linux/arch/x86/kvm/cpuid.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 * cpuid support routines
   4 *
   5 * derived from arch/x86/kvm/x86.c
   6 *
   7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   8 * Copyright IBM Corporation, 2008
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2.  See
  11 * the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include <linux/kvm_host.h>
  16#include <linux/export.h>
  17#include <linux/vmalloc.h>
  18#include <linux/uaccess.h>
  19#include <linux/sched/stat.h>
  20
  21#include <asm/processor.h>
  22#include <asm/user.h>
  23#include <asm/fpu/xstate.h>
  24#include "cpuid.h"
  25#include "lapic.h"
  26#include "mmu.h"
  27#include "trace.h"
  28#include "pmu.h"
  29
  30static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  31{
  32        int feature_bit = 0;
  33        u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  34
  35        xstate_bv &= XFEATURE_MASK_EXTEND;
  36        while (xstate_bv) {
  37                if (xstate_bv & 0x1) {
  38                        u32 eax, ebx, ecx, edx, offset;
  39                        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  40                        offset = compacted ? ret : ebx;
  41                        ret = max(ret, offset + eax);
  42                }
  43
  44                xstate_bv >>= 1;
  45                feature_bit++;
  46        }
  47
  48        return ret;
  49}
  50
  51bool kvm_mpx_supported(void)
  52{
  53        return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
  54                 && kvm_x86_ops->mpx_supported());
  55}
  56EXPORT_SYMBOL_GPL(kvm_mpx_supported);
  57
  58u64 kvm_supported_xcr0(void)
  59{
  60        u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
  61
  62        if (!kvm_mpx_supported())
  63                xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
  64
  65        return xcr0;
  66}
  67
  68#define F(x) bit(X86_FEATURE_##x)
  69
  70/* For scattered features from cpufeatures.h; we currently expose none */
  71#define KF(x) bit(KVM_CPUID_BIT_##x)
  72
  73int kvm_update_cpuid(struct kvm_vcpu *vcpu)
  74{
  75        struct kvm_cpuid_entry2 *best;
  76        struct kvm_lapic *apic = vcpu->arch.apic;
  77
  78        best = kvm_find_cpuid_entry(vcpu, 1, 0);
  79        if (!best)
  80                return 0;
  81
  82        /* Update OSXSAVE bit */
  83        if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
  84                best->ecx &= ~F(OSXSAVE);
  85                if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  86                        best->ecx |= F(OSXSAVE);
  87        }
  88
  89        best->edx &= ~F(APIC);
  90        if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
  91                best->edx |= F(APIC);
  92
  93        if (apic) {
  94                if (best->ecx & F(TSC_DEADLINE_TIMER))
  95                        apic->lapic_timer.timer_mode_mask = 3 << 17;
  96                else
  97                        apic->lapic_timer.timer_mode_mask = 1 << 17;
  98        }
  99
 100        best = kvm_find_cpuid_entry(vcpu, 7, 0);
 101        if (best) {
 102                /* Update OSPKE bit */
 103                if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
 104                        best->ecx &= ~F(OSPKE);
 105                        if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
 106                                best->ecx |= F(OSPKE);
 107                }
 108        }
 109
 110        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 111        if (!best) {
 112                vcpu->arch.guest_supported_xcr0 = 0;
 113                vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 114        } else {
 115                vcpu->arch.guest_supported_xcr0 =
 116                        (best->eax | ((u64)best->edx << 32)) &
 117                        kvm_supported_xcr0();
 118                vcpu->arch.guest_xstate_size = best->ebx =
 119                        xstate_required_size(vcpu->arch.xcr0, false);
 120        }
 121
 122        best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 123        if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
 124                best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 125
 126        /*
 127         * The existing code assumes virtual address is 48-bit or 57-bit in the
 128         * canonical address checks; exit if it is ever changed.
 129         */
 130        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 131        if (best) {
 132                int vaddr_bits = (best->eax & 0xff00) >> 8;
 133
 134                if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 135                        return -EINVAL;
 136        }
 137
 138        best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 139        if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 140                (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 141                best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 142
 143        /* Update physical-address width */
 144        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 145        kvm_mmu_reset_context(vcpu);
 146
 147        kvm_pmu_refresh(vcpu);
 148        return 0;
 149}
 150
 151static int is_efer_nx(void)
 152{
 153        unsigned long long efer = 0;
 154
 155        rdmsrl_safe(MSR_EFER, &efer);
 156        return efer & EFER_NX;
 157}
 158
 159static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 160{
 161        int i;
 162        struct kvm_cpuid_entry2 *e, *entry;
 163
 164        entry = NULL;
 165        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 166                e = &vcpu->arch.cpuid_entries[i];
 167                if (e->function == 0x80000001) {
 168                        entry = e;
 169                        break;
 170                }
 171        }
 172        if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
 173                entry->edx &= ~F(NX);
 174                printk(KERN_INFO "kvm: guest NX capability removed\n");
 175        }
 176}
 177
 178int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 179{
 180        struct kvm_cpuid_entry2 *best;
 181
 182        best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 183        if (!best || best->eax < 0x80000008)
 184                goto not_found;
 185        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 186        if (best)
 187                return best->eax & 0xff;
 188not_found:
 189        return 36;
 190}
 191EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 192
 193/* when an old userspace process fills a new kernel module */
 194int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 195                             struct kvm_cpuid *cpuid,
 196                             struct kvm_cpuid_entry __user *entries)
 197{
 198        int r, i;
 199        struct kvm_cpuid_entry *cpuid_entries = NULL;
 200
 201        r = -E2BIG;
 202        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 203                goto out;
 204        r = -ENOMEM;
 205        if (cpuid->nent) {
 206                cpuid_entries =
 207                        vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
 208                                           cpuid->nent));
 209                if (!cpuid_entries)
 210                        goto out;
 211                r = -EFAULT;
 212                if (copy_from_user(cpuid_entries, entries,
 213                                   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
 214                        goto out;
 215        }
 216        for (i = 0; i < cpuid->nent; i++) {
 217                vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 218                vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 219                vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 220                vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 221                vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 222                vcpu->arch.cpuid_entries[i].index = 0;
 223                vcpu->arch.cpuid_entries[i].flags = 0;
 224                vcpu->arch.cpuid_entries[i].padding[0] = 0;
 225                vcpu->arch.cpuid_entries[i].padding[1] = 0;
 226                vcpu->arch.cpuid_entries[i].padding[2] = 0;
 227        }
 228        vcpu->arch.cpuid_nent = cpuid->nent;
 229        cpuid_fix_nx_cap(vcpu);
 230        kvm_apic_set_version(vcpu);
 231        kvm_x86_ops->cpuid_update(vcpu);
 232        r = kvm_update_cpuid(vcpu);
 233
 234out:
 235        vfree(cpuid_entries);
 236        return r;
 237}
 238
 239int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 240                              struct kvm_cpuid2 *cpuid,
 241                              struct kvm_cpuid_entry2 __user *entries)
 242{
 243        int r;
 244
 245        r = -E2BIG;
 246        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 247                goto out;
 248        r = -EFAULT;
 249        if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 250                           cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 251                goto out;
 252        vcpu->arch.cpuid_nent = cpuid->nent;
 253        kvm_apic_set_version(vcpu);
 254        kvm_x86_ops->cpuid_update(vcpu);
 255        r = kvm_update_cpuid(vcpu);
 256out:
 257        return r;
 258}
 259
 260int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 261                              struct kvm_cpuid2 *cpuid,
 262                              struct kvm_cpuid_entry2 __user *entries)
 263{
 264        int r;
 265
 266        r = -E2BIG;
 267        if (cpuid->nent < vcpu->arch.cpuid_nent)
 268                goto out;
 269        r = -EFAULT;
 270        if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 271                         vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 272                goto out;
 273        return 0;
 274
 275out:
 276        cpuid->nent = vcpu->arch.cpuid_nent;
 277        return r;
 278}
 279
 280static void cpuid_mask(u32 *word, int wordnum)
 281{
 282        *word &= boot_cpu_data.x86_capability[wordnum];
 283}
 284
 285static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 286                           u32 index)
 287{
 288        entry->function = function;
 289        entry->index = index;
 290        cpuid_count(entry->function, entry->index,
 291                    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 292        entry->flags = 0;
 293}
 294
 295static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
 296                                   u32 func, u32 index, int *nent, int maxnent)
 297{
 298        switch (func) {
 299        case 0:
 300                entry->eax = 7;
 301                ++*nent;
 302                break;
 303        case 1:
 304                entry->ecx = F(MOVBE);
 305                ++*nent;
 306                break;
 307        case 7:
 308                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 309                if (index == 0)
 310                        entry->ecx = F(RDPID);
 311                ++*nent;
 312        default:
 313                break;
 314        }
 315
 316        entry->function = func;
 317        entry->index = index;
 318
 319        return 0;
 320}
 321
 322static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 323                                 u32 index, int *nent, int maxnent)
 324{
 325        int r;
 326        unsigned f_nx = is_efer_nx() ? F(NX) : 0;
 327#ifdef CONFIG_X86_64
 328        unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
 329                                ? F(GBPAGES) : 0;
 330        unsigned f_lm = F(LM);
 331#else
 332        unsigned f_gbpages = 0;
 333        unsigned f_lm = 0;
 334#endif
 335        unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
 336        unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
 337        unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
 338        unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
 339        unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
 340
 341        /* cpuid 1.edx */
 342        const u32 kvm_cpuid_1_edx_x86_features =
 343                F(FPU) | F(VME) | F(DE) | F(PSE) |
 344                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 345                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 346                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 347                F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 348                0 /* Reserved, DS, ACPI */ | F(MMX) |
 349                F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 350                0 /* HTT, TM, Reserved, PBE */;
 351        /* cpuid 0x80000001.edx */
 352        const u32 kvm_cpuid_8000_0001_edx_x86_features =
 353                F(FPU) | F(VME) | F(DE) | F(PSE) |
 354                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 355                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 356                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 357                F(PAT) | F(PSE36) | 0 /* Reserved */ |
 358                f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 359                F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
 360                0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
 361        /* cpuid 1.ecx */
 362        const u32 kvm_cpuid_1_ecx_x86_features =
 363                /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
 364                 * but *not* advertised to guests via CPUID ! */
 365                F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 366                0 /* DS-CPL, VMX, SMX, EST */ |
 367                0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 368                F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
 369                F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 370                F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 371                0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 372                F(F16C) | F(RDRAND);
 373        /* cpuid 0x80000001.ecx */
 374        const u32 kvm_cpuid_8000_0001_ecx_x86_features =
 375                F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 376                F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 377                F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 378                0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 379                F(TOPOEXT) | F(PERFCTR_CORE);
 380
 381        /* cpuid 0x80000008.ebx */
 382        const u32 kvm_cpuid_8000_0008_ebx_x86_features =
 383                F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 384                F(AMD_SSB_NO);
 385
 386        /* cpuid 0xC0000001.edx */
 387        const u32 kvm_cpuid_C000_0001_edx_x86_features =
 388                F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 389                F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 390                F(PMM) | F(PMM_EN);
 391
 392        /* cpuid 7.0.ebx */
 393        const u32 kvm_cpuid_7_0_ebx_x86_features =
 394                F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 395                F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
 396                F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 397                F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 398                F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
 399
 400        /* cpuid 0xD.1.eax */
 401        const u32 kvm_cpuid_D_1_eax_x86_features =
 402                F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
 403
 404        /* cpuid 7.0.ecx*/
 405        const u32 kvm_cpuid_7_0_ecx_x86_features =
 406                F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
 407                F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 408                F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 409                F(CLDEMOTE);
 410
 411        /* cpuid 7.0.edx*/
 412        const u32 kvm_cpuid_7_0_edx_x86_features =
 413                F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 414                F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES);
 415
 416        /* all calls to cpuid_count() should be made on the same cpu */
 417        get_cpu();
 418
 419        r = -E2BIG;
 420
 421        if (*nent >= maxnent)
 422                goto out;
 423
 424        do_cpuid_1_ent(entry, function, index);
 425        ++*nent;
 426
 427        switch (function) {
 428        case 0:
 429                entry->eax = min(entry->eax, (u32)0xd);
 430                break;
 431        case 1:
 432                entry->edx &= kvm_cpuid_1_edx_x86_features;
 433                cpuid_mask(&entry->edx, CPUID_1_EDX);
 434                entry->ecx &= kvm_cpuid_1_ecx_x86_features;
 435                cpuid_mask(&entry->ecx, CPUID_1_ECX);
 436                /* we support x2apic emulation even if host does not support
 437                 * it since we emulate x2apic in software */
 438                entry->ecx |= F(X2APIC);
 439                break;
 440        /* function 2 entries are STATEFUL. That is, repeated cpuid commands
 441         * may return different values. This forces us to get_cpu() before
 442         * issuing the first command, and also to emulate this annoying behavior
 443         * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
 444        case 2: {
 445                int t, times = entry->eax & 0xff;
 446
 447                entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 448                entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 449                for (t = 1; t < times; ++t) {
 450                        if (*nent >= maxnent)
 451                                goto out;
 452
 453                        do_cpuid_1_ent(&entry[t], function, 0);
 454                        entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 455                        ++*nent;
 456                }
 457                break;
 458        }
 459        /* function 4 has additional index. */
 460        case 4: {
 461                int i, cache_type;
 462
 463                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 464                /* read more entries until cache_type is zero */
 465                for (i = 1; ; ++i) {
 466                        if (*nent >= maxnent)
 467                                goto out;
 468
 469                        cache_type = entry[i - 1].eax & 0x1f;
 470                        if (!cache_type)
 471                                break;
 472                        do_cpuid_1_ent(&entry[i], function, i);
 473                        entry[i].flags |=
 474                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 475                        ++*nent;
 476                }
 477                break;
 478        }
 479        case 6: /* Thermal management */
 480                entry->eax = 0x4; /* allow ARAT */
 481                entry->ebx = 0;
 482                entry->ecx = 0;
 483                entry->edx = 0;
 484                break;
 485        case 7: {
 486                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 487                /* Mask ebx against host capability word 9 */
 488                if (index == 0) {
 489                        entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
 490                        cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
 491                        // TSC_ADJUST is emulated
 492                        entry->ebx |= F(TSC_ADJUST);
 493                        entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
 494                        cpuid_mask(&entry->ecx, CPUID_7_ECX);
 495                        entry->ecx |= f_umip;
 496                        /* PKU is not yet implemented for shadow paging. */
 497                        if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 498                                entry->ecx &= ~F(PKU);
 499                        entry->edx &= kvm_cpuid_7_0_edx_x86_features;
 500                        cpuid_mask(&entry->edx, CPUID_7_EDX);
 501                        /*
 502                         * We emulate ARCH_CAPABILITIES in software even
 503                         * if the host doesn't support it.
 504                         */
 505                        entry->edx |= F(ARCH_CAPABILITIES);
 506                } else {
 507                        entry->ebx = 0;
 508                        entry->ecx = 0;
 509                        entry->edx = 0;
 510                }
 511                entry->eax = 0;
 512                break;
 513        }
 514        case 9:
 515                break;
 516        case 0xa: { /* Architectural Performance Monitoring */
 517                struct x86_pmu_capability cap;
 518                union cpuid10_eax eax;
 519                union cpuid10_edx edx;
 520
 521                perf_get_x86_pmu_capability(&cap);
 522
 523                /*
 524                 * Only support guest architectural pmu on a host
 525                 * with architectural pmu.
 526                 */
 527                if (!cap.version)
 528                        memset(&cap, 0, sizeof(cap));
 529
 530                eax.split.version_id = min(cap.version, 2);
 531                eax.split.num_counters = cap.num_counters_gp;
 532                eax.split.bit_width = cap.bit_width_gp;
 533                eax.split.mask_length = cap.events_mask_len;
 534
 535                edx.split.num_counters_fixed = cap.num_counters_fixed;
 536                edx.split.bit_width_fixed = cap.bit_width_fixed;
 537                edx.split.reserved = 0;
 538
 539                entry->eax = eax.full;
 540                entry->ebx = cap.events_mask;
 541                entry->ecx = 0;
 542                entry->edx = edx.full;
 543                break;
 544        }
 545        /* function 0xb has additional index. */
 546        case 0xb: {
 547                int i, level_type;
 548
 549                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 550                /* read more entries until level_type is zero */
 551                for (i = 1; ; ++i) {
 552                        if (*nent >= maxnent)
 553                                goto out;
 554
 555                        level_type = entry[i - 1].ecx & 0xff00;
 556                        if (!level_type)
 557                                break;
 558                        do_cpuid_1_ent(&entry[i], function, i);
 559                        entry[i].flags |=
 560                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 561                        ++*nent;
 562                }
 563                break;
 564        }
 565        case 0xd: {
 566                int idx, i;
 567                u64 supported = kvm_supported_xcr0();
 568
 569                entry->eax &= supported;
 570                entry->ebx = xstate_required_size(supported, false);
 571                entry->ecx = entry->ebx;
 572                entry->edx &= supported >> 32;
 573                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 574                if (!supported)
 575                        break;
 576
 577                for (idx = 1, i = 1; idx < 64; ++idx) {
 578                        u64 mask = ((u64)1 << idx);
 579                        if (*nent >= maxnent)
 580                                goto out;
 581
 582                        do_cpuid_1_ent(&entry[i], function, idx);
 583                        if (idx == 1) {
 584                                entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
 585                                cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
 586                                entry[i].ebx = 0;
 587                                if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
 588                                        entry[i].ebx =
 589                                                xstate_required_size(supported,
 590                                                                     true);
 591                        } else {
 592                                if (entry[i].eax == 0 || !(supported & mask))
 593                                        continue;
 594                                if (WARN_ON_ONCE(entry[i].ecx & 1))
 595                                        continue;
 596                        }
 597                        entry[i].ecx = 0;
 598                        entry[i].edx = 0;
 599                        entry[i].flags |=
 600                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 601                        ++*nent;
 602                        ++i;
 603                }
 604                break;
 605        }
 606        case KVM_CPUID_SIGNATURE: {
 607                static const char signature[12] = "KVMKVMKVM\0\0";
 608                const u32 *sigptr = (const u32 *)signature;
 609                entry->eax = KVM_CPUID_FEATURES;
 610                entry->ebx = sigptr[0];
 611                entry->ecx = sigptr[1];
 612                entry->edx = sigptr[2];
 613                break;
 614        }
 615        case KVM_CPUID_FEATURES:
 616                entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 617                             (1 << KVM_FEATURE_NOP_IO_DELAY) |
 618                             (1 << KVM_FEATURE_CLOCKSOURCE2) |
 619                             (1 << KVM_FEATURE_ASYNC_PF) |
 620                             (1 << KVM_FEATURE_PV_EOI) |
 621                             (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 622                             (1 << KVM_FEATURE_PV_UNHALT) |
 623                             (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 624                             (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 625                             (1 << KVM_FEATURE_PV_SEND_IPI);
 626
 627                if (sched_info_on())
 628                        entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 629
 630                entry->ebx = 0;
 631                entry->ecx = 0;
 632                entry->edx = 0;
 633                break;
 634        case 0x80000000:
 635                entry->eax = min(entry->eax, 0x8000001f);
 636                break;
 637        case 0x80000001:
 638                entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
 639                cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
 640                entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
 641                cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
 642                break;
 643        case 0x80000007: /* Advanced power management */
 644                /* invariant TSC is CPUID.80000007H:EDX[8] */
 645                entry->edx &= (1 << 8);
 646                /* mask against host */
 647                entry->edx &= boot_cpu_data.x86_power;
 648                entry->eax = entry->ebx = entry->ecx = 0;
 649                break;
 650        case 0x80000008: {
 651                unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 652                unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 653                unsigned phys_as = entry->eax & 0xff;
 654
 655                if (!g_phys_as)
 656                        g_phys_as = phys_as;
 657                entry->eax = g_phys_as | (virt_as << 8);
 658                entry->edx = 0;
 659                /*
 660                 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
 661                 * hardware cpuid
 662                 */
 663                if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
 664                        entry->ebx |= F(AMD_IBPB);
 665                if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
 666                        entry->ebx |= F(AMD_IBRS);
 667                if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
 668                        entry->ebx |= F(VIRT_SSBD);
 669                entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
 670                cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
 671                /*
 672                 * The preference is to use SPEC CTRL MSR instead of the
 673                 * VIRT_SPEC MSR.
 674                 */
 675                if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 676                    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 677                        entry->ebx |= F(VIRT_SSBD);
 678                break;
 679        }
 680        case 0x80000019:
 681                entry->ecx = entry->edx = 0;
 682                break;
 683        case 0x8000001a:
 684                break;
 685        case 0x8000001d:
 686                break;
 687        /*Add support for Centaur's CPUID instruction*/
 688        case 0xC0000000:
 689                /*Just support up to 0xC0000004 now*/
 690                entry->eax = min(entry->eax, 0xC0000004);
 691                break;
 692        case 0xC0000001:
 693                entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
 694                cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
 695                break;
 696        case 3: /* Processor serial number */
 697        case 5: /* MONITOR/MWAIT */
 698        case 0xC0000002:
 699        case 0xC0000003:
 700        case 0xC0000004:
 701        default:
 702                entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 703                break;
 704        }
 705
 706        kvm_x86_ops->set_supported_cpuid(function, entry);
 707
 708        r = 0;
 709
 710out:
 711        put_cpu();
 712
 713        return r;
 714}
 715
 716static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
 717                        u32 idx, int *nent, int maxnent, unsigned int type)
 718{
 719        if (type == KVM_GET_EMULATED_CPUID)
 720                return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
 721
 722        return __do_cpuid_ent(entry, func, idx, nent, maxnent);
 723}
 724
 725#undef F
 726
 727struct kvm_cpuid_param {
 728        u32 func;
 729        u32 idx;
 730        bool has_leaf_count;
 731        bool (*qualifier)(const struct kvm_cpuid_param *param);
 732};
 733
 734static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
 735{
 736        return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
 737}
 738
 739static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 740                                 __u32 num_entries, unsigned int ioctl_type)
 741{
 742        int i;
 743        __u32 pad[3];
 744
 745        if (ioctl_type != KVM_GET_EMULATED_CPUID)
 746                return false;
 747
 748        /*
 749         * We want to make sure that ->padding is being passed clean from
 750         * userspace in case we want to use it for something in the future.
 751         *
 752         * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 753         * have to give ourselves satisfied only with the emulated side. /me
 754         * sheds a tear.
 755         */
 756        for (i = 0; i < num_entries; i++) {
 757                if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 758                        return true;
 759
 760                if (pad[0] || pad[1] || pad[2])
 761                        return true;
 762        }
 763        return false;
 764}
 765
 766int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 767                            struct kvm_cpuid_entry2 __user *entries,
 768                            unsigned int type)
 769{
 770        struct kvm_cpuid_entry2 *cpuid_entries;
 771        int limit, nent = 0, r = -E2BIG, i;
 772        u32 func;
 773        static const struct kvm_cpuid_param param[] = {
 774                { .func = 0, .has_leaf_count = true },
 775                { .func = 0x80000000, .has_leaf_count = true },
 776                { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
 777                { .func = KVM_CPUID_SIGNATURE },
 778                { .func = KVM_CPUID_FEATURES },
 779        };
 780
 781        if (cpuid->nent < 1)
 782                goto out;
 783        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 784                cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 785
 786        if (sanity_check_entries(entries, cpuid->nent, type))
 787                return -EINVAL;
 788
 789        r = -ENOMEM;
 790        cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
 791                                           cpuid->nent));
 792        if (!cpuid_entries)
 793                goto out;
 794
 795        r = 0;
 796        for (i = 0; i < ARRAY_SIZE(param); i++) {
 797                const struct kvm_cpuid_param *ent = &param[i];
 798
 799                if (ent->qualifier && !ent->qualifier(ent))
 800                        continue;
 801
 802                r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
 803                                &nent, cpuid->nent, type);
 804
 805                if (r)
 806                        goto out_free;
 807
 808                if (!ent->has_leaf_count)
 809                        continue;
 810
 811                limit = cpuid_entries[nent - 1].eax;
 812                for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
 813                        r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
 814                                     &nent, cpuid->nent, type);
 815
 816                if (r)
 817                        goto out_free;
 818        }
 819
 820        r = -EFAULT;
 821        if (copy_to_user(entries, cpuid_entries,
 822                         nent * sizeof(struct kvm_cpuid_entry2)))
 823                goto out_free;
 824        cpuid->nent = nent;
 825        r = 0;
 826
 827out_free:
 828        vfree(cpuid_entries);
 829out:
 830        return r;
 831}
 832
 833static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
 834{
 835        struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
 836        struct kvm_cpuid_entry2 *ej;
 837        int j = i;
 838        int nent = vcpu->arch.cpuid_nent;
 839
 840        e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
 841        /* when no next entry is found, the current entry[i] is reselected */
 842        do {
 843                j = (j + 1) % nent;
 844                ej = &vcpu->arch.cpuid_entries[j];
 845        } while (ej->function != e->function);
 846
 847        ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 848
 849        return j;
 850}
 851
 852/* find an entry with matching function, matching index (if needed), and that
 853 * should be read next (if it's stateful) */
 854static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
 855        u32 function, u32 index)
 856{
 857        if (e->function != function)
 858                return 0;
 859        if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
 860                return 0;
 861        if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
 862            !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
 863                return 0;
 864        return 1;
 865}
 866
 867struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 868                                              u32 function, u32 index)
 869{
 870        int i;
 871        struct kvm_cpuid_entry2 *best = NULL;
 872
 873        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 874                struct kvm_cpuid_entry2 *e;
 875
 876                e = &vcpu->arch.cpuid_entries[i];
 877                if (is_matching_cpuid_entry(e, function, index)) {
 878                        if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
 879                                move_to_next_stateful_cpuid_entry(vcpu, i);
 880                        best = e;
 881                        break;
 882                }
 883        }
 884        return best;
 885}
 886EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 887
 888/*
 889 * If no match is found, check whether we exceed the vCPU's limit
 890 * and return the content of the highest valid _standard_ leaf instead.
 891 * This is to satisfy the CPUID specification.
 892 */
 893static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
 894                                                  u32 function, u32 index)
 895{
 896        struct kvm_cpuid_entry2 *maxlevel;
 897
 898        maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
 899        if (!maxlevel || maxlevel->eax >= function)
 900                return NULL;
 901        if (function & 0x80000000) {
 902                maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
 903                if (!maxlevel)
 904                        return NULL;
 905        }
 906        return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
 907}
 908
 909bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
 910               u32 *ecx, u32 *edx, bool check_limit)
 911{
 912        u32 function = *eax, index = *ecx;
 913        struct kvm_cpuid_entry2 *best;
 914        bool entry_found = true;
 915
 916        best = kvm_find_cpuid_entry(vcpu, function, index);
 917
 918        if (!best) {
 919                entry_found = false;
 920                if (!check_limit)
 921                        goto out;
 922
 923                best = check_cpuid_limit(vcpu, function, index);
 924        }
 925
 926out:
 927        if (best) {
 928                *eax = best->eax;
 929                *ebx = best->ebx;
 930                *ecx = best->ecx;
 931                *edx = best->edx;
 932        } else
 933                *eax = *ebx = *ecx = *edx = 0;
 934        trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
 935        return entry_found;
 936}
 937EXPORT_SYMBOL_GPL(kvm_cpuid);
 938
 939int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
 940{
 941        u32 eax, ebx, ecx, edx;
 942
 943        if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
 944                return 1;
 945
 946        eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
 947        ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 948        kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
 949        kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
 950        kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
 951        kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
 952        kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
 953        return kvm_skip_emulated_instruction(vcpu);
 954}
 955EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
 956