        int i, j, err, count;
1483        u64 node;
1484
1485        node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1486        if (node == MDESC_NODE_NULL) {
1487                mdesc_release(md);
1488                return -ENOENT;
1489        }
1490
1491        err = grab_mblocks(md);
1492        if (err < 0)
1493                goto out;
1494
1495        err = grab_mlgroups(md);
1496        if (err < 0)
1497                goto out;
1498
1499        count = 0;
1500        mdesc_for_each_node_by_name(md, node, "group") {
1501                err = numa_parse_mdesc_group(md, node, count);
1502                if (err < 0)
1503                        break;
1504                count++;
1505        }
1506
1507        count = 0;
1508        mdesc_for_each_node_by_name(md, node, "group") {
1509                find_numa_latencies_for_group(md, node, count);
1510                count++;
1511        }
1512
1513        /* Normalize numa latency matrix according to ACPI SLIT spec. */
1514        for (i = 0; i < MAX_NUMNODES; i++) {
1515                u64 self_latency = numa_latency[i][i];
1516
1517                for (j = 0; j < MAX_NUMNODES; j++) {
1518                        numa_latency[i][j] =
1519                                (numa_latency[i][j] * LOCAL_DISTANCE) /
1520                                self_latency;
1521                }
1522        }
1523
1524        add_node_ranges();
1525
1526        for (i = 0; i < num_node_masks; i++) {
1527                allocate_node_data(i);
1528                node_set_online(i);
1529        }
1530
1531        err = 0;
1532out:
1533        mdesc_release(md);
1534        return err;
1535}
1536
1537static int __init numa_parse_jbus(void)
1538{
1539        unsigned long cpu, index;
1540
1541        /* NUMA node id is encoded in bits 36 and higher, and there is
1542         * a 1-to-1 mapping from CPU ID to NUMA node ID.
1543         */
1544        index = 0;
1545        for_each_present_cpu(cpu) {
1546                numa_cpu_lookup_table[cpu] = index;
1547                cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1548                node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1549                node_masks[index].match = cpu << 36UL;
1550
1551                index++;
1552        }
1553        num_node_masks = index;
1554
1555        add_node_ranges();
1556
1557        for (index = 0; index < num_node_masks; index++) {
1558                allocate_node_data(index);
1559                node_set_online(index);
1560        }
1561
1562        return 0;
1563}
1564
1565static int __init numa_parse_sun4u(void)
1566{
1567        if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1568                unsigned long ver;
1569
1570                __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1571                if ((ver >> 32UL) == __JALAPENO_ID ||
1572                    (ver >> 32UL) == __SERRANO_ID)
1573                        return numa_parse_jbus();
1574        }
1575        return -1;
1576}
1577
1578static int __init bootmem_init_numa(void)
1579{
1580        int i, j;
1581        int err = -1;
1582
1583        numadbg("bootmem_init_numa()\n");
1584
1585        /* Some sane defaults for numa latency values */
1586        for (i = 0; i < MAX_NUMNODES; i++) {
1587                for (j = 0; j < MAX_NUMNODES; j++)
1588                        numa_latency[i][j] = (i == j) ?
1589                                LOCAL_DISTANCE : REMOTE_DISTANCE;
1590        }
1591
1592        if (numa_enabled) {
1593                if (tlb_type == hypervisor)
1594                        err = numa_parse_mdesc();
1595                else
1596                        err = numa_parse_sun4u();
1597        }
1598        return err;
1599}
1600
1601#else
1602
1603static int bootmem_init_numa(void)
1604{
1605        return -1;
1606}
1607
1608#endif
1609
1610static void __init bootmem_init_nonnuma(void)
1611{
1612        unsigned long top_of_ram = memblock_end_of_DRAM();
1613        unsigned long total_ram = memblock_phys_mem_size();
1614
1615        numadbg("bootmem_init_nonnuma()\n");
1616
1617        printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1618               top_of_ram, total_ram);
1619        printk(KERN_INFO "Memory hole size: %ldMB\n",
1620               (top_of_ram - total_ram) >> 20);
1621
1622        init_node_masks_nonnuma();
1623        memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1624        allocate_node_data(0);
1625        node_set_online(0);
1626}
1627
1628static unsigned long __init bootmem_init(unsigned long phys_base)
1629{
1630        unsigned long end_pfn;
1631
1632        end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1633        max_pfn = max_low_pfn = end_pfn;
1634        min_low_pfn = (phys_base >> PAGE_SHIFT);
1635
1636        if (bootmem_init_numa() < 0)
1637                bootmem_init_nonnuma();
1638
1639        /* Dump memblock with node info. */
1640        memblock_dump_all();
1641
1642        /* XXX cpu notifier XXX */
1643
1644        sparse_memory_present_with_active_regions(MAX_NUMNODES);
1645        sparse_init();
1646
1647        return end_pfn;
1648}
1649
1650static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1651static int pall_ents __initdata;
1652
1653static unsigned long max_phys_bits = 40;
1654
1655bool kern_addr_valid(unsigned long addr)
1656{
1657        pgd_t *pgd;
1658        pud_t *pud;
1659        pmd_t *pmd;
1660        pte_t *pte;
1661
1662        if ((long)addr < 0L) {
1663                unsigned long pa = __pa(addr);
1664
1665                if ((pa >> max_phys_bits) != 0UL)
1666                        return false;
1667
1668                return pfn_valid(pa >> PAGE_SHIFT);
1669        }
1670
1671        if (addr >= (unsigned long) KERNBASE &&
1672            addr < (unsigned long)&_end)
1673                return true;
1674
1675        pgd = pgd_offset_k(addr);
1676        if (pgd_none(*pgd))
1677                return 0;
1678
1679        pud = pud_offset(pgd, addr);
1680        if (pud_none(*pud))
1681                return 0;
1682
1683        if (pud_large(*pud))
1684                return pfn_valid(pud_pfn(*pud));
1685
1686        pmd = pmd_offset(pud, addr);
1687        if (pmd_none(*pmd))
1688                return 0;
1689
1690        if (pmd_large(*pmd))
1691                return pfn_valid(pmd_pfn(*pmd));
1692
1693        pte = pte_offset_kernel(pmd, addr);
1694        if (pte_none(*pte))
1695                return 0;
1696
1697        return pfn_valid(pte_pfn(*pte));
1698}
1699EXPORT_SYMBOL(kern_addr_valid);
1700
1701static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1702                                              unsigned long vend,
1703                                              pud_t *pud)
1704{
1705        const unsigned long mask16gb = (1UL << 34) - 1UL;
1706        u64 pte_val = vstart;
1707
1708        /* Each PUD is 8GB */
1709        if ((vstart & mask16gb) ||
1710            (vend - vstart <= mask16gb)) {
1711                pte_val ^= kern_linear_pte_xor[2];
1712                pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1713
1714                return vstart + PUD_SIZE;
1715        }
1716
1717        pte_val ^= kern_linear_pte_xor[3];
1718        pte_val |= _PAGE_PUD_HUGE;
1719
1720        vend = vstart + mask16gb + 1UL;
1721        while (vstart < vend) {
1722                pud_val(*pud) = pte_val;
1723
1724                pte_val += PUD_SIZE;
1725                vstart += PUD_SIZE;
1726                pud++;
1727        }
1728        return vstart;
1729}
1730
1731static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1732                                   bool guard)
1733{
1734        if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1735                return true;
1736
1737        return false;
1738}
1739
1740static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1741                                              unsigned long vend,
1742                                              pmd_t *pmd)
1743{
1744        const unsigned long mask256mb = (1UL << 28) - 1UL;
1745        const unsigned long mask2gb = (1UL << 31) - 1UL;
1746        u64 pte_val = vstart;
1747
1748        /* Each PMD is 8MB */
1749        if ((vstart & mask256mb) ||
1750            (vend - vstart <= mask256mb)) {
1751                pte_val ^= kern_linear_pte_xor[0];
1752                pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1753
1754                return vstart + PMD_SIZE;
1755        }
1756
1757        if ((vstart & mask2gb) ||
1758            (vend - vstart <= mask2gb)) {
1759                pte_val ^= kern_linear_pte_xor[1];
1760                pte_val |= _PAGE_PMD_HUGE;
1761                vend = vstart + mask256mb + 1UL;
1762        } else {
1763                pte_val ^= kern_linear_pte_xor[2];
1764                pte_val |= _PAGE_PMD_HUGE;
1765                vend = vstart + mask2gb + 1UL;
1766        }
1767
1768        while (vstart < vend) {
1769                pmd_val(*pmd) = pte_val;
1770
1771                pte_val += PMD_SIZE;
1772                vstart += PMD_SIZE;
1773                pmd++;
1774        }
1775
1776        return vstart;
1777}
1778
1779static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1780                                   bool guard)
1781{
1782        if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1783                return true;
1784
1785        return false;
1786}
1787
1788static unsigned long __ref kernel_map_range(unsigned long pstart,
1789                                            unsigned long pend, pgprot_t prot,
1790                                            bool use_huge)
1791{
1792        unsigned long vstart = PAGE_OFFSET + pstart;
1793        unsigned long vend = PAGE_OFFSET + pend;
1794        unsigned long alloc_bytes = 0UL;
1795
1796        if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1797                prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1798                            vstart, vend);
1799                prom_halt();
1800        }
1801
1802        while (vstart < vend) {
1803                unsigned long this_end, paddr = __pa(vstart);
1804                pgd_t *pgd = pgd_offset_k(vstart);
1805                pud_t *pud;
1806                pmd_t *pmd;
1807                pte_t *pte;
1808
1809                if (pgd_none(*pgd)) {
1810                        pud_t *new;
1811
1812                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1813                        alloc_bytes += PAGE_SIZE;
1814                        pgd_populate(&init_mm, pgd, new);
1815                }
1816                pud = pud_offset(pgd, vstart);
1817                if (pud_none(*pud)) {
1818                        pmd_t *new;
1819
1820                        if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1821                                vstart = kernel_map_hugepud(vstart, vend, pud);
1822                                continue;
1823                        }
1824                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1825                        alloc_bytes += PAGE_SIZE;
1826                        pud_populate(&init_mm, pud, new);
1827                }
1828
1829                pmd = pmd_offset(pud, vstart);
1830                if (pmd_none(*pmd)) {
1831                        pte_t *new;
1832
1833                        if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1834                                vstart = kernel_map_hugepmd(vstart, vend, pmd);
1835                                continue;
1836                        }
1837                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1838                        alloc_bytes += PAGE_SIZE;
1839                        pmd_populate_kernel(&init_mm, pmd, new);
1840                }
1841
1842                pte = pte_offset_kernel(pmd, vstart);
1843                this_end = (vstart + PMD_SIZE) & PMD_MASK;
1844                if (this_end > vend)
1845                        this_end = vend;
1846
1847                while (vstart < this_end) {
1848                        pte_val(*pte) = (paddr | pgprot_val(prot));
1849
1850                        vstart += PAGE_SIZE;
1851                        paddr += PAGE_SIZE;
1852                        pte++;
1853                }
1854        }
1855
1856        return alloc_bytes;
1857}
1858
1859static void __init flush_all_kernel_tsbs(void)
1860{
1861        int i;
1862
1863        for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1864                struct tsb *ent = &swapper_tsb[i];
1865
1866                ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1867        }
1868#ifndef CONFIG_DEBUG_PAGEALLOC
1869        for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1870                struct tsb *ent = &swapper_4m_tsb[i];
1871
1872                ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1873        }
1874#endif
1875}
1876
1877extern unsigned int kvmap_linear_patch[1];
1878
1879static void __init kernel_physical_mapping_init(void)
1880{
1881        unsigned long i, mem_alloced = 0UL;
1882        bool use_huge = true;
1883
1884#ifdef CONFIG_DEBUG_PAGEALLOC
1885        use_huge = false;
1886#endif
1887        for (i = 0; i < pall_ents; i++) {
1888                unsigned long phys_start, phys_end;
1889
1890                phys_start = pall[i].phys_addr;
1891                phys_end = phys_start + pall[i].reg_size;
1892
1893                mem_alloced += kernel_map_range(phys_start, phys_end,
1894                                                PAGE_KERNEL, use_huge);
1895        }
1896
1897        printk("Allocated %ld bytes for kernel page tables.\n",
1898               mem_alloced);
1899
1900        kvmap_linear_patch[0] = 0x01000000; /* nop */
1901        flushi(&kvmap_linear_patch[0]);
1902
1903        flush_all_kernel_tsbs();
1904
1905        __flush_tlb_all();
1906}
1907
1908#ifdef CONFIG_DEBUG_PAGEALLOC
1909void __kernel_map_pages(struct page *page, int numpages, int enable)
1910{
1911        unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1912        unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1913
1914        kernel_map_range(phys_start, phys_end,
1915                         (enable ? PAGE_KERNEL : __pgprot(0)), false);
1916
1917        flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1918                               PAGE_OFFSET + phys_end);
1919
1920        /* we should perform an IPI and flush all tlbs,
1921         * but that can deadlock->flush only current cpu.
1922         */
1923        __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1924                                 PAGE_OFFSET + phys_end);
1925}
1926#endif
1927
1928unsigned long __init find_ecache_flush_span(unsigned long size)
1929{
1930        int i;
1931
1932        for (i = 0; i < pavail_ents; i++) {
1933                if (pavail[i].reg_size >= size)
1934                        return pavail[i].phys_addr;
1935        }
1936
1937        return ~0UL;
1938}
1939
1940unsigned long PAGE_OFFSET;
1941EXPORT_SYMBOL(PAGE_OFFSET);
1942
1943unsigned long VMALLOC_END   = 0x0000010000000000UL;
1944EXPORT_SYMBOL(VMALLOC_END);
1945
1946unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1947unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1948
1949static void __init setup_page_offset(void)
1950{
1951        if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1952                /* Cheetah/Panther support a full 64-bit virtual
1953                 * address, so we can use all that our page tables
1954                 * support.
1955                 */
1956                sparc64_va_hole_top =    0xfff0000000000000UL;
1957                sparc64_va_hole_bottom = 0x0010000000000000UL;
1958
1959                max_phys_bits = 42;
1960        } else if (tlb_type == hypervisor) {
1961                switch (sun4v_chip_type) {
1962                case SUN4V_CHIP_NIAGARA1:
1963                case SUN4V_CHIP_NIAGARA2:
1964                        /* T1 and T2 support 48-bit virtual addresses.  */
1965                        sparc64_va_hole_top =    0xffff800000000000UL;
1966                        sparc64_va_hole_bottom = 0x0000800000000000UL;
1967
1968                        max_phys_bits = 39;
1969                        break;
1970                case SUN4V_CHIP_NIAGARA3:
1971                        /* T3 supports 48-bit virtual addresses.  */
1972                        sparc64_va_hole_top =    0xffff800000000000UL;
1973                        sparc64_va_hole_bottom = 0x0000800000000000UL;
1974
1975                        max_phys_bits = 43;
1976                        break;
1977                case SUN4V_CHIP_NIAGARA4:
1978                case SUN4V_CHIP_NIAGARA5:
1979                case SUN4V_CHIP_SPARC64X:
1980                case SUN4V_CHIP_SPARC_M6:
1981                        /* T4 and later support 52-bit virtual addresses.  */
1982                        sparc64_va_hole_top =    0xfff8000000000000UL;
1983                        sparc64_va_hole_bottom = 0x0008000000000000UL;
1984                        max_phys_bits = 47;
1985                        break;
1986                case SUN4V_CHIP_SPARC_M7:
1987                case SUN4V_CHIP_SPARC_SN:
1988                        /* M7 and later support 52-bit virtual addresses.  */
1989                        sparc64_va_hole_top =    0xfff8000000000000UL;
1990                        sparc64_va_hole_bottom = 0x0008000000000000UL;
1991                        max_phys_bits = 49;
1992                        break;
1993                case SUN4V_CHIP_SPARC_M8:
1994                default:
1995                        /* M8 and later support 54-bit virtual addresses.
1996                         * However, restricting M8 and above VA bits to 53
1997                         * as 4-level page table cannot support more than
1998                         * 53 VA bits.
1999                         */
2000                        sparc64_va_hole_top =    0xfff0000000000000UL;
2001                        sparc64_va_hole_bottom = 0x0010000000000000UL;
2002                        max_phys_bits = 51;
2003                        break;
2004                }
2005        }
2006
2007        if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2008                prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2009                            max_phys_bits);
2010                prom_halt();
2011        }
2012
2013        PAGE_OFFSET = sparc64_va_hole_top;
2014        VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2015                       (sparc64_va_hole_bottom >> 2));
2016
2017        pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2018                PAGE_OFFSET, max_phys_bits);
2019        pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2020                VMALLOC_START, VMALLOC_END);
2021        pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2022                VMEMMAP_BASE, VMEMMAP_BASE << 1);
2023}
2024
2025static void __init tsb_phys_patch(void)
2026{
2027        struct tsb_ldquad_phys_patch_entry *pquad;
2028        struct tsb_phys_patch_entry *p;
2029
2030        pquad = &__tsb_ldquad_phys_patch;
2031        while (pquad < &__tsb_ldquad_phys_patch_end) {
2032                unsigned long addr = pquad->addr;
2033
2034                if (tlb_type == hypervisor)
2035                        *(unsigned int *) addr = pquad->sun4v_insn;
2036                else
2037                        *(unsigned int *) addr = pquad->sun4u_insn;
2038                wmb();
2039                __asm__ __volatile__("flush     %0"
2040                                     : /* no outputs */
2041                                     : "r" (addr));
2042
2043                pquad++;
2044        }
2045
2046        p = &__tsb_phys_patch;
2047        while (p < &__tsb_phys_patch_end) {
2048                unsigned long addr = p->addr;
2049
2050                *(unsigned int *) addr = p->insn;
2051                wmb();
2052                __asm__ __volatile__("flush     %0"
2053                                     : /* no outputs */
2054                                     : "r" (addr));
2055
2056                p++;
2057        }
2058}
2059
2060/* Don't mark as init, we give this to the Hypervisor.  */
2061#ifndef CONFIG_DEBUG_PAGEALLOC
2062#define NUM_KTSB_DESCR  2
2063#else
2064#define NUM_KTSB_DESCR  1
2065#endif
2066static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2067
2068/* The swapper TSBs are loaded with a base sequence of:
2069 *
2070 *      sethi   %uhi(SYMBOL), REG1
2071 *      sethi   %hi(SYMBOL), REG2
2072 *      or      REG1, %ulo(SYMBOL), REG1
2073 *      or      REG2, %lo(SYMBOL), REG2
2074 *      sllx    REG1, 32, REG1
2075 *      or      REG1, REG2, REG1
2076 *
2077 * When we use physical addressing for the TSB accesses, we patch the
2078 * first four instructions in the above sequence.
2079 */
2080
2081static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2082{
2083        unsigned long high_bits, low_bits;
2084
2085        high_bits = (pa >> 32) & 0xffffffff;
2086        low_bits = (pa >> 0) & 0xffffffff;
2087
2088        while (start < end) {
2089                unsigned int *ia = (unsigned int *)(unsigned long)*start;
2090
2091                ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2092                __asm__ __volatile__("flush     %0" : : "r" (ia));
2093
2094                ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2095                __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
2096
2097                ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2098                __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
2099
2100                ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2101                __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
2102
2103                start++;
2104        }
2105}
2106
2107static void ktsb_phys_patch(void)
2108{
2109        extern unsigned int __swapper_tsb_phys_patch;
2110        extern unsigned int __swapper_tsb_phys_patch_end;
2111        unsigned long ktsb_pa;
2112
2113        ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2114        patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2115                            &__swapper_tsb_phys_patch_end, ktsb_pa);
2116#ifndef CONFIG_DEBUG_PAGEALLOC
2117        {
2118        extern unsigned int __swapper_4m_tsb_phys_patch;
2119        extern unsigned int __swapper_4m_tsb_phys_patch_end;
2120        ktsb_pa = (kern_base +
2121                   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2122        patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2123                            &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2124        }
2125#endif
2126}
2127
2128static void __init sun4v_ktsb_init(void)
2129{
2130        unsigned long ktsb_pa;
2131
2132        /* First KTSB for PAGE_SIZE mappings.  */
2133        ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2134
2135        switch (PAGE_SIZE) {
2136        case 8 * 1024:
2137        default:
2138                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2139                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2140                break;
2141
2142        case 64 * 1024:
2143                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2144                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2145                break;
2146
2147        case 512 * 1024:
2148                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2149                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2150                break;
2151
2152        case 4 * 1024 * 1024:
2153                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2154                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2155                break;
2156        }
2157
2158        ktsb_descr[0].assoc = 1;
2159        ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2160        ktsb_descr[0].ctx_idx = 0;
2161        ktsb_descr[0].tsb_base = ktsb_pa;
2162        ktsb_descr[0].resv = 0;
2163
2164#ifndef CONFIG_DEBUG_PAGEALLOC
2165        /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2166        ktsb_pa = (kern_base +
2167                   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2168
2169        ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2170        ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2171                                    HV_PGSZ_MASK_256MB |
2172                                    HV_PGSZ_MASK_2GB |
2173                                    HV_PGSZ_MASK_16GB) &
2174                                   cpu_pgsz_mask);
2175        ktsb_descr[1].assoc = 1;
2176        ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2177        ktsb_descr[1].ctx_idx = 0;
2178        ktsb_descr[1].tsb_base = ktsb_pa;
2179        ktsb_descr[1].resv = 0;
2180#endif
2181}
2182
2183void sun4v_ktsb_register(void)
2184{
2185        unsigned long pa, ret;
2186
2187        pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2188
2189        ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2190        if (ret != 0) {
2191                prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2192                            "errors with %lx\n", pa, ret);
2193                prom_halt();
2194        }
2195}
2196
2197static void __init sun4u_linear_pte_xor_finalize(void)
2198{
2199#ifndef CONFIG_DEBUG_PAGEALLOC
2200        /* This is where we would add Panther support for
2201         * 32MB and 256MB pages.
2202         */
2203#endif
2204}
2205
2206static void __init sun4v_linear_pte_xor_finalize(void)
2207{
2208        unsigned long pagecv_flag;
2209
2210        /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2211         * enables MCD error. Do not set bit 9 on M7 processor.
2212         */
2213        switch (sun4v_chip_type) {
2214        case SUN4V_CHIP_SPARC_M7:
2215        case SUN4V_CHIP_SPARC_M8:
2216        case SUN4V_CHIP_SPARC_SN:
2217                pagecv_flag = 0x00;
2218                break;
2219        default:
2220                pagecv_flag = _PAGE_CV_4V;
2221                break;
2222        }
2223#ifndef CONFIG_DEBUG_PAGEALLOC
2224        if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2225                kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2226                        PAGE_OFFSET;
2227                kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2228                                           _PAGE_P_4V | _PAGE_W_4V);
2229        } else {
2230                kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2231        }
2232
2233        if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2234                kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2235                        PAGE_OFFSET;
2236                kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2237                                           _PAGE_P_4V | _PAGE_W_4V);
2238        } else {
2239                kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2240        }
2241
2242        if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2243                kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2244                        PAGE_OFFSET;
2245                kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2246                                           _PAGE_P_4V | _PAGE_W_4V);
2247        } else {
2248                kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2249        }
2250#endif
2251}
2252
2253/* paging_init() sets up the page tables */
2254
2255static unsigned long last_valid_pfn;
2256
2257static void sun4u_pgprot_init(void);
2258static void sun4v_pgprot_init(void);
2259
2260static phys_addr_t __init available_memory(void)
2261{
2262        phys_addr_t available = 0ULL;
2263        phys_addr_t pa_start, pa_end;
2264        u64 i;
2265
2266        for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2267                                &pa_end, NULL)
2268                available = available + (pa_end  - pa_start);
2269
2270        return available;
2271}
2272
2273#define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2274#define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2275#define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2276#define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2277#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2278#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2279
2280/* We need to exclude reserved regions. This exclusion will include
2281 * vmlinux and initrd. To be more precise the initrd size could be used to
2282 * compute a new lower limit because it is freed later during initialization.
2283 */
2284static void __init reduce_memory(phys_addr_t limit_ram)
2285{
2286        phys_addr_t avail_ram = available_memory();
2287        phys_addr_t pa_start, pa_end;
2288        u64 i;
2289
2290        if (limit_ram >= avail_ram)
2291                return;
2292
2293        for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2294                                &pa_end, NULL) {
2295                phys_addr_t region_size = pa_end - pa_start;
2296                phys_addr_t clip_start = pa_start;
2297
2298                avail_ram = avail_ram - region_size;
2299                /* Are we consuming too much? */
2300                if (avail_ram < limit_ram) {
2301                        phys_addr_t give_back = limit_ram - avail_ram;
2302
2303                        region_size = region_size - give_back;
2304                        clip_start = clip_start + give_back;
2305                }
2306
2307                memblock_remove(clip_start, region_size);
2308
2309                if (avail_ram <= limit_ram)
2310                        break;
2311                i = 0UL;
2312        }
2313}
2314
2315void __init paging_init(void)
2316{
2317        unsigned long end_pfn, shift, phys_base;
2318        unsigned long real_end, i;
2319
2320        setup_page_offset();
2321
2322        /* These build time checkes make sure that the dcache_dirty_cpu()
2323         * page->flags usage will work.
2324         *
2325         * When a page gets marked as dcache-dirty, we store the
2326         * cpu number starting at bit 32 in the page->flags.  Also,
2327         * functions like clear_dcache_dirty_cpu use the cpu mask
2328         * in 13-bit signed-immediate instruction fields.
2329         */
2330
2331        /*
2332         * Page flags must not reach into upper 32 bits that are used
2333         * for the cpu number
2334         */
2335        BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2336
2337        /*
2338         * The bit fields placed in the high range must not reach below
2339         * the 32 bit boundary. Otherwise we cannot place the cpu field
2340         * at the 32 bit boundary.
2341         */
2342        BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2343                ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2344
2345        BUILD_BUG_ON(NR_CPUS > 4096);
2346
2347        kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2348        kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2349
2350        /* Invalidate both kernel TSBs.  */
2351        memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2352#ifndef CONFIG_DEBUG_PAGEALLOC
2353        memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2354#endif
2355
2356        /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2357         * bit on M7 processor. This is a conflicting usage of the same
2358         * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2359         * Detection error on all pages and this will lead to problems
2360         * later. Kernel does not run with MCD enabled and hence rest
2361         * of the required steps to fully configure memory corruption
2362         * detection are not taken. We need to ensure TTE.mcde is not
2363         * set on M7 processor. Compute the value of cacheability
2364         * flag for use later taking this into consideration.
2365         */
2366        switch (sun4v_chip_type) {
2367        case SUN4V_CHIP_SPARC_M7:
2368        case SUN4V_CHIP_SPARC_M8:
2369        case SUN4V_CHIP_SPARC_SN:
2370                page_cache4v_flag = _PAGE_CP_4V;
2371                break;
2372        default:
2373                page_cache4v_flag = _PAGE_CACHE_4V;
2374                break;
2375        }
2376
2377        if (tlb_type == hypervisor)
2378                sun4v_pgprot_init();
2379        else
2380                sun4u_pgprot_init();
2381
2382        if (tlb_type == cheetah_plus ||
2383            tlb_type == hypervisor) {
2384                tsb_phys_patch();
2385                ktsb_phys_patch();
2386        }
2387
2388        if (tlb_type == hypervisor)
2389                sun4v_patch_tlb_handlers();
2390
2391        /* Find available physical memory...
2392         *
2393         * Read it twice in order to work around a bug in openfirmware.
2394         * The call to grab this table itself can cause openfirmware to
2395         * allocate memory, which in turn can take away some space from
2396         * the list of available memory.  Reading it twice makes sure
2397         * we really do get the final value.
2398         */
2399        read_obp_translations();
2400        read_obp_memory("reg", &pall[0], &pall_ents);
2401        read_obp_memory("available", &pavail[0], &pavail_ents);
2402        read_obp_memory("available", &pavail[0], &pavail_ents);
2403
2404        phys_base = 0xffffffffffffffffUL;
2405        for (i = 0; i < pavail_ents; i++) {
2406                phys_base = min(phys_base, pavail[i].phys_addr);
2407                memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2408        }
2409
2410        memblock_reserve(kern_base, kern_size);
2411
2412        find_ramdisk(phys_base);
2413
2414        if (cmdline_memory_size)
2415                reduce_memory(cmdline_memory_size);
2416
2417        memblock_allow_resize();
2418        memblock_dump_all();
2419
2420        set_bit(0, mmu_context_bmap);
2421
2422        shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2423
2424        real_end = (unsigned long)_end;
2425        num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2426        printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2427               num_kernel_image_mappings);
2428
2429        /* Set kernel pgd to upper alias so physical page computations
2430         * work.
2431         */
2432        init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2433        
2434        memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2435
2436        inherit_prom_mappings();
2437        
2438        /* Ok, we can use our TLB miss and window trap handlers safely.  */
2439        setup_tba();
2440
2441        __flush_tlb_all();
2442
2443        prom_build_devicetree();
2444        of_populate_present_mask();
2445#ifndef CONFIG_SMP
2446        of_fill_in_cpu_data();
2447#endif
2448
2449        if (tlb_type == hypervisor) {
2450                sun4v_mdesc_init();
2451                mdesc_populate_present_mask(cpu_all_mask);
2452#ifndef CONFIG_SMP
2453                mdesc_fill_in_cpu_data(cpu_all_mask);
2454#endif
2455                mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2456
2457                sun4v_linear_pte_xor_finalize();
2458
2459                sun4v_ktsb_init();
2460                sun4v_ktsb_register();
2461        } else {
2462                unsigned long impl, ver;
2463
2464                cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2465                                 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2466
2467                __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2468                impl = ((ver >> 32) & 0xffff);
2469                if (impl == PANTHER_IMPL)
2470                        cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2471                                          HV_PGSZ_MASK_256MB);
2472
2473                sun4u_linear_pte_xor_finalize();
2474        }
2475
2476        /* Flush the TLBs and the 4M TSB so that the updated linear
2477         * pte XOR settings are realized for all mappings.
2478         */
2479        __flush_tlb_all();
2480#ifndef CONFIG_DEBUG_PAGEALLOC
2481        memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2482#endif
2483        __flush_tlb_all();
2484
2485        /* Setup bootmem... */
2486        last_valid_pfn = end_pfn = bootmem_init(phys_base);
2487
2488        kernel_physical_mapping_init();
2489
2490        {
2491                unsigned long max_zone_pfns[MAX_NR_ZONES];
2492
2493                memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2494
2495                max_zone_pfns[ZONE_NORMAL] = end_pfn;
2496
2497                free_area_init_nodes(max_zone_pfns);
2498        }
2499
2500        printk("Booting Linux...\n");
2501}
2502
2503int page_in_phys_avail(unsigned long paddr)
2504{
2505        int i;
2506
2507        paddr &= PAGE_MASK;
2508
2509        for (i = 0; i < pavail_ents; i++) {
2510                unsigned long start, end;
2511
2512                start = pavail[i].phys_addr;
2513                end = start + pavail[i].reg_size;
2514
2515                if (paddr >= start && paddr < end)
2516                        return 1;
2517        }
2518        if (paddr >= kern_base && paddr < (kern_base + kern_size))
2519                return 1;
2520#ifdef CONFIG_BLK_DEV_INITRD
2521        if (paddr >= __pa(initrd_start) &&
2522            paddr < __pa(PAGE_ALIGN(initrd_end)))
2523                return 1;
2524#endif
2525
2526        return 0;
2527}
2528
2529static void __init register_page_bootmem_info(void)
2530{
2531#ifdef CONFIG_NEED_MULTIPLE_NODES
2532        int i;
2533
2534        for_each_online_node(i)
2535                if (NODE_DATA(i)->node_spanned_pages)
2536                        register_page_bootmem_info_node(NODE_DATA(i));
2537#endif
2538}
2539void __init mem_init(void)
2540{
2541        high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2542
2543        free_all_bootmem();
2544
2545        /*
2546         * Must be done after boot memory is put on freelist, because here we
2547         * might set fields in deferred struct pages that have not yet been
2548         * initialized, and free_all_bootmem() initializes all the reserved
2549         * deferred pages for us.
2550         */
2551        register_page_bootmem_info();
2552
2553        /*
2554         * Set up the zero page, mark it reserved, so that page count
2555         * is not manipulated when freeing the page from user ptes.
2556         */
2557        mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2558        if (mem_map_zero == NULL) {
2559                prom_printf("paging_init: Cannot alloc zero page.\n");
2560                prom_halt();
2561        }
2562        mark_page_reserved(mem_map_zero);
2563
2564        mem_init_print_info(NULL);
2565
2566        if (tlb_type == cheetah || tlb_type == cheetah_plus)
2567                cheetah_ecache_flush_init();
2568}
2569
2570void free_initmem(void)
2571{
2572        unsigned long addr, initend;
2573        int do_free = 1;
2574
2575        /* If the physical memory maps were trimmed by kernel command
2576         * line options, don't even try freeing this initmem stuff up.
2577         * The kernel image could have been in the trimmed out region
2578         * and if so the freeing below will free invalid page structs.
2579         */
2580        if (cmdline_memory_size)
2581                do_free = 0;
2582
2583        /*
2584         * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2585         */
2586        addr = PAGE_ALIGN((unsigned long)(__init_begin));
2587        initend = (unsigned long)(__init_end) & PAGE_MASK;
2588        for (; addr < initend; addr += PAGE_SIZE) {
2589                unsigned long page;
2590
2591                page = (addr +
2592                        ((unsigned long) __va(kern_base)) -
2593                        ((unsigned long) KERNBASE));
2594                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2595
2596                if (do_free)
2597                        free_reserved_page(virt_to_page(page));
2598        }
2599}
2600
2601#ifdef CONFIG_BLK_DEV_INITRD
2602void free_initrd_mem(unsigned long start, unsigned long end)
2603{
2604        free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2605                           "initrd");
2606}
2607#endif
2608
2609pgprot_t PAGE_KERNEL __read_mostly;
2610EXPORT_SYMBOL(PAGE_KERNEL);
2611
2612pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2613pgprot_t PAGE_COPY __read_mostly;
2614
2615pgprot_t PAGE_SHARED __read_mostly;
2616EXPORT_SYMBOL(PAGE_SHARED);
2617
2618unsigned long pg_iobits __read_mostly;
2619
2620unsigned long _PAGE_IE __read_mostly;
2621EXPORT_SYMBOL(_PAGE_IE);
2622
2623unsigned long _PAGE_E __read_mostly;
2624EXPORT_SYMBOL(_PAGE_E);
2625
2626unsigned long _PAGE_CACHE __read_mostly;
2627EXPORT_SYMBOL(_PAGE_CACHE);
2628
2629#ifdef CONFIG_SPARSEMEM_VMEMMAP
2630int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2631                               int node, struct vmem_altmap *altmap)
2632{
2633        unsigned long pte_base;
2634
2635        pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2636                    _PAGE_CP_4U | _PAGE_CV_4U |
2637                    _PAGE_P_4U | _PAGE_W_4U);
2638        if (tlb_type == hypervisor)
2639                pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2640                            page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2641
2642        pte_base |= _PAGE_PMD_HUGE;
2643
2644        vstart = vstart & PMD_MASK;
2645        vend = ALIGN(vend, PMD_SIZE);
2646        for (; vstart < vend; vstart += PMD_SIZE) {
2647                pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2648                unsigned long pte;
2649                pud_t *pud;
2650                pmd_t *pmd;
2651
2652                if (!pgd)
2653                        return -ENOMEM;
2654
2655                pud = vmemmap_pud_populate(pgd, vstart, node);
2656                if (!pud)
2657                        return -ENOMEM;
2658
2659                pmd = pmd_offset(pud, vstart);
2660                pte = pmd_val(*pmd);
2661                if (!(pte & _PAGE_VALID)) {
2662                        void *block = vmemmap_alloc_block(PMD_SIZE, node);
2663
2664                        if (!block)
2665                                return -ENOMEM;
2666
2667                        pmd_val(*pmd) = pte_base | __pa(block);
2668                }
2669        }
2670
2671        return 0;
2672}
2673
2674void vmemmap_free(unsigned long start, unsigned long end,
2675                struct vmem_altmap *altmap)
2676{
2677}
2678#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2679
2680static void prot_init_common(unsigned long page_none,
2681                             unsigned long page_shared,
2682                             unsigned long page_copy,
2683                             unsigned long page_readonly,
2684                             unsigned long page_exec_bit)
2685{
2686        PAGE_COPY = __pgprot(page_copy);
2687        PAGE_SHARED = __pgprot(page_shared);
2688
2689        protection_map[0x0] = __pgprot(page_none);
2690        protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2691        protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2692        protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2693        protection_map[0x4] = __pgprot(page_readonly);
2694        protection_map[0x5] = __pgprot(page_readonly);
2695        protection_map[0x6] = __pgprot(page_copy);
2696        protection_map[0x7] = __pgprot(page_copy);
2697        protection_map[0x8] = __pgprot(page_none);
2698        protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2699        protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2700        protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2701        protection_map[0xc] = __pgprot(page_readonly);
2702        protection_map[0xd] = __pgprot(page_readonly);
2703        protection_map[0xe] = __pgprot(page_shared);
2704        protection_map[0xf] = __pgprot(page_shared);
2705}
2706
2707static void __init sun4u_pgprot_init(void)
2708{
2709        unsigned long page_none, page_shared, page_copy, page_readonly;
2710        unsigned long page_exec_bit;
2711        int i;
2712
2713        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2714                                _PAGE_CACHE_4U | _PAGE_P_4U |
2715                                __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2716                                _PAGE_EXEC_4U);
2717        PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2718                                       _PAGE_CACHE_4U | _PAGE_P_4U |
2719                                       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2720                                       _PAGE_EXEC_4U | _PAGE_L_4U);
2721
2722        _PAGE_IE = _PAGE_IE_4U;
2723        _PAGE_E = _PAGE_E_4U;
2724        _PAGE_CACHE = _PAGE_CACHE_4U;
2725
2726        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2727                     __ACCESS_BITS_4U | _PAGE_E_4U);
2728
2729#ifdef CONFIG_DEBUG_PAGEALLOC
2730        kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2731#else
2732        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2733                PAGE_OFFSET;
2734#endif
2735        kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2736                                   _PAGE_P_4U | _PAGE_W_4U);
2737
2738        for (i = 1; i < 4; i++)
2739                kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2740
2741        _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2742                              _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2743                              _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2744
2745
2746        page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2747        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2748                       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2749        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2750                       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2751        page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2752                           __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2753
2754        page_exec_bit = _PAGE_EXEC_4U;
2755
2756        prot_init_common(page_none, page_shared, page_copy, page_readonly,
2757                         page_exec_bit);
2758}
2759
2760static void __init sun4v_pgprot_init(void)
2761{
2762        unsigned long page_none, page_shared, page_copy, page_readonly;
2763        unsigned long page_exec_bit;
2764        int i;
2765
2766        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2767                                page_cache4v_flag | _PAGE_P_4V |
2768                                __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2769                                _PAGE_EXEC_4V);
2770        PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2771
2772        _PAGE_IE = _PAGE_IE_4V;
2773        _PAGE_E = _PAGE_E_4V;
2774        _PAGE_CACHE = page_cache4v_flag;
2775
2776#ifdef CONFIG_DEBUG_PAGEALLOC
2777        kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2778#else
2779        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2780                PAGE_OFFSET;
2781#endif
2782        kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2783                                   _PAGE_W_4V);
2784
2785        for (i = 1; i < 4; i++)
2786                kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2787
2788        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2789                     __ACCESS_BITS_4V | _PAGE_E_4V);
2790
2791        _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2792                             _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2793                             _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2794                             _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2795
2796        page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2797        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2798                       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2799        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2800                       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2801        page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2802                         __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2803
2804        page_exec_bit = _PAGE_EXEC_4V;
2805
2806        prot_init_common(page_none, page_shared, page_copy, page_readonly,
2807                         page_exec_bit);
2808}
2809
2810unsigned long pte_sz_bits(unsigned long sz)
2811{
2812        if (tlb_type == hypervisor) {
2813                switch (sz) {
2814                case 8 * 1024:
2815                default:
2816                        return _PAGE_SZ8K_4V;
2817                case 64 * 1024:
2818                        return _PAGE_SZ64K_4V;
2819                case 512 * 1024:
2820                        return _PAGE_SZ512K_4V;
2821                case 4 * 1024 * 1024:
2822                        return _PAGE_SZ4MB_4V;
2823                }
2824        } else {
2825                switch (sz) {
2826                case 8 * 1024:
2827                default:
2828                        return _PAGE_SZ8K_4U;
2829                case 64 * 1024:
2830                        return _PAGE_SZ64K_4U;
2831                case 512 * 1024:
2832                        return _PAGE_SZ512K_4U;
2833                case 4 * 1024 * 1024:
2834                        return _PAGE_SZ4MB_4U;
2835                }
2836        }
2837}
2838
2839pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2840{
2841        pte_t pte;
2842
2843        pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2844        pte_val(pte) |= (((unsigned long)space) << 32);
2845        pte_val(pte) |= pte_sz_bits(page_size);
2846
2847        return pte;
2848}
2849
2850static unsigned long kern_large_tte(unsigned long paddr)
2851{
2852        unsigned long val;
2853
2854        val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2855               _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2856               _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2857        if (tlb_type == hypervisor)
2858                val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2859                       page_cache4v_flag | _PAGE_P_4V |
2860                       _PAGE_EXEC_4V | _PAGE_W_4V);
2861
2862        return val | paddr;
2863}
2864
2865/* If not locked, zap it. */
2866void __flush_tlb_all(void)
2867{
2868        unsigned long pstate;
2869        int i;
2870
2871        __asm__ __volatile__("flushw\n\t"
2872                             "rdpr      %%pstate, %0\n\t"
2873                             "wrpr      %0, %1, %%pstate"
2874                             : "=r" (pstate)
2875                             : "i" (PSTATE_IE));
2876        if (tlb_type == hypervisor) {
2877                sun4v_mmu_demap_all();
2878        } else if (tlb_type == spitfire) {
2879                for (i = 0; i < 64; i++) {
2880                        /* Spitfire Errata #32 workaround */
2881                        /* NOTE: Always runs on spitfire, so no
2882                         *       cheetah+ page size encodings.
2883                         */
2884                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2885                                             "flush     %%g6"
2886                                             : /* No outputs */
2887                                             : "r" (0),
2888                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2889
2890                        if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2891                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2892                                                     "membar #Sync"
2893                                                     : /* no outputs */
2894                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2895                                spitfire_put_dtlb_data(i, 0x0UL);
2896                        }
2897
2898                        /* Spitfire Errata #32 workaround */
2899                        /* NOTE: Always runs on spitfire, so no
2900                         *       cheetah+ page size encodings.
2901                         */
2902                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2903                                             "flush     %%g6"
2904                                             : /* No outputs */
2905                                             : "r" (0),
2906                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2907
2908                        if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2909                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2910                                                     "membar #Sync"
2911                                                     : /* no outputs */
2912                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2913                                spitfire_put_itlb_data(i, 0x0UL);
2914                        }
2915                }
2916        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2917                cheetah_flush_dtlb_all();
2918                cheetah_flush_itlb_all();
2919        }
2920        __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2921                             : : "r" (pstate));
2922}
2923
2924pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2925                            unsigned long address)
2926{
2927        struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2928        pte_t *pte = NULL;
2929
2930        if (page)
2931                pte = (pte_t *) page_address(page);
2932
2933        return pte;
2934}
2935
2936pgtable_t pte_alloc_one(struct mm_struct *mm,
2937                        unsigned long address)
2938{
2939        struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2940        if (!page)
2941                return NULL;
2942        if (!pgtable_page_ctor(page)) {
2943                free_unref_page(page);
2944                return NULL;
2945        }
2946        return (pte_t *) page_address(page);
2947}
2948
2949void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2950{
2951        free_page((unsigned long)pte);
2952}
2953
2954static void __pte_free(pgtable_t pte)
2955{
2956        struct page *page = virt_to_page(pte);
2957
2958        pgtable_page_dtor(page);
2959        __free_page(page);
2960}
2961
2962void pte_free(struct mm_struct *mm, pgtable_t pte)
2963{
2964        __pte_free(pte);
2965}
2966
2967void pgtable_free(void *table, bool is_page)
2968{
2969        if (is_page)
2970                __pte_free(table);
2971        else
2972                kmem_cache_free(pgtable_cache, table);
2973}
2974
2975#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2976void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2977                          pmd_t *pmd)
2978{
2979        unsigned long pte, flags;
2980        struct mm_struct *mm;
2981        pmd_t entry = *pmd;
2982
2983        if (!pmd_large(entry) || !pmd_young(entry))
2984                return;
2985
2986        pte = pmd_val(entry);
2987
2988        /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2989        if (!(pte & _PAGE_VALID))
2990                return;
2991
2992        /* We are fabricating 8MB pages using 4MB real hw pages.  */
2993        pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2994
2995        mm = vma->vm_mm;
2996
2997        spin_lock_irqsave(&mm->context.lock, flags);
2998
2999        if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
3000                __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
3001                                        addr, pte);
3002
3003        spin_unlock_irqrestore(&mm->context.lock, flags);
3004}
3005#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3006
3007#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
3008static void context_reload(void *__data)
3009{
3010        struct mm_struct *mm = __data;
3011
3012        if (mm == current->mm)
3013                load_secondary_context(mm);
3014}
3015
3016void hugetlb_setup(struct pt_regs *regs)
3017{
3018        struct mm_struct *mm = current->mm;
3019        struct tsb_config *tp;
3020
3021        if (faulthandler_disabled() || !mm) {
3022                const struct exception_table_entry *entry;
3023
3024                entry = search_exception_tables(regs->tpc);
3025                if (entry) {
3026                        regs->tpc = entry->fixup;
3027                        regs->tnpc = regs->tpc + 4;
3028                        return;
3029                }
3030                pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3031                die_if_kernel("HugeTSB in atomic", regs);
3032        }
3033
3034        tp = &mm->context.tsb_block[MM_TSB_HUGE];
3035        if (likely(tp->tsb == NULL))
3036                tsb_grow(mm, MM_TSB_HUGE, 0);
3037
3038        tsb_context_switch(mm);
3039        smp_tsb_sync(mm);
3040
3041        /* On UltraSPARC-III+ and later, configure the second half of
3042         * the Data-TLB for huge pages.
3043         */
3044        if (tlb_type == cheetah_plus) {
3045                bool need_context_reload = false;
3046                unsigned long ctx;
3047
3048                spin_lock_irq(&ctx_alloc_lock);
3049                ctx = mm->context.sparc64_ctx_val;
3050                ctx &= ~CTX_PGSZ_MASK;
3051                ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3052                ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3053
3054                if (ctx != mm->context.sparc64_ctx_val) {
3055                        /* When changing the page size fields, we
3056                         * must perform a context flush so that no
3057                         * stale entries match.  This flush must
3058                         * occur with the original context register
3059                         * settings.
3060                         */
3061                        do_flush_tlb_mm(mm);
3062
3063                        /* Reload the context register of all processors
3064                         * also executing in this address space.
3065                         */
3066                        mm->context.sparc64_ctx_val = ctx;
3067                        need_context_reload = true;
3068                }
3069                spin_unlock_irq(&ctx_alloc_lock);
3070
3071                if (need_context_reload)
3072                        on_each_cpu(context_reload, mm, 0);
3073        }
3074}
3075#endif
3076
3077static struct resource code_resource = {
3078        .name   = "Kernel code",
3079        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3080};
3081
3082static struct resource data_resource = {
3083        .name   = "Kernel data",
3084        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3085};
3086
3087static struct resource bss_resource = {
3088        .name   = "Kernel bss",
3089        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3090};
3091
3092static inline resource_size_t compute_kern_paddr(void *addr)
3093{
3094        return (resource_size_t) (addr - KERNBASE + kern_base);
3095}
3096
3097static void __init kernel_lds_init(void)
3098{
3099        code_resource.start = compute_kern_paddr(_text);
3100        code_resource.end   = compute_kern_paddr(_etext - 1);
3101        data_resource.start = compute_kern_paddr(_etext);
3102        data_resource.end   = compute_kern_paddr(_edata - 1);
3103        bss_resource.start  = compute_kern_paddr(__bss_start);
3104        bss_resource.end    = compute_kern_paddr(_end - 1);
3105}
3106
3107static int __init report_memory(void)
3108{
3109        int i;
3110        struct resource *res;
3111
3112        kernel_lds_init();
3113
3114        for (i = 0; i < pavail_ents; i++) {
3115                res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3116
3117                if (!res) {
3118                        pr_warn("Failed to allocate source.\n");
3119                        break;
3120                }
3121
3122                res->name = "System RAM";
3123                res->start = pavail[i].phys_addr;
3124                res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3125                res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3126
3127                if (insert_resource(&iomem_resource, res) < 0) {
3128                        pr_warn("Resource insertion failed.\n");
3129                        break;
3130                }
3131
3132                insert_resource(res, &code_resource);
3133                insert_resource(res, &data_resource);
3134                insert_resource(res, &bss_resource);
3135        }
3136
3137        return 0;
3138}
3139arch_initcall(report_memory);
3140
3141#ifdef CONFIG_SMP
3142#define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3143#else
3144#define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3145#endif
3146
3147void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3148{
3149        if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3150                if (start < LOW_OBP_ADDRESS) {
3151                        flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3152                        do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3153                }
3154                if (end > HI_OBP_ADDRESS) {
3155                        flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3156                        do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3157                }
3158        } else {
3159                flush_tsb_kernel_range(start, end);
3160                do_flush_tlb_kernel_range(start, end);
3161        }
3162}
3163
3164void copy_user_highpage(struct page *to, struct page *from,
3165        unsigned long vaddr, struct vm_area_struct *vma)
3166{
3167        char *vfrom, *vto;
3168
3169        vfrom = kmap_atomic(from);
3170        vto = kmap_atomic(to);
3171        copy_user_page(vto, vfrom, vaddr, to);
3172        kunmap_atomic(vto);
3173        kunmap_atomic(vfrom);
3174
3175        /* If this page has ADI enabled, copy over any ADI tags
3176         * as well
3177         */
3178        if (vma->vm_flags & VM_SPARC_ADI) {
3179                unsigned long pfrom, pto, i, adi_tag;
3180
3181                pfrom = page_to_phys(from);
3182                pto = page_to_phys(to);
3183
3184                for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3185                        asm volatile("ldxa [%1] %2, %0\n\t"
3186                                        : "=r" (adi_tag)
3187                                        :  "r" (i), "i" (ASI_MCD_REAL));
3188                        asm volatile("stxa %0, [%1] %2\n\t"
3189                                        :
3190                                        : "r" (adi_tag), "r" (pto),
3191                                          "i" (ASI_MCD_REAL));
3192                        pto += adi_blksize();
3193                }
3194                asm volatile("membar #Sync\n\t");
3195        }
3196}
3197EXPORT_SYMBOL(copy_user_highpage);
3198
3199void copy_highpage(struct page *to, struct page *from)
3200{
3201        char *vfrom, *vto;
3202
3203        vfrom = kmap_atomic(from);
3204        vto = kmap_atomic(to);
3205        copy_page(vto, vfrom);
3206        kunmap_atomic(vto);
3207        kunmap_atomic(vfrom);
3208
3209        /* If this platform is ADI enabled, copy any ADI tags
3210         * as well
3211         */
3212        if (adi_capable()) {
3213                unsigned long pfrom, pto, i, adi_tag;
3214
3215                pfrom = page_to_phys(from);
3216                pto = page_to_phys(to);
3217
3218                for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3219                        asm volatile("ldxa [%1] %2, %0\n\t"
3220                                        : "=r" (adi_tag)
3221                                        :  "r" (i), "i" (ASI_MCD_REAL));
3222                        asm volatile("stxa %0, [%1] %2\n\t"
3223                                        :
3224                                        : "r" (adi_tag), "r" (pto),
3225                                          "i" (ASI_MCD_REAL));
3226                        pto += adi_blksize();
3227                }
3228                asm volatile("membar #Sync\n\t");
3229        }
3230}
3231EXPORT_SYMBOL(copy_highpage);
3232