1
2
3
4
5
6
7
8
9
10
11
12
13
14
15#include <linux/kvm_host.h>
16#include <linux/export.h>
17#include <linux/vmalloc.h>
18#include <linux/uaccess.h>
19#include <linux/sched/stat.h>
20
21#include <asm/processor.h>
22#include <asm/user.h>
23#include <asm/fpu/xstate.h>
24#include "cpuid.h"
25#include "lapic.h"
26#include "mmu.h"
27#include "trace.h"
28#include "pmu.h"
29
30static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31{
32 int feature_bit = 0;
33 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34
35 xstate_bv &= XFEATURE_MASK_EXTEND;
36 while (xstate_bv) {
37 if (xstate_bv & 0x1) {
38 u32 eax, ebx, ecx, edx, offset;
39 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40 offset = compacted ? ret : ebx;
41 ret = max(ret, offset + eax);
42 }
43
44 xstate_bv >>= 1;
45 feature_bit++;
46 }
47
48 return ret;
49}
50
51bool kvm_mpx_supported(void)
52{
53 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54 && kvm_x86_ops->mpx_supported());
55}
56EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57
58u64 kvm_supported_xcr0(void)
59{
60 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61
62 if (!kvm_mpx_supported())
63 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64
65 return xcr0;
66}
67
68#define F(x) bit(X86_FEATURE_##x)
69
70
71#define KF(x) bit(KVM_CPUID_BIT_##x)
72
73int kvm_update_cpuid(struct kvm_vcpu *vcpu)
74{
75 struct kvm_cpuid_entry2 *best;
76 struct kvm_lapic *apic = vcpu->arch.apic;
77
78 best = kvm_find_cpuid_entry(vcpu, 1, 0);
79 if (!best)
80 return 0;
81
82
83 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
84 best->ecx &= ~F(OSXSAVE);
85 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
86 best->ecx |= F(OSXSAVE);
87 }
88
89 best->edx &= ~F(APIC);
90 if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91 best->edx |= F(APIC);
92
93 if (apic) {
94 if (best->ecx & F(TSC_DEADLINE_TIMER))
95 apic->lapic_timer.timer_mode_mask = 3 << 17;
96 else
97 apic->lapic_timer.timer_mode_mask = 1 << 17;
98 }
99
100 best = kvm_find_cpuid_entry(vcpu, 7, 0);
101 if (best) {
102
103 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104 best->ecx &= ~F(OSPKE);
105 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106 best->ecx |= F(OSPKE);
107 }
108 }
109
110 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111 if (!best) {
112 vcpu->arch.guest_supported_xcr0 = 0;
113 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114 } else {
115 vcpu->arch.guest_supported_xcr0 =
116 (best->eax | ((u64)best->edx << 32)) &
117 kvm_supported_xcr0();
118 vcpu->arch.guest_xstate_size = best->ebx =
119 xstate_required_size(vcpu->arch.xcr0, false);
120 }
121
122 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125
126
127
128
129
130 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131 if (best) {
132 int vaddr_bits = (best->eax & 0xff00) >> 8;
133
134 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135 return -EINVAL;
136 }
137
138 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142
143
144 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
145 kvm_mmu_reset_context(vcpu);
146
147 kvm_pmu_refresh(vcpu);
148 return 0;
149}
150
151static int is_efer_nx(void)
152{
153 unsigned long long efer = 0;
154
155 rdmsrl_safe(MSR_EFER, &efer);
156 return efer & EFER_NX;
157}
158
159static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
160{
161 int i;
162 struct kvm_cpuid_entry2 *e, *entry;
163
164 entry = NULL;
165 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
166 e = &vcpu->arch.cpuid_entries[i];
167 if (e->function == 0x80000001) {
168 entry = e;
169 break;
170 }
171 }
172 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
173 entry->edx &= ~F(NX);
174 printk(KERN_INFO "kvm: guest NX capability removed\n");
175 }
176}
177
178int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
179{
180 struct kvm_cpuid_entry2 *best;
181
182 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
183 if (!best || best->eax < 0x80000008)
184 goto not_found;
185 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
186 if (best)
187 return best->eax & 0xff;
188not_found:
189 return 36;
190}
191EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
192
193
194int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
195 struct kvm_cpuid *cpuid,
196 struct kvm_cpuid_entry __user *entries)
197{
198 int r, i;
199 struct kvm_cpuid_entry *cpuid_entries = NULL;
200
201 r = -E2BIG;
202 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
203 goto out;
204 r = -ENOMEM;
205 if (cpuid->nent) {
206 cpuid_entries =
207 vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
208 cpuid->nent));
209 if (!cpuid_entries)
210 goto out;
211 r = -EFAULT;
212 if (copy_from_user(cpuid_entries, entries,
213 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
214 goto out;
215 }
216 for (i = 0; i < cpuid->nent; i++) {
217 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
218 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
219 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
220 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
221 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
222 vcpu->arch.cpuid_entries[i].index = 0;
223 vcpu->arch.cpuid_entries[i].flags = 0;
224 vcpu->arch.cpuid_entries[i].padding[0] = 0;
225 vcpu->arch.cpuid_entries[i].padding[1] = 0;
226 vcpu->arch.cpuid_entries[i].padding[2] = 0;
227 }
228 vcpu->arch.cpuid_nent = cpuid->nent;
229 cpuid_fix_nx_cap(vcpu);
230 kvm_apic_set_version(vcpu);
231 kvm_x86_ops->cpuid_update(vcpu);
232 r = kvm_update_cpuid(vcpu);
233
234out:
235 vfree(cpuid_entries);
236 return r;
237}
238
239int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
240 struct kvm_cpuid2 *cpuid,
241 struct kvm_cpuid_entry2 __user *entries)
242{
243 int r;
244
245 r = -E2BIG;
246 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
247 goto out;
248 r = -EFAULT;
249 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
250 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
251 goto out;
252 vcpu->arch.cpuid_nent = cpuid->nent;
253 kvm_apic_set_version(vcpu);
254 kvm_x86_ops->cpuid_update(vcpu);
255 r = kvm_update_cpuid(vcpu);
256out:
257 return r;
258}
259
260int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
261 struct kvm_cpuid2 *cpuid,
262 struct kvm_cpuid_entry2 __user *entries)
263{
264 int r;
265
266 r = -E2BIG;
267 if (cpuid->nent < vcpu->arch.cpuid_nent)
268 goto out;
269 r = -EFAULT;
270 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
271 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
272 goto out;
273 return 0;
274
275out:
276 cpuid->nent = vcpu->arch.cpuid_nent;
277 return r;
278}
279
280static void cpuid_mask(u32 *word, int wordnum)
281{
282 *word &= boot_cpu_data.x86_capability[wordnum];
283}
284
285static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
286 u32 index)
287{
288 entry->function = function;
289 entry->index = index;
290 cpuid_count(entry->function, entry->index,
291 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
292 entry->flags = 0;
293}
294
295static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
296 u32 func, u32 index, int *nent, int maxnent)
297{
298 switch (func) {
299 case 0:
300 entry->eax = 7;
301 ++*nent;
302 break;
303 case 1:
304 entry->ecx = F(MOVBE);
305 ++*nent;
306 break;
307 case 7:
308 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
309 if (index == 0)
310 entry->ecx = F(RDPID);
311 ++*nent;
312 default:
313 break;
314 }
315
316 entry->function = func;
317 entry->index = index;
318
319 return 0;
320}
321
322static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
323 u32 index, int *nent, int maxnent)
324{
325 int r;
326 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
327#ifdef CONFIG_X86_64
328 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
329 ? F(GBPAGES) : 0;
330 unsigned f_lm = F(LM);
331#else
332 unsigned f_gbpages = 0;
333 unsigned f_lm = 0;
334#endif
335 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
336 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
337 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
338 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
339 unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
340
341
342 const u32 kvm_cpuid_1_edx_x86_features =
343 F(FPU) | F(VME) | F(DE) | F(PSE) |
344 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
345 F(CX8) | F(APIC) | 0 | F(SEP) |
346 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
347 F(PAT) | F(PSE36) | 0 | F(CLFLUSH) |
348 0 | F(MMX) |
349 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
350 0 ;
351
352 const u32 kvm_cpuid_8000_0001_edx_x86_features =
353 F(FPU) | F(VME) | F(DE) | F(PSE) |
354 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
355 F(CX8) | F(APIC) | 0 | F(SYSCALL) |
356 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
357 F(PAT) | F(PSE36) | 0 |
358 f_nx | 0 | F(MMXEXT) | F(MMX) |
359 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
360 0 | f_lm | F(3DNOWEXT) | F(3DNOW);
361
362 const u32 kvm_cpuid_1_ecx_x86_features =
363
364
365 F(XMM3) | F(PCLMULQDQ) | 0 |
366 0 |
367 0 | F(SSSE3) | 0 | 0 |
368 F(FMA) | F(CX16) | 0 |
369 F(PCID) | 0 | F(XMM4_1) |
370 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
371 0 | F(AES) | F(XSAVE) | 0 | F(AVX) |
372 F(F16C) | F(RDRAND);
373
374 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
375 F(LAHF_LM) | F(CMP_LEGACY) | 0 | 0 |
376 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
377 F(3DNOWPREFETCH) | F(OSVW) | 0 | F(XOP) |
378 0 | F(FMA4) | F(TBM) |
379 F(TOPOEXT) | F(PERFCTR_CORE);
380
381
382 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
383 F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
384 F(AMD_SSB_NO);
385
386
387 const u32 kvm_cpuid_C000_0001_edx_x86_features =
388 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
389 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
390 F(PMM) | F(PMM_EN);
391
392
393 const u32 kvm_cpuid_7_0_ebx_x86_features =
394 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
395 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
396 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
397 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
398 F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
399
400
401 const u32 kvm_cpuid_D_1_eax_x86_features =
402 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
403
404
405 const u32 kvm_cpuid_7_0_ecx_x86_features =
406 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 |
407 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
408 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
409 F(CLDEMOTE);
410
411
412 const u32 kvm_cpuid_7_0_edx_x86_features =
413 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
414 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES);
415
416
417 get_cpu();
418
419 r = -E2BIG;
420
421 if (*nent >= maxnent)
422 goto out;
423
424 do_cpuid_1_ent(entry, function, index);
425 ++*nent;
426
427 switch (function) {
428 case 0:
429 entry->eax = min(entry->eax, (u32)0xd);
430 break;
431 case 1:
432 entry->edx &= kvm_cpuid_1_edx_x86_features;
433 cpuid_mask(&entry->edx, CPUID_1_EDX);
434 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
435 cpuid_mask(&entry->ecx, CPUID_1_ECX);
436
437
438 entry->ecx |= F(X2APIC);
439 break;
440
441
442
443
444 case 2: {
445 int t, times = entry->eax & 0xff;
446
447 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
448 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
449 for (t = 1; t < times; ++t) {
450 if (*nent >= maxnent)
451 goto out;
452
453 do_cpuid_1_ent(&entry[t], function, 0);
454 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
455 ++*nent;
456 }
457 break;
458 }
459
460 case 4: {
461 int i, cache_type;
462
463 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
464
465 for (i = 1; ; ++i) {
466 if (*nent >= maxnent)
467 goto out;
468
469 cache_type = entry[i - 1].eax & 0x1f;
470 if (!cache_type)
471 break;
472 do_cpuid_1_ent(&entry[i], function, i);
473 entry[i].flags |=
474 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
475 ++*nent;
476 }
477 break;
478 }
479 case 6:
480 entry->eax = 0x4;
481 entry->ebx = 0;
482 entry->ecx = 0;
483 entry->edx = 0;
484 break;
485 case 7: {
486 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
487
488 if (index == 0) {
489 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
490 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
491
492 entry->ebx |= F(TSC_ADJUST);
493 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
494 cpuid_mask(&entry->ecx, CPUID_7_ECX);
495 entry->ecx |= f_umip;
496
497 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
498 entry->ecx &= ~F(PKU);
499 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
500 cpuid_mask(&entry->edx, CPUID_7_EDX);
501
502
503
504
505 entry->edx |= F(ARCH_CAPABILITIES);
506 } else {
507 entry->ebx = 0;
508 entry->ecx = 0;
509 entry->edx = 0;
510 }
511 entry->eax = 0;
512 break;
513 }
514 case 9:
515 break;
516 case 0xa: {
517 struct x86_pmu_capability cap;
518 union cpuid10_eax eax;
519 union cpuid10_edx edx;
520
521 perf_get_x86_pmu_capability(&cap);
522
523
524
525
526
527 if (!cap.version)
528 memset(&cap, 0, sizeof(cap));
529
530 eax.split.version_id = min(cap.version, 2);
531 eax.split.num_counters = cap.num_counters_gp;
532 eax.split.bit_width = cap.bit_width_gp;
533 eax.split.mask_length = cap.events_mask_len;
534
535 edx.split.num_counters_fixed = cap.num_counters_fixed;
536 edx.split.bit_width_fixed = cap.bit_width_fixed;
537 edx.split.reserved = 0;
538
539 entry->eax = eax.full;
540 entry->ebx = cap.events_mask;
541 entry->ecx = 0;
542 entry->edx = edx.full;
543 break;
544 }
545
546 case 0xb: {
547 int i, level_type;
548
549 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
550
551 for (i = 1; ; ++i) {
552 if (*nent >= maxnent)
553 goto out;
554
555 level_type = entry[i - 1].ecx & 0xff00;
556 if (!level_type)
557 break;
558 do_cpuid_1_ent(&entry[i], function, i);
559 entry[i].flags |=
560 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
561 ++*nent;
562 }
563 break;
564 }
565 case 0xd: {
566 int idx, i;
567 u64 supported = kvm_supported_xcr0();
568
569 entry->eax &= supported;
570 entry->ebx = xstate_required_size(supported, false);
571 entry->ecx = entry->ebx;
572 entry->edx &= supported >> 32;
573 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
574 if (!supported)
575 break;
576
577 for (idx = 1, i = 1; idx < 64; ++idx) {
578 u64 mask = ((u64)1 << idx);
579 if (*nent >= maxnent)
580 goto out;
581
582 do_cpuid_1_ent(&entry[i], function, idx);
583 if (idx == 1) {
584 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
585 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
586 entry[i].ebx = 0;
587 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
588 entry[i].ebx =
589 xstate_required_size(supported,
590 true);
591 } else {
592 if (entry[i].eax == 0 || !(supported & mask))
593 continue;
594 if (WARN_ON_ONCE(entry[i].ecx & 1))
595 continue;
596 }
597 entry[i].ecx = 0;
598 entry[i].edx = 0;
599 entry[i].flags |=
600 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
601 ++*nent;
602 ++i;
603 }
604 break;
605 }
606 case KVM_CPUID_SIGNATURE: {
607 static const char signature[12] = "KVMKVMKVM\0\0";
608 const u32 *sigptr = (const u32 *)signature;
609 entry->eax = KVM_CPUID_FEATURES;
610 entry->ebx = sigptr[0];
611 entry->ecx = sigptr[1];
612 entry->edx = sigptr[2];
613 break;
614 }
615 case KVM_CPUID_FEATURES:
616 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
617 (1 << KVM_FEATURE_NOP_IO_DELAY) |
618 (1 << KVM_FEATURE_CLOCKSOURCE2) |
619 (1 << KVM_FEATURE_ASYNC_PF) |
620 (1 << KVM_FEATURE_PV_EOI) |
621 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
622 (1 << KVM_FEATURE_PV_UNHALT) |
623 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
624 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
625 (1 << KVM_FEATURE_PV_SEND_IPI);
626
627 if (sched_info_on())
628 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
629
630 entry->ebx = 0;
631 entry->ecx = 0;
632 entry->edx = 0;
633 break;
634 case 0x80000000:
635 entry->eax = min(entry->eax, 0x8000001f);
636 break;
637 case 0x80000001:
638 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
639 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
640 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
641 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
642 break;
643 case 0x80000007:
644
645 entry->edx &= (1 << 8);
646
647 entry->edx &= boot_cpu_data.x86_power;
648 entry->eax = entry->ebx = entry->ecx = 0;
649 break;
650 case 0x80000008: {
651 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
652 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
653 unsigned phys_as = entry->eax & 0xff;
654
655 if (!g_phys_as)
656 g_phys_as = phys_as;
657 entry->eax = g_phys_as | (virt_as << 8);
658 entry->edx = 0;
659
660
661
662
663 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
664 entry->ebx |= F(AMD_IBPB);
665 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
666 entry->ebx |= F(AMD_IBRS);
667 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
668 entry->ebx |= F(VIRT_SSBD);
669 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
670 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
671
672
673
674
675 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
676 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
677 entry->ebx |= F(VIRT_SSBD);
678 break;
679 }
680 case 0x80000019:
681 entry->ecx = entry->edx = 0;
682 break;
683 case 0x8000001a:
684 break;
685 case 0x8000001d:
686 break;
687
688 case 0xC0000000:
689
690 entry->eax = min(entry->eax, 0xC0000004);
691 break;
692 case 0xC0000001:
693 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
694 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
695 break;
696 case 3:
697 case 5:
698 case 0xC0000002:
699 case 0xC0000003:
700 case 0xC0000004:
701 default:
702 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
703 break;
704 }
705
706 kvm_x86_ops->set_supported_cpuid(function, entry);
707
708 r = 0;
709
710out:
711 put_cpu();
712
713 return r;
714}
715
716static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
717 u32 idx, int *nent, int maxnent, unsigned int type)
718{
719 if (type == KVM_GET_EMULATED_CPUID)
720 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
721
722 return __do_cpuid_ent(entry, func, idx, nent, maxnent);
723}
724
725#undef F
726
727struct kvm_cpuid_param {
728 u32 func;
729 u32 idx;
730 bool has_leaf_count;
731 bool (*qualifier)(const struct kvm_cpuid_param *param);
732};
733
734static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
735{
736 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
737}
738
739static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
740 __u32 num_entries, unsigned int ioctl_type)
741{
742 int i;
743 __u32 pad[3];
744
745 if (ioctl_type != KVM_GET_EMULATED_CPUID)
746 return false;
747
748
749
750
751
752
753
754
755
756 for (i = 0; i < num_entries; i++) {
757 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
758 return true;
759
760 if (pad[0] || pad[1] || pad[2])
761 return true;
762 }
763 return false;
764}
765
766int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
767 struct kvm_cpuid_entry2 __user *entries,
768 unsigned int type)
769{
770 struct kvm_cpuid_entry2 *cpuid_entries;
771 int limit, nent = 0, r = -E2BIG, i;
772 u32 func;
773 static const struct kvm_cpuid_param param[] = {
774 { .func = 0, .has_leaf_count = true },
775 { .func = 0x80000000, .has_leaf_count = true },
776 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
777 { .func = KVM_CPUID_SIGNATURE },
778 { .func = KVM_CPUID_FEATURES },
779 };
780
781 if (cpuid->nent < 1)
782 goto out;
783 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
784 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
785
786 if (sanity_check_entries(entries, cpuid->nent, type))
787 return -EINVAL;
788
789 r = -ENOMEM;
790 cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
791 cpuid->nent));
792 if (!cpuid_entries)
793 goto out;
794
795 r = 0;
796 for (i = 0; i < ARRAY_SIZE(param); i++) {
797 const struct kvm_cpuid_param *ent = ¶m[i];
798
799 if (ent->qualifier && !ent->qualifier(ent))
800 continue;
801
802 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
803 &nent, cpuid->nent, type);
804
805 if (r)
806 goto out_free;
807
808 if (!ent->has_leaf_count)
809 continue;
810
811 limit = cpuid_entries[nent - 1].eax;
812 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
813 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
814 &nent, cpuid->nent, type);
815
816 if (r)
817 goto out_free;
818 }
819
820 r = -EFAULT;
821 if (copy_to_user(entries, cpuid_entries,
822 nent * sizeof(struct kvm_cpuid_entry2)))
823 goto out_free;
824 cpuid->nent = nent;
825 r = 0;
826
827out_free:
828 vfree(cpuid_entries);
829out:
830 return r;
831}
832
833static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
834{
835 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
836 struct kvm_cpuid_entry2 *ej;
837 int j = i;
838 int nent = vcpu->arch.cpuid_nent;
839
840 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
841
842 do {
843 j = (j + 1) % nent;
844 ej = &vcpu->arch.cpuid_entries[j];
845 } while (ej->function != e->function);
846
847 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
848
849 return j;
850}
851
852
853
854static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
855 u32 function, u32 index)
856{
857 if (e->function != function)
858 return 0;
859 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
860 return 0;
861 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
862 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
863 return 0;
864 return 1;
865}
866
867struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
868 u32 function, u32 index)
869{
870 int i;
871 struct kvm_cpuid_entry2 *best = NULL;
872
873 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
874 struct kvm_cpuid_entry2 *e;
875
876 e = &vcpu->arch.cpuid_entries[i];
877 if (is_matching_cpuid_entry(e, function, index)) {
878 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
879 move_to_next_stateful_cpuid_entry(vcpu, i);
880 best = e;
881 break;
882 }
883 }
884 return best;
885}
886EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
887
888
889
890
891
892
893static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
894 u32 function, u32 index)
895{
896 struct kvm_cpuid_entry2 *maxlevel;
897
898 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
899 if (!maxlevel || maxlevel->eax >= function)
900 return NULL;
901 if (function & 0x80000000) {
902 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
903 if (!maxlevel)
904 return NULL;
905 }
906 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
907}
908
909bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
910 u32 *ecx, u32 *edx, bool check_limit)
911{
912 u32 function = *eax, index = *ecx;
913 struct kvm_cpuid_entry2 *best;
914 bool entry_found = true;
915
916 best = kvm_find_cpuid_entry(vcpu, function, index);
917
918 if (!best) {
919 entry_found = false;
920 if (!check_limit)
921 goto out;
922
923 best = check_cpuid_limit(vcpu, function, index);
924 }
925
926out:
927 if (best) {
928 *eax = best->eax;
929 *ebx = best->ebx;
930 *ecx = best->ecx;
931 *edx = best->edx;
932 } else
933 *eax = *ebx = *ecx = *edx = 0;
934 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
935 return entry_found;
936}
937EXPORT_SYMBOL_GPL(kvm_cpuid);
938
939int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
940{
941 u32 eax, ebx, ecx, edx;
942
943 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
944 return 1;
945
946 eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
947 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
948 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
949 kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
950 kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
951 kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
952 kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
953 return kvm_skip_emulated_instruction(vcpu);
954}
955EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
956