linux/arch/unicore32/mm/fault.c
<<
>>
Prefs
   1/*
   2 * linux/arch/unicore32/mm/fault.c
   3 *
   4 * Code specific to PKUnity SoC and UniCore ISA
   5 *
   6 * Copyright (C) 2001-2010 GUAN Xue-tao
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12#include <linux/extable.h>
  13#include <linux/signal.h>
  14#include <linux/mm.h>
  15#include <linux/hardirq.h>
  16#include <linux/init.h>
  17#include <linux/kprobes.h>
  18#include <linux/uaccess.h>
  19#include <linux/page-flags.h>
  20#include <linux/sched/signal.h>
  21#include <linux/io.h>
  22
  23#include <asm/pgtable.h>
  24#include <asm/tlbflush.h>
  25
  26/*
  27 * Fault status register encodings.  We steal bit 31 for our own purposes.
  28 */
  29#define FSR_LNX_PF              (1 << 31)
  30
  31static inline int fsr_fs(unsigned int fsr)
  32{
  33        /* xyabcde will be abcde+xy */
  34        return (fsr & 31) + ((fsr & (3 << 5)) >> 5);
  35}
  36
  37/*
  38 * This is useful to dump out the page tables associated with
  39 * 'addr' in mm 'mm'.
  40 */
  41void show_pte(struct mm_struct *mm, unsigned long addr)
  42{
  43        pgd_t *pgd;
  44
  45        if (!mm)
  46                mm = &init_mm;
  47
  48        printk(KERN_ALERT "pgd = %p\n", mm->pgd);
  49        pgd = pgd_offset(mm, addr);
  50        printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
  51
  52        do {
  53                pmd_t *pmd;
  54                pte_t *pte;
  55
  56                if (pgd_none(*pgd))
  57                        break;
  58
  59                if (pgd_bad(*pgd)) {
  60                        printk("(bad)");
  61                        break;
  62                }
  63
  64                pmd = pmd_offset((pud_t *) pgd, addr);
  65                if (PTRS_PER_PMD != 1)
  66                        printk(", *pmd=%08lx", pmd_val(*pmd));
  67
  68                if (pmd_none(*pmd))
  69                        break;
  70
  71                if (pmd_bad(*pmd)) {
  72                        printk("(bad)");
  73                        break;
  74                }
  75
  76                /* We must not map this if we have highmem enabled */
  77                if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
  78                        break;
  79
  80                pte = pte_offset_map(pmd, addr);
  81                printk(", *pte=%08lx", pte_val(*pte));
  82                pte_unmap(pte);
  83        } while (0);
  84
  85        printk("\n");
  86}
  87
  88/*
  89 * Oops.  The kernel tried to access some page that wasn't present.
  90 */
  91static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
  92                unsigned int fsr, struct pt_regs *regs)
  93{
  94        /*
  95         * Are we prepared to handle this kernel fault?
  96         */
  97        if (fixup_exception(regs))
  98                return;
  99
 100        /*
 101         * No handler, we'll have to terminate things with extreme prejudice.
 102         */
 103        bust_spinlocks(1);
 104        printk(KERN_ALERT
 105               "Unable to handle kernel %s at virtual address %08lx\n",
 106               (addr < PAGE_SIZE) ? "NULL pointer dereference" :
 107               "paging request", addr);
 108
 109        show_pte(mm, addr);
 110        die("Oops", regs, fsr);
 111        bust_spinlocks(0);
 112        do_exit(SIGKILL);
 113}
 114
 115/*
 116 * Something tried to access memory that isn't in our memory map..
 117 * User mode accesses just cause a SIGSEGV
 118 */
 119static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
 120                unsigned int fsr, unsigned int sig, int code,
 121                struct pt_regs *regs)
 122{
 123        struct siginfo si;
 124
 125        tsk->thread.address = addr;
 126        tsk->thread.error_code = fsr;
 127        tsk->thread.trap_no = 14;
 128        clear_siginfo(&si);
 129        si.si_signo = sig;
 130        si.si_errno = 0;
 131        si.si_code = code;
 132        si.si_addr = (void __user *)addr;
 133        force_sig_info(sig, &si, tsk);
 134}
 135
 136void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 137{
 138        struct task_struct *tsk = current;
 139        struct mm_struct *mm = tsk->active_mm;
 140
 141        /*
 142         * If we are in kernel mode at this point, we
 143         * have no context to handle this fault with.
 144         */
 145        if (user_mode(regs))
 146                __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 147        else
 148                __do_kernel_fault(mm, addr, fsr, regs);
 149}
 150
 151#define VM_FAULT_BADMAP         0x010000
 152#define VM_FAULT_BADACCESS      0x020000
 153
 154/*
 155 * Check that the permissions on the VMA allow for the fault which occurred.
 156 * If we encountered a write fault, we must have write permission, otherwise
 157 * we allow any permission.
 158 */
 159static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
 160{
 161        unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
 162
 163        if (!(fsr ^ 0x12))      /* write? */
 164                mask = VM_WRITE;
 165        if (fsr & FSR_LNX_PF)
 166                mask = VM_EXEC;
 167
 168        return vma->vm_flags & mask ? false : true;
 169}
 170
 171static vm_fault_t __do_pf(struct mm_struct *mm, unsigned long addr,
 172                unsigned int fsr, unsigned int flags, struct task_struct *tsk)
 173{
 174        struct vm_area_struct *vma;
 175        vm_fault_t fault;
 176
 177        vma = find_vma(mm, addr);
 178        fault = VM_FAULT_BADMAP;
 179        if (unlikely(!vma))
 180                goto out;
 181        if (unlikely(vma->vm_start > addr))
 182                goto check_stack;
 183
 184        /*
 185         * Ok, we have a good vm_area for this
 186         * memory access, so we can handle it.
 187         */
 188good_area:
 189        if (access_error(fsr, vma)) {
 190                fault = VM_FAULT_BADACCESS;
 191                goto out;
 192        }
 193
 194        /*
 195         * If for any reason at all we couldn't handle the fault, make
 196         * sure we exit gracefully rather than endlessly redo the fault.
 197         */
 198        fault = handle_mm_fault(vma, addr & PAGE_MASK, flags);
 199        return fault;
 200
 201check_stack:
 202        if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
 203                goto good_area;
 204out:
 205        return fault;
 206}
 207
 208static int do_pf(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 209{
 210        struct task_struct *tsk;
 211        struct mm_struct *mm;
 212        int sig, code;
 213        vm_fault_t fault;
 214        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 215
 216        tsk = current;
 217        mm = tsk->mm;
 218
 219        /*
 220         * If we're in an interrupt or have no user
 221         * context, we must not take the fault..
 222         */
 223        if (faulthandler_disabled() || !mm)
 224                goto no_context;
 225
 226        if (user_mode(regs))
 227                flags |= FAULT_FLAG_USER;
 228        if (!(fsr ^ 0x12))
 229                flags |= FAULT_FLAG_WRITE;
 230
 231        /*
 232         * As per x86, we may deadlock here.  However, since the kernel only
 233         * validly references user space from well defined areas of the code,
 234         * we can bug out early if this is from code which shouldn't.
 235         */
 236        if (!down_read_trylock(&mm->mmap_sem)) {
 237                if (!user_mode(regs)
 238                    && !search_exception_tables(regs->UCreg_pc))
 239                        goto no_context;
 240retry:
 241                down_read(&mm->mmap_sem);
 242        } else {
 243                /*
 244                 * The above down_read_trylock() might have succeeded in
 245                 * which case, we'll have missed the might_sleep() from
 246                 * down_read()
 247                 */
 248                might_sleep();
 249#ifdef CONFIG_DEBUG_VM
 250                if (!user_mode(regs) &&
 251                    !search_exception_tables(regs->UCreg_pc))
 252                        goto no_context;
 253#endif
 254        }
 255
 256        fault = __do_pf(mm, addr, fsr, flags, tsk);
 257
 258        /* If we need to retry but a fatal signal is pending, handle the
 259         * signal first. We do not need to release the mmap_sem because
 260         * it would already be released in __lock_page_or_retry in
 261         * mm/filemap.c. */
 262        if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 263                return 0;
 264
 265        if (!(fault & VM_FAULT_ERROR) && (flags & FAULT_FLAG_ALLOW_RETRY)) {
 266                if (fault & VM_FAULT_MAJOR)
 267                        tsk->maj_flt++;
 268                else
 269                        tsk->min_flt++;
 270                if (fault & VM_FAULT_RETRY) {
 271                        /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 272                        * of starvation. */
 273                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 274                        goto retry;
 275                }
 276        }
 277
 278        up_read(&mm->mmap_sem);
 279
 280        /*
 281         * Handle the "normal" case first - VM_FAULT_MAJOR
 282         */
 283        if (likely(!(fault &
 284               (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 285                return 0;
 286
 287        /*
 288         * If we are in kernel mode at this point, we
 289         * have no context to handle this fault with.
 290         */
 291        if (!user_mode(regs))
 292                goto no_context;
 293
 294        if (fault & VM_FAULT_OOM) {
 295                /*
 296                 * We ran out of memory, call the OOM killer, and return to
 297                 * userspace (which will retry the fault, or kill us if we
 298                 * got oom-killed)
 299                 */
 300                pagefault_out_of_memory();
 301                return 0;
 302        }
 303
 304        if (fault & VM_FAULT_SIGBUS) {
 305                /*
 306                 * We had some memory, but were unable to
 307                 * successfully fix up this page fault.
 308                 */
 309                sig = SIGBUS;
 310                code = BUS_ADRERR;
 311        } else {
 312                /*
 313                 * Something tried to access memory that
 314                 * isn't in our memory map..
 315                 */
 316                sig = SIGSEGV;
 317                code = fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR;
 318        }
 319
 320        __do_user_fault(tsk, addr, fsr, sig, code, regs);
 321        return 0;
 322
 323no_context:
 324        __do_kernel_fault(mm, addr, fsr, regs);
 325        return 0;
 326}
 327
 328/*
 329 * First Level Translation Fault Handler
 330 *
 331 * We enter here because the first level page table doesn't contain
 332 * a valid entry for the address.
 333 *
 334 * If the address is in kernel space (>= TASK_SIZE), then we are
 335 * probably faulting in the vmalloc() area.
 336 *
 337 * If the init_task's first level page tables contains the relevant
 338 * entry, we copy the it to this task.  If not, we send the process
 339 * a signal, fixup the exception, or oops the kernel.
 340 *
 341 * NOTE! We MUST NOT take any locks for this case. We may be in an
 342 * interrupt or a critical region, and should only copy the information
 343 * from the master page table, nothing more.
 344 */
 345static int do_ifault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 346{
 347        unsigned int index;
 348        pgd_t *pgd, *pgd_k;
 349        pmd_t *pmd, *pmd_k;
 350
 351        if (addr < TASK_SIZE)
 352                return do_pf(addr, fsr, regs);
 353
 354        if (user_mode(regs))
 355                goto bad_area;
 356
 357        index = pgd_index(addr);
 358
 359        pgd = cpu_get_pgd() + index;
 360        pgd_k = init_mm.pgd + index;
 361
 362        if (pgd_none(*pgd_k))
 363                goto bad_area;
 364
 365        pmd_k = pmd_offset((pud_t *) pgd_k, addr);
 366        pmd = pmd_offset((pud_t *) pgd, addr);
 367
 368        if (pmd_none(*pmd_k))
 369                goto bad_area;
 370
 371        set_pmd(pmd, *pmd_k);
 372        flush_pmd_entry(pmd);
 373        return 0;
 374
 375bad_area:
 376        do_bad_area(addr, fsr, regs);
 377        return 0;
 378}
 379
 380/*
 381 * This abort handler always returns "fault".
 382 */
 383static int do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 384{
 385        return 1;
 386}
 387
 388static int do_good(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 389{
 390        unsigned int res1, res2;
 391
 392        printk("dabt exception but no error!\n");
 393
 394        __asm__ __volatile__(
 395                        "mff %0,f0\n"
 396                        "mff %1,f1\n"
 397                        : "=r"(res1), "=r"(res2)
 398                        :
 399                        : "memory");
 400
 401        printk(KERN_EMERG "r0 :%08x  r1 :%08x\n", res1, res2);
 402        panic("shut up\n");
 403        return 0;
 404}
 405
 406static struct fsr_info {
 407        int (*fn) (unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 408        int sig;
 409        int code;
 410        const char *name;
 411} fsr_info[] = {
 412        /*
 413         * The following are the standard Unicore-I and UniCore-II aborts.
 414         */
 415        { do_good,      SIGBUS,  0,             "no error"              },
 416        { do_bad,       SIGBUS,  BUS_ADRALN,    "alignment exception"   },
 417        { do_bad,       SIGBUS,  BUS_OBJERR,    "external exception"    },
 418        { do_bad,       SIGBUS,  0,             "burst operation"       },
 419        { do_bad,       SIGBUS,  0,             "unknown 00100"         },
 420        { do_ifault,    SIGSEGV, SEGV_MAPERR,   "2nd level pt non-exist"},
 421        { do_bad,       SIGBUS,  0,             "2nd lvl large pt non-exist" },
 422        { do_bad,       SIGBUS,  0,             "invalid pte"           },
 423        { do_pf,        SIGSEGV, SEGV_MAPERR,   "page miss"             },
 424        { do_bad,       SIGBUS,  0,             "middle page miss"      },
 425        { do_bad,       SIGBUS,  0,             "large page miss"       },
 426        { do_pf,        SIGSEGV, SEGV_MAPERR,   "super page (section) miss" },
 427        { do_bad,       SIGBUS,  0,             "unknown 01100"         },
 428        { do_bad,       SIGBUS,  0,             "unknown 01101"         },
 429        { do_bad,       SIGBUS,  0,             "unknown 01110"         },
 430        { do_bad,       SIGBUS,  0,             "unknown 01111"         },
 431        { do_bad,       SIGBUS,  0,             "addr: up 3G or IO"     },
 432        { do_pf,        SIGSEGV, SEGV_ACCERR,   "read unreadable addr"  },
 433        { do_pf,        SIGSEGV, SEGV_ACCERR,   "write unwriteable addr"},
 434        { do_pf,        SIGSEGV, SEGV_ACCERR,   "exec unexecutable addr"},
 435        { do_bad,       SIGBUS,  0,             "unknown 10100"         },
 436        { do_bad,       SIGBUS,  0,             "unknown 10101"         },
 437        { do_bad,       SIGBUS,  0,             "unknown 10110"         },
 438        { do_bad,       SIGBUS,  0,             "unknown 10111"         },
 439        { do_bad,       SIGBUS,  0,             "unknown 11000"         },
 440        { do_bad,       SIGBUS,  0,             "unknown 11001"         },
 441        { do_bad,       SIGBUS,  0,             "unknown 11010"         },
 442        { do_bad,       SIGBUS,  0,             "unknown 11011"         },
 443        { do_bad,       SIGBUS,  0,             "unknown 11100"         },
 444        { do_bad,       SIGBUS,  0,             "unknown 11101"         },
 445        { do_bad,       SIGBUS,  0,             "unknown 11110"         },
 446        { do_bad,       SIGBUS,  0,             "unknown 11111"         }
 447};
 448
 449void __init hook_fault_code(int nr,
 450                int (*fn) (unsigned long, unsigned int, struct pt_regs *),
 451                int sig, int code, const char *name)
 452{
 453        if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 454                BUG();
 455
 456        fsr_info[nr].fn   = fn;
 457        fsr_info[nr].sig  = sig;
 458        fsr_info[nr].code = code;
 459        fsr_info[nr].name = name;
 460}
 461
 462/*
 463 * Dispatch a data abort to the relevant handler.
 464 */
 465asmlinkage void do_DataAbort(unsigned long addr, unsigned int fsr,
 466                        struct pt_regs *regs)
 467{
 468        const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 469        struct siginfo info;
 470
 471        if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 472                return;
 473
 474        printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 475               inf->name, fsr, addr);
 476
 477        clear_siginfo(&info);
 478        info.si_signo = inf->sig;
 479        info.si_errno = 0;
 480        info.si_code = inf->code;
 481        info.si_addr = (void __user *)addr;
 482        uc32_notify_die("", regs, &info, fsr, 0);
 483}
 484
 485asmlinkage void do_PrefetchAbort(unsigned long addr,
 486                        unsigned int ifsr, struct pt_regs *regs)
 487{
 488        const struct fsr_info *inf = fsr_info + fsr_fs(ifsr);
 489        struct siginfo info;
 490
 491        if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 492                return;
 493
 494        printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 495               inf->name, ifsr, addr);
 496
 497        clear_siginfo(&info);
 498        info.si_signo = inf->sig;
 499        info.si_errno = 0;
 500        info.si_code = inf->code;
 501        info.si_addr = (void __user *)addr;
 502        uc32_notify_die("", regs, &info, ifsr, 0);
 503}
 504