linux/arch/x86/kvm/svm.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17
  18#define pr_fmt(fmt) "SVM: " fmt
  19
  20#include <linux/kvm_host.h>
  21
  22#include "irq.h"
  23#include "mmu.h"
  24#include "kvm_cache_regs.h"
  25#include "x86.h"
  26#include "cpuid.h"
  27#include "pmu.h"
  28
  29#include <linux/module.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/kernel.h>
  32#include <linux/vmalloc.h>
  33#include <linux/highmem.h>
  34#include <linux/sched.h>
  35#include <linux/trace_events.h>
  36#include <linux/slab.h>
  37#include <linux/amd-iommu.h>
  38#include <linux/hashtable.h>
  39#include <linux/frame.h>
  40#include <linux/psp-sev.h>
  41#include <linux/file.h>
  42#include <linux/pagemap.h>
  43#include <linux/swap.h>
  44
  45#include <asm/apic.h>
  46#include <asm/perf_event.h>
  47#include <asm/tlbflush.h>
  48#include <asm/desc.h>
  49#include <asm/debugreg.h>
  50#include <asm/kvm_para.h>
  51#include <asm/irq_remapping.h>
  52#include <asm/spec-ctrl.h>
  53
  54#include <asm/virtext.h>
  55#include "trace.h"
  56
  57#define __ex(x) __kvm_handle_fault_on_reboot(x)
  58
  59MODULE_AUTHOR("Qumranet");
  60MODULE_LICENSE("GPL");
  61
  62static const struct x86_cpu_id svm_cpu_id[] = {
  63        X86_FEATURE_MATCH(X86_FEATURE_SVM),
  64        {}
  65};
  66MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  67
  68#define IOPM_ALLOC_ORDER 2
  69#define MSRPM_ALLOC_ORDER 1
  70
  71#define SEG_TYPE_LDT 2
  72#define SEG_TYPE_BUSY_TSS16 3
  73
  74#define SVM_FEATURE_NPT            (1 <<  0)
  75#define SVM_FEATURE_LBRV           (1 <<  1)
  76#define SVM_FEATURE_SVML           (1 <<  2)
  77#define SVM_FEATURE_NRIP           (1 <<  3)
  78#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  79#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  80#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  81#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  82#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  83
  84#define SVM_AVIC_DOORBELL       0xc001011b
  85
  86#define NESTED_EXIT_HOST        0       /* Exit handled on host level */
  87#define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
  88#define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
  89
  90#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  91
  92#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  93#define TSC_RATIO_MIN           0x0000000000000001ULL
  94#define TSC_RATIO_MAX           0x000000ffffffffffULL
  95
  96#define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
  97
  98/*
  99 * 0xff is broadcast, so the max index allowed for physical APIC ID
 100 * table is 0xfe.  APIC IDs above 0xff are reserved.
 101 */
 102#define AVIC_MAX_PHYSICAL_ID_COUNT      255
 103
 104#define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
 105#define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
 106#define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
 107
 108/* AVIC GATAG is encoded using VM and VCPU IDs */
 109#define AVIC_VCPU_ID_BITS               8
 110#define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
 111
 112#define AVIC_VM_ID_BITS                 24
 113#define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
 114#define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
 115
 116#define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 117                                                (y & AVIC_VCPU_ID_MASK))
 118#define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 119#define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
 120
 121static bool erratum_383_found __read_mostly;
 122
 123static const u32 host_save_user_msrs[] = {
 124#ifdef CONFIG_X86_64
 125        MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 126        MSR_FS_BASE,
 127#endif
 128        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 129        MSR_TSC_AUX,
 130};
 131
 132#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 133
 134struct kvm_sev_info {
 135        bool active;            /* SEV enabled guest */
 136        unsigned int asid;      /* ASID used for this guest */
 137        unsigned int handle;    /* SEV firmware handle */
 138        int fd;                 /* SEV device fd */
 139        unsigned long pages_locked; /* Number of pages locked */
 140        struct list_head regions_list;  /* List of registered regions */
 141};
 142
 143struct kvm_svm {
 144        struct kvm kvm;
 145
 146        /* Struct members for AVIC */
 147        u32 avic_vm_id;
 148        u32 ldr_mode;
 149        struct page *avic_logical_id_table_page;
 150        struct page *avic_physical_id_table_page;
 151        struct hlist_node hnode;
 152
 153        struct kvm_sev_info sev_info;
 154};
 155
 156struct kvm_vcpu;
 157
 158struct nested_state {
 159        struct vmcb *hsave;
 160        u64 hsave_msr;
 161        u64 vm_cr_msr;
 162        u64 vmcb;
 163
 164        /* These are the merged vectors */
 165        u32 *msrpm;
 166
 167        /* gpa pointers to the real vectors */
 168        u64 vmcb_msrpm;
 169        u64 vmcb_iopm;
 170
 171        /* A VMEXIT is required but not yet emulated */
 172        bool exit_required;
 173
 174        /* cache for intercepts of the guest */
 175        u32 intercept_cr;
 176        u32 intercept_dr;
 177        u32 intercept_exceptions;
 178        u64 intercept;
 179
 180        /* Nested Paging related state */
 181        u64 nested_cr3;
 182};
 183
 184#define MSRPM_OFFSETS   16
 185static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 186
 187/*
 188 * Set osvw_len to higher value when updated Revision Guides
 189 * are published and we know what the new status bits are
 190 */
 191static uint64_t osvw_len = 4, osvw_status;
 192
 193struct vcpu_svm {
 194        struct kvm_vcpu vcpu;
 195        struct vmcb *vmcb;
 196        unsigned long vmcb_pa;
 197        struct svm_cpu_data *svm_data;
 198        uint64_t asid_generation;
 199        uint64_t sysenter_esp;
 200        uint64_t sysenter_eip;
 201        uint64_t tsc_aux;
 202
 203        u64 msr_decfg;
 204
 205        u64 next_rip;
 206
 207        u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 208        struct {
 209                u16 fs;
 210                u16 gs;
 211                u16 ldt;
 212                u64 gs_base;
 213        } host;
 214
 215        u64 spec_ctrl;
 216        /*
 217         * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
 218         * translated into the appropriate L2_CFG bits on the host to
 219         * perform speculative control.
 220         */
 221        u64 virt_spec_ctrl;
 222
 223        u32 *msrpm;
 224
 225        ulong nmi_iret_rip;
 226
 227        struct nested_state nested;
 228
 229        bool nmi_singlestep;
 230        u64 nmi_singlestep_guest_rflags;
 231
 232        unsigned int3_injected;
 233        unsigned long int3_rip;
 234
 235        /* cached guest cpuid flags for faster access */
 236        bool nrips_enabled      : 1;
 237
 238        u32 ldr_reg;
 239        struct page *avic_backing_page;
 240        u64 *avic_physical_id_cache;
 241        bool avic_is_running;
 242
 243        /*
 244         * Per-vcpu list of struct amd_svm_iommu_ir:
 245         * This is used mainly to store interrupt remapping information used
 246         * when update the vcpu affinity. This avoids the need to scan for
 247         * IRTE and try to match ga_tag in the IOMMU driver.
 248         */
 249        struct list_head ir_list;
 250        spinlock_t ir_list_lock;
 251
 252        /* which host CPU was used for running this vcpu */
 253        unsigned int last_cpu;
 254};
 255
 256/*
 257 * This is a wrapper of struct amd_iommu_ir_data.
 258 */
 259struct amd_svm_iommu_ir {
 260        struct list_head node;  /* Used by SVM for per-vcpu ir_list */
 261        void *data;             /* Storing pointer to struct amd_ir_data */
 262};
 263
 264#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
 265#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
 266
 267#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
 268#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
 269#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
 270#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
 271
 272static DEFINE_PER_CPU(u64, current_tsc_ratio);
 273#define TSC_RATIO_DEFAULT       0x0100000000ULL
 274
 275#define MSR_INVALID                     0xffffffffU
 276
 277static const struct svm_direct_access_msrs {
 278        u32 index;   /* Index of the MSR */
 279        bool always; /* True if intercept is always on */
 280} direct_access_msrs[] = {
 281        { .index = MSR_STAR,                            .always = true  },
 282        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 283#ifdef CONFIG_X86_64
 284        { .index = MSR_GS_BASE,                         .always = true  },
 285        { .index = MSR_FS_BASE,                         .always = true  },
 286        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 287        { .index = MSR_LSTAR,                           .always = true  },
 288        { .index = MSR_CSTAR,                           .always = true  },
 289        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 290#endif
 291        { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
 292        { .index = MSR_IA32_PRED_CMD,                   .always = false },
 293        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 294        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 295        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 296        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 297        { .index = MSR_INVALID,                         .always = false },
 298};
 299
 300/* enable NPT for AMD64 and X86 with PAE */
 301#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 302static bool npt_enabled = true;
 303#else
 304static bool npt_enabled;
 305#endif
 306
 307/*
 308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 309 * pause_filter_count: On processors that support Pause filtering(indicated
 310 *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
 311 *      count value. On VMRUN this value is loaded into an internal counter.
 312 *      Each time a pause instruction is executed, this counter is decremented
 313 *      until it reaches zero at which time a #VMEXIT is generated if pause
 314 *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
 315 *      Intercept Filtering for more details.
 316 *      This also indicate if ple logic enabled.
 317 *
 318 * pause_filter_thresh: In addition, some processor families support advanced
 319 *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
 320 *      the amount of time a guest is allowed to execute in a pause loop.
 321 *      In this mode, a 16-bit pause filter threshold field is added in the
 322 *      VMCB. The threshold value is a cycle count that is used to reset the
 323 *      pause counter. As with simple pause filtering, VMRUN loads the pause
 324 *      count value from VMCB into an internal counter. Then, on each pause
 325 *      instruction the hardware checks the elapsed number of cycles since
 326 *      the most recent pause instruction against the pause filter threshold.
 327 *      If the elapsed cycle count is greater than the pause filter threshold,
 328 *      then the internal pause count is reloaded from the VMCB and execution
 329 *      continues. If the elapsed cycle count is less than the pause filter
 330 *      threshold, then the internal pause count is decremented. If the count
 331 *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
 332 *      triggered. If advanced pause filtering is supported and pause filter
 333 *      threshold field is set to zero, the filter will operate in the simpler,
 334 *      count only mode.
 335 */
 336
 337static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
 338module_param(pause_filter_thresh, ushort, 0444);
 339
 340static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
 341module_param(pause_filter_count, ushort, 0444);
 342
 343/* Default doubles per-vcpu window every exit. */
 344static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 345module_param(pause_filter_count_grow, ushort, 0444);
 346
 347/* Default resets per-vcpu window every exit to pause_filter_count. */
 348static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 349module_param(pause_filter_count_shrink, ushort, 0444);
 350
 351/* Default is to compute the maximum so we can never overflow. */
 352static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
 353module_param(pause_filter_count_max, ushort, 0444);
 354
 355/* allow nested paging (virtualized MMU) for all guests */
 356static int npt = true;
 357module_param(npt, int, S_IRUGO);
 358
 359/* allow nested virtualization in KVM/SVM */
 360static int nested = true;
 361module_param(nested, int, S_IRUGO);
 362
 363/* enable / disable AVIC */
 364static int avic;
 365#ifdef CONFIG_X86_LOCAL_APIC
 366module_param(avic, int, S_IRUGO);
 367#endif
 368
 369/* enable/disable Virtual VMLOAD VMSAVE */
 370static int vls = true;
 371module_param(vls, int, 0444);
 372
 373/* enable/disable Virtual GIF */
 374static int vgif = true;
 375module_param(vgif, int, 0444);
 376
 377/* enable/disable SEV support */
 378static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
 379module_param(sev, int, 0444);
 380
 381static u8 rsm_ins_bytes[] = "\x0f\xaa";
 382
 383static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 384static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
 385static void svm_complete_interrupts(struct vcpu_svm *svm);
 386
 387static int nested_svm_exit_handled(struct vcpu_svm *svm);
 388static int nested_svm_intercept(struct vcpu_svm *svm);
 389static int nested_svm_vmexit(struct vcpu_svm *svm);
 390static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 391                                      bool has_error_code, u32 error_code);
 392
 393enum {
 394        VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 395                            pause filter count */
 396        VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 397        VMCB_ASID,       /* ASID */
 398        VMCB_INTR,       /* int_ctl, int_vector */
 399        VMCB_NPT,        /* npt_en, nCR3, gPAT */
 400        VMCB_CR,         /* CR0, CR3, CR4, EFER */
 401        VMCB_DR,         /* DR6, DR7 */
 402        VMCB_DT,         /* GDT, IDT */
 403        VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 404        VMCB_CR2,        /* CR2 only */
 405        VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 406        VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 407                          * AVIC PHYSICAL_TABLE pointer,
 408                          * AVIC LOGICAL_TABLE pointer
 409                          */
 410        VMCB_DIRTY_MAX,
 411};
 412
 413/* TPR and CR2 are always written before VMRUN */
 414#define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
 415
 416#define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
 417
 418static unsigned int max_sev_asid;
 419static unsigned int min_sev_asid;
 420static unsigned long *sev_asid_bitmap;
 421#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
 422
 423struct enc_region {
 424        struct list_head list;
 425        unsigned long npages;
 426        struct page **pages;
 427        unsigned long uaddr;
 428        unsigned long size;
 429};
 430
 431
 432static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
 433{
 434        return container_of(kvm, struct kvm_svm, kvm);
 435}
 436
 437static inline bool svm_sev_enabled(void)
 438{
 439        return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
 440}
 441
 442static inline bool sev_guest(struct kvm *kvm)
 443{
 444#ifdef CONFIG_KVM_AMD_SEV
 445        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 446
 447        return sev->active;
 448#else
 449        return false;
 450#endif
 451}
 452
 453static inline int sev_get_asid(struct kvm *kvm)
 454{
 455        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 456
 457        return sev->asid;
 458}
 459
 460static inline void mark_all_dirty(struct vmcb *vmcb)
 461{
 462        vmcb->control.clean = 0;
 463}
 464
 465static inline void mark_all_clean(struct vmcb *vmcb)
 466{
 467        vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 468                               & ~VMCB_ALWAYS_DIRTY_MASK;
 469}
 470
 471static inline void mark_dirty(struct vmcb *vmcb, int bit)
 472{
 473        vmcb->control.clean &= ~(1 << bit);
 474}
 475
 476static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 477{
 478        return container_of(vcpu, struct vcpu_svm, vcpu);
 479}
 480
 481static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 482{
 483        svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 484        mark_dirty(svm->vmcb, VMCB_AVIC);
 485}
 486
 487static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 488{
 489        struct vcpu_svm *svm = to_svm(vcpu);
 490        u64 *entry = svm->avic_physical_id_cache;
 491
 492        if (!entry)
 493                return false;
 494
 495        return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 496}
 497
 498static void recalc_intercepts(struct vcpu_svm *svm)
 499{
 500        struct vmcb_control_area *c, *h;
 501        struct nested_state *g;
 502
 503        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 504
 505        if (!is_guest_mode(&svm->vcpu))
 506                return;
 507
 508        c = &svm->vmcb->control;
 509        h = &svm->nested.hsave->control;
 510        g = &svm->nested;
 511
 512        c->intercept_cr = h->intercept_cr | g->intercept_cr;
 513        c->intercept_dr = h->intercept_dr | g->intercept_dr;
 514        c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 515        c->intercept = h->intercept | g->intercept;
 516}
 517
 518static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 519{
 520        if (is_guest_mode(&svm->vcpu))
 521                return svm->nested.hsave;
 522        else
 523                return svm->vmcb;
 524}
 525
 526static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 527{
 528        struct vmcb *vmcb = get_host_vmcb(svm);
 529
 530        vmcb->control.intercept_cr |= (1U << bit);
 531
 532        recalc_intercepts(svm);
 533}
 534
 535static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 536{
 537        struct vmcb *vmcb = get_host_vmcb(svm);
 538
 539        vmcb->control.intercept_cr &= ~(1U << bit);
 540
 541        recalc_intercepts(svm);
 542}
 543
 544static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 545{
 546        struct vmcb *vmcb = get_host_vmcb(svm);
 547
 548        return vmcb->control.intercept_cr & (1U << bit);
 549}
 550
 551static inline void set_dr_intercepts(struct vcpu_svm *svm)
 552{
 553        struct vmcb *vmcb = get_host_vmcb(svm);
 554
 555        vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 556                | (1 << INTERCEPT_DR1_READ)
 557                | (1 << INTERCEPT_DR2_READ)
 558                | (1 << INTERCEPT_DR3_READ)
 559                | (1 << INTERCEPT_DR4_READ)
 560                | (1 << INTERCEPT_DR5_READ)
 561                | (1 << INTERCEPT_DR6_READ)
 562                | (1 << INTERCEPT_DR7_READ)
 563                | (1 << INTERCEPT_DR0_WRITE)
 564                | (1 << INTERCEPT_DR1_WRITE)
 565                | (1 << INTERCEPT_DR2_WRITE)
 566                | (1 << INTERCEPT_DR3_WRITE)
 567                | (1 << INTERCEPT_DR4_WRITE)
 568                | (1 << INTERCEPT_DR5_WRITE)
 569                | (1 << INTERCEPT_DR6_WRITE)
 570                | (1 << INTERCEPT_DR7_WRITE);
 571
 572        recalc_intercepts(svm);
 573}
 574
 575static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 576{
 577        struct vmcb *vmcb = get_host_vmcb(svm);
 578
 579        vmcb->control.intercept_dr = 0;
 580
 581        recalc_intercepts(svm);
 582}
 583
 584static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 585{
 586        struct vmcb *vmcb = get_host_vmcb(svm);
 587
 588        vmcb->control.intercept_exceptions |= (1U << bit);
 589
 590        recalc_intercepts(svm);
 591}
 592
 593static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 594{
 595        struct vmcb *vmcb = get_host_vmcb(svm);
 596
 597        vmcb->control.intercept_exceptions &= ~(1U << bit);
 598
 599        recalc_intercepts(svm);
 600}
 601
 602static inline void set_intercept(struct vcpu_svm *svm, int bit)
 603{
 604        struct vmcb *vmcb = get_host_vmcb(svm);
 605
 606        vmcb->control.intercept |= (1ULL << bit);
 607
 608        recalc_intercepts(svm);
 609}
 610
 611static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 612{
 613        struct vmcb *vmcb = get_host_vmcb(svm);
 614
 615        vmcb->control.intercept &= ~(1ULL << bit);
 616
 617        recalc_intercepts(svm);
 618}
 619
 620static inline bool vgif_enabled(struct vcpu_svm *svm)
 621{
 622        return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
 623}
 624
 625static inline void enable_gif(struct vcpu_svm *svm)
 626{
 627        if (vgif_enabled(svm))
 628                svm->vmcb->control.int_ctl |= V_GIF_MASK;
 629        else
 630                svm->vcpu.arch.hflags |= HF_GIF_MASK;
 631}
 632
 633static inline void disable_gif(struct vcpu_svm *svm)
 634{
 635        if (vgif_enabled(svm))
 636                svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
 637        else
 638                svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 639}
 640
 641static inline bool gif_set(struct vcpu_svm *svm)
 642{
 643        if (vgif_enabled(svm))
 644                return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
 645        else
 646                return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 647}
 648
 649static unsigned long iopm_base;
 650
 651struct kvm_ldttss_desc {
 652        u16 limit0;
 653        u16 base0;
 654        unsigned base1:8, type:5, dpl:2, p:1;
 655        unsigned limit1:4, zero0:3, g:1, base2:8;
 656        u32 base3;
 657        u32 zero1;
 658} __attribute__((packed));
 659
 660struct svm_cpu_data {
 661        int cpu;
 662
 663        u64 asid_generation;
 664        u32 max_asid;
 665        u32 next_asid;
 666        u32 min_asid;
 667        struct kvm_ldttss_desc *tss_desc;
 668
 669        struct page *save_area;
 670        struct vmcb *current_vmcb;
 671
 672        /* index = sev_asid, value = vmcb pointer */
 673        struct vmcb **sev_vmcbs;
 674};
 675
 676static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 677
 678struct svm_init_data {
 679        int cpu;
 680        int r;
 681};
 682
 683static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 684
 685#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 686#define MSRS_RANGE_SIZE 2048
 687#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 688
 689static u32 svm_msrpm_offset(u32 msr)
 690{
 691        u32 offset;
 692        int i;
 693
 694        for (i = 0; i < NUM_MSR_MAPS; i++) {
 695                if (msr < msrpm_ranges[i] ||
 696                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 697                        continue;
 698
 699                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 700                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 701
 702                /* Now we have the u8 offset - but need the u32 offset */
 703                return offset / 4;
 704        }
 705
 706        /* MSR not in any range */
 707        return MSR_INVALID;
 708}
 709
 710#define MAX_INST_SIZE 15
 711
 712static inline void clgi(void)
 713{
 714        asm volatile (__ex(SVM_CLGI));
 715}
 716
 717static inline void stgi(void)
 718{
 719        asm volatile (__ex(SVM_STGI));
 720}
 721
 722static inline void invlpga(unsigned long addr, u32 asid)
 723{
 724        asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 725}
 726
 727static int get_npt_level(struct kvm_vcpu *vcpu)
 728{
 729#ifdef CONFIG_X86_64
 730        return PT64_ROOT_4LEVEL;
 731#else
 732        return PT32E_ROOT_LEVEL;
 733#endif
 734}
 735
 736static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 737{
 738        vcpu->arch.efer = efer;
 739        if (!npt_enabled && !(efer & EFER_LMA))
 740                efer &= ~EFER_LME;
 741
 742        to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 743        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 744}
 745
 746static int is_external_interrupt(u32 info)
 747{
 748        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 749        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 750}
 751
 752static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 753{
 754        struct vcpu_svm *svm = to_svm(vcpu);
 755        u32 ret = 0;
 756
 757        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 758                ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 759        return ret;
 760}
 761
 762static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 763{
 764        struct vcpu_svm *svm = to_svm(vcpu);
 765
 766        if (mask == 0)
 767                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 768        else
 769                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 770
 771}
 772
 773static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 774{
 775        struct vcpu_svm *svm = to_svm(vcpu);
 776
 777        if (svm->vmcb->control.next_rip != 0) {
 778                WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 779                svm->next_rip = svm->vmcb->control.next_rip;
 780        }
 781
 782        if (!svm->next_rip) {
 783                if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 784                                EMULATE_DONE)
 785                        printk(KERN_DEBUG "%s: NOP\n", __func__);
 786                return;
 787        }
 788        if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 789                printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 790                       __func__, kvm_rip_read(vcpu), svm->next_rip);
 791
 792        kvm_rip_write(vcpu, svm->next_rip);
 793        svm_set_interrupt_shadow(vcpu, 0);
 794}
 795
 796static void svm_queue_exception(struct kvm_vcpu *vcpu)
 797{
 798        struct vcpu_svm *svm = to_svm(vcpu);
 799        unsigned nr = vcpu->arch.exception.nr;
 800        bool has_error_code = vcpu->arch.exception.has_error_code;
 801        bool reinject = vcpu->arch.exception.injected;
 802        u32 error_code = vcpu->arch.exception.error_code;
 803
 804        /*
 805         * If we are within a nested VM we'd better #VMEXIT and let the guest
 806         * handle the exception
 807         */
 808        if (!reinject &&
 809            nested_svm_check_exception(svm, nr, has_error_code, error_code))
 810                return;
 811
 812        if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 813                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 814
 815                /*
 816                 * For guest debugging where we have to reinject #BP if some
 817                 * INT3 is guest-owned:
 818                 * Emulate nRIP by moving RIP forward. Will fail if injection
 819                 * raises a fault that is not intercepted. Still better than
 820                 * failing in all cases.
 821                 */
 822                skip_emulated_instruction(&svm->vcpu);
 823                rip = kvm_rip_read(&svm->vcpu);
 824                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 825                svm->int3_injected = rip - old_rip;
 826        }
 827
 828        svm->vmcb->control.event_inj = nr
 829                | SVM_EVTINJ_VALID
 830                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 831                | SVM_EVTINJ_TYPE_EXEPT;
 832        svm->vmcb->control.event_inj_err = error_code;
 833}
 834
 835static void svm_init_erratum_383(void)
 836{
 837        u32 low, high;
 838        int err;
 839        u64 val;
 840
 841        if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 842                return;
 843
 844        /* Use _safe variants to not break nested virtualization */
 845        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 846        if (err)
 847                return;
 848
 849        val |= (1ULL << 47);
 850
 851        low  = lower_32_bits(val);
 852        high = upper_32_bits(val);
 853
 854        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 855
 856        erratum_383_found = true;
 857}
 858
 859static void svm_init_osvw(struct kvm_vcpu *vcpu)
 860{
 861        /*
 862         * Guests should see errata 400 and 415 as fixed (assuming that
 863         * HLT and IO instructions are intercepted).
 864         */
 865        vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 866        vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 867
 868        /*
 869         * By increasing VCPU's osvw.length to 3 we are telling the guest that
 870         * all osvw.status bits inside that length, including bit 0 (which is
 871         * reserved for erratum 298), are valid. However, if host processor's
 872         * osvw_len is 0 then osvw_status[0] carries no information. We need to
 873         * be conservative here and therefore we tell the guest that erratum 298
 874         * is present (because we really don't know).
 875         */
 876        if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 877                vcpu->arch.osvw.status |= 1;
 878}
 879
 880static int has_svm(void)
 881{
 882        const char *msg;
 883
 884        if (!cpu_has_svm(&msg)) {
 885                printk(KERN_INFO "has_svm: %s\n", msg);
 886                return 0;
 887        }
 888
 889        return 1;
 890}
 891
 892static void svm_hardware_disable(void)
 893{
 894        /* Make sure we clean up behind us */
 895        if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 896                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 897
 898        cpu_svm_disable();
 899
 900        amd_pmu_disable_virt();
 901}
 902
 903static int svm_hardware_enable(void)
 904{
 905
 906        struct svm_cpu_data *sd;
 907        uint64_t efer;
 908        struct desc_struct *gdt;
 909        int me = raw_smp_processor_id();
 910
 911        rdmsrl(MSR_EFER, efer);
 912        if (efer & EFER_SVME)
 913                return -EBUSY;
 914
 915        if (!has_svm()) {
 916                pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 917                return -EINVAL;
 918        }
 919        sd = per_cpu(svm_data, me);
 920        if (!sd) {
 921                pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 922                return -EINVAL;
 923        }
 924
 925        sd->asid_generation = 1;
 926        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 927        sd->next_asid = sd->max_asid + 1;
 928        sd->min_asid = max_sev_asid + 1;
 929
 930        gdt = get_current_gdt_rw();
 931        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 932
 933        wrmsrl(MSR_EFER, efer | EFER_SVME);
 934
 935        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 936
 937        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 938                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 939                __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 940        }
 941
 942
 943        /*
 944         * Get OSVW bits.
 945         *
 946         * Note that it is possible to have a system with mixed processor
 947         * revisions and therefore different OSVW bits. If bits are not the same
 948         * on different processors then choose the worst case (i.e. if erratum
 949         * is present on one processor and not on another then assume that the
 950         * erratum is present everywhere).
 951         */
 952        if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 953                uint64_t len, status = 0;
 954                int err;
 955
 956                len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 957                if (!err)
 958                        status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 959                                                      &err);
 960
 961                if (err)
 962                        osvw_status = osvw_len = 0;
 963                else {
 964                        if (len < osvw_len)
 965                                osvw_len = len;
 966                        osvw_status |= status;
 967                        osvw_status &= (1ULL << osvw_len) - 1;
 968                }
 969        } else
 970                osvw_status = osvw_len = 0;
 971
 972        svm_init_erratum_383();
 973
 974        amd_pmu_enable_virt();
 975
 976        return 0;
 977}
 978
 979static void svm_cpu_uninit(int cpu)
 980{
 981        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 982
 983        if (!sd)
 984                return;
 985
 986        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 987        kfree(sd->sev_vmcbs);
 988        __free_page(sd->save_area);
 989        kfree(sd);
 990}
 991
 992static int svm_cpu_init(int cpu)
 993{
 994        struct svm_cpu_data *sd;
 995        int r;
 996
 997        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 998        if (!sd)
 999                return -ENOMEM;
1000        sd->cpu = cpu;
1001        r = -ENOMEM;
1002        sd->save_area = alloc_page(GFP_KERNEL);
1003        if (!sd->save_area)
1004                goto err_1;
1005
1006        if (svm_sev_enabled()) {
1007                r = -ENOMEM;
1008                sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1009                                              sizeof(void *),
1010                                              GFP_KERNEL);
1011                if (!sd->sev_vmcbs)
1012                        goto err_1;
1013        }
1014
1015        per_cpu(svm_data, cpu) = sd;
1016
1017        return 0;
1018
1019err_1:
1020        kfree(sd);
1021        return r;
1022
1023}
1024
1025static bool valid_msr_intercept(u32 index)
1026{
1027        int i;
1028
1029        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1030                if (direct_access_msrs[i].index == index)
1031                        return true;
1032
1033        return false;
1034}
1035
1036static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1037{
1038        u8 bit_write;
1039        unsigned long tmp;
1040        u32 offset;
1041        u32 *msrpm;
1042
1043        msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1044                                      to_svm(vcpu)->msrpm;
1045
1046        offset    = svm_msrpm_offset(msr);
1047        bit_write = 2 * (msr & 0x0f) + 1;
1048        tmp       = msrpm[offset];
1049
1050        BUG_ON(offset == MSR_INVALID);
1051
1052        return !!test_bit(bit_write,  &tmp);
1053}
1054
1055static void set_msr_interception(u32 *msrpm, unsigned msr,
1056                                 int read, int write)
1057{
1058        u8 bit_read, bit_write;
1059        unsigned long tmp;
1060        u32 offset;
1061
1062        /*
1063         * If this warning triggers extend the direct_access_msrs list at the
1064         * beginning of the file
1065         */
1066        WARN_ON(!valid_msr_intercept(msr));
1067
1068        offset    = svm_msrpm_offset(msr);
1069        bit_read  = 2 * (msr & 0x0f);
1070        bit_write = 2 * (msr & 0x0f) + 1;
1071        tmp       = msrpm[offset];
1072
1073        BUG_ON(offset == MSR_INVALID);
1074
1075        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1076        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1077
1078        msrpm[offset] = tmp;
1079}
1080
1081static void svm_vcpu_init_msrpm(u32 *msrpm)
1082{
1083        int i;
1084
1085        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1086
1087        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1088                if (!direct_access_msrs[i].always)
1089                        continue;
1090
1091                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1092        }
1093}
1094
1095static void add_msr_offset(u32 offset)
1096{
1097        int i;
1098
1099        for (i = 0; i < MSRPM_OFFSETS; ++i) {
1100
1101                /* Offset already in list? */
1102                if (msrpm_offsets[i] == offset)
1103                        return;
1104
1105                /* Slot used by another offset? */
1106                if (msrpm_offsets[i] != MSR_INVALID)
1107                        continue;
1108
1109                /* Add offset to list */
1110                msrpm_offsets[i] = offset;
1111
1112                return;
1113        }
1114
1115        /*
1116         * If this BUG triggers the msrpm_offsets table has an overflow. Just
1117         * increase MSRPM_OFFSETS in this case.
1118         */
1119        BUG();
1120}
1121
1122static void init_msrpm_offsets(void)
1123{
1124        int i;
1125
1126        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1127
1128        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1129                u32 offset;
1130
1131                offset = svm_msrpm_offset(direct_access_msrs[i].index);
1132                BUG_ON(offset == MSR_INVALID);
1133
1134                add_msr_offset(offset);
1135        }
1136}
1137
1138static void svm_enable_lbrv(struct vcpu_svm *svm)
1139{
1140        u32 *msrpm = svm->msrpm;
1141
1142        svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1143        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1144        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1145        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1146        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1147}
1148
1149static void svm_disable_lbrv(struct vcpu_svm *svm)
1150{
1151        u32 *msrpm = svm->msrpm;
1152
1153        svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1154        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1155        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1156        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1157        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1158}
1159
1160static void disable_nmi_singlestep(struct vcpu_svm *svm)
1161{
1162        svm->nmi_singlestep = false;
1163
1164        if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1165                /* Clear our flags if they were not set by the guest */
1166                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1167                        svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1168                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1169                        svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1170        }
1171}
1172
1173/* Note:
1174 * This hash table is used to map VM_ID to a struct kvm_svm,
1175 * when handling AMD IOMMU GALOG notification to schedule in
1176 * a particular vCPU.
1177 */
1178#define SVM_VM_DATA_HASH_BITS   8
1179static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1180static u32 next_vm_id = 0;
1181static bool next_vm_id_wrapped = 0;
1182static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1183
1184/* Note:
1185 * This function is called from IOMMU driver to notify
1186 * SVM to schedule in a particular vCPU of a particular VM.
1187 */
1188static int avic_ga_log_notifier(u32 ga_tag)
1189{
1190        unsigned long flags;
1191        struct kvm_svm *kvm_svm;
1192        struct kvm_vcpu *vcpu = NULL;
1193        u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1194        u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1195
1196        pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1197
1198        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1199        hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1200                if (kvm_svm->avic_vm_id != vm_id)
1201                        continue;
1202                vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1203                break;
1204        }
1205        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1206
1207        /* Note:
1208         * At this point, the IOMMU should have already set the pending
1209         * bit in the vAPIC backing page. So, we just need to schedule
1210         * in the vcpu.
1211         */
1212        if (vcpu)
1213                kvm_vcpu_wake_up(vcpu);
1214
1215        return 0;
1216}
1217
1218static __init int sev_hardware_setup(void)
1219{
1220        struct sev_user_data_status *status;
1221        int rc;
1222
1223        /* Maximum number of encrypted guests supported simultaneously */
1224        max_sev_asid = cpuid_ecx(0x8000001F);
1225
1226        if (!max_sev_asid)
1227                return 1;
1228
1229        /* Minimum ASID value that should be used for SEV guest */
1230        min_sev_asid = cpuid_edx(0x8000001F);
1231
1232        /* Initialize SEV ASID bitmap */
1233        sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1234        if (!sev_asid_bitmap)
1235                return 1;
1236
1237        status = kmalloc(sizeof(*status), GFP_KERNEL);
1238        if (!status)
1239                return 1;
1240
1241        /*
1242         * Check SEV platform status.
1243         *
1244         * PLATFORM_STATUS can be called in any state, if we failed to query
1245         * the PLATFORM status then either PSP firmware does not support SEV
1246         * feature or SEV firmware is dead.
1247         */
1248        rc = sev_platform_status(status, NULL);
1249        if (rc)
1250                goto err;
1251
1252        pr_info("SEV supported\n");
1253
1254err:
1255        kfree(status);
1256        return rc;
1257}
1258
1259static void grow_ple_window(struct kvm_vcpu *vcpu)
1260{
1261        struct vcpu_svm *svm = to_svm(vcpu);
1262        struct vmcb_control_area *control = &svm->vmcb->control;
1263        int old = control->pause_filter_count;
1264
1265        control->pause_filter_count = __grow_ple_window(old,
1266                                                        pause_filter_count,
1267                                                        pause_filter_count_grow,
1268                                                        pause_filter_count_max);
1269
1270        if (control->pause_filter_count != old)
1271                mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1272
1273        trace_kvm_ple_window_grow(vcpu->vcpu_id,
1274                                  control->pause_filter_count, old);
1275}
1276
1277static void shrink_ple_window(struct kvm_vcpu *vcpu)
1278{
1279        struct vcpu_svm *svm = to_svm(vcpu);
1280        struct vmcb_control_area *control = &svm->vmcb->control;
1281        int old = control->pause_filter_count;
1282
1283        control->pause_filter_count =
1284                                __shrink_ple_window(old,
1285                                                    pause_filter_count,
1286                                                    pause_filter_count_shrink,
1287                                                    pause_filter_count);
1288        if (control->pause_filter_count != old)
1289                mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1290
1291        trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1292                                    control->pause_filter_count, old);
1293}
1294
1295static __init int svm_hardware_setup(void)
1296{
1297        int cpu;
1298        struct page *iopm_pages;
1299        void *iopm_va;
1300        int r;
1301
1302        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1303
1304        if (!iopm_pages)
1305                return -ENOMEM;
1306
1307        iopm_va = page_address(iopm_pages);
1308        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1309        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1310
1311        init_msrpm_offsets();
1312
1313        if (boot_cpu_has(X86_FEATURE_NX))
1314                kvm_enable_efer_bits(EFER_NX);
1315
1316        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1317                kvm_enable_efer_bits(EFER_FFXSR);
1318
1319        if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1320                kvm_has_tsc_control = true;
1321                kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1322                kvm_tsc_scaling_ratio_frac_bits = 32;
1323        }
1324
1325        /* Check for pause filtering support */
1326        if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1327                pause_filter_count = 0;
1328                pause_filter_thresh = 0;
1329        } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1330                pause_filter_thresh = 0;
1331        }
1332
1333        if (nested) {
1334                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1335                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1336        }
1337
1338        if (sev) {
1339                if (boot_cpu_has(X86_FEATURE_SEV) &&
1340                    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1341                        r = sev_hardware_setup();
1342                        if (r)
1343                                sev = false;
1344                } else {
1345                        sev = false;
1346                }
1347        }
1348
1349        for_each_possible_cpu(cpu) {
1350                r = svm_cpu_init(cpu);
1351                if (r)
1352                        goto err;
1353        }
1354
1355        if (!boot_cpu_has(X86_FEATURE_NPT))
1356                npt_enabled = false;
1357
1358        if (npt_enabled && !npt) {
1359                printk(KERN_INFO "kvm: Nested Paging disabled\n");
1360                npt_enabled = false;
1361        }
1362
1363        if (npt_enabled) {
1364                printk(KERN_INFO "kvm: Nested Paging enabled\n");
1365                kvm_enable_tdp();
1366        } else
1367                kvm_disable_tdp();
1368
1369        if (avic) {
1370                if (!npt_enabled ||
1371                    !boot_cpu_has(X86_FEATURE_AVIC) ||
1372                    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1373                        avic = false;
1374                } else {
1375                        pr_info("AVIC enabled\n");
1376
1377                        amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1378                }
1379        }
1380
1381        if (vls) {
1382                if (!npt_enabled ||
1383                    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1384                    !IS_ENABLED(CONFIG_X86_64)) {
1385                        vls = false;
1386                } else {
1387                        pr_info("Virtual VMLOAD VMSAVE supported\n");
1388                }
1389        }
1390
1391        if (vgif) {
1392                if (!boot_cpu_has(X86_FEATURE_VGIF))
1393                        vgif = false;
1394                else
1395                        pr_info("Virtual GIF supported\n");
1396        }
1397
1398        return 0;
1399
1400err:
1401        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1402        iopm_base = 0;
1403        return r;
1404}
1405
1406static __exit void svm_hardware_unsetup(void)
1407{
1408        int cpu;
1409
1410        if (svm_sev_enabled())
1411                bitmap_free(sev_asid_bitmap);
1412
1413        for_each_possible_cpu(cpu)
1414                svm_cpu_uninit(cpu);
1415
1416        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1417        iopm_base = 0;
1418}
1419
1420static void init_seg(struct vmcb_seg *seg)
1421{
1422        seg->selector = 0;
1423        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1424                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1425        seg->limit = 0xffff;
1426        seg->base = 0;
1427}
1428
1429static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1430{
1431        seg->selector = 0;
1432        seg->attrib = SVM_SELECTOR_P_MASK | type;
1433        seg->limit = 0xffff;
1434        seg->base = 0;
1435}
1436
1437static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1438{
1439        struct vcpu_svm *svm = to_svm(vcpu);
1440
1441        if (is_guest_mode(vcpu))
1442                return svm->nested.hsave->control.tsc_offset;
1443
1444        return vcpu->arch.tsc_offset;
1445}
1446
1447static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1448{
1449        struct vcpu_svm *svm = to_svm(vcpu);
1450        u64 g_tsc_offset = 0;
1451
1452        if (is_guest_mode(vcpu)) {
1453                /* Write L1's TSC offset.  */
1454                g_tsc_offset = svm->vmcb->control.tsc_offset -
1455                               svm->nested.hsave->control.tsc_offset;
1456                svm->nested.hsave->control.tsc_offset = offset;
1457        } else
1458                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1459                                           svm->vmcb->control.tsc_offset,
1460                                           offset);
1461
1462        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1463
1464        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1465}
1466
1467static void avic_init_vmcb(struct vcpu_svm *svm)
1468{
1469        struct vmcb *vmcb = svm->vmcb;
1470        struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1471        phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1472        phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1473        phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1474
1475        vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1476        vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1477        vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1478        vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1479        vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1480}
1481
1482static void init_vmcb(struct vcpu_svm *svm)
1483{
1484        struct vmcb_control_area *control = &svm->vmcb->control;
1485        struct vmcb_save_area *save = &svm->vmcb->save;
1486
1487        svm->vcpu.arch.hflags = 0;
1488
1489        set_cr_intercept(svm, INTERCEPT_CR0_READ);
1490        set_cr_intercept(svm, INTERCEPT_CR3_READ);
1491        set_cr_intercept(svm, INTERCEPT_CR4_READ);
1492        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1493        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1494        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1495        if (!kvm_vcpu_apicv_active(&svm->vcpu))
1496                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1497
1498        set_dr_intercepts(svm);
1499
1500        set_exception_intercept(svm, PF_VECTOR);
1501        set_exception_intercept(svm, UD_VECTOR);
1502        set_exception_intercept(svm, MC_VECTOR);
1503        set_exception_intercept(svm, AC_VECTOR);
1504        set_exception_intercept(svm, DB_VECTOR);
1505        /*
1506         * Guest access to VMware backdoor ports could legitimately
1507         * trigger #GP because of TSS I/O permission bitmap.
1508         * We intercept those #GP and allow access to them anyway
1509         * as VMware does.
1510         */
1511        if (enable_vmware_backdoor)
1512                set_exception_intercept(svm, GP_VECTOR);
1513
1514        set_intercept(svm, INTERCEPT_INTR);
1515        set_intercept(svm, INTERCEPT_NMI);
1516        set_intercept(svm, INTERCEPT_SMI);
1517        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1518        set_intercept(svm, INTERCEPT_RDPMC);
1519        set_intercept(svm, INTERCEPT_CPUID);
1520        set_intercept(svm, INTERCEPT_INVD);
1521        set_intercept(svm, INTERCEPT_INVLPG);
1522        set_intercept(svm, INTERCEPT_INVLPGA);
1523        set_intercept(svm, INTERCEPT_IOIO_PROT);
1524        set_intercept(svm, INTERCEPT_MSR_PROT);
1525        set_intercept(svm, INTERCEPT_TASK_SWITCH);
1526        set_intercept(svm, INTERCEPT_SHUTDOWN);
1527        set_intercept(svm, INTERCEPT_VMRUN);
1528        set_intercept(svm, INTERCEPT_VMMCALL);
1529        set_intercept(svm, INTERCEPT_VMLOAD);
1530        set_intercept(svm, INTERCEPT_VMSAVE);
1531        set_intercept(svm, INTERCEPT_STGI);
1532        set_intercept(svm, INTERCEPT_CLGI);
1533        set_intercept(svm, INTERCEPT_SKINIT);
1534        set_intercept(svm, INTERCEPT_WBINVD);
1535        set_intercept(svm, INTERCEPT_XSETBV);
1536        set_intercept(svm, INTERCEPT_RSM);
1537
1538        if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1539                set_intercept(svm, INTERCEPT_MONITOR);
1540                set_intercept(svm, INTERCEPT_MWAIT);
1541        }
1542
1543        if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1544                set_intercept(svm, INTERCEPT_HLT);
1545
1546        control->iopm_base_pa = __sme_set(iopm_base);
1547        control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1548        control->int_ctl = V_INTR_MASKING_MASK;
1549
1550        init_seg(&save->es);
1551        init_seg(&save->ss);
1552        init_seg(&save->ds);
1553        init_seg(&save->fs);
1554        init_seg(&save->gs);
1555
1556        save->cs.selector = 0xf000;
1557        save->cs.base = 0xffff0000;
1558        /* Executable/Readable Code Segment */
1559        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1560                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1561        save->cs.limit = 0xffff;
1562
1563        save->gdtr.limit = 0xffff;
1564        save->idtr.limit = 0xffff;
1565
1566        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1567        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1568
1569        svm_set_efer(&svm->vcpu, 0);
1570        save->dr6 = 0xffff0ff0;
1571        kvm_set_rflags(&svm->vcpu, 2);
1572        save->rip = 0x0000fff0;
1573        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1574
1575        /*
1576         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1577         * It also updates the guest-visible cr0 value.
1578         */
1579        svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1580        kvm_mmu_reset_context(&svm->vcpu);
1581
1582        save->cr4 = X86_CR4_PAE;
1583        /* rdx = ?? */
1584
1585        if (npt_enabled) {
1586                /* Setup VMCB for Nested Paging */
1587                control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1588                clr_intercept(svm, INTERCEPT_INVLPG);
1589                clr_exception_intercept(svm, PF_VECTOR);
1590                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1591                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1592                save->g_pat = svm->vcpu.arch.pat;
1593                save->cr3 = 0;
1594                save->cr4 = 0;
1595        }
1596        svm->asid_generation = 0;
1597
1598        svm->nested.vmcb = 0;
1599        svm->vcpu.arch.hflags = 0;
1600
1601        if (pause_filter_count) {
1602                control->pause_filter_count = pause_filter_count;
1603                if (pause_filter_thresh)
1604                        control->pause_filter_thresh = pause_filter_thresh;
1605                set_intercept(svm, INTERCEPT_PAUSE);
1606        } else {
1607                clr_intercept(svm, INTERCEPT_PAUSE);
1608        }
1609
1610        if (kvm_vcpu_apicv_active(&svm->vcpu))
1611                avic_init_vmcb(svm);
1612
1613        /*
1614         * If hardware supports Virtual VMLOAD VMSAVE then enable it
1615         * in VMCB and clear intercepts to avoid #VMEXIT.
1616         */
1617        if (vls) {
1618                clr_intercept(svm, INTERCEPT_VMLOAD);
1619                clr_intercept(svm, INTERCEPT_VMSAVE);
1620                svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1621        }
1622
1623        if (vgif) {
1624                clr_intercept(svm, INTERCEPT_STGI);
1625                clr_intercept(svm, INTERCEPT_CLGI);
1626                svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1627        }
1628
1629        if (sev_guest(svm->vcpu.kvm)) {
1630                svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1631                clr_exception_intercept(svm, UD_VECTOR);
1632        }
1633
1634        mark_all_dirty(svm->vmcb);
1635
1636        enable_gif(svm);
1637
1638}
1639
1640static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1641                                       unsigned int index)
1642{
1643        u64 *avic_physical_id_table;
1644        struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1645
1646        if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1647                return NULL;
1648
1649        avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1650
1651        return &avic_physical_id_table[index];
1652}
1653
1654/**
1655 * Note:
1656 * AVIC hardware walks the nested page table to check permissions,
1657 * but does not use the SPA address specified in the leaf page
1658 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1659 * field of the VMCB. Therefore, we set up the
1660 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1661 */
1662static int avic_init_access_page(struct kvm_vcpu *vcpu)
1663{
1664        struct kvm *kvm = vcpu->kvm;
1665        int ret;
1666
1667        if (kvm->arch.apic_access_page_done)
1668                return 0;
1669
1670        ret = x86_set_memory_region(kvm,
1671                                    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1672                                    APIC_DEFAULT_PHYS_BASE,
1673                                    PAGE_SIZE);
1674        if (ret)
1675                return ret;
1676
1677        kvm->arch.apic_access_page_done = true;
1678        return 0;
1679}
1680
1681static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1682{
1683        int ret;
1684        u64 *entry, new_entry;
1685        int id = vcpu->vcpu_id;
1686        struct vcpu_svm *svm = to_svm(vcpu);
1687
1688        ret = avic_init_access_page(vcpu);
1689        if (ret)
1690                return ret;
1691
1692        if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1693                return -EINVAL;
1694
1695        if (!svm->vcpu.arch.apic->regs)
1696                return -EINVAL;
1697
1698        svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1699
1700        /* Setting AVIC backing page address in the phy APIC ID table */
1701        entry = avic_get_physical_id_entry(vcpu, id);
1702        if (!entry)
1703                return -EINVAL;
1704
1705        new_entry = READ_ONCE(*entry);
1706        new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1707                              AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1708                              AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1709        WRITE_ONCE(*entry, new_entry);
1710
1711        svm->avic_physical_id_cache = entry;
1712
1713        return 0;
1714}
1715
1716static void __sev_asid_free(int asid)
1717{
1718        struct svm_cpu_data *sd;
1719        int cpu, pos;
1720
1721        pos = asid - 1;
1722        clear_bit(pos, sev_asid_bitmap);
1723
1724        for_each_possible_cpu(cpu) {
1725                sd = per_cpu(svm_data, cpu);
1726                sd->sev_vmcbs[pos] = NULL;
1727        }
1728}
1729
1730static void sev_asid_free(struct kvm *kvm)
1731{
1732        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1733
1734        __sev_asid_free(sev->asid);
1735}
1736
1737static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1738{
1739        struct sev_data_decommission *decommission;
1740        struct sev_data_deactivate *data;
1741
1742        if (!handle)
1743                return;
1744
1745        data = kzalloc(sizeof(*data), GFP_KERNEL);
1746        if (!data)
1747                return;
1748
1749        /* deactivate handle */
1750        data->handle = handle;
1751        sev_guest_deactivate(data, NULL);
1752
1753        wbinvd_on_all_cpus();
1754        sev_guest_df_flush(NULL);
1755        kfree(data);
1756
1757        decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1758        if (!decommission)
1759                return;
1760
1761        /* decommission handle */
1762        decommission->handle = handle;
1763        sev_guest_decommission(decommission, NULL);
1764
1765        kfree(decommission);
1766}
1767
1768static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1769                                    unsigned long ulen, unsigned long *n,
1770                                    int write)
1771{
1772        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1773        unsigned long npages, npinned, size;
1774        unsigned long locked, lock_limit;
1775        struct page **pages;
1776        unsigned long first, last;
1777
1778        if (ulen == 0 || uaddr + ulen < uaddr)
1779                return NULL;
1780
1781        /* Calculate number of pages. */
1782        first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1783        last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1784        npages = (last - first + 1);
1785
1786        locked = sev->pages_locked + npages;
1787        lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1788        if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1789                pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1790                return NULL;
1791        }
1792
1793        /* Avoid using vmalloc for smaller buffers. */
1794        size = npages * sizeof(struct page *);
1795        if (size > PAGE_SIZE)
1796                pages = vmalloc(size);
1797        else
1798                pages = kmalloc(size, GFP_KERNEL);
1799
1800        if (!pages)
1801                return NULL;
1802
1803        /* Pin the user virtual address. */
1804        npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1805        if (npinned != npages) {
1806                pr_err("SEV: Failure locking %lu pages.\n", npages);
1807                goto err;
1808        }
1809
1810        *n = npages;
1811        sev->pages_locked = locked;
1812
1813        return pages;
1814
1815err:
1816        if (npinned > 0)
1817                release_pages(pages, npinned);
1818
1819        kvfree(pages);
1820        return NULL;
1821}
1822
1823static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1824                             unsigned long npages)
1825{
1826        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1827
1828        release_pages(pages, npages);
1829        kvfree(pages);
1830        sev->pages_locked -= npages;
1831}
1832
1833static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1834{
1835        uint8_t *page_virtual;
1836        unsigned long i;
1837
1838        if (npages == 0 || pages == NULL)
1839                return;
1840
1841        for (i = 0; i < npages; i++) {
1842                page_virtual = kmap_atomic(pages[i]);
1843                clflush_cache_range(page_virtual, PAGE_SIZE);
1844                kunmap_atomic(page_virtual);
1845        }
1846}
1847
1848static void __unregister_enc_region_locked(struct kvm *kvm,
1849                                           struct enc_region *region)
1850{
1851        /*
1852         * The guest may change the memory encryption attribute from C=0 -> C=1
1853         * or vice versa for this memory range. Lets make sure caches are
1854         * flushed to ensure that guest data gets written into memory with
1855         * correct C-bit.
1856         */
1857        sev_clflush_pages(region->pages, region->npages);
1858
1859        sev_unpin_memory(kvm, region->pages, region->npages);
1860        list_del(&region->list);
1861        kfree(region);
1862}
1863
1864static struct kvm *svm_vm_alloc(void)
1865{
1866        struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1867        return &kvm_svm->kvm;
1868}
1869
1870static void svm_vm_free(struct kvm *kvm)
1871{
1872        vfree(to_kvm_svm(kvm));
1873}
1874
1875static void sev_vm_destroy(struct kvm *kvm)
1876{
1877        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1878        struct list_head *head = &sev->regions_list;
1879        struct list_head *pos, *q;
1880
1881        if (!sev_guest(kvm))
1882                return;
1883
1884        mutex_lock(&kvm->lock);
1885
1886        /*
1887         * if userspace was terminated before unregistering the memory regions
1888         * then lets unpin all the registered memory.
1889         */
1890        if (!list_empty(head)) {
1891                list_for_each_safe(pos, q, head) {
1892                        __unregister_enc_region_locked(kvm,
1893                                list_entry(pos, struct enc_region, list));
1894                }
1895        }
1896
1897        mutex_unlock(&kvm->lock);
1898
1899        sev_unbind_asid(kvm, sev->handle);
1900        sev_asid_free(kvm);
1901}
1902
1903static void avic_vm_destroy(struct kvm *kvm)
1904{
1905        unsigned long flags;
1906        struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1907
1908        if (!avic)
1909                return;
1910
1911        if (kvm_svm->avic_logical_id_table_page)
1912                __free_page(kvm_svm->avic_logical_id_table_page);
1913        if (kvm_svm->avic_physical_id_table_page)
1914                __free_page(kvm_svm->avic_physical_id_table_page);
1915
1916        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1917        hash_del(&kvm_svm->hnode);
1918        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1919}
1920
1921static void svm_vm_destroy(struct kvm *kvm)
1922{
1923        avic_vm_destroy(kvm);
1924        sev_vm_destroy(kvm);
1925}
1926
1927static int avic_vm_init(struct kvm *kvm)
1928{
1929        unsigned long flags;
1930        int err = -ENOMEM;
1931        struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1932        struct kvm_svm *k2;
1933        struct page *p_page;
1934        struct page *l_page;
1935        u32 vm_id;
1936
1937        if (!avic)
1938                return 0;
1939
1940        /* Allocating physical APIC ID table (4KB) */
1941        p_page = alloc_page(GFP_KERNEL);
1942        if (!p_page)
1943                goto free_avic;
1944
1945        kvm_svm->avic_physical_id_table_page = p_page;
1946        clear_page(page_address(p_page));
1947
1948        /* Allocating logical APIC ID table (4KB) */
1949        l_page = alloc_page(GFP_KERNEL);
1950        if (!l_page)
1951                goto free_avic;
1952
1953        kvm_svm->avic_logical_id_table_page = l_page;
1954        clear_page(page_address(l_page));
1955
1956        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1957 again:
1958        vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1959        if (vm_id == 0) { /* id is 1-based, zero is not okay */
1960                next_vm_id_wrapped = 1;
1961                goto again;
1962        }
1963        /* Is it still in use? Only possible if wrapped at least once */
1964        if (next_vm_id_wrapped) {
1965                hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1966                        if (k2->avic_vm_id == vm_id)
1967                                goto again;
1968                }
1969        }
1970        kvm_svm->avic_vm_id = vm_id;
1971        hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1972        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1973
1974        return 0;
1975
1976free_avic:
1977        avic_vm_destroy(kvm);
1978        return err;
1979}
1980
1981static inline int
1982avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1983{
1984        int ret = 0;
1985        unsigned long flags;
1986        struct amd_svm_iommu_ir *ir;
1987        struct vcpu_svm *svm = to_svm(vcpu);
1988
1989        if (!kvm_arch_has_assigned_device(vcpu->kvm))
1990                return 0;
1991
1992        /*
1993         * Here, we go through the per-vcpu ir_list to update all existing
1994         * interrupt remapping table entry targeting this vcpu.
1995         */
1996        spin_lock_irqsave(&svm->ir_list_lock, flags);
1997
1998        if (list_empty(&svm->ir_list))
1999                goto out;
2000
2001        list_for_each_entry(ir, &svm->ir_list, node) {
2002                ret = amd_iommu_update_ga(cpu, r, ir->data);
2003                if (ret)
2004                        break;
2005        }
2006out:
2007        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2008        return ret;
2009}
2010
2011static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2012{
2013        u64 entry;
2014        /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2015        int h_physical_id = kvm_cpu_get_apicid(cpu);
2016        struct vcpu_svm *svm = to_svm(vcpu);
2017
2018        if (!kvm_vcpu_apicv_active(vcpu))
2019                return;
2020
2021        if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2022                return;
2023
2024        entry = READ_ONCE(*(svm->avic_physical_id_cache));
2025        WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2026
2027        entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2028        entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2029
2030        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2031        if (svm->avic_is_running)
2032                entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2033
2034        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2035        avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2036                                        svm->avic_is_running);
2037}
2038
2039static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2040{
2041        u64 entry;
2042        struct vcpu_svm *svm = to_svm(vcpu);
2043
2044        if (!kvm_vcpu_apicv_active(vcpu))
2045                return;
2046
2047        entry = READ_ONCE(*(svm->avic_physical_id_cache));
2048        if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2049                avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2050
2051        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2052        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2053}
2054
2055/**
2056 * This function is called during VCPU halt/unhalt.
2057 */
2058static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2059{
2060        struct vcpu_svm *svm = to_svm(vcpu);
2061
2062        svm->avic_is_running = is_run;
2063        if (is_run)
2064                avic_vcpu_load(vcpu, vcpu->cpu);
2065        else
2066                avic_vcpu_put(vcpu);
2067}
2068
2069static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2070{
2071        struct vcpu_svm *svm = to_svm(vcpu);
2072        u32 dummy;
2073        u32 eax = 1;
2074
2075        vcpu->arch.microcode_version = 0x01000065;
2076        svm->spec_ctrl = 0;
2077        svm->virt_spec_ctrl = 0;
2078
2079        if (!init_event) {
2080                svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2081                                           MSR_IA32_APICBASE_ENABLE;
2082                if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2083                        svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2084        }
2085        init_vmcb(svm);
2086
2087        kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2088        kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2089
2090        if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2091                avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2092}
2093
2094static int avic_init_vcpu(struct vcpu_svm *svm)
2095{
2096        int ret;
2097
2098        if (!kvm_vcpu_apicv_active(&svm->vcpu))
2099                return 0;
2100
2101        ret = avic_init_backing_page(&svm->vcpu);
2102        if (ret)
2103                return ret;
2104
2105        INIT_LIST_HEAD(&svm->ir_list);
2106        spin_lock_init(&svm->ir_list_lock);
2107
2108        return ret;
2109}
2110
2111static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2112{
2113        struct vcpu_svm *svm;
2114        struct page *page;
2115        struct page *msrpm_pages;
2116        struct page *hsave_page;
2117        struct page *nested_msrpm_pages;
2118        int err;
2119
2120        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2121        if (!svm) {
2122                err = -ENOMEM;
2123                goto out;
2124        }
2125
2126        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2127        if (err)
2128                goto free_svm;
2129
2130        err = -ENOMEM;
2131        page = alloc_page(GFP_KERNEL);
2132        if (!page)
2133                goto uninit;
2134
2135        msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2136        if (!msrpm_pages)
2137                goto free_page1;
2138
2139        nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2140        if (!nested_msrpm_pages)
2141                goto free_page2;
2142
2143        hsave_page = alloc_page(GFP_KERNEL);
2144        if (!hsave_page)
2145                goto free_page3;
2146
2147        err = avic_init_vcpu(svm);
2148        if (err)
2149                goto free_page4;
2150
2151        /* We initialize this flag to true to make sure that the is_running
2152         * bit would be set the first time the vcpu is loaded.
2153         */
2154        svm->avic_is_running = true;
2155
2156        svm->nested.hsave = page_address(hsave_page);
2157
2158        svm->msrpm = page_address(msrpm_pages);
2159        svm_vcpu_init_msrpm(svm->msrpm);
2160
2161        svm->nested.msrpm = page_address(nested_msrpm_pages);
2162        svm_vcpu_init_msrpm(svm->nested.msrpm);
2163
2164        svm->vmcb = page_address(page);
2165        clear_page(svm->vmcb);
2166        svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2167        svm->asid_generation = 0;
2168        init_vmcb(svm);
2169
2170        svm_init_osvw(&svm->vcpu);
2171
2172        return &svm->vcpu;
2173
2174free_page4:
2175        __free_page(hsave_page);
2176free_page3:
2177        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2178free_page2:
2179        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2180free_page1:
2181        __free_page(page);
2182uninit:
2183        kvm_vcpu_uninit(&svm->vcpu);
2184free_svm:
2185        kmem_cache_free(kvm_vcpu_cache, svm);
2186out:
2187        return ERR_PTR(err);
2188}
2189
2190static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2191{
2192        struct vcpu_svm *svm = to_svm(vcpu);
2193
2194        __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2195        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2196        __free_page(virt_to_page(svm->nested.hsave));
2197        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2198        kvm_vcpu_uninit(vcpu);
2199        kmem_cache_free(kvm_vcpu_cache, svm);
2200        /*
2201         * The vmcb page can be recycled, causing a false negative in
2202         * svm_vcpu_load(). So do a full IBPB now.
2203         */
2204        indirect_branch_prediction_barrier();
2205}
2206
2207static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2208{
2209        struct vcpu_svm *svm = to_svm(vcpu);
2210        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2211        int i;
2212
2213        if (unlikely(cpu != vcpu->cpu)) {
2214                svm->asid_generation = 0;
2215                mark_all_dirty(svm->vmcb);
2216        }
2217
2218#ifdef CONFIG_X86_64
2219        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2220#endif
2221        savesegment(fs, svm->host.fs);
2222        savesegment(gs, svm->host.gs);
2223        svm->host.ldt = kvm_read_ldt();
2224
2225        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2226                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2227
2228        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2229                u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2230                if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2231                        __this_cpu_write(current_tsc_ratio, tsc_ratio);
2232                        wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2233                }
2234        }
2235        /* This assumes that the kernel never uses MSR_TSC_AUX */
2236        if (static_cpu_has(X86_FEATURE_RDTSCP))
2237                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2238
2239        if (sd->current_vmcb != svm->vmcb) {
2240                sd->current_vmcb = svm->vmcb;
2241                indirect_branch_prediction_barrier();
2242        }
2243        avic_vcpu_load(vcpu, cpu);
2244}
2245
2246static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2247{
2248        struct vcpu_svm *svm = to_svm(vcpu);
2249        int i;
2250
2251        avic_vcpu_put(vcpu);
2252
2253        ++vcpu->stat.host_state_reload;
2254        kvm_load_ldt(svm->host.ldt);
2255#ifdef CONFIG_X86_64
2256        loadsegment(fs, svm->host.fs);
2257        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2258        load_gs_index(svm->host.gs);
2259#else
2260#ifdef CONFIG_X86_32_LAZY_GS
2261        loadsegment(gs, svm->host.gs);
2262#endif
2263#endif
2264        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2265                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2266}
2267
2268static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2269{
2270        avic_set_running(vcpu, false);
2271}
2272
2273static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2274{
2275        avic_set_running(vcpu, true);
2276}
2277
2278static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2279{
2280        struct vcpu_svm *svm = to_svm(vcpu);
2281        unsigned long rflags = svm->vmcb->save.rflags;
2282
2283        if (svm->nmi_singlestep) {
2284                /* Hide our flags if they were not set by the guest */
2285                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2286                        rflags &= ~X86_EFLAGS_TF;
2287                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2288                        rflags &= ~X86_EFLAGS_RF;
2289        }
2290        return rflags;
2291}
2292
2293static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2294{
2295        if (to_svm(vcpu)->nmi_singlestep)
2296                rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2297
2298       /*
2299        * Any change of EFLAGS.VM is accompanied by a reload of SS
2300        * (caused by either a task switch or an inter-privilege IRET),
2301        * so we do not need to update the CPL here.
2302        */
2303        to_svm(vcpu)->vmcb->save.rflags = rflags;
2304}
2305
2306static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2307{
2308        switch (reg) {
2309        case VCPU_EXREG_PDPTR:
2310                BUG_ON(!npt_enabled);
2311                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2312                break;
2313        default:
2314                BUG();
2315        }
2316}
2317
2318static void svm_set_vintr(struct vcpu_svm *svm)
2319{
2320        set_intercept(svm, INTERCEPT_VINTR);
2321}
2322
2323static void svm_clear_vintr(struct vcpu_svm *svm)
2324{
2325        clr_intercept(svm, INTERCEPT_VINTR);
2326}
2327
2328static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2329{
2330        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2331
2332        switch (seg) {
2333        case VCPU_SREG_CS: return &save->cs;
2334        case VCPU_SREG_DS: return &save->ds;
2335        case VCPU_SREG_ES: return &save->es;
2336        case VCPU_SREG_FS: return &save->fs;
2337        case VCPU_SREG_GS: return &save->gs;
2338        case VCPU_SREG_SS: return &save->ss;
2339        case VCPU_SREG_TR: return &save->tr;
2340        case VCPU_SREG_LDTR: return &save->ldtr;
2341        }
2342        BUG();
2343        return NULL;
2344}
2345
2346static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2347{
2348        struct vmcb_seg *s = svm_seg(vcpu, seg);
2349
2350        return s->base;
2351}
2352
2353static void svm_get_segment(struct kvm_vcpu *vcpu,
2354                            struct kvm_segment *var, int seg)
2355{
2356        struct vmcb_seg *s = svm_seg(vcpu, seg);
2357
2358        var->base = s->base;
2359        var->limit = s->limit;
2360        var->selector = s->selector;
2361        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2362        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2363        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2364        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2365        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2366        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2367        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2368
2369        /*
2370         * AMD CPUs circa 2014 track the G bit for all segments except CS.
2371         * However, the SVM spec states that the G bit is not observed by the
2372         * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2373         * So let's synthesize a legal G bit for all segments, this helps
2374         * running KVM nested. It also helps cross-vendor migration, because
2375         * Intel's vmentry has a check on the 'G' bit.
2376         */
2377        var->g = s->limit > 0xfffff;
2378
2379        /*
2380         * AMD's VMCB does not have an explicit unusable field, so emulate it
2381         * for cross vendor migration purposes by "not present"
2382         */
2383        var->unusable = !var->present;
2384
2385        switch (seg) {
2386        case VCPU_SREG_TR:
2387                /*
2388                 * Work around a bug where the busy flag in the tr selector
2389                 * isn't exposed
2390                 */
2391                var->type |= 0x2;
2392                break;
2393        case VCPU_SREG_DS:
2394        case VCPU_SREG_ES:
2395        case VCPU_SREG_FS:
2396        case VCPU_SREG_GS:
2397                /*
2398                 * The accessed bit must always be set in the segment
2399                 * descriptor cache, although it can be cleared in the
2400                 * descriptor, the cached bit always remains at 1. Since
2401                 * Intel has a check on this, set it here to support
2402                 * cross-vendor migration.
2403                 */
2404                if (!var->unusable)
2405                        var->type |= 0x1;
2406                break;
2407        case VCPU_SREG_SS:
2408                /*
2409                 * On AMD CPUs sometimes the DB bit in the segment
2410                 * descriptor is left as 1, although the whole segment has
2411                 * been made unusable. Clear it here to pass an Intel VMX
2412                 * entry check when cross vendor migrating.
2413                 */
2414                if (var->unusable)
2415                        var->db = 0;
2416                /* This is symmetric with svm_set_segment() */
2417                var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2418                break;
2419        }
2420}
2421
2422static int svm_get_cpl(struct kvm_vcpu *vcpu)
2423{
2424        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2425
2426        return save->cpl;
2427}
2428
2429static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2430{
2431        struct vcpu_svm *svm = to_svm(vcpu);
2432
2433        dt->size = svm->vmcb->save.idtr.limit;
2434        dt->address = svm->vmcb->save.idtr.base;
2435}
2436
2437static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2438{
2439        struct vcpu_svm *svm = to_svm(vcpu);
2440
2441        svm->vmcb->save.idtr.limit = dt->size;
2442        svm->vmcb->save.idtr.base = dt->address ;
2443        mark_dirty(svm->vmcb, VMCB_DT);
2444}
2445
2446static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2447{
2448        struct vcpu_svm *svm = to_svm(vcpu);
2449
2450        dt->size = svm->vmcb->save.gdtr.limit;
2451        dt->address = svm->vmcb->save.gdtr.base;
2452}
2453
2454static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2455{
2456        struct vcpu_svm *svm = to_svm(vcpu);
2457
2458        svm->vmcb->save.gdtr.limit = dt->size;
2459        svm->vmcb->save.gdtr.base = dt->address ;
2460        mark_dirty(svm->vmcb, VMCB_DT);
2461}
2462
2463static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2464{
2465}
2466
2467static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2468{
2469}
2470
2471static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2472{
2473}
2474
2475static void update_cr0_intercept(struct vcpu_svm *svm)
2476{
2477        ulong gcr0 = svm->vcpu.arch.cr0;
2478        u64 *hcr0 = &svm->vmcb->save.cr0;
2479
2480        *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2481                | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2482
2483        mark_dirty(svm->vmcb, VMCB_CR);
2484
2485        if (gcr0 == *hcr0) {
2486                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2487                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2488        } else {
2489                set_cr_intercept(svm, INTERCEPT_CR0_READ);
2490                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2491        }
2492}
2493
2494static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2495{
2496        struct vcpu_svm *svm = to_svm(vcpu);
2497
2498#ifdef CONFIG_X86_64
2499        if (vcpu->arch.efer & EFER_LME) {
2500                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2501                        vcpu->arch.efer |= EFER_LMA;
2502                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2503                }
2504
2505                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2506                        vcpu->arch.efer &= ~EFER_LMA;
2507                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2508                }
2509        }
2510#endif
2511        vcpu->arch.cr0 = cr0;
2512
2513        if (!npt_enabled)
2514                cr0 |= X86_CR0_PG | X86_CR0_WP;
2515
2516        /*
2517         * re-enable caching here because the QEMU bios
2518         * does not do it - this results in some delay at
2519         * reboot
2520         */
2521        if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2522                cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2523        svm->vmcb->save.cr0 = cr0;
2524        mark_dirty(svm->vmcb, VMCB_CR);
2525        update_cr0_intercept(svm);
2526}
2527
2528static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2529{
2530        unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2531        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2532
2533        if (cr4 & X86_CR4_VMXE)
2534                return 1;
2535
2536        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2537                svm_flush_tlb(vcpu, true);
2538
2539        vcpu->arch.cr4 = cr4;
2540        if (!npt_enabled)
2541                cr4 |= X86_CR4_PAE;
2542        cr4 |= host_cr4_mce;
2543        to_svm(vcpu)->vmcb->save.cr4 = cr4;
2544        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2545        return 0;
2546}
2547
2548static void svm_set_segment(struct kvm_vcpu *vcpu,
2549                            struct kvm_segment *var, int seg)
2550{
2551        struct vcpu_svm *svm = to_svm(vcpu);
2552        struct vmcb_seg *s = svm_seg(vcpu, seg);
2553
2554        s->base = var->base;
2555        s->limit = var->limit;
2556        s->selector = var->selector;
2557        s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2558        s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2559        s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2560        s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2561        s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2562        s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2563        s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2564        s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2565
2566        /*
2567         * This is always accurate, except if SYSRET returned to a segment
2568         * with SS.DPL != 3.  Intel does not have this quirk, and always
2569         * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2570         * would entail passing the CPL to userspace and back.
2571         */
2572        if (seg == VCPU_SREG_SS)
2573                /* This is symmetric with svm_get_segment() */
2574                svm->vmcb->save.cpl = (var->dpl & 3);
2575
2576        mark_dirty(svm->vmcb, VMCB_SEG);
2577}
2578
2579static void update_bp_intercept(struct kvm_vcpu *vcpu)
2580{
2581        struct vcpu_svm *svm = to_svm(vcpu);
2582
2583        clr_exception_intercept(svm, BP_VECTOR);
2584
2585        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2586                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2587                        set_exception_intercept(svm, BP_VECTOR);
2588        } else
2589                vcpu->guest_debug = 0;
2590}
2591
2592static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2593{
2594        if (sd->next_asid > sd->max_asid) {
2595                ++sd->asid_generation;
2596                sd->next_asid = sd->min_asid;
2597                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2598        }
2599
2600        svm->asid_generation = sd->asid_generation;
2601        svm->vmcb->control.asid = sd->next_asid++;
2602
2603        mark_dirty(svm->vmcb, VMCB_ASID);
2604}
2605
2606static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2607{
2608        return to_svm(vcpu)->vmcb->save.dr6;
2609}
2610
2611static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2612{
2613        struct vcpu_svm *svm = to_svm(vcpu);
2614
2615        svm->vmcb->save.dr6 = value;
2616        mark_dirty(svm->vmcb, VMCB_DR);
2617}
2618
2619static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2620{
2621        struct vcpu_svm *svm = to_svm(vcpu);
2622
2623        get_debugreg(vcpu->arch.db[0], 0);
2624        get_debugreg(vcpu->arch.db[1], 1);
2625        get_debugreg(vcpu->arch.db[2], 2);
2626        get_debugreg(vcpu->arch.db[3], 3);
2627        vcpu->arch.dr6 = svm_get_dr6(vcpu);
2628        vcpu->arch.dr7 = svm->vmcb->save.dr7;
2629
2630        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2631        set_dr_intercepts(svm);
2632}
2633
2634static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2635{
2636        struct vcpu_svm *svm = to_svm(vcpu);
2637
2638        svm->vmcb->save.dr7 = value;
2639        mark_dirty(svm->vmcb, VMCB_DR);
2640}
2641
2642static int pf_interception(struct vcpu_svm *svm)
2643{
2644        u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2645        u64 error_code = svm->vmcb->control.exit_info_1;
2646
2647        return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2648                        static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2649                        svm->vmcb->control.insn_bytes : NULL,
2650                        svm->vmcb->control.insn_len);
2651}
2652
2653static int npf_interception(struct vcpu_svm *svm)
2654{
2655        u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2656        u64 error_code = svm->vmcb->control.exit_info_1;
2657
2658        trace_kvm_page_fault(fault_address, error_code);
2659        return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2660                        static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2661                        svm->vmcb->control.insn_bytes : NULL,
2662                        svm->vmcb->control.insn_len);
2663}
2664
2665static int db_interception(struct vcpu_svm *svm)
2666{
2667        struct kvm_run *kvm_run = svm->vcpu.run;
2668
2669        if (!(svm->vcpu.guest_debug &
2670              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2671                !svm->nmi_singlestep) {
2672                kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2673                return 1;
2674        }
2675
2676        if (svm->nmi_singlestep) {
2677                disable_nmi_singlestep(svm);
2678        }
2679
2680        if (svm->vcpu.guest_debug &
2681            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2682                kvm_run->exit_reason = KVM_EXIT_DEBUG;
2683                kvm_run->debug.arch.pc =
2684                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2685                kvm_run->debug.arch.exception = DB_VECTOR;
2686                return 0;
2687        }
2688
2689        return 1;
2690}
2691
2692static int bp_interception(struct vcpu_svm *svm)
2693{
2694        struct kvm_run *kvm_run = svm->vcpu.run;
2695
2696        kvm_run->exit_reason = KVM_EXIT_DEBUG;
2697        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2698        kvm_run->debug.arch.exception = BP_VECTOR;
2699        return 0;
2700}
2701
2702static int ud_interception(struct vcpu_svm *svm)
2703{
2704        return handle_ud(&svm->vcpu);
2705}
2706
2707static int ac_interception(struct vcpu_svm *svm)
2708{
2709        kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2710        return 1;
2711}
2712
2713static int gp_interception(struct vcpu_svm *svm)
2714{
2715        struct kvm_vcpu *vcpu = &svm->vcpu;
2716        u32 error_code = svm->vmcb->control.exit_info_1;
2717        int er;
2718
2719        WARN_ON_ONCE(!enable_vmware_backdoor);
2720
2721        er = kvm_emulate_instruction(vcpu,
2722                EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2723        if (er == EMULATE_USER_EXIT)
2724                return 0;
2725        else if (er != EMULATE_DONE)
2726                kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2727        return 1;
2728}
2729
2730static bool is_erratum_383(void)
2731{
2732        int err, i;
2733        u64 value;
2734
2735        if (!erratum_383_found)
2736                return false;
2737
2738        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2739        if (err)
2740                return false;
2741
2742        /* Bit 62 may or may not be set for this mce */
2743        value &= ~(1ULL << 62);
2744
2745        if (value != 0xb600000000010015ULL)
2746                return false;
2747
2748        /* Clear MCi_STATUS registers */
2749        for (i = 0; i < 6; ++i)
2750                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2751
2752        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2753        if (!err) {
2754                u32 low, high;
2755
2756                value &= ~(1ULL << 2);
2757                low    = lower_32_bits(value);
2758                high   = upper_32_bits(value);
2759
2760                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2761        }
2762
2763        /* Flush tlb to evict multi-match entries */
2764        __flush_tlb_all();
2765
2766        return true;
2767}
2768
2769static void svm_handle_mce(struct vcpu_svm *svm)
2770{
2771        if (is_erratum_383()) {
2772                /*
2773                 * Erratum 383 triggered. Guest state is corrupt so kill the
2774                 * guest.
2775                 */
2776                pr_err("KVM: Guest triggered AMD Erratum 383\n");
2777
2778                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2779
2780                return;
2781        }
2782
2783        /*
2784         * On an #MC intercept the MCE handler is not called automatically in
2785         * the host. So do it by hand here.
2786         */
2787        asm volatile (
2788                "int $0x12\n");
2789        /* not sure if we ever come back to this point */
2790
2791        return;
2792}
2793
2794static int mc_interception(struct vcpu_svm *svm)
2795{
2796        return 1;
2797}
2798
2799static int shutdown_interception(struct vcpu_svm *svm)
2800{
2801        struct kvm_run *kvm_run = svm->vcpu.run;
2802
2803        /*
2804         * VMCB is undefined after a SHUTDOWN intercept
2805         * so reinitialize it.
2806         */
2807        clear_page(svm->vmcb);
2808        init_vmcb(svm);
2809
2810        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2811        return 0;
2812}
2813
2814static int io_interception(struct vcpu_svm *svm)
2815{
2816        struct kvm_vcpu *vcpu = &svm->vcpu;
2817        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2818        int size, in, string;
2819        unsigned port;
2820
2821        ++svm->vcpu.stat.io_exits;
2822        string = (io_info & SVM_IOIO_STR_MASK) != 0;
2823        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2824        if (string)
2825                return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2826
2827        port = io_info >> 16;
2828        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2829        svm->next_rip = svm->vmcb->control.exit_info_2;
2830
2831        return kvm_fast_pio(&svm->vcpu, size, port, in);
2832}
2833
2834static int nmi_interception(struct vcpu_svm *svm)
2835{
2836        return 1;
2837}
2838
2839static int intr_interception(struct vcpu_svm *svm)
2840{
2841        ++svm->vcpu.stat.irq_exits;
2842        return 1;
2843}
2844
2845static int nop_on_interception(struct vcpu_svm *svm)
2846{
2847        return 1;
2848}
2849
2850static int halt_interception(struct vcpu_svm *svm)
2851{
2852        svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2853        return kvm_emulate_halt(&svm->vcpu);
2854}
2855
2856static int vmmcall_interception(struct vcpu_svm *svm)
2857{
2858        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2859        return kvm_emulate_hypercall(&svm->vcpu);
2860}
2861
2862static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2863{
2864        struct vcpu_svm *svm = to_svm(vcpu);
2865
2866        return svm->nested.nested_cr3;
2867}
2868
2869static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2870{
2871        struct vcpu_svm *svm = to_svm(vcpu);
2872        u64 cr3 = svm->nested.nested_cr3;
2873        u64 pdpte;
2874        int ret;
2875
2876        ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2877                                       offset_in_page(cr3) + index * 8, 8);
2878        if (ret)
2879                return 0;
2880        return pdpte;
2881}
2882
2883static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2884                                   unsigned long root)
2885{
2886        struct vcpu_svm *svm = to_svm(vcpu);
2887
2888        svm->vmcb->control.nested_cr3 = __sme_set(root);
2889        mark_dirty(svm->vmcb, VMCB_NPT);
2890}
2891
2892static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2893                                       struct x86_exception *fault)
2894{
2895        struct vcpu_svm *svm = to_svm(vcpu);
2896
2897        if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2898                /*
2899                 * TODO: track the cause of the nested page fault, and
2900                 * correctly fill in the high bits of exit_info_1.
2901                 */
2902                svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2903                svm->vmcb->control.exit_code_hi = 0;
2904                svm->vmcb->control.exit_info_1 = (1ULL << 32);
2905                svm->vmcb->control.exit_info_2 = fault->address;
2906        }
2907
2908        svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2909        svm->vmcb->control.exit_info_1 |= fault->error_code;
2910
2911        /*
2912         * The present bit is always zero for page structure faults on real
2913         * hardware.
2914         */
2915        if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2916                svm->vmcb->control.exit_info_1 &= ~1;
2917
2918        nested_svm_vmexit(svm);
2919}
2920
2921static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2922{
2923        WARN_ON(mmu_is_nested(vcpu));
2924        kvm_init_shadow_mmu(vcpu);
2925        vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2926        vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2927        vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2928        vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2929        vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2930        reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2931        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2932}
2933
2934static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2935{
2936        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2937}
2938
2939static int nested_svm_check_permissions(struct vcpu_svm *svm)
2940{
2941        if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2942            !is_paging(&svm->vcpu)) {
2943                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2944                return 1;
2945        }
2946
2947        if (svm->vmcb->save.cpl) {
2948                kvm_inject_gp(&svm->vcpu, 0);
2949                return 1;
2950        }
2951
2952        return 0;
2953}
2954
2955static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2956                                      bool has_error_code, u32 error_code)
2957{
2958        int vmexit;
2959
2960        if (!is_guest_mode(&svm->vcpu))
2961                return 0;
2962
2963        vmexit = nested_svm_intercept(svm);
2964        if (vmexit != NESTED_EXIT_DONE)
2965                return 0;
2966
2967        svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2968        svm->vmcb->control.exit_code_hi = 0;
2969        svm->vmcb->control.exit_info_1 = error_code;
2970
2971        /*
2972         * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2973         * The fix is to add the ancillary datum (CR2 or DR6) to structs
2974         * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2975         * written only when inject_pending_event runs (DR6 would written here
2976         * too).  This should be conditional on a new capability---if the
2977         * capability is disabled, kvm_multiple_exception would write the
2978         * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2979         */
2980        if (svm->vcpu.arch.exception.nested_apf)
2981                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2982        else
2983                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2984
2985        svm->nested.exit_required = true;
2986        return vmexit;
2987}
2988
2989/* This function returns true if it is save to enable the irq window */
2990static inline bool nested_svm_intr(struct vcpu_svm *svm)
2991{
2992        if (!is_guest_mode(&svm->vcpu))
2993                return true;
2994
2995        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2996                return true;
2997
2998        if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2999                return false;
3000
3001        /*
3002         * if vmexit was already requested (by intercepted exception
3003         * for instance) do not overwrite it with "external interrupt"
3004         * vmexit.
3005         */
3006        if (svm->nested.exit_required)
3007                return false;
3008
3009        svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3010        svm->vmcb->control.exit_info_1 = 0;
3011        svm->vmcb->control.exit_info_2 = 0;
3012
3013        if (svm->nested.intercept & 1ULL) {
3014                /*
3015                 * The #vmexit can't be emulated here directly because this
3016                 * code path runs with irqs and preemption disabled. A
3017                 * #vmexit emulation might sleep. Only signal request for
3018                 * the #vmexit here.
3019                 */
3020                svm->nested.exit_required = true;
3021                trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3022                return false;
3023        }
3024
3025        return true;
3026}
3027
3028/* This function returns true if it is save to enable the nmi window */
3029static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3030{
3031        if (!is_guest_mode(&svm->vcpu))
3032                return true;
3033
3034        if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3035                return true;
3036
3037        svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3038        svm->nested.exit_required = true;
3039
3040        return false;
3041}
3042
3043static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3044{
3045        struct page *page;
3046
3047        might_sleep();
3048
3049        page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3050        if (is_error_page(page))
3051                goto error;
3052
3053        *_page = page;
3054
3055        return kmap(page);
3056
3057error:
3058        kvm_inject_gp(&svm->vcpu, 0);
3059
3060        return NULL;
3061}
3062
3063static void nested_svm_unmap(struct page *page)
3064{
3065        kunmap(page);
3066        kvm_release_page_dirty(page);
3067}
3068
3069static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3070{
3071        unsigned port, size, iopm_len;
3072        u16 val, mask;
3073        u8 start_bit;
3074        u64 gpa;
3075
3076        if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3077                return NESTED_EXIT_HOST;
3078
3079        port = svm->vmcb->control.exit_info_1 >> 16;
3080        size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3081                SVM_IOIO_SIZE_SHIFT;
3082        gpa  = svm->nested.vmcb_iopm + (port / 8);
3083        start_bit = port % 8;
3084        iopm_len = (start_bit + size > 8) ? 2 : 1;
3085        mask = (0xf >> (4 - size)) << start_bit;
3086        val = 0;
3087
3088        if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3089                return NESTED_EXIT_DONE;
3090
3091        return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3092}
3093
3094static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3095{
3096        u32 offset, msr, value;
3097        int write, mask;
3098
3099        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3100                return NESTED_EXIT_HOST;
3101
3102        msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3103        offset = svm_msrpm_offset(msr);
3104        write  = svm->vmcb->control.exit_info_1 & 1;
3105        mask   = 1 << ((2 * (msr & 0xf)) + write);
3106
3107        if (offset == MSR_INVALID)
3108                return NESTED_EXIT_DONE;
3109
3110        /* Offset is in 32 bit units but need in 8 bit units */
3111        offset *= 4;
3112
3113        if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3114                return NESTED_EXIT_DONE;
3115
3116        return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3117}
3118
3119/* DB exceptions for our internal use must not cause vmexit */
3120static int nested_svm_intercept_db(struct vcpu_svm *svm)
3121{
3122        unsigned long dr6;
3123
3124        /* if we're not singlestepping, it's not ours */
3125        if (!svm->nmi_singlestep)
3126                return NESTED_EXIT_DONE;
3127
3128        /* if it's not a singlestep exception, it's not ours */
3129        if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3130                return NESTED_EXIT_DONE;
3131        if (!(dr6 & DR6_BS))
3132                return NESTED_EXIT_DONE;
3133
3134        /* if the guest is singlestepping, it should get the vmexit */
3135        if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3136                disable_nmi_singlestep(svm);
3137                return NESTED_EXIT_DONE;
3138        }
3139
3140        /* it's ours, the nested hypervisor must not see this one */
3141        return NESTED_EXIT_HOST;
3142}
3143
3144static int nested_svm_exit_special(struct vcpu_svm *svm)
3145{
3146        u32 exit_code = svm->vmcb->control.exit_code;
3147
3148        switch (exit_code) {
3149        case SVM_EXIT_INTR:
3150        case SVM_EXIT_NMI:
3151        case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3152                return NESTED_EXIT_HOST;
3153        case SVM_EXIT_NPF:
3154                /* For now we are always handling NPFs when using them */
3155                if (npt_enabled)
3156                        return NESTED_EXIT_HOST;
3157                break;
3158        case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3159                /* When we're shadowing, trap PFs, but not async PF */
3160                if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3161                        return NESTED_EXIT_HOST;
3162                break;
3163        default:
3164                break;
3165        }
3166
3167        return NESTED_EXIT_CONTINUE;
3168}
3169
3170/*
3171 * If this function returns true, this #vmexit was already handled
3172 */
3173static int nested_svm_intercept(struct vcpu_svm *svm)
3174{
3175        u32 exit_code = svm->vmcb->control.exit_code;
3176        int vmexit = NESTED_EXIT_HOST;
3177
3178        switch (exit_code) {
3179        case SVM_EXIT_MSR:
3180                vmexit = nested_svm_exit_handled_msr(svm);
3181                break;
3182        case SVM_EXIT_IOIO:
3183                vmexit = nested_svm_intercept_ioio(svm);
3184                break;
3185        case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3186                u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3187                if (svm->nested.intercept_cr & bit)
3188                        vmexit = NESTED_EXIT_DONE;
3189                break;
3190        }
3191        case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3192                u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3193                if (svm->nested.intercept_dr & bit)
3194                        vmexit = NESTED_EXIT_DONE;
3195                break;
3196        }
3197        case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3198                u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3199                if (svm->nested.intercept_exceptions & excp_bits) {
3200                        if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3201                                vmexit = nested_svm_intercept_db(svm);
3202                        else
3203                                vmexit = NESTED_EXIT_DONE;
3204                }
3205                /* async page fault always cause vmexit */
3206                else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3207                         svm->vcpu.arch.exception.nested_apf != 0)
3208                        vmexit = NESTED_EXIT_DONE;
3209                break;
3210        }
3211        case SVM_EXIT_ERR: {
3212                vmexit = NESTED_EXIT_DONE;
3213                break;
3214        }
3215        default: {
3216                u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3217                if (svm->nested.intercept & exit_bits)
3218                        vmexit = NESTED_EXIT_DONE;
3219        }
3220        }
3221
3222        return vmexit;
3223}
3224
3225static int nested_svm_exit_handled(struct vcpu_svm *svm)
3226{
3227        int vmexit;
3228
3229        vmexit = nested_svm_intercept(svm);
3230
3231        if (vmexit == NESTED_EXIT_DONE)
3232                nested_svm_vmexit(svm);
3233
3234        return vmexit;
3235}
3236
3237static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3238{
3239        struct vmcb_control_area *dst  = &dst_vmcb->control;
3240        struct vmcb_control_area *from = &from_vmcb->control;
3241
3242        dst->intercept_cr         = from->intercept_cr;
3243        dst->intercept_dr         = from->intercept_dr;
3244        dst->intercept_exceptions = from->intercept_exceptions;
3245        dst->intercept            = from->intercept;
3246        dst->iopm_base_pa         = from->iopm_base_pa;
3247        dst->msrpm_base_pa        = from->msrpm_base_pa;
3248        dst->tsc_offset           = from->tsc_offset;
3249        dst->asid                 = from->asid;
3250        dst->tlb_ctl              = from->tlb_ctl;
3251        dst->int_ctl              = from->int_ctl;
3252        dst->int_vector           = from->int_vector;
3253        dst->int_state            = from->int_state;
3254        dst->exit_code            = from->exit_code;
3255        dst->exit_code_hi         = from->exit_code_hi;
3256        dst->exit_info_1          = from->exit_info_1;
3257        dst->exit_info_2          = from->exit_info_2;
3258        dst->exit_int_info        = from->exit_int_info;
3259        dst->exit_int_info_err    = from->exit_int_info_err;
3260        dst->nested_ctl           = from->nested_ctl;
3261        dst->event_inj            = from->event_inj;
3262        dst->event_inj_err        = from->event_inj_err;
3263        dst->nested_cr3           = from->nested_cr3;
3264        dst->virt_ext              = from->virt_ext;
3265}
3266
3267static int nested_svm_vmexit(struct vcpu_svm *svm)
3268{
3269        struct vmcb *nested_vmcb;
3270        struct vmcb *hsave = svm->nested.hsave;
3271        struct vmcb *vmcb = svm->vmcb;
3272        struct page *page;
3273
3274        trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3275                                       vmcb->control.exit_info_1,
3276                                       vmcb->control.exit_info_2,
3277                                       vmcb->control.exit_int_info,
3278                                       vmcb->control.exit_int_info_err,
3279                                       KVM_ISA_SVM);
3280
3281        nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3282        if (!nested_vmcb)
3283                return 1;
3284
3285        /* Exit Guest-Mode */
3286        leave_guest_mode(&svm->vcpu);
3287        svm->nested.vmcb = 0;
3288
3289        /* Give the current vmcb to the guest */
3290        disable_gif(svm);
3291
3292        nested_vmcb->save.es     = vmcb->save.es;
3293        nested_vmcb->save.cs     = vmcb->save.cs;
3294        nested_vmcb->save.ss     = vmcb->save.ss;
3295        nested_vmcb->save.ds     = vmcb->save.ds;
3296        nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3297        nested_vmcb->save.idtr   = vmcb->save.idtr;
3298        nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3299        nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3300        nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3301        nested_vmcb->save.cr2    = vmcb->save.cr2;
3302        nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3303        nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3304        nested_vmcb->save.rip    = vmcb->save.rip;
3305        nested_vmcb->save.rsp    = vmcb->save.rsp;
3306        nested_vmcb->save.rax    = vmcb->save.rax;
3307        nested_vmcb->save.dr7    = vmcb->save.dr7;
3308        nested_vmcb->save.dr6    = vmcb->save.dr6;
3309        nested_vmcb->save.cpl    = vmcb->save.cpl;
3310
3311        nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3312        nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3313        nested_vmcb->control.int_state         = vmcb->control.int_state;
3314        nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3315        nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3316        nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3317        nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3318        nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3319        nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3320
3321        if (svm->nrips_enabled)
3322                nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3323
3324        /*
3325         * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3326         * to make sure that we do not lose injected events. So check event_inj
3327         * here and copy it to exit_int_info if it is valid.
3328         * Exit_int_info and event_inj can't be both valid because the case
3329         * below only happens on a VMRUN instruction intercept which has
3330         * no valid exit_int_info set.
3331         */
3332        if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3333                struct vmcb_control_area *nc = &nested_vmcb->control;
3334
3335                nc->exit_int_info     = vmcb->control.event_inj;
3336                nc->exit_int_info_err = vmcb->control.event_inj_err;
3337        }
3338
3339        nested_vmcb->control.tlb_ctl           = 0;
3340        nested_vmcb->control.event_inj         = 0;
3341        nested_vmcb->control.event_inj_err     = 0;
3342
3343        /* We always set V_INTR_MASKING and remember the old value in hflags */
3344        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3345                nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3346
3347        /* Restore the original control entries */
3348        copy_vmcb_control_area(vmcb, hsave);
3349
3350        svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3351        kvm_clear_exception_queue(&svm->vcpu);
3352        kvm_clear_interrupt_queue(&svm->vcpu);
3353
3354        svm->nested.nested_cr3 = 0;
3355
3356        /* Restore selected save entries */
3357        svm->vmcb->save.es = hsave->save.es;
3358        svm->vmcb->save.cs = hsave->save.cs;
3359        svm->vmcb->save.ss = hsave->save.ss;
3360        svm->vmcb->save.ds = hsave->save.ds;
3361        svm->vmcb->save.gdtr = hsave->save.gdtr;
3362        svm->vmcb->save.idtr = hsave->save.idtr;
3363        kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3364        svm_set_efer(&svm->vcpu, hsave->save.efer);
3365        svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3366        svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3367        if (npt_enabled) {
3368                svm->vmcb->save.cr3 = hsave->save.cr3;
3369                svm->vcpu.arch.cr3 = hsave->save.cr3;
3370        } else {
3371                (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3372        }
3373        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3374        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3375        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3376        svm->vmcb->save.dr7 = 0;
3377        svm->vmcb->save.cpl = 0;
3378        svm->vmcb->control.exit_int_info = 0;
3379
3380        mark_all_dirty(svm->vmcb);
3381
3382        nested_svm_unmap(page);
3383
3384        nested_svm_uninit_mmu_context(&svm->vcpu);
3385        kvm_mmu_reset_context(&svm->vcpu);
3386        kvm_mmu_load(&svm->vcpu);
3387
3388        return 0;
3389}
3390
3391static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3392{
3393        /*
3394         * This function merges the msr permission bitmaps of kvm and the
3395         * nested vmcb. It is optimized in that it only merges the parts where
3396         * the kvm msr permission bitmap may contain zero bits
3397         */
3398        int i;
3399
3400        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3401                return true;
3402
3403        for (i = 0; i < MSRPM_OFFSETS; i++) {
3404                u32 value, p;
3405                u64 offset;
3406
3407                if (msrpm_offsets[i] == 0xffffffff)
3408                        break;
3409
3410                p      = msrpm_offsets[i];
3411                offset = svm->nested.vmcb_msrpm + (p * 4);
3412
3413                if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3414                        return false;
3415
3416                svm->nested.msrpm[p] = svm->msrpm[p] | value;
3417        }
3418
3419        svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3420
3421        return true;
3422}
3423
3424static bool nested_vmcb_checks(struct vmcb *vmcb)
3425{
3426        if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3427                return false;
3428
3429        if (vmcb->control.asid == 0)
3430                return false;
3431
3432        if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3433            !npt_enabled)
3434                return false;
3435
3436        return true;
3437}
3438
3439static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3440                                 struct vmcb *nested_vmcb, struct page *page)
3441{
3442        if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3443                svm->vcpu.arch.hflags |= HF_HIF_MASK;
3444        else
3445                svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3446
3447        if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3448                kvm_mmu_unload(&svm->vcpu);
3449                svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3450                nested_svm_init_mmu_context(&svm->vcpu);
3451        }
3452
3453        /* Load the nested guest state */
3454        svm->vmcb->save.es = nested_vmcb->save.es;
3455        svm->vmcb->save.cs = nested_vmcb->save.cs;
3456        svm->vmcb->save.ss = nested_vmcb->save.ss;
3457        svm->vmcb->save.ds = nested_vmcb->save.ds;
3458        svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3459        svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3460        kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3461        svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3462        svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3463        svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3464        if (npt_enabled) {
3465                svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3466                svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3467        } else
3468                (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3469
3470        /* Guest paging mode is active - reset mmu */
3471        kvm_mmu_reset_context(&svm->vcpu);
3472
3473        svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3474        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3475        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3476        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3477
3478        /* In case we don't even reach vcpu_run, the fields are not updated */
3479        svm->vmcb->save.rax = nested_vmcb->save.rax;
3480        svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3481        svm->vmcb->save.rip = nested_vmcb->save.rip;
3482        svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3483        svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3484        svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3485
3486        svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3487        svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3488
3489        /* cache intercepts */
3490        svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3491        svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3492        svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3493        svm->nested.intercept            = nested_vmcb->control.intercept;
3494
3495        svm_flush_tlb(&svm->vcpu, true);
3496        svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3497        if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3498                svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3499        else
3500                svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3501
3502        if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3503                /* We only want the cr8 intercept bits of the guest */
3504                clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3505                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3506        }
3507
3508        /* We don't want to see VMMCALLs from a nested guest */
3509        clr_intercept(svm, INTERCEPT_VMMCALL);
3510
3511        svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3512        svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3513
3514        svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3515        svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3516        svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3517        svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3518        svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3519
3520        nested_svm_unmap(page);
3521
3522        /* Enter Guest-Mode */
3523        enter_guest_mode(&svm->vcpu);
3524
3525        /*
3526         * Merge guest and host intercepts - must be called  with vcpu in
3527         * guest-mode to take affect here
3528         */
3529        recalc_intercepts(svm);
3530
3531        svm->nested.vmcb = vmcb_gpa;
3532
3533        enable_gif(svm);
3534
3535        mark_all_dirty(svm->vmcb);
3536}
3537
3538static bool nested_svm_vmrun(struct vcpu_svm *svm)
3539{
3540        struct vmcb *nested_vmcb;
3541        struct vmcb *hsave = svm->nested.hsave;
3542        struct vmcb *vmcb = svm->vmcb;
3543        struct page *page;
3544        u64 vmcb_gpa;
3545
3546        vmcb_gpa = svm->vmcb->save.rax;
3547
3548        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3549        if (!nested_vmcb)
3550                return false;
3551
3552        if (!nested_vmcb_checks(nested_vmcb)) {
3553                nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3554                nested_vmcb->control.exit_code_hi = 0;
3555                nested_vmcb->control.exit_info_1  = 0;
3556                nested_vmcb->control.exit_info_2  = 0;
3557
3558                nested_svm_unmap(page);
3559
3560                return false;
3561        }
3562
3563        trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3564                               nested_vmcb->save.rip,
3565                               nested_vmcb->control.int_ctl,
3566                               nested_vmcb->control.event_inj,
3567                               nested_vmcb->control.nested_ctl);
3568
3569        trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3570                                    nested_vmcb->control.intercept_cr >> 16,
3571                                    nested_vmcb->control.intercept_exceptions,
3572                                    nested_vmcb->control.intercept);
3573
3574        /* Clear internal status */
3575        kvm_clear_exception_queue(&svm->vcpu);
3576        kvm_clear_interrupt_queue(&svm->vcpu);
3577
3578        /*
3579         * Save the old vmcb, so we don't need to pick what we save, but can
3580         * restore everything when a VMEXIT occurs
3581         */
3582        hsave->save.es     = vmcb->save.es;
3583        hsave->save.cs     = vmcb->save.cs;
3584        hsave->save.ss     = vmcb->save.ss;
3585        hsave->save.ds     = vmcb->save.ds;
3586        hsave->save.gdtr   = vmcb->save.gdtr;
3587        hsave->save.idtr   = vmcb->save.idtr;
3588        hsave->save.efer   = svm->vcpu.arch.efer;
3589        hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3590        hsave->save.cr4    = svm->vcpu.arch.cr4;
3591        hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3592        hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3593        hsave->save.rsp    = vmcb->save.rsp;
3594        hsave->save.rax    = vmcb->save.rax;
3595        if (npt_enabled)
3596                hsave->save.cr3    = vmcb->save.cr3;
3597        else
3598                hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3599
3600        copy_vmcb_control_area(hsave, vmcb);
3601
3602        enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3603
3604        return true;
3605}
3606
3607static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3608{
3609        to_vmcb->save.fs = from_vmcb->save.fs;
3610        to_vmcb->save.gs = from_vmcb->save.gs;
3611        to_vmcb->save.tr = from_vmcb->save.tr;
3612        to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3613        to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3614        to_vmcb->save.star = from_vmcb->save.star;
3615        to_vmcb->save.lstar = from_vmcb->save.lstar;
3616        to_vmcb->save.cstar = from_vmcb->save.cstar;
3617        to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3618        to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3619        to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3620        to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3621}
3622
3623static int vmload_interception(struct vcpu_svm *svm)
3624{
3625        struct vmcb *nested_vmcb;
3626        struct page *page;
3627        int ret;
3628
3629        if (nested_svm_check_permissions(svm))
3630                return 1;
3631
3632        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3633        if (!nested_vmcb)
3634                return 1;
3635
3636        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3637        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3638
3639        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3640        nested_svm_unmap(page);
3641
3642        return ret;
3643}
3644
3645static int vmsave_interception(struct vcpu_svm *svm)
3646{
3647        struct vmcb *nested_vmcb;
3648        struct page *page;
3649        int ret;
3650
3651        if (nested_svm_check_permissions(svm))
3652                return 1;
3653
3654        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3655        if (!nested_vmcb)
3656                return 1;
3657
3658        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3659        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3660
3661        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3662        nested_svm_unmap(page);
3663
3664        return ret;
3665}
3666
3667static int vmrun_interception(struct vcpu_svm *svm)
3668{
3669        if (nested_svm_check_permissions(svm))
3670                return 1;
3671
3672        /* Save rip after vmrun instruction */
3673        kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3674
3675        if (!nested_svm_vmrun(svm))
3676                return 1;
3677
3678        if (!nested_svm_vmrun_msrpm(svm))
3679                goto failed;
3680
3681        return 1;
3682
3683failed:
3684
3685        svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3686        svm->vmcb->control.exit_code_hi = 0;
3687        svm->vmcb->control.exit_info_1  = 0;
3688        svm->vmcb->control.exit_info_2  = 0;
3689
3690        nested_svm_vmexit(svm);
3691
3692        return 1;
3693}
3694
3695static int stgi_interception(struct vcpu_svm *svm)
3696{
3697        int ret;
3698
3699        if (nested_svm_check_permissions(svm))
3700                return 1;
3701
3702        /*
3703         * If VGIF is enabled, the STGI intercept is only added to
3704         * detect the opening of the SMI/NMI window; remove it now.
3705         */
3706        if (vgif_enabled(svm))
3707                clr_intercept(svm, INTERCEPT_STGI);
3708
3709        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3710        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3711        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3712
3713        enable_gif(svm);
3714
3715        return ret;
3716}
3717
3718static int clgi_interception(struct vcpu_svm *svm)
3719{
3720        int ret;
3721
3722        if (nested_svm_check_permissions(svm))
3723                return 1;
3724
3725        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3726        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3727
3728        disable_gif(svm);
3729
3730        /* After a CLGI no interrupts should come */
3731        if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3732                svm_clear_vintr(svm);
3733                svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3734                mark_dirty(svm->vmcb, VMCB_INTR);
3735        }
3736
3737        return ret;
3738}
3739
3740static int invlpga_interception(struct vcpu_svm *svm)
3741{
3742        struct kvm_vcpu *vcpu = &svm->vcpu;
3743
3744        trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3745                          kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3746
3747        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3748        kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3749
3750        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3751        return kvm_skip_emulated_instruction(&svm->vcpu);
3752}
3753
3754static int skinit_interception(struct vcpu_svm *svm)
3755{
3756        trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3757
3758        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3759        return 1;
3760}
3761
3762static int wbinvd_interception(struct vcpu_svm *svm)
3763{
3764        return kvm_emulate_wbinvd(&svm->vcpu);
3765}
3766
3767static int xsetbv_interception(struct vcpu_svm *svm)
3768{
3769        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3770        u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3771
3772        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3773                svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3774                return kvm_skip_emulated_instruction(&svm->vcpu);
3775        }
3776
3777        return 1;
3778}
3779
3780static int task_switch_interception(struct vcpu_svm *svm)
3781{
3782        u16 tss_selector;
3783        int reason;
3784        int int_type = svm->vmcb->control.exit_int_info &
3785                SVM_EXITINTINFO_TYPE_MASK;
3786        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3787        uint32_t type =
3788                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3789        uint32_t idt_v =
3790                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3791        bool has_error_code = false;
3792        u32 error_code = 0;
3793
3794        tss_selector = (u16)svm->vmcb->control.exit_info_1;
3795
3796        if (svm->vmcb->control.exit_info_2 &
3797            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3798                reason = TASK_SWITCH_IRET;
3799        else if (svm->vmcb->control.exit_info_2 &
3800                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3801                reason = TASK_SWITCH_JMP;
3802        else if (idt_v)
3803                reason = TASK_SWITCH_GATE;
3804        else
3805                reason = TASK_SWITCH_CALL;
3806
3807        if (reason == TASK_SWITCH_GATE) {
3808                switch (type) {
3809                case SVM_EXITINTINFO_TYPE_NMI:
3810                        svm->vcpu.arch.nmi_injected = false;
3811                        break;
3812                case SVM_EXITINTINFO_TYPE_EXEPT:
3813                        if (svm->vmcb->control.exit_info_2 &
3814                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3815                                has_error_code = true;
3816                                error_code =
3817                                        (u32)svm->vmcb->control.exit_info_2;
3818                        }
3819                        kvm_clear_exception_queue(&svm->vcpu);
3820                        break;
3821                case SVM_EXITINTINFO_TYPE_INTR:
3822                        kvm_clear_interrupt_queue(&svm->vcpu);
3823                        break;
3824                default:
3825                        break;
3826                }
3827        }
3828
3829        if (reason != TASK_SWITCH_GATE ||
3830            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3831            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3832             (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3833                skip_emulated_instruction(&svm->vcpu);
3834
3835        if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3836                int_vec = -1;
3837
3838        if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3839                                has_error_code, error_code) == EMULATE_FAIL) {
3840                svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3841                svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3842                svm->vcpu.run->internal.ndata = 0;
3843                return 0;
3844        }
3845        return 1;
3846}
3847
3848static int cpuid_interception(struct vcpu_svm *svm)
3849{
3850        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3851        return kvm_emulate_cpuid(&svm->vcpu);
3852}
3853
3854static int iret_interception(struct vcpu_svm *svm)
3855{
3856        ++svm->vcpu.stat.nmi_window_exits;
3857        clr_intercept(svm, INTERCEPT_IRET);
3858        svm->vcpu.arch.hflags |= HF_IRET_MASK;
3859        svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3860        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3861        return 1;
3862}
3863
3864static int invlpg_interception(struct vcpu_svm *svm)
3865{
3866        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3867                return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3868
3869        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3870        return kvm_skip_emulated_instruction(&svm->vcpu);
3871}
3872
3873static int emulate_on_interception(struct vcpu_svm *svm)
3874{
3875        return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3876}
3877
3878static int rsm_interception(struct vcpu_svm *svm)
3879{
3880        return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3881                                        rsm_ins_bytes, 2) == EMULATE_DONE;
3882}
3883
3884static int rdpmc_interception(struct vcpu_svm *svm)
3885{
3886        int err;
3887
3888        if (!static_cpu_has(X86_FEATURE_NRIPS))
3889                return emulate_on_interception(svm);
3890
3891        err = kvm_rdpmc(&svm->vcpu);
3892        return kvm_complete_insn_gp(&svm->vcpu, err);
3893}
3894
3895static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3896                                            unsigned long val)
3897{
3898        unsigned long cr0 = svm->vcpu.arch.cr0;
3899        bool ret = false;
3900        u64 intercept;
3901
3902        intercept = svm->nested.intercept;
3903
3904        if (!is_guest_mode(&svm->vcpu) ||
3905            (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3906                return false;
3907
3908        cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3909        val &= ~SVM_CR0_SELECTIVE_MASK;
3910
3911        if (cr0 ^ val) {
3912                svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3913                ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3914        }
3915
3916        return ret;
3917}
3918
3919#define CR_VALID (1ULL << 63)
3920
3921static int cr_interception(struct vcpu_svm *svm)
3922{
3923        int reg, cr;
3924        unsigned long val;
3925        int err;
3926
3927        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3928                return emulate_on_interception(svm);
3929
3930        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3931                return emulate_on_interception(svm);
3932
3933        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3934        if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3935                cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3936        else
3937                cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3938
3939        err = 0;
3940        if (cr >= 16) { /* mov to cr */
3941                cr -= 16;
3942                val = kvm_register_read(&svm->vcpu, reg);
3943                switch (cr) {
3944                case 0:
3945                        if (!check_selective_cr0_intercepted(svm, val))
3946                                err = kvm_set_cr0(&svm->vcpu, val);
3947                        else
3948                                return 1;
3949
3950                        break;
3951                case 3:
3952                        err = kvm_set_cr3(&svm->vcpu, val);
3953                        break;
3954                case 4:
3955                        err = kvm_set_cr4(&svm->vcpu, val);
3956                        break;
3957                case 8:
3958                        err = kvm_set_cr8(&svm->vcpu, val);
3959                        break;
3960                default:
3961                        WARN(1, "unhandled write to CR%d", cr);
3962                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3963                        return 1;
3964                }
3965        } else { /* mov from cr */
3966                switch (cr) {
3967                case 0:
3968                        val = kvm_read_cr0(&svm->vcpu);
3969                        break;
3970                case 2:
3971                        val = svm->vcpu.arch.cr2;
3972                        break;
3973                case 3:
3974                        val = kvm_read_cr3(&svm->vcpu);
3975                        break;
3976                case 4:
3977                        val = kvm_read_cr4(&svm->vcpu);
3978                        break;
3979                case 8:
3980                        val = kvm_get_cr8(&svm->vcpu);
3981                        break;
3982                default:
3983                        WARN(1, "unhandled read from CR%d", cr);
3984                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3985                        return 1;
3986                }
3987                kvm_register_write(&svm->vcpu, reg, val);
3988        }
3989        return kvm_complete_insn_gp(&svm->vcpu, err);
3990}
3991
3992static int dr_interception(struct vcpu_svm *svm)
3993{
3994        int reg, dr;
3995        unsigned long val;
3996
3997        if (svm->vcpu.guest_debug == 0) {
3998                /*
3999                 * No more DR vmexits; force a reload of the debug registers
4000                 * and reenter on this instruction.  The next vmexit will
4001                 * retrieve the full state of the debug registers.
4002                 */
4003                clr_dr_intercepts(svm);
4004                svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4005                return 1;
4006        }
4007
4008        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4009                return emulate_on_interception(svm);
4010
4011        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4012        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4013
4014        if (dr >= 16) { /* mov to DRn */
4015                if (!kvm_require_dr(&svm->vcpu, dr - 16))
4016                        return 1;
4017                val = kvm_register_read(&svm->vcpu, reg);
4018                kvm_set_dr(&svm->vcpu, dr - 16, val);
4019        } else {
4020                if (!kvm_require_dr(&svm->vcpu, dr))
4021                        return 1;
4022                kvm_get_dr(&svm->vcpu, dr, &val);
4023                kvm_register_write(&svm->vcpu, reg, val);
4024        }
4025
4026        return kvm_skip_emulated_instruction(&svm->vcpu);
4027}
4028
4029static int cr8_write_interception(struct vcpu_svm *svm)
4030{
4031        struct kvm_run *kvm_run = svm->vcpu.run;
4032        int r;
4033
4034        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4035        /* instruction emulation calls kvm_set_cr8() */
4036        r = cr_interception(svm);
4037        if (lapic_in_kernel(&svm->vcpu))
4038                return r;
4039        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4040                return r;
4041        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4042        return 0;
4043}
4044
4045static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4046{
4047        msr->data = 0;
4048
4049        switch (msr->index) {
4050        case MSR_F10H_DECFG:
4051                if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4052                        msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4053                break;
4054        default:
4055                return 1;
4056        }
4057
4058        return 0;
4059}
4060
4061static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4062{
4063        struct vcpu_svm *svm = to_svm(vcpu);
4064
4065        switch (msr_info->index) {
4066        case MSR_STAR:
4067                msr_info->data = svm->vmcb->save.star;
4068                break;
4069#ifdef CONFIG_X86_64
4070        case MSR_LSTAR:
4071                msr_info->data = svm->vmcb->save.lstar;
4072                break;
4073        case MSR_CSTAR:
4074                msr_info->data = svm->vmcb->save.cstar;
4075                break;
4076        case MSR_KERNEL_GS_BASE:
4077                msr_info->data = svm->vmcb->save.kernel_gs_base;
4078                break;
4079        case MSR_SYSCALL_MASK:
4080                msr_info->data = svm->vmcb->save.sfmask;
4081                break;
4082#endif
4083        case MSR_IA32_SYSENTER_CS:
4084                msr_info->data = svm->vmcb->save.sysenter_cs;
4085                break;
4086        case MSR_IA32_SYSENTER_EIP:
4087                msr_info->data = svm->sysenter_eip;
4088                break;
4089        case MSR_IA32_SYSENTER_ESP:
4090                msr_info->data = svm->sysenter_esp;
4091                break;
4092        case MSR_TSC_AUX:
4093                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4094                        return 1;
4095                msr_info->data = svm->tsc_aux;
4096                break;
4097        /*
4098         * Nobody will change the following 5 values in the VMCB so we can
4099         * safely return them on rdmsr. They will always be 0 until LBRV is
4100         * implemented.
4101         */
4102        case MSR_IA32_DEBUGCTLMSR:
4103                msr_info->data = svm->vmcb->save.dbgctl;
4104                break;
4105        case MSR_IA32_LASTBRANCHFROMIP:
4106                msr_info->data = svm->vmcb->save.br_from;
4107                break;
4108        case MSR_IA32_LASTBRANCHTOIP:
4109                msr_info->data = svm->vmcb->save.br_to;
4110                break;
4111        case MSR_IA32_LASTINTFROMIP:
4112                msr_info->data = svm->vmcb->save.last_excp_from;
4113                break;
4114        case MSR_IA32_LASTINTTOIP:
4115                msr_info->data = svm->vmcb->save.last_excp_to;
4116                break;
4117        case MSR_VM_HSAVE_PA:
4118                msr_info->data = svm->nested.hsave_msr;
4119                break;
4120        case MSR_VM_CR:
4121                msr_info->data = svm->nested.vm_cr_msr;
4122                break;
4123        case MSR_IA32_SPEC_CTRL:
4124                if (!msr_info->host_initiated &&
4125                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4126                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4127                        return 1;
4128
4129                msr_info->data = svm->spec_ctrl;
4130                break;
4131        case MSR_AMD64_VIRT_SPEC_CTRL:
4132                if (!msr_info->host_initiated &&
4133                    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4134                        return 1;
4135
4136                msr_info->data = svm->virt_spec_ctrl;
4137                break;
4138        case MSR_F15H_IC_CFG: {
4139
4140                int family, model;
4141
4142                family = guest_cpuid_family(vcpu);
4143                model  = guest_cpuid_model(vcpu);
4144
4145                if (family < 0 || model < 0)
4146                        return kvm_get_msr_common(vcpu, msr_info);
4147
4148                msr_info->data = 0;
4149
4150                if (family == 0x15 &&
4151                    (model >= 0x2 && model < 0x20))
4152                        msr_info->data = 0x1E;
4153                }
4154                break;
4155        case MSR_F10H_DECFG:
4156                msr_info->data = svm->msr_decfg;
4157                break;
4158        default:
4159                return kvm_get_msr_common(vcpu, msr_info);
4160        }
4161        return 0;
4162}
4163
4164static int rdmsr_interception(struct vcpu_svm *svm)
4165{
4166        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4167        struct msr_data msr_info;
4168
4169        msr_info.index = ecx;
4170        msr_info.host_initiated = false;
4171        if (svm_get_msr(&svm->vcpu, &msr_info)) {
4172                trace_kvm_msr_read_ex(ecx);
4173                kvm_inject_gp(&svm->vcpu, 0);
4174                return 1;
4175        } else {
4176                trace_kvm_msr_read(ecx, msr_info.data);
4177
4178                kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4179                                   msr_info.data & 0xffffffff);
4180                kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4181                                   msr_info.data >> 32);
4182                svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4183                return kvm_skip_emulated_instruction(&svm->vcpu);
4184        }
4185}
4186
4187static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4188{
4189        struct vcpu_svm *svm = to_svm(vcpu);
4190        int svm_dis, chg_mask;
4191
4192        if (data & ~SVM_VM_CR_VALID_MASK)
4193                return 1;
4194
4195        chg_mask = SVM_VM_CR_VALID_MASK;
4196
4197        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4198                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4199
4200        svm->nested.vm_cr_msr &= ~chg_mask;
4201        svm->nested.vm_cr_msr |= (data & chg_mask);
4202
4203        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4204
4205        /* check for svm_disable while efer.svme is set */
4206        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4207                return 1;
4208
4209        return 0;
4210}
4211
4212static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4213{
4214        struct vcpu_svm *svm = to_svm(vcpu);
4215
4216        u32 ecx = msr->index;
4217        u64 data = msr->data;
4218        switch (ecx) {
4219        case MSR_IA32_CR_PAT:
4220                if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4221                        return 1;
4222                vcpu->arch.pat = data;
4223                svm->vmcb->save.g_pat = data;
4224                mark_dirty(svm->vmcb, VMCB_NPT);
4225                break;
4226        case MSR_IA32_SPEC_CTRL:
4227                if (!msr->host_initiated &&
4228                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4229                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4230                        return 1;
4231
4232                /* The STIBP bit doesn't fault even if it's not advertised */
4233                if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4234                        return 1;
4235
4236                svm->spec_ctrl = data;
4237
4238                if (!data)
4239                        break;
4240
4241                /*
4242                 * For non-nested:
4243                 * When it's written (to non-zero) for the first time, pass
4244                 * it through.
4245                 *
4246                 * For nested:
4247                 * The handling of the MSR bitmap for L2 guests is done in
4248                 * nested_svm_vmrun_msrpm.
4249                 * We update the L1 MSR bit as well since it will end up
4250                 * touching the MSR anyway now.
4251                 */
4252                set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4253                break;
4254        case MSR_IA32_PRED_CMD:
4255                if (!msr->host_initiated &&
4256                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4257                        return 1;
4258
4259                if (data & ~PRED_CMD_IBPB)
4260                        return 1;
4261
4262                if (!data)
4263                        break;
4264
4265                wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4266                if (is_guest_mode(vcpu))
4267                        break;
4268                set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4269                break;
4270        case MSR_AMD64_VIRT_SPEC_CTRL:
4271                if (!msr->host_initiated &&
4272                    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4273                        return 1;
4274
4275                if (data & ~SPEC_CTRL_SSBD)
4276                        return 1;
4277
4278                svm->virt_spec_ctrl = data;
4279                break;
4280        case MSR_STAR:
4281                svm->vmcb->save.star = data;
4282                break;
4283#ifdef CONFIG_X86_64
4284        case MSR_LSTAR:
4285                svm->vmcb->save.lstar = data;
4286                break;
4287        case MSR_CSTAR:
4288                svm->vmcb->save.cstar = data;
4289                break;
4290        case MSR_KERNEL_GS_BASE:
4291                svm->vmcb->save.kernel_gs_base = data;
4292                break;
4293        case MSR_SYSCALL_MASK:
4294                svm->vmcb->save.sfmask = data;
4295                break;
4296#endif
4297        case MSR_IA32_SYSENTER_CS:
4298                svm->vmcb->save.sysenter_cs = data;
4299                break;
4300        case MSR_IA32_SYSENTER_EIP:
4301                svm->sysenter_eip = data;
4302                svm->vmcb->save.sysenter_eip = data;
4303                break;
4304        case MSR_IA32_SYSENTER_ESP:
4305                svm->sysenter_esp = data;
4306                svm->vmcb->save.sysenter_esp = data;
4307                break;
4308        case MSR_TSC_AUX:
4309                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4310                        return 1;
4311
4312                /*
4313                 * This is rare, so we update the MSR here instead of using
4314                 * direct_access_msrs.  Doing that would require a rdmsr in
4315                 * svm_vcpu_put.
4316                 */
4317                svm->tsc_aux = data;
4318                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4319                break;
4320        case MSR_IA32_DEBUGCTLMSR:
4321                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4322                        vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4323                                    __func__, data);
4324                        break;
4325                }
4326                if (data & DEBUGCTL_RESERVED_BITS)
4327                        return 1;
4328
4329                svm->vmcb->save.dbgctl = data;
4330                mark_dirty(svm->vmcb, VMCB_LBR);
4331                if (data & (1ULL<<0))
4332                        svm_enable_lbrv(svm);
4333                else
4334                        svm_disable_lbrv(svm);
4335                break;
4336        case MSR_VM_HSAVE_PA:
4337                svm->nested.hsave_msr = data;
4338                break;
4339        case MSR_VM_CR:
4340                return svm_set_vm_cr(vcpu, data);
4341        case MSR_VM_IGNNE:
4342                vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4343                break;
4344        case MSR_F10H_DECFG: {
4345                struct kvm_msr_entry msr_entry;
4346
4347                msr_entry.index = msr->index;
4348                if (svm_get_msr_feature(&msr_entry))
4349                        return 1;
4350
4351                /* Check the supported bits */
4352                if (data & ~msr_entry.data)
4353                        return 1;
4354
4355                /* Don't allow the guest to change a bit, #GP */
4356                if (!msr->host_initiated && (data ^ msr_entry.data))
4357                        return 1;
4358
4359                svm->msr_decfg = data;
4360                break;
4361        }
4362        case MSR_IA32_APICBASE:
4363                if (kvm_vcpu_apicv_active(vcpu))
4364                        avic_update_vapic_bar(to_svm(vcpu), data);
4365                /* Follow through */
4366        default:
4367                return kvm_set_msr_common(vcpu, msr);
4368        }
4369        return 0;
4370}
4371
4372static int wrmsr_interception(struct vcpu_svm *svm)
4373{
4374        struct msr_data msr;
4375        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4376        u64 data = kvm_read_edx_eax(&svm->vcpu);
4377
4378        msr.data = data;
4379        msr.index = ecx;
4380        msr.host_initiated = false;
4381
4382        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4383        if (kvm_set_msr(&svm->vcpu, &msr)) {
4384                trace_kvm_msr_write_ex(ecx, data);
4385                kvm_inject_gp(&svm->vcpu, 0);
4386                return 1;
4387        } else {
4388                trace_kvm_msr_write(ecx, data);
4389                return kvm_skip_emulated_instruction(&svm->vcpu);
4390        }
4391}
4392
4393static int msr_interception(struct vcpu_svm *svm)
4394{
4395        if (svm->vmcb->control.exit_info_1)
4396                return wrmsr_interception(svm);
4397        else
4398                return rdmsr_interception(svm);
4399}
4400
4401static int interrupt_window_interception(struct vcpu_svm *svm)
4402{
4403        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4404        svm_clear_vintr(svm);
4405        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4406        mark_dirty(svm->vmcb, VMCB_INTR);
4407        ++svm->vcpu.stat.irq_window_exits;
4408        return 1;
4409}
4410
4411static int pause_interception(struct vcpu_svm *svm)
4412{
4413        struct kvm_vcpu *vcpu = &svm->vcpu;
4414        bool in_kernel = (svm_get_cpl(vcpu) == 0);
4415
4416        if (pause_filter_thresh)
4417                grow_ple_window(vcpu);
4418
4419        kvm_vcpu_on_spin(vcpu, in_kernel);
4420        return 1;
4421}
4422
4423static int nop_interception(struct vcpu_svm *svm)
4424{
4425        return kvm_skip_emulated_instruction(&(svm->vcpu));
4426}
4427
4428static int monitor_interception(struct vcpu_svm *svm)
4429{
4430        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4431        return nop_interception(svm);
4432}
4433
4434static int mwait_interception(struct vcpu_svm *svm)
4435{
4436        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4437        return nop_interception(svm);
4438}
4439
4440enum avic_ipi_failure_cause {
4441        AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4442        AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4443        AVIC_IPI_FAILURE_INVALID_TARGET,
4444        AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4445};
4446
4447static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4448{
4449        u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4450        u32 icrl = svm->vmcb->control.exit_info_1;
4451        u32 id = svm->vmcb->control.exit_info_2 >> 32;
4452        u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4453        struct kvm_lapic *apic = svm->vcpu.arch.apic;
4454
4455        trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4456
4457        switch (id) {
4458        case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4459                /*
4460                 * AVIC hardware handles the generation of
4461                 * IPIs when the specified Message Type is Fixed
4462                 * (also known as fixed delivery mode) and
4463                 * the Trigger Mode is edge-triggered. The hardware
4464                 * also supports self and broadcast delivery modes
4465                 * specified via the Destination Shorthand(DSH)
4466                 * field of the ICRL. Logical and physical APIC ID
4467                 * formats are supported. All other IPI types cause
4468                 * a #VMEXIT, which needs to emulated.
4469                 */
4470                kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4471                kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4472                break;
4473        case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4474                int i;
4475                struct kvm_vcpu *vcpu;
4476                struct kvm *kvm = svm->vcpu.kvm;
4477                struct kvm_lapic *apic = svm->vcpu.arch.apic;
4478
4479                /*
4480                 * At this point, we expect that the AVIC HW has already
4481                 * set the appropriate IRR bits on the valid target
4482                 * vcpus. So, we just need to kick the appropriate vcpu.
4483                 */
4484                kvm_for_each_vcpu(i, vcpu, kvm) {
4485                        bool m = kvm_apic_match_dest(vcpu, apic,
4486                                                     icrl & KVM_APIC_SHORT_MASK,
4487                                                     GET_APIC_DEST_FIELD(icrh),
4488                                                     icrl & KVM_APIC_DEST_MASK);
4489
4490                        if (m && !avic_vcpu_is_running(vcpu))
4491                                kvm_vcpu_wake_up(vcpu);
4492                }
4493                break;
4494        }
4495        case AVIC_IPI_FAILURE_INVALID_TARGET:
4496                break;
4497        case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4498                WARN_ONCE(1, "Invalid backing page\n");
4499                break;
4500        default:
4501                pr_err("Unknown IPI interception\n");
4502        }
4503
4504        return 1;
4505}
4506
4507static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4508{
4509        struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4510        int index;
4511        u32 *logical_apic_id_table;
4512        int dlid = GET_APIC_LOGICAL_ID(ldr);
4513
4514        if (!dlid)
4515                return NULL;
4516
4517        if (flat) { /* flat */
4518                index = ffs(dlid) - 1;
4519                if (index > 7)
4520                        return NULL;
4521        } else { /* cluster */
4522                int cluster = (dlid & 0xf0) >> 4;
4523                int apic = ffs(dlid & 0x0f) - 1;
4524
4525                if ((apic < 0) || (apic > 7) ||
4526                    (cluster >= 0xf))
4527                        return NULL;
4528                index = (cluster << 2) + apic;
4529        }
4530
4531        logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4532
4533        return &logical_apic_id_table[index];
4534}
4535
4536static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4537                          bool valid)
4538{
4539        bool flat;
4540        u32 *entry, new_entry;
4541
4542        flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4543        entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4544        if (!entry)
4545                return -EINVAL;
4546
4547        new_entry = READ_ONCE(*entry);
4548        new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4549        new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4550        if (valid)
4551                new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4552        else
4553                new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4554        WRITE_ONCE(*entry, new_entry);
4555
4556        return 0;
4557}
4558
4559static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4560{
4561        int ret;
4562        struct vcpu_svm *svm = to_svm(vcpu);
4563        u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4564
4565        if (!ldr)
4566                return 1;
4567
4568        ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4569        if (ret && svm->ldr_reg) {
4570                avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4571                svm->ldr_reg = 0;
4572        } else {
4573                svm->ldr_reg = ldr;
4574        }
4575        return ret;
4576}
4577
4578static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4579{
4580        u64 *old, *new;
4581        struct vcpu_svm *svm = to_svm(vcpu);
4582        u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4583        u32 id = (apic_id_reg >> 24) & 0xff;
4584
4585        if (vcpu->vcpu_id == id)
4586                return 0;
4587
4588        old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4589        new = avic_get_physical_id_entry(vcpu, id);
4590        if (!new || !old)
4591                return 1;
4592
4593        /* We need to move physical_id_entry to new offset */
4594        *new = *old;
4595        *old = 0ULL;
4596        to_svm(vcpu)->avic_physical_id_cache = new;
4597
4598        /*
4599         * Also update the guest physical APIC ID in the logical
4600         * APIC ID table entry if already setup the LDR.
4601         */
4602        if (svm->ldr_reg)
4603                avic_handle_ldr_update(vcpu);
4604
4605        return 0;
4606}
4607
4608static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4609{
4610        struct vcpu_svm *svm = to_svm(vcpu);
4611        struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4612        u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4613        u32 mod = (dfr >> 28) & 0xf;
4614
4615        /*
4616         * We assume that all local APICs are using the same type.
4617         * If this changes, we need to flush the AVIC logical
4618         * APID id table.
4619         */
4620        if (kvm_svm->ldr_mode == mod)
4621                return 0;
4622
4623        clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4624        kvm_svm->ldr_mode = mod;
4625
4626        if (svm->ldr_reg)
4627                avic_handle_ldr_update(vcpu);
4628        return 0;
4629}
4630
4631static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4632{
4633        struct kvm_lapic *apic = svm->vcpu.arch.apic;
4634        u32 offset = svm->vmcb->control.exit_info_1 &
4635                                AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4636
4637        switch (offset) {
4638        case APIC_ID:
4639                if (avic_handle_apic_id_update(&svm->vcpu))
4640                        return 0;
4641                break;
4642        case APIC_LDR:
4643                if (avic_handle_ldr_update(&svm->vcpu))
4644                        return 0;
4645                break;
4646        case APIC_DFR:
4647                avic_handle_dfr_update(&svm->vcpu);
4648                break;
4649        default:
4650                break;
4651        }
4652
4653        kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4654
4655        return 1;
4656}
4657
4658static bool is_avic_unaccelerated_access_trap(u32 offset)
4659{
4660        bool ret = false;
4661
4662        switch (offset) {
4663        case APIC_ID:
4664        case APIC_EOI:
4665        case APIC_RRR:
4666        case APIC_LDR:
4667        case APIC_DFR:
4668        case APIC_SPIV:
4669        case APIC_ESR:
4670        case APIC_ICR:
4671        case APIC_LVTT:
4672        case APIC_LVTTHMR:
4673        case APIC_LVTPC:
4674        case APIC_LVT0:
4675        case APIC_LVT1:
4676        case APIC_LVTERR:
4677        case APIC_TMICT:
4678        case APIC_TDCR:
4679                ret = true;
4680                break;
4681        default:
4682                break;
4683        }
4684        return ret;
4685}
4686
4687static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4688{
4689        int ret = 0;
4690        u32 offset = svm->vmcb->control.exit_info_1 &
4691                     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4692        u32 vector = svm->vmcb->control.exit_info_2 &
4693                     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4694        bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4695                     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4696        bool trap = is_avic_unaccelerated_access_trap(offset);
4697
4698        trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4699                                            trap, write, vector);
4700        if (trap) {
4701                /* Handling Trap */
4702                WARN_ONCE(!write, "svm: Handling trap read.\n");
4703                ret = avic_unaccel_trap_write(svm);
4704        } else {
4705                /* Handling Fault */
4706                ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4707        }
4708
4709        return ret;
4710}
4711
4712static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4713        [SVM_EXIT_READ_CR0]                     = cr_interception,
4714        [SVM_EXIT_READ_CR3]                     = cr_interception,
4715        [SVM_EXIT_READ_CR4]                     = cr_interception,
4716        [SVM_EXIT_READ_CR8]                     = cr_interception,
4717        [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4718        [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4719        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4720        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4721        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4722        [SVM_EXIT_READ_DR0]                     = dr_interception,
4723        [SVM_EXIT_READ_DR1]                     = dr_interception,
4724        [SVM_EXIT_READ_DR2]                     = dr_interception,
4725        [SVM_EXIT_READ_DR3]                     = dr_interception,
4726        [SVM_EXIT_READ_DR4]                     = dr_interception,
4727        [SVM_EXIT_READ_DR5]                     = dr_interception,
4728        [SVM_EXIT_READ_DR6]                     = dr_interception,
4729        [SVM_EXIT_READ_DR7]                     = dr_interception,
4730        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4731        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4732        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4733        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4734        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4735        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4736        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4737        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4738        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4739        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4740        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4741        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4742        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4743        [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4744        [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
4745        [SVM_EXIT_INTR]                         = intr_interception,
4746        [SVM_EXIT_NMI]                          = nmi_interception,
4747        [SVM_EXIT_SMI]                          = nop_on_interception,
4748        [SVM_EXIT_INIT]                         = nop_on_interception,
4749        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4750        [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4751        [SVM_EXIT_CPUID]                        = cpuid_interception,
4752        [SVM_EXIT_IRET]                         = iret_interception,
4753        [SVM_EXIT_INVD]                         = emulate_on_interception,
4754        [SVM_EXIT_PAUSE]                        = pause_interception,
4755        [SVM_EXIT_HLT]                          = halt_interception,
4756        [SVM_EXIT_INVLPG]                       = invlpg_interception,
4757        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4758        [SVM_EXIT_IOIO]                         = io_interception,
4759        [SVM_EXIT_MSR]                          = msr_interception,
4760        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4761        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4762        [SVM_EXIT_VMRUN]                        = vmrun_interception,
4763        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4764        [SVM_EXIT_VMLOAD]                       = vmload_interception,
4765        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4766        [SVM_EXIT_STGI]                         = stgi_interception,
4767        [SVM_EXIT_CLGI]                         = clgi_interception,
4768        [SVM_EXIT_SKINIT]                       = skinit_interception,
4769        [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4770        [SVM_EXIT_MONITOR]                      = monitor_interception,
4771        [SVM_EXIT_MWAIT]                        = mwait_interception,
4772        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4773        [SVM_EXIT_NPF]                          = npf_interception,
4774        [SVM_EXIT_RSM]                          = rsm_interception,
4775        [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4776        [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4777};
4778
4779static void dump_vmcb(struct kvm_vcpu *vcpu)
4780{
4781        struct vcpu_svm *svm = to_svm(vcpu);
4782        struct vmcb_control_area *control = &svm->vmcb->control;
4783        struct vmcb_save_area *save = &svm->vmcb->save;
4784
4785        pr_err("VMCB Control Area:\n");
4786        pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4787        pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4788        pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4789        pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4790        pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4791        pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4792        pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4793        pr_err("%-20s%d\n", "pause filter threshold:",
4794               control->pause_filter_thresh);
4795        pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4796        pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4797        pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4798        pr_err("%-20s%d\n", "asid:", control->asid);
4799        pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4800        pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4801        pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4802        pr_err("%-20s%08x\n", "int_state:", control->int_state);
4803        pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4804        pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4805        pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4806        pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4807        pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4808        pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4809        pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4810        pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4811        pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4812        pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4813        pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4814        pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4815        pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4816        pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4817        pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4818        pr_err("VMCB State Save Area:\n");
4819        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4820               "es:",
4821               save->es.selector, save->es.attrib,
4822               save->es.limit, save->es.base);
4823        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4824               "cs:",
4825               save->cs.selector, save->cs.attrib,
4826               save->cs.limit, save->cs.base);
4827        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4828               "ss:",
4829               save->ss.selector, save->ss.attrib,
4830               save->ss.limit, save->ss.base);
4831        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4832               "ds:",
4833               save->ds.selector, save->ds.attrib,
4834               save->ds.limit, save->ds.base);
4835        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4836               "fs:",
4837               save->fs.selector, save->fs.attrib,
4838               save->fs.limit, save->fs.base);
4839        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4840               "gs:",
4841               save->gs.selector, save->gs.attrib,
4842               save->gs.limit, save->gs.base);
4843        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4844               "gdtr:",
4845               save->gdtr.selector, save->gdtr.attrib,
4846               save->gdtr.limit, save->gdtr.base);
4847        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4848               "ldtr:",
4849               save->ldtr.selector, save->ldtr.attrib,
4850               save->ldtr.limit, save->ldtr.base);
4851        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852               "idtr:",
4853               save->idtr.selector, save->idtr.attrib,
4854               save->idtr.limit, save->idtr.base);
4855        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4856               "tr:",
4857               save->tr.selector, save->tr.attrib,
4858               save->tr.limit, save->tr.base);
4859        pr_err("cpl:            %d                efer:         %016llx\n",
4860                save->cpl, save->efer);
4861        pr_err("%-15s %016llx %-13s %016llx\n",
4862               "cr0:", save->cr0, "cr2:", save->cr2);
4863        pr_err("%-15s %016llx %-13s %016llx\n",
4864               "cr3:", save->cr3, "cr4:", save->cr4);
4865        pr_err("%-15s %016llx %-13s %016llx\n",
4866               "dr6:", save->dr6, "dr7:", save->dr7);
4867        pr_err("%-15s %016llx %-13s %016llx\n",
4868               "rip:", save->rip, "rflags:", save->rflags);
4869        pr_err("%-15s %016llx %-13s %016llx\n",
4870               "rsp:", save->rsp, "rax:", save->rax);
4871        pr_err("%-15s %016llx %-13s %016llx\n",
4872               "star:", save->star, "lstar:", save->lstar);
4873        pr_err("%-15s %016llx %-13s %016llx\n",
4874               "cstar:", save->cstar, "sfmask:", save->sfmask);
4875        pr_err("%-15s %016llx %-13s %016llx\n",
4876               "kernel_gs_base:", save->kernel_gs_base,
4877               "sysenter_cs:", save->sysenter_cs);
4878        pr_err("%-15s %016llx %-13s %016llx\n",
4879               "sysenter_esp:", save->sysenter_esp,
4880               "sysenter_eip:", save->sysenter_eip);
4881        pr_err("%-15s %016llx %-13s %016llx\n",
4882               "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4883        pr_err("%-15s %016llx %-13s %016llx\n",
4884               "br_from:", save->br_from, "br_to:", save->br_to);
4885        pr_err("%-15s %016llx %-13s %016llx\n",
4886               "excp_from:", save->last_excp_from,
4887               "excp_to:", save->last_excp_to);
4888}
4889
4890static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4891{
4892        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4893
4894        *info1 = control->exit_info_1;
4895        *info2 = control->exit_info_2;
4896}
4897
4898static int handle_exit(struct kvm_vcpu *vcpu)
4899{
4900        struct vcpu_svm *svm = to_svm(vcpu);
4901        struct kvm_run *kvm_run = vcpu->run;
4902        u32 exit_code = svm->vmcb->control.exit_code;
4903
4904        trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4905
4906        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4907                vcpu->arch.cr0 = svm->vmcb->save.cr0;
4908        if (npt_enabled)
4909                vcpu->arch.cr3 = svm->vmcb->save.cr3;
4910
4911        if (unlikely(svm->nested.exit_required)) {
4912                nested_svm_vmexit(svm);
4913                svm->nested.exit_required = false;
4914
4915                return 1;
4916        }
4917
4918        if (is_guest_mode(vcpu)) {
4919                int vmexit;
4920
4921                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4922                                        svm->vmcb->control.exit_info_1,
4923                                        svm->vmcb->control.exit_info_2,
4924                                        svm->vmcb->control.exit_int_info,
4925                                        svm->vmcb->control.exit_int_info_err,
4926                                        KVM_ISA_SVM);
4927
4928                vmexit = nested_svm_exit_special(svm);
4929
4930                if (vmexit == NESTED_EXIT_CONTINUE)
4931                        vmexit = nested_svm_exit_handled(svm);
4932
4933                if (vmexit == NESTED_EXIT_DONE)
4934                        return 1;
4935        }
4936
4937        svm_complete_interrupts(svm);
4938
4939        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4940                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4941                kvm_run->fail_entry.hardware_entry_failure_reason
4942                        = svm->vmcb->control.exit_code;
4943                pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4944                dump_vmcb(vcpu);
4945                return 0;
4946        }
4947
4948        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4949            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4950            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4951            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4952                printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4953                       "exit_code 0x%x\n",
4954                       __func__, svm->vmcb->control.exit_int_info,
4955                       exit_code);
4956
4957        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4958            || !svm_exit_handlers[exit_code]) {
4959                WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4960                kvm_queue_exception(vcpu, UD_VECTOR);
4961                return 1;
4962        }
4963
4964        return svm_exit_handlers[exit_code](svm);
4965}
4966
4967static void reload_tss(struct kvm_vcpu *vcpu)
4968{
4969        int cpu = raw_smp_processor_id();
4970
4971        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4972        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4973        load_TR_desc();
4974}
4975
4976static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4977{
4978        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4979        int asid = sev_get_asid(svm->vcpu.kvm);
4980
4981        /* Assign the asid allocated with this SEV guest */
4982        svm->vmcb->control.asid = asid;
4983
4984        /*
4985         * Flush guest TLB:
4986         *
4987         * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4988         * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4989         */
4990        if (sd->sev_vmcbs[asid] == svm->vmcb &&
4991            svm->last_cpu == cpu)
4992                return;
4993
4994        svm->last_cpu = cpu;
4995        sd->sev_vmcbs[asid] = svm->vmcb;
4996        svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4997        mark_dirty(svm->vmcb, VMCB_ASID);
4998}
4999
5000static void pre_svm_run(struct vcpu_svm *svm)
5001{
5002        int cpu = raw_smp_processor_id();
5003
5004        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5005
5006        if (sev_guest(svm->vcpu.kvm))
5007                return pre_sev_run(svm, cpu);
5008
5009        /* FIXME: handle wraparound of asid_generation */
5010        if (svm->asid_generation != sd->asid_generation)
5011                new_asid(svm, sd);
5012}
5013
5014static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5015{
5016        struct vcpu_svm *svm = to_svm(vcpu);
5017
5018        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5019        vcpu->arch.hflags |= HF_NMI_MASK;
5020        set_intercept(svm, INTERCEPT_IRET);
5021        ++vcpu->stat.nmi_injections;
5022}
5023
5024static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5025{
5026        struct vmcb_control_area *control;
5027
5028        /* The following fields are ignored when AVIC is enabled */
5029        control = &svm->vmcb->control;
5030        control->int_vector = irq;
5031        control->int_ctl &= ~V_INTR_PRIO_MASK;
5032        control->int_ctl |= V_IRQ_MASK |
5033                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5034        mark_dirty(svm->vmcb, VMCB_INTR);
5035}
5036
5037static void svm_set_irq(struct kvm_vcpu *vcpu)
5038{
5039        struct vcpu_svm *svm = to_svm(vcpu);
5040
5041        BUG_ON(!(gif_set(svm)));
5042
5043        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5044        ++vcpu->stat.irq_injections;
5045
5046        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5047                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5048}
5049
5050static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5051{
5052        return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5053}
5054
5055static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5056{
5057        struct vcpu_svm *svm = to_svm(vcpu);
5058
5059        if (svm_nested_virtualize_tpr(vcpu) ||
5060            kvm_vcpu_apicv_active(vcpu))
5061                return;
5062
5063        clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5064
5065        if (irr == -1)
5066                return;
5067
5068        if (tpr >= irr)
5069                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5070}
5071
5072static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5073{
5074        return;
5075}
5076
5077static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5078{
5079        return avic && irqchip_split(vcpu->kvm);
5080}
5081
5082static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5083{
5084}
5085
5086static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5087{
5088}
5089
5090/* Note: Currently only used by Hyper-V. */
5091static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5092{
5093        struct vcpu_svm *svm = to_svm(vcpu);
5094        struct vmcb *vmcb = svm->vmcb;
5095
5096        if (!kvm_vcpu_apicv_active(&svm->vcpu))
5097                return;
5098
5099        vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5100        mark_dirty(vmcb, VMCB_INTR);
5101}
5102
5103static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5104{
5105        return;
5106}
5107
5108static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5109{
5110        kvm_lapic_set_irr(vec, vcpu->arch.apic);
5111        smp_mb__after_atomic();
5112
5113        if (avic_vcpu_is_running(vcpu))
5114                wrmsrl(SVM_AVIC_DOORBELL,
5115                       kvm_cpu_get_apicid(vcpu->cpu));
5116        else
5117                kvm_vcpu_wake_up(vcpu);
5118}
5119
5120static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5121{
5122        unsigned long flags;
5123        struct amd_svm_iommu_ir *cur;
5124
5125        spin_lock_irqsave(&svm->ir_list_lock, flags);
5126        list_for_each_entry(cur, &svm->ir_list, node) {
5127                if (cur->data != pi->ir_data)
5128                        continue;
5129                list_del(&cur->node);
5130                kfree(cur);
5131                break;
5132        }
5133        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5134}
5135
5136static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5137{
5138        int ret = 0;
5139        unsigned long flags;
5140        struct amd_svm_iommu_ir *ir;
5141
5142        /**
5143         * In some cases, the existing irte is updaed and re-set,
5144         * so we need to check here if it's already been * added
5145         * to the ir_list.
5146         */
5147        if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5148                struct kvm *kvm = svm->vcpu.kvm;
5149                u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5150                struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5151                struct vcpu_svm *prev_svm;
5152
5153                if (!prev_vcpu) {
5154                        ret = -EINVAL;
5155                        goto out;
5156                }
5157
5158                prev_svm = to_svm(prev_vcpu);
5159                svm_ir_list_del(prev_svm, pi);
5160        }
5161
5162        /**
5163         * Allocating new amd_iommu_pi_data, which will get
5164         * add to the per-vcpu ir_list.
5165         */
5166        ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5167        if (!ir) {
5168                ret = -ENOMEM;
5169                goto out;
5170        }
5171        ir->data = pi->ir_data;
5172
5173        spin_lock_irqsave(&svm->ir_list_lock, flags);
5174        list_add(&ir->node, &svm->ir_list);
5175        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5176out:
5177        return ret;
5178}
5179
5180/**
5181 * Note:
5182 * The HW cannot support posting multicast/broadcast
5183 * interrupts to a vCPU. So, we still use legacy interrupt
5184 * remapping for these kind of interrupts.
5185 *
5186 * For lowest-priority interrupts, we only support
5187 * those with single CPU as the destination, e.g. user
5188 * configures the interrupts via /proc/irq or uses
5189 * irqbalance to make the interrupts single-CPU.
5190 */
5191static int
5192get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5193                 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5194{
5195        struct kvm_lapic_irq irq;
5196        struct kvm_vcpu *vcpu = NULL;
5197
5198        kvm_set_msi_irq(kvm, e, &irq);
5199
5200        if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5201                pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5202                         __func__, irq.vector);
5203                return -1;
5204        }
5205
5206        pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5207                 irq.vector);
5208        *svm = to_svm(vcpu);
5209        vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5210        vcpu_info->vector = irq.vector;
5211
5212        return 0;
5213}
5214
5215/*
5216 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5217 *
5218 * @kvm: kvm
5219 * @host_irq: host irq of the interrupt
5220 * @guest_irq: gsi of the interrupt
5221 * @set: set or unset PI
5222 * returns 0 on success, < 0 on failure
5223 */
5224static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5225                              uint32_t guest_irq, bool set)
5226{
5227        struct kvm_kernel_irq_routing_entry *e;
5228        struct kvm_irq_routing_table *irq_rt;
5229        int idx, ret = -EINVAL;
5230
5231        if (!kvm_arch_has_assigned_device(kvm) ||
5232            !irq_remapping_cap(IRQ_POSTING_CAP))
5233                return 0;
5234
5235        pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5236                 __func__, host_irq, guest_irq, set);
5237
5238        idx = srcu_read_lock(&kvm->irq_srcu);
5239        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5240        WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5241
5242        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5243                struct vcpu_data vcpu_info;
5244                struct vcpu_svm *svm = NULL;
5245
5246                if (e->type != KVM_IRQ_ROUTING_MSI)
5247                        continue;
5248
5249                /**
5250                 * Here, we setup with legacy mode in the following cases:
5251                 * 1. When cannot target interrupt to a specific vcpu.
5252                 * 2. Unsetting posted interrupt.
5253                 * 3. APIC virtialization is disabled for the vcpu.
5254                 */
5255                if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5256                    kvm_vcpu_apicv_active(&svm->vcpu)) {
5257                        struct amd_iommu_pi_data pi;
5258
5259                        /* Try to enable guest_mode in IRTE */
5260                        pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5261                                            AVIC_HPA_MASK);
5262                        pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5263                                                     svm->vcpu.vcpu_id);
5264                        pi.is_guest_mode = true;
5265                        pi.vcpu_data = &vcpu_info;
5266                        ret = irq_set_vcpu_affinity(host_irq, &pi);
5267
5268                        /**
5269                         * Here, we successfully setting up vcpu affinity in
5270                         * IOMMU guest mode. Now, we need to store the posted
5271                         * interrupt information in a per-vcpu ir_list so that
5272                         * we can reference to them directly when we update vcpu
5273                         * scheduling information in IOMMU irte.
5274                         */
5275                        if (!ret && pi.is_guest_mode)
5276                                svm_ir_list_add(svm, &pi);
5277                } else {
5278                        /* Use legacy mode in IRTE */
5279                        struct amd_iommu_pi_data pi;
5280
5281                        /**
5282                         * Here, pi is used to:
5283                         * - Tell IOMMU to use legacy mode for this interrupt.
5284                         * - Retrieve ga_tag of prior interrupt remapping data.
5285                         */
5286                        pi.is_guest_mode = false;
5287                        ret = irq_set_vcpu_affinity(host_irq, &pi);
5288
5289                        /**
5290                         * Check if the posted interrupt was previously
5291                         * setup with the guest_mode by checking if the ga_tag
5292                         * was cached. If so, we need to clean up the per-vcpu
5293                         * ir_list.
5294                         */
5295                        if (!ret && pi.prev_ga_tag) {
5296                                int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5297                                struct kvm_vcpu *vcpu;
5298
5299                                vcpu = kvm_get_vcpu_by_id(kvm, id);
5300                                if (vcpu)
5301                                        svm_ir_list_del(to_svm(vcpu), &pi);
5302                        }
5303                }
5304
5305                if (!ret && svm) {
5306                        trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5307                                                 e->gsi, vcpu_info.vector,
5308                                                 vcpu_info.pi_desc_addr, set);
5309                }
5310
5311                if (ret < 0) {
5312                        pr_err("%s: failed to update PI IRTE\n", __func__);
5313                        goto out;
5314                }
5315        }
5316
5317        ret = 0;
5318out:
5319        srcu_read_unlock(&kvm->irq_srcu, idx);
5320        return ret;
5321}
5322
5323static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5324{
5325        struct vcpu_svm *svm = to_svm(vcpu);
5326        struct vmcb *vmcb = svm->vmcb;
5327        int ret;
5328        ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5329              !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5330        ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5331
5332        return ret;
5333}
5334
5335static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5336{
5337        struct vcpu_svm *svm = to_svm(vcpu);
5338
5339        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5340}
5341
5342static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5343{
5344        struct vcpu_svm *svm = to_svm(vcpu);
5345
5346        if (masked) {
5347                svm->vcpu.arch.hflags |= HF_NMI_MASK;
5348                set_intercept(svm, INTERCEPT_IRET);
5349        } else {
5350                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5351                clr_intercept(svm, INTERCEPT_IRET);
5352        }
5353}
5354
5355static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5356{
5357        struct vcpu_svm *svm = to_svm(vcpu);
5358        struct vmcb *vmcb = svm->vmcb;
5359        int ret;
5360
5361        if (!gif_set(svm) ||
5362             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5363                return 0;
5364
5365        ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5366
5367        if (is_guest_mode(vcpu))
5368                return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5369
5370        return ret;
5371}
5372
5373static void enable_irq_window(struct kvm_vcpu *vcpu)
5374{
5375        struct vcpu_svm *svm = to_svm(vcpu);
5376
5377        if (kvm_vcpu_apicv_active(vcpu))
5378                return;
5379
5380        /*
5381         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5382         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5383         * get that intercept, this function will be called again though and
5384         * we'll get the vintr intercept. However, if the vGIF feature is
5385         * enabled, the STGI interception will not occur. Enable the irq
5386         * window under the assumption that the hardware will set the GIF.
5387         */
5388        if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5389                svm_set_vintr(svm);
5390                svm_inject_irq(svm, 0x0);
5391        }
5392}
5393
5394static void enable_nmi_window(struct kvm_vcpu *vcpu)
5395{
5396        struct vcpu_svm *svm = to_svm(vcpu);
5397
5398        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5399            == HF_NMI_MASK)
5400                return; /* IRET will cause a vm exit */
5401
5402        if (!gif_set(svm)) {
5403                if (vgif_enabled(svm))
5404                        set_intercept(svm, INTERCEPT_STGI);
5405                return; /* STGI will cause a vm exit */
5406        }
5407
5408        if (svm->nested.exit_required)
5409                return; /* we're not going to run the guest yet */
5410
5411        /*
5412         * Something prevents NMI from been injected. Single step over possible
5413         * problem (IRET or exception injection or interrupt shadow)
5414         */
5415        svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5416        svm->nmi_singlestep = true;
5417        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5418}
5419
5420static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5421{
5422        return 0;
5423}
5424
5425static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5426{
5427        return 0;
5428}
5429
5430static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5431{
5432        struct vcpu_svm *svm = to_svm(vcpu);
5433
5434        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5435                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5436        else
5437                svm->asid_generation--;
5438}
5439
5440static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5441{
5442        struct vcpu_svm *svm = to_svm(vcpu);
5443
5444        invlpga(gva, svm->vmcb->control.asid);
5445}
5446
5447static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5448{
5449}
5450
5451static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5452{
5453        struct vcpu_svm *svm = to_svm(vcpu);
5454
5455        if (svm_nested_virtualize_tpr(vcpu))
5456                return;
5457
5458        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5459                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5460                kvm_set_cr8(vcpu, cr8);
5461        }
5462}
5463
5464static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5465{
5466        struct vcpu_svm *svm = to_svm(vcpu);
5467        u64 cr8;
5468
5469        if (svm_nested_virtualize_tpr(vcpu) ||
5470            kvm_vcpu_apicv_active(vcpu))
5471                return;
5472
5473        cr8 = kvm_get_cr8(vcpu);
5474        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5475        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5476}
5477
5478static void svm_complete_interrupts(struct vcpu_svm *svm)
5479{
5480        u8 vector;
5481        int type;
5482        u32 exitintinfo = svm->vmcb->control.exit_int_info;
5483        unsigned int3_injected = svm->int3_injected;
5484
5485        svm->int3_injected = 0;
5486
5487        /*
5488         * If we've made progress since setting HF_IRET_MASK, we've
5489         * executed an IRET and can allow NMI injection.
5490         */
5491        if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5492            && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5493                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5494                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5495        }
5496
5497        svm->vcpu.arch.nmi_injected = false;
5498        kvm_clear_exception_queue(&svm->vcpu);
5499        kvm_clear_interrupt_queue(&svm->vcpu);
5500
5501        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5502                return;
5503
5504        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5505
5506        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5507        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5508
5509        switch (type) {
5510        case SVM_EXITINTINFO_TYPE_NMI:
5511                svm->vcpu.arch.nmi_injected = true;
5512                break;
5513        case SVM_EXITINTINFO_TYPE_EXEPT:
5514                /*
5515                 * In case of software exceptions, do not reinject the vector,
5516                 * but re-execute the instruction instead. Rewind RIP first
5517                 * if we emulated INT3 before.
5518                 */
5519                if (kvm_exception_is_soft(vector)) {
5520                        if (vector == BP_VECTOR && int3_injected &&
5521                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5522                                kvm_rip_write(&svm->vcpu,
5523                                              kvm_rip_read(&svm->vcpu) -
5524                                              int3_injected);
5525                        break;
5526                }
5527                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5528                        u32 err = svm->vmcb->control.exit_int_info_err;
5529                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
5530
5531                } else
5532                        kvm_requeue_exception(&svm->vcpu, vector);
5533                break;
5534        case SVM_EXITINTINFO_TYPE_INTR:
5535                kvm_queue_interrupt(&svm->vcpu, vector, false);
5536                break;
5537        default:
5538                break;
5539        }
5540}
5541
5542static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5543{
5544        struct vcpu_svm *svm = to_svm(vcpu);
5545        struct vmcb_control_area *control = &svm->vmcb->control;
5546
5547        control->exit_int_info = control->event_inj;
5548        control->exit_int_info_err = control->event_inj_err;
5549        control->event_inj = 0;
5550        svm_complete_interrupts(svm);
5551}
5552
5553static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5554{
5555        struct vcpu_svm *svm = to_svm(vcpu);
5556
5557        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5558        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5559        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5560
5561        /*
5562         * A vmexit emulation is required before the vcpu can be executed
5563         * again.
5564         */
5565        if (unlikely(svm->nested.exit_required))
5566                return;
5567
5568        /*
5569         * Disable singlestep if we're injecting an interrupt/exception.
5570         * We don't want our modified rflags to be pushed on the stack where
5571         * we might not be able to easily reset them if we disabled NMI
5572         * singlestep later.
5573         */
5574        if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5575                /*
5576                 * Event injection happens before external interrupts cause a
5577                 * vmexit and interrupts are disabled here, so smp_send_reschedule
5578                 * is enough to force an immediate vmexit.
5579                 */
5580                disable_nmi_singlestep(svm);
5581                smp_send_reschedule(vcpu->cpu);
5582        }
5583
5584        pre_svm_run(svm);
5585
5586        sync_lapic_to_cr8(vcpu);
5587
5588        svm->vmcb->save.cr2 = vcpu->arch.cr2;
5589
5590        clgi();
5591
5592        /*
5593         * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5594         * it's non-zero. Since vmentry is serialising on affected CPUs, there
5595         * is no need to worry about the conditional branch over the wrmsr
5596         * being speculatively taken.
5597         */
5598        x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5599
5600        local_irq_enable();
5601
5602        asm volatile (
5603                "push %%" _ASM_BP "; \n\t"
5604                "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5605                "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5606                "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5607                "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5608                "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5609                "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5610#ifdef CONFIG_X86_64
5611                "mov %c[r8](%[svm]),  %%r8  \n\t"
5612                "mov %c[r9](%[svm]),  %%r9  \n\t"
5613                "mov %c[r10](%[svm]), %%r10 \n\t"
5614                "mov %c[r11](%[svm]), %%r11 \n\t"
5615                "mov %c[r12](%[svm]), %%r12 \n\t"
5616                "mov %c[r13](%[svm]), %%r13 \n\t"
5617                "mov %c[r14](%[svm]), %%r14 \n\t"
5618                "mov %c[r15](%[svm]), %%r15 \n\t"
5619#endif
5620
5621                /* Enter guest mode */
5622                "push %%" _ASM_AX " \n\t"
5623                "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5624                __ex(SVM_VMLOAD) "\n\t"
5625                __ex(SVM_VMRUN) "\n\t"
5626                __ex(SVM_VMSAVE) "\n\t"
5627                "pop %%" _ASM_AX " \n\t"
5628
5629                /* Save guest registers, load host registers */
5630                "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5631                "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5632                "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5633                "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5634                "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5635                "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5636#ifdef CONFIG_X86_64
5637                "mov %%r8,  %c[r8](%[svm]) \n\t"
5638                "mov %%r9,  %c[r9](%[svm]) \n\t"
5639                "mov %%r10, %c[r10](%[svm]) \n\t"
5640                "mov %%r11, %c[r11](%[svm]) \n\t"
5641                "mov %%r12, %c[r12](%[svm]) \n\t"
5642                "mov %%r13, %c[r13](%[svm]) \n\t"
5643                "mov %%r14, %c[r14](%[svm]) \n\t"
5644                "mov %%r15, %c[r15](%[svm]) \n\t"
5645#endif
5646                /*
5647                * Clear host registers marked as clobbered to prevent
5648                * speculative use.
5649                */
5650                "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5651                "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5652                "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5653                "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5654                "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5655#ifdef CONFIG_X86_64
5656                "xor %%r8, %%r8 \n\t"
5657                "xor %%r9, %%r9 \n\t"
5658                "xor %%r10, %%r10 \n\t"
5659                "xor %%r11, %%r11 \n\t"
5660                "xor %%r12, %%r12 \n\t"
5661                "xor %%r13, %%r13 \n\t"
5662                "xor %%r14, %%r14 \n\t"
5663                "xor %%r15, %%r15 \n\t"
5664#endif
5665                "pop %%" _ASM_BP
5666                :
5667                : [svm]"a"(svm),
5668                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5669                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5670                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5671                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5672                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5673                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5674                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5675#ifdef CONFIG_X86_64
5676                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5677                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5678                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5679                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5680                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5681                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5682                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5683                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5684#endif
5685                : "cc", "memory"
5686#ifdef CONFIG_X86_64
5687                , "rbx", "rcx", "rdx", "rsi", "rdi"
5688                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5689#else
5690                , "ebx", "ecx", "edx", "esi", "edi"
5691#endif
5692                );
5693
5694        /* Eliminate branch target predictions from guest mode */
5695        vmexit_fill_RSB();
5696
5697#ifdef CONFIG_X86_64
5698        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5699#else
5700        loadsegment(fs, svm->host.fs);
5701#ifndef CONFIG_X86_32_LAZY_GS
5702        loadsegment(gs, svm->host.gs);
5703#endif
5704#endif
5705
5706        /*
5707         * We do not use IBRS in the kernel. If this vCPU has used the
5708         * SPEC_CTRL MSR it may have left it on; save the value and
5709         * turn it off. This is much more efficient than blindly adding
5710         * it to the atomic save/restore list. Especially as the former
5711         * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5712         *
5713         * For non-nested case:
5714         * If the L01 MSR bitmap does not intercept the MSR, then we need to
5715         * save it.
5716         *
5717         * For nested case:
5718         * If the L02 MSR bitmap does not intercept the MSR, then we need to
5719         * save it.
5720         */
5721        if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5722                svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5723
5724        reload_tss(vcpu);
5725
5726        local_irq_disable();
5727
5728        x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5729
5730        vcpu->arch.cr2 = svm->vmcb->save.cr2;
5731        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5732        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5733        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5734
5735        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5736                kvm_before_interrupt(&svm->vcpu);
5737
5738        stgi();
5739
5740        /* Any pending NMI will happen here */
5741
5742        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5743                kvm_after_interrupt(&svm->vcpu);
5744
5745        sync_cr8_to_lapic(vcpu);
5746
5747        svm->next_rip = 0;
5748
5749        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5750
5751        /* if exit due to PF check for async PF */
5752        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5753                svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5754
5755        if (npt_enabled) {
5756                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5757                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5758        }
5759
5760        /*
5761         * We need to handle MC intercepts here before the vcpu has a chance to
5762         * change the physical cpu
5763         */
5764        if (unlikely(svm->vmcb->control.exit_code ==
5765                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5766                svm_handle_mce(svm);
5767
5768        mark_all_clean(svm->vmcb);
5769}
5770STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5771
5772static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5773{
5774        struct vcpu_svm *svm = to_svm(vcpu);
5775
5776        svm->vmcb->save.cr3 = __sme_set(root);
5777        mark_dirty(svm->vmcb, VMCB_CR);
5778}
5779
5780static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5781{
5782        struct vcpu_svm *svm = to_svm(vcpu);
5783
5784        svm->vmcb->control.nested_cr3 = __sme_set(root);
5785        mark_dirty(svm->vmcb, VMCB_NPT);
5786
5787        /* Also sync guest cr3 here in case we live migrate */
5788        svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5789        mark_dirty(svm->vmcb, VMCB_CR);
5790}
5791
5792static int is_disabled(void)
5793{
5794        u64 vm_cr;
5795
5796        rdmsrl(MSR_VM_CR, vm_cr);
5797        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5798                return 1;
5799
5800        return 0;
5801}
5802
5803static void
5804svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5805{
5806        /*
5807         * Patch in the VMMCALL instruction:
5808         */
5809        hypercall[0] = 0x0f;
5810        hypercall[1] = 0x01;
5811        hypercall[2] = 0xd9;
5812}
5813
5814static void svm_check_processor_compat(void *rtn)
5815{
5816        *(int *)rtn = 0;
5817}
5818
5819static bool svm_cpu_has_accelerated_tpr(void)
5820{
5821        return false;
5822}
5823
5824static bool svm_has_emulated_msr(int index)
5825{
5826        return true;
5827}
5828
5829static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5830{
5831        return 0;
5832}
5833
5834static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5835{
5836        struct vcpu_svm *svm = to_svm(vcpu);
5837
5838        /* Update nrips enabled cache */
5839        svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5840
5841        if (!kvm_vcpu_apicv_active(vcpu))
5842                return;
5843
5844        guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5845}
5846
5847static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5848{
5849        switch (func) {
5850        case 0x1:
5851                if (avic)
5852                        entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5853                break;
5854        case 0x80000001:
5855                if (nested)
5856                        entry->ecx |= (1 << 2); /* Set SVM bit */
5857                break;
5858        case 0x8000000A:
5859                entry->eax = 1; /* SVM revision 1 */
5860                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5861                                   ASID emulation to nested SVM */
5862                entry->ecx = 0; /* Reserved */
5863                entry->edx = 0; /* Per default do not support any
5864                                   additional features */
5865
5866                /* Support next_rip if host supports it */
5867                if (boot_cpu_has(X86_FEATURE_NRIPS))
5868                        entry->edx |= SVM_FEATURE_NRIP;
5869
5870                /* Support NPT for the guest if enabled */
5871                if (npt_enabled)
5872                        entry->edx |= SVM_FEATURE_NPT;
5873
5874                break;
5875        case 0x8000001F:
5876                /* Support memory encryption cpuid if host supports it */
5877                if (boot_cpu_has(X86_FEATURE_SEV))
5878                        cpuid(0x8000001f, &entry->eax, &entry->ebx,
5879                                &entry->ecx, &entry->edx);
5880
5881        }
5882}
5883
5884static int svm_get_lpage_level(void)
5885{
5886        return PT_PDPE_LEVEL;
5887}
5888
5889static bool svm_rdtscp_supported(void)
5890{
5891        return boot_cpu_has(X86_FEATURE_RDTSCP);
5892}
5893
5894static bool svm_invpcid_supported(void)
5895{
5896        return false;
5897}
5898
5899static bool svm_mpx_supported(void)
5900{
5901        return false;
5902}
5903
5904static bool svm_xsaves_supported(void)
5905{
5906        return false;
5907}
5908
5909static bool svm_umip_emulated(void)
5910{
5911        return false;
5912}
5913
5914static bool svm_has_wbinvd_exit(void)
5915{
5916        return true;
5917}
5918
5919#define PRE_EX(exit)  { .exit_code = (exit), \
5920                        .stage = X86_ICPT_PRE_EXCEPT, }
5921#define POST_EX(exit) { .exit_code = (exit), \
5922                        .stage = X86_ICPT_POST_EXCEPT, }
5923#define POST_MEM(exit) { .exit_code = (exit), \
5924                        .stage = X86_ICPT_POST_MEMACCESS, }
5925
5926static const struct __x86_intercept {
5927        u32 exit_code;
5928        enum x86_intercept_stage stage;
5929} x86_intercept_map[] = {
5930        [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5931        [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5932        [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5933        [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5934        [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5935        [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5936        [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5937        [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5938        [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5939        [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5940        [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5941        [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5942        [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5943        [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5944        [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5945        [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5946        [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5947        [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5948        [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5949        [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5950        [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5951        [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5952        [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5953        [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5954        [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5955        [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5956        [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5957        [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5958        [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5959        [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5960        [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5961        [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5962        [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5963        [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5964        [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5965        [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5966        [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5967        [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5968        [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5969        [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5970        [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5971        [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5972        [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5973        [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5974        [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5975        [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5976};
5977
5978#undef PRE_EX
5979#undef POST_EX
5980#undef POST_MEM
5981
5982static int svm_check_intercept(struct kvm_vcpu *vcpu,
5983                               struct x86_instruction_info *info,
5984                               enum x86_intercept_stage stage)
5985{
5986        struct vcpu_svm *svm = to_svm(vcpu);
5987        int vmexit, ret = X86EMUL_CONTINUE;
5988        struct __x86_intercept icpt_info;
5989        struct vmcb *vmcb = svm->vmcb;
5990
5991        if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5992                goto out;
5993
5994        icpt_info = x86_intercept_map[info->intercept];
5995
5996        if (stage != icpt_info.stage)
5997                goto out;
5998
5999        switch (icpt_info.exit_code) {
6000        case SVM_EXIT_READ_CR0:
6001                if (info->intercept == x86_intercept_cr_read)
6002                        icpt_info.exit_code += info->modrm_reg;
6003                break;
6004        case SVM_EXIT_WRITE_CR0: {
6005                unsigned long cr0, val;
6006                u64 intercept;
6007
6008                if (info->intercept == x86_intercept_cr_write)
6009                        icpt_info.exit_code += info->modrm_reg;
6010
6011                if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6012                    info->intercept == x86_intercept_clts)
6013                        break;
6014
6015                intercept = svm->nested.intercept;
6016
6017                if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6018                        break;
6019
6020                cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6021                val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6022
6023                if (info->intercept == x86_intercept_lmsw) {
6024                        cr0 &= 0xfUL;
6025                        val &= 0xfUL;
6026                        /* lmsw can't clear PE - catch this here */
6027                        if (cr0 & X86_CR0_PE)
6028                                val |= X86_CR0_PE;
6029                }
6030
6031                if (cr0 ^ val)
6032                        icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6033
6034                break;
6035        }
6036        case SVM_EXIT_READ_DR0:
6037        case SVM_EXIT_WRITE_DR0:
6038                icpt_info.exit_code += info->modrm_reg;
6039                break;
6040        case SVM_EXIT_MSR:
6041                if (info->intercept == x86_intercept_wrmsr)
6042                        vmcb->control.exit_info_1 = 1;
6043                else
6044                        vmcb->control.exit_info_1 = 0;
6045                break;
6046        case SVM_EXIT_PAUSE:
6047                /*
6048                 * We get this for NOP only, but pause
6049                 * is rep not, check this here
6050                 */
6051                if (info->rep_prefix != REPE_PREFIX)
6052                        goto out;
6053                break;
6054        case SVM_EXIT_IOIO: {
6055                u64 exit_info;
6056                u32 bytes;
6057
6058                if (info->intercept == x86_intercept_in ||
6059                    info->intercept == x86_intercept_ins) {
6060                        exit_info = ((info->src_val & 0xffff) << 16) |
6061                                SVM_IOIO_TYPE_MASK;
6062                        bytes = info->dst_bytes;
6063                } else {
6064                        exit_info = (info->dst_val & 0xffff) << 16;
6065                        bytes = info->src_bytes;
6066                }
6067
6068                if (info->intercept == x86_intercept_outs ||
6069                    info->intercept == x86_intercept_ins)
6070                        exit_info |= SVM_IOIO_STR_MASK;
6071
6072                if (info->rep_prefix)
6073                        exit_info |= SVM_IOIO_REP_MASK;
6074
6075                bytes = min(bytes, 4u);
6076
6077                exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6078
6079                exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6080
6081                vmcb->control.exit_info_1 = exit_info;
6082                vmcb->control.exit_info_2 = info->next_rip;
6083
6084                break;
6085        }
6086        default:
6087                break;
6088        }
6089
6090        /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6091        if (static_cpu_has(X86_FEATURE_NRIPS))
6092                vmcb->control.next_rip  = info->next_rip;
6093        vmcb->control.exit_code = icpt_info.exit_code;
6094        vmexit = nested_svm_exit_handled(svm);
6095
6096        ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6097                                           : X86EMUL_CONTINUE;
6098
6099out:
6100        return ret;
6101}
6102
6103static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6104{
6105        local_irq_enable();
6106        /*
6107         * We must have an instruction with interrupts enabled, so
6108         * the timer interrupt isn't delayed by the interrupt shadow.
6109         */
6110        asm("nop");
6111        local_irq_disable();
6112}
6113
6114static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6115{
6116        if (pause_filter_thresh)
6117                shrink_ple_window(vcpu);
6118}
6119
6120static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6121{
6122        if (avic_handle_apic_id_update(vcpu) != 0)
6123                return;
6124        if (avic_handle_dfr_update(vcpu) != 0)
6125                return;
6126        avic_handle_ldr_update(vcpu);
6127}
6128
6129static void svm_setup_mce(struct kvm_vcpu *vcpu)
6130{
6131        /* [63:9] are reserved. */
6132        vcpu->arch.mcg_cap &= 0x1ff;
6133}
6134
6135static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6136{
6137        struct vcpu_svm *svm = to_svm(vcpu);
6138
6139        /* Per APM Vol.2 15.22.2 "Response to SMI" */
6140        if (!gif_set(svm))
6141                return 0;
6142
6143        if (is_guest_mode(&svm->vcpu) &&
6144            svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6145                /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6146                svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6147                svm->nested.exit_required = true;
6148                return 0;
6149        }
6150
6151        return 1;
6152}
6153
6154static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6155{
6156        struct vcpu_svm *svm = to_svm(vcpu);
6157        int ret;
6158
6159        if (is_guest_mode(vcpu)) {
6160                /* FED8h - SVM Guest */
6161                put_smstate(u64, smstate, 0x7ed8, 1);
6162                /* FEE0h - SVM Guest VMCB Physical Address */
6163                put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6164
6165                svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6166                svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6167                svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6168
6169                ret = nested_svm_vmexit(svm);
6170                if (ret)
6171                        return ret;
6172        }
6173        return 0;
6174}
6175
6176static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6177{
6178        struct vcpu_svm *svm = to_svm(vcpu);
6179        struct vmcb *nested_vmcb;
6180        struct page *page;
6181        struct {
6182                u64 guest;
6183                u64 vmcb;
6184        } svm_state_save;
6185        int ret;
6186
6187        ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6188                                  sizeof(svm_state_save));
6189        if (ret)
6190                return ret;
6191
6192        if (svm_state_save.guest) {
6193                vcpu->arch.hflags &= ~HF_SMM_MASK;
6194                nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6195                if (nested_vmcb)
6196                        enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6197                else
6198                        ret = 1;
6199                vcpu->arch.hflags |= HF_SMM_MASK;
6200        }
6201        return ret;
6202}
6203
6204static int enable_smi_window(struct kvm_vcpu *vcpu)
6205{
6206        struct vcpu_svm *svm = to_svm(vcpu);
6207
6208        if (!gif_set(svm)) {
6209                if (vgif_enabled(svm))
6210                        set_intercept(svm, INTERCEPT_STGI);
6211                /* STGI will cause a vm exit */
6212                return 1;
6213        }
6214        return 0;
6215}
6216
6217static int sev_asid_new(void)
6218{
6219        int pos;
6220
6221        /*
6222         * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6223         */
6224        pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6225        if (pos >= max_sev_asid)
6226                return -EBUSY;
6227
6228        set_bit(pos, sev_asid_bitmap);
6229        return pos + 1;
6230}
6231
6232static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6233{
6234        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6235        int asid, ret;
6236
6237        ret = -EBUSY;
6238        asid = sev_asid_new();
6239        if (asid < 0)
6240                return ret;
6241
6242        ret = sev_platform_init(&argp->error);
6243        if (ret)
6244                goto e_free;
6245
6246        sev->active = true;
6247        sev->asid = asid;
6248        INIT_LIST_HEAD(&sev->regions_list);
6249
6250        return 0;
6251
6252e_free:
6253        __sev_asid_free(asid);
6254        return ret;
6255}
6256
6257static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6258{
6259        struct sev_data_activate *data;
6260        int asid = sev_get_asid(kvm);
6261        int ret;
6262
6263        wbinvd_on_all_cpus();
6264
6265        ret = sev_guest_df_flush(error);
6266        if (ret)
6267                return ret;
6268
6269        data = kzalloc(sizeof(*data), GFP_KERNEL);
6270        if (!data)
6271                return -ENOMEM;
6272
6273        /* activate ASID on the given handle */
6274        data->handle = handle;
6275        data->asid   = asid;
6276        ret = sev_guest_activate(data, error);
6277        kfree(data);
6278
6279        return ret;
6280}
6281
6282static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6283{
6284        struct fd f;
6285        int ret;
6286
6287        f = fdget(fd);
6288        if (!f.file)
6289                return -EBADF;
6290
6291        ret = sev_issue_cmd_external_user(f.file, id, data, error);
6292
6293        fdput(f);
6294        return ret;
6295}
6296
6297static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6298{
6299        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6300
6301        return __sev_issue_cmd(sev->fd, id, data, error);
6302}
6303
6304static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6305{
6306        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6307        struct sev_data_launch_start *start;
6308        struct kvm_sev_launch_start params;
6309        void *dh_blob, *session_blob;
6310        int *error = &argp->error;
6311        int ret;
6312
6313        if (!sev_guest(kvm))
6314                return -ENOTTY;
6315
6316        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6317                return -EFAULT;
6318
6319        start = kzalloc(sizeof(*start), GFP_KERNEL);
6320        if (!start)
6321                return -ENOMEM;
6322
6323        dh_blob = NULL;
6324        if (params.dh_uaddr) {
6325                dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6326                if (IS_ERR(dh_blob)) {
6327                        ret = PTR_ERR(dh_blob);
6328                        goto e_free;
6329                }
6330
6331                start->dh_cert_address = __sme_set(__pa(dh_blob));
6332                start->dh_cert_len = params.dh_len;
6333        }
6334
6335        session_blob = NULL;
6336        if (params.session_uaddr) {
6337                session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6338                if (IS_ERR(session_blob)) {
6339                        ret = PTR_ERR(session_blob);
6340                        goto e_free_dh;
6341                }
6342
6343                start->session_address = __sme_set(__pa(session_blob));
6344                start->session_len = params.session_len;
6345        }
6346
6347        start->handle = params.handle;
6348        start->policy = params.policy;
6349
6350        /* create memory encryption context */
6351        ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6352        if (ret)
6353                goto e_free_session;
6354
6355        /* Bind ASID to this guest */
6356        ret = sev_bind_asid(kvm, start->handle, error);
6357        if (ret)
6358                goto e_free_session;
6359
6360        /* return handle to userspace */
6361        params.handle = start->handle;
6362        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6363                sev_unbind_asid(kvm, start->handle);
6364                ret = -EFAULT;
6365                goto e_free_session;
6366        }
6367
6368        sev->handle = start->handle;
6369        sev->fd = argp->sev_fd;
6370
6371e_free_session:
6372        kfree(session_blob);
6373e_free_dh:
6374        kfree(dh_blob);
6375e_free:
6376        kfree(start);
6377        return ret;
6378}
6379
6380static int get_num_contig_pages(int idx, struct page **inpages,
6381                                unsigned long npages)
6382{
6383        unsigned long paddr, next_paddr;
6384        int i = idx + 1, pages = 1;
6385
6386        /* find the number of contiguous pages starting from idx */
6387        paddr = __sme_page_pa(inpages[idx]);
6388        while (i < npages) {
6389                next_paddr = __sme_page_pa(inpages[i++]);
6390                if ((paddr + PAGE_SIZE) == next_paddr) {
6391                        pages++;
6392                        paddr = next_paddr;
6393                        continue;
6394                }
6395                break;
6396        }
6397
6398        return pages;
6399}
6400
6401static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6402{
6403        unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6404        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6405        struct kvm_sev_launch_update_data params;
6406        struct sev_data_launch_update_data *data;
6407        struct page **inpages;
6408        int i, ret, pages;
6409
6410        if (!sev_guest(kvm))
6411                return -ENOTTY;
6412
6413        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6414                return -EFAULT;
6415
6416        data = kzalloc(sizeof(*data), GFP_KERNEL);
6417        if (!data)
6418                return -ENOMEM;
6419
6420        vaddr = params.uaddr;
6421        size = params.len;
6422        vaddr_end = vaddr + size;
6423
6424        /* Lock the user memory. */
6425        inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6426        if (!inpages) {
6427                ret = -ENOMEM;
6428                goto e_free;
6429        }
6430
6431        /*
6432         * The LAUNCH_UPDATE command will perform in-place encryption of the
6433         * memory content (i.e it will write the same memory region with C=1).
6434         * It's possible that the cache may contain the data with C=0, i.e.,
6435         * unencrypted so invalidate it first.
6436         */
6437        sev_clflush_pages(inpages, npages);
6438
6439        for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6440                int offset, len;
6441
6442                /*
6443                 * If the user buffer is not page-aligned, calculate the offset
6444                 * within the page.
6445                 */
6446                offset = vaddr & (PAGE_SIZE - 1);
6447
6448                /* Calculate the number of pages that can be encrypted in one go. */
6449                pages = get_num_contig_pages(i, inpages, npages);
6450
6451                len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6452
6453                data->handle = sev->handle;
6454                data->len = len;
6455                data->address = __sme_page_pa(inpages[i]) + offset;
6456                ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6457                if (ret)
6458                        goto e_unpin;
6459
6460                size -= len;
6461                next_vaddr = vaddr + len;
6462        }
6463
6464e_unpin:
6465        /* content of memory is updated, mark pages dirty */
6466        for (i = 0; i < npages; i++) {
6467                set_page_dirty_lock(inpages[i]);
6468                mark_page_accessed(inpages[i]);
6469        }
6470        /* unlock the user pages */
6471        sev_unpin_memory(kvm, inpages, npages);
6472e_free:
6473        kfree(data);
6474        return ret;
6475}
6476
6477static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6478{
6479        void __user *measure = (void __user *)(uintptr_t)argp->data;
6480        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6481        struct sev_data_launch_measure *data;
6482        struct kvm_sev_launch_measure params;
6483        void __user *p = NULL;
6484        void *blob = NULL;
6485        int ret;
6486
6487        if (!sev_guest(kvm))
6488                return -ENOTTY;
6489
6490        if (copy_from_user(&params, measure, sizeof(params)))
6491                return -EFAULT;
6492
6493        data = kzalloc(sizeof(*data), GFP_KERNEL);
6494        if (!data)
6495                return -ENOMEM;
6496
6497        /* User wants to query the blob length */
6498        if (!params.len)
6499                goto cmd;
6500
6501        p = (void __user *)(uintptr_t)params.uaddr;
6502        if (p) {
6503                if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6504                        ret = -EINVAL;
6505                        goto e_free;
6506                }
6507
6508                ret = -ENOMEM;
6509                blob = kmalloc(params.len, GFP_KERNEL);
6510                if (!blob)
6511                        goto e_free;
6512
6513                data->address = __psp_pa(blob);
6514                data->len = params.len;
6515        }
6516
6517cmd:
6518        data->handle = sev->handle;
6519        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6520
6521        /*
6522         * If we query the session length, FW responded with expected data.
6523         */
6524        if (!params.len)
6525                goto done;
6526
6527        if (ret)
6528                goto e_free_blob;
6529
6530        if (blob) {
6531                if (copy_to_user(p, blob, params.len))
6532                        ret = -EFAULT;
6533        }
6534
6535done:
6536        params.len = data->len;
6537        if (copy_to_user(measure, &params, sizeof(params)))
6538                ret = -EFAULT;
6539e_free_blob:
6540        kfree(blob);
6541e_free:
6542        kfree(data);
6543        return ret;
6544}
6545
6546static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6547{
6548        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6549        struct sev_data_launch_finish *data;
6550        int ret;
6551
6552        if (!sev_guest(kvm))
6553                return -ENOTTY;
6554
6555        data = kzalloc(sizeof(*data), GFP_KERNEL);
6556        if (!data)
6557                return -ENOMEM;
6558
6559        data->handle = sev->handle;
6560        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6561
6562        kfree(data);
6563        return ret;
6564}
6565
6566static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6567{
6568        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6569        struct kvm_sev_guest_status params;
6570        struct sev_data_guest_status *data;
6571        int ret;
6572
6573        if (!sev_guest(kvm))
6574                return -ENOTTY;
6575
6576        data = kzalloc(sizeof(*data), GFP_KERNEL);
6577        if (!data)
6578                return -ENOMEM;
6579
6580        data->handle = sev->handle;
6581        ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6582        if (ret)
6583                goto e_free;
6584
6585        params.policy = data->policy;
6586        params.state = data->state;
6587        params.handle = data->handle;
6588
6589        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6590                ret = -EFAULT;
6591e_free:
6592        kfree(data);
6593        return ret;
6594}
6595
6596static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6597                               unsigned long dst, int size,
6598                               int *error, bool enc)
6599{
6600        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6601        struct sev_data_dbg *data;
6602        int ret;
6603
6604        data = kzalloc(sizeof(*data), GFP_KERNEL);
6605        if (!data)
6606                return -ENOMEM;
6607
6608        data->handle = sev->handle;
6609        data->dst_addr = dst;
6610        data->src_addr = src;
6611        data->len = size;
6612
6613        ret = sev_issue_cmd(kvm,
6614                            enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6615                            data, error);
6616        kfree(data);
6617        return ret;
6618}
6619
6620static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6621                             unsigned long dst_paddr, int sz, int *err)
6622{
6623        int offset;
6624
6625        /*
6626         * Its safe to read more than we are asked, caller should ensure that
6627         * destination has enough space.
6628         */
6629        src_paddr = round_down(src_paddr, 16);
6630        offset = src_paddr & 15;
6631        sz = round_up(sz + offset, 16);
6632
6633        return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6634}
6635
6636static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6637                                  unsigned long __user dst_uaddr,
6638                                  unsigned long dst_paddr,
6639                                  int size, int *err)
6640{
6641        struct page *tpage = NULL;
6642        int ret, offset;
6643
6644        /* if inputs are not 16-byte then use intermediate buffer */
6645        if (!IS_ALIGNED(dst_paddr, 16) ||
6646            !IS_ALIGNED(paddr,     16) ||
6647            !IS_ALIGNED(size,      16)) {
6648                tpage = (void *)alloc_page(GFP_KERNEL);
6649                if (!tpage)
6650                        return -ENOMEM;
6651
6652                dst_paddr = __sme_page_pa(tpage);
6653        }
6654
6655        ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6656        if (ret)
6657                goto e_free;
6658
6659        if (tpage) {
6660                offset = paddr & 15;
6661                if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6662                                 page_address(tpage) + offset, size))
6663                        ret = -EFAULT;
6664        }
6665
6666e_free:
6667        if (tpage)
6668                __free_page(tpage);
6669
6670        return ret;
6671}
6672
6673static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6674                                  unsigned long __user vaddr,
6675                                  unsigned long dst_paddr,
6676                                  unsigned long __user dst_vaddr,
6677                                  int size, int *error)
6678{
6679        struct page *src_tpage = NULL;
6680        struct page *dst_tpage = NULL;
6681        int ret, len = size;
6682
6683        /* If source buffer is not aligned then use an intermediate buffer */
6684        if (!IS_ALIGNED(vaddr, 16)) {
6685                src_tpage = alloc_page(GFP_KERNEL);
6686                if (!src_tpage)
6687                        return -ENOMEM;
6688
6689                if (copy_from_user(page_address(src_tpage),
6690                                (void __user *)(uintptr_t)vaddr, size)) {
6691                        __free_page(src_tpage);
6692                        return -EFAULT;
6693                }
6694
6695                paddr = __sme_page_pa(src_tpage);
6696        }
6697
6698        /*
6699         *  If destination buffer or length is not aligned then do read-modify-write:
6700         *   - decrypt destination in an intermediate buffer
6701         *   - copy the source buffer in an intermediate buffer
6702         *   - use the intermediate buffer as source buffer
6703         */
6704        if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6705                int dst_offset;
6706
6707                dst_tpage = alloc_page(GFP_KERNEL);
6708                if (!dst_tpage) {
6709                        ret = -ENOMEM;
6710                        goto e_free;
6711                }
6712
6713                ret = __sev_dbg_decrypt(kvm, dst_paddr,
6714                                        __sme_page_pa(dst_tpage), size, error);
6715                if (ret)
6716                        goto e_free;
6717
6718                /*
6719                 *  If source is kernel buffer then use memcpy() otherwise
6720                 *  copy_from_user().
6721                 */
6722                dst_offset = dst_paddr & 15;
6723
6724                if (src_tpage)
6725                        memcpy(page_address(dst_tpage) + dst_offset,
6726                               page_address(src_tpage), size);
6727                else {
6728                        if (copy_from_user(page_address(dst_tpage) + dst_offset,
6729                                           (void __user *)(uintptr_t)vaddr, size)) {
6730                                ret = -EFAULT;
6731                                goto e_free;
6732                        }
6733                }
6734
6735                paddr = __sme_page_pa(dst_tpage);
6736                dst_paddr = round_down(dst_paddr, 16);
6737                len = round_up(size, 16);
6738        }
6739
6740        ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6741
6742e_free:
6743        if (src_tpage)
6744                __free_page(src_tpage);
6745        if (dst_tpage)
6746                __free_page(dst_tpage);
6747        return ret;
6748}
6749
6750static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6751{
6752        unsigned long vaddr, vaddr_end, next_vaddr;
6753        unsigned long dst_vaddr;
6754        struct page **src_p, **dst_p;
6755        struct kvm_sev_dbg debug;
6756        unsigned long n;
6757        int ret, size;
6758
6759        if (!sev_guest(kvm))
6760                return -ENOTTY;
6761
6762        if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6763                return -EFAULT;
6764
6765        vaddr = debug.src_uaddr;
6766        size = debug.len;
6767        vaddr_end = vaddr + size;
6768        dst_vaddr = debug.dst_uaddr;
6769
6770        for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6771                int len, s_off, d_off;
6772
6773                /* lock userspace source and destination page */
6774                src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6775                if (!src_p)
6776                        return -EFAULT;
6777
6778                dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6779                if (!dst_p) {
6780                        sev_unpin_memory(kvm, src_p, n);
6781                        return -EFAULT;
6782                }
6783
6784                /*
6785                 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6786                 * memory content (i.e it will write the same memory region with C=1).
6787                 * It's possible that the cache may contain the data with C=0, i.e.,
6788                 * unencrypted so invalidate it first.
6789                 */
6790                sev_clflush_pages(src_p, 1);
6791                sev_clflush_pages(dst_p, 1);
6792
6793                /*
6794                 * Since user buffer may not be page aligned, calculate the
6795                 * offset within the page.
6796                 */
6797                s_off = vaddr & ~PAGE_MASK;
6798                d_off = dst_vaddr & ~PAGE_MASK;
6799                len = min_t(size_t, (PAGE_SIZE - s_off), size);
6800
6801                if (dec)
6802                        ret = __sev_dbg_decrypt_user(kvm,
6803                                                     __sme_page_pa(src_p[0]) + s_off,
6804                                                     dst_vaddr,
6805                                                     __sme_page_pa(dst_p[0]) + d_off,
6806                                                     len, &argp->error);
6807                else
6808                        ret = __sev_dbg_encrypt_user(kvm,
6809                                                     __sme_page_pa(src_p[0]) + s_off,
6810                                                     vaddr,
6811                                                     __sme_page_pa(dst_p[0]) + d_off,
6812                                                     dst_vaddr,
6813                                                     len, &argp->error);
6814
6815                sev_unpin_memory(kvm, src_p, 1);
6816                sev_unpin_memory(kvm, dst_p, 1);
6817
6818                if (ret)
6819                        goto err;
6820
6821                next_vaddr = vaddr + len;
6822                dst_vaddr = dst_vaddr + len;
6823                size -= len;
6824        }
6825err:
6826        return ret;
6827}
6828
6829static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6830{
6831        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6832        struct sev_data_launch_secret *data;
6833        struct kvm_sev_launch_secret params;
6834        struct page **pages;
6835        void *blob, *hdr;
6836        unsigned long n;
6837        int ret, offset;
6838
6839        if (!sev_guest(kvm))
6840                return -ENOTTY;
6841
6842        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6843                return -EFAULT;
6844
6845        pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6846        if (!pages)
6847                return -ENOMEM;
6848
6849        /*
6850         * The secret must be copied into contiguous memory region, lets verify
6851         * that userspace memory pages are contiguous before we issue command.
6852         */
6853        if (get_num_contig_pages(0, pages, n) != n) {
6854                ret = -EINVAL;
6855                goto e_unpin_memory;
6856        }
6857
6858        ret = -ENOMEM;
6859        data = kzalloc(sizeof(*data), GFP_KERNEL);
6860        if (!data)
6861                goto e_unpin_memory;
6862
6863        offset = params.guest_uaddr & (PAGE_SIZE - 1);
6864        data->guest_address = __sme_page_pa(pages[0]) + offset;
6865        data->guest_len = params.guest_len;
6866
6867        blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6868        if (IS_ERR(blob)) {
6869                ret = PTR_ERR(blob);
6870                goto e_free;
6871        }
6872
6873        data->trans_address = __psp_pa(blob);
6874        data->trans_len = params.trans_len;
6875
6876        hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6877        if (IS_ERR(hdr)) {
6878                ret = PTR_ERR(hdr);
6879                goto e_free_blob;
6880        }
6881        data->hdr_address = __psp_pa(hdr);
6882        data->hdr_len = params.hdr_len;
6883
6884        data->handle = sev->handle;
6885        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6886
6887        kfree(hdr);
6888
6889e_free_blob:
6890        kfree(blob);
6891e_free:
6892        kfree(data);
6893e_unpin_memory:
6894        sev_unpin_memory(kvm, pages, n);
6895        return ret;
6896}
6897
6898static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6899{
6900        struct kvm_sev_cmd sev_cmd;
6901        int r;
6902
6903        if (!svm_sev_enabled())
6904                return -ENOTTY;
6905
6906        if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6907                return -EFAULT;
6908
6909        mutex_lock(&kvm->lock);
6910
6911        switch (sev_cmd.id) {
6912        case KVM_SEV_INIT:
6913                r = sev_guest_init(kvm, &sev_cmd);
6914                break;
6915        case KVM_SEV_LAUNCH_START:
6916                r = sev_launch_start(kvm, &sev_cmd);
6917                break;
6918        case KVM_SEV_LAUNCH_UPDATE_DATA:
6919                r = sev_launch_update_data(kvm, &sev_cmd);
6920                break;
6921        case KVM_SEV_LAUNCH_MEASURE:
6922                r = sev_launch_measure(kvm, &sev_cmd);
6923                break;
6924        case KVM_SEV_LAUNCH_FINISH:
6925                r = sev_launch_finish(kvm, &sev_cmd);
6926                break;
6927        case KVM_SEV_GUEST_STATUS:
6928                r = sev_guest_status(kvm, &sev_cmd);
6929                break;
6930        case KVM_SEV_DBG_DECRYPT:
6931                r = sev_dbg_crypt(kvm, &sev_cmd, true);
6932                break;
6933        case KVM_SEV_DBG_ENCRYPT:
6934                r = sev_dbg_crypt(kvm, &sev_cmd, false);
6935                break;
6936        case KVM_SEV_LAUNCH_SECRET:
6937                r = sev_launch_secret(kvm, &sev_cmd);
6938                break;
6939        default:
6940                r = -EINVAL;
6941                goto out;
6942        }
6943
6944        if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6945                r = -EFAULT;
6946
6947out:
6948        mutex_unlock(&kvm->lock);
6949        return r;
6950}
6951
6952static int svm_register_enc_region(struct kvm *kvm,
6953                                   struct kvm_enc_region *range)
6954{
6955        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6956        struct enc_region *region;
6957        int ret = 0;
6958
6959        if (!sev_guest(kvm))
6960                return -ENOTTY;
6961
6962        if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
6963                return -EINVAL;
6964
6965        region = kzalloc(sizeof(*region), GFP_KERNEL);
6966        if (!region)
6967                return -ENOMEM;
6968
6969        region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6970        if (!region->pages) {
6971                ret = -ENOMEM;
6972                goto e_free;
6973        }
6974
6975        /*
6976         * The guest may change the memory encryption attribute from C=0 -> C=1
6977         * or vice versa for this memory range. Lets make sure caches are
6978         * flushed to ensure that guest data gets written into memory with
6979         * correct C-bit.
6980         */
6981        sev_clflush_pages(region->pages, region->npages);
6982
6983        region->uaddr = range->addr;
6984        region->size = range->size;
6985
6986        mutex_lock(&kvm->lock);
6987        list_add_tail(&region->list, &sev->regions_list);
6988        mutex_unlock(&kvm->lock);
6989
6990        return ret;
6991
6992e_free:
6993        kfree(region);
6994        return ret;
6995}
6996
6997static struct enc_region *
6998find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6999{
7000        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7001        struct list_head *head = &sev->regions_list;
7002        struct enc_region *i;
7003
7004        list_for_each_entry(i, head, list) {
7005                if (i->uaddr == range->addr &&
7006                    i->size == range->size)
7007                        return i;
7008        }
7009
7010        return NULL;
7011}
7012
7013
7014static int svm_unregister_enc_region(struct kvm *kvm,
7015                                     struct kvm_enc_region *range)
7016{
7017        struct enc_region *region;
7018        int ret;
7019
7020        mutex_lock(&kvm->lock);
7021
7022        if (!sev_guest(kvm)) {
7023                ret = -ENOTTY;
7024                goto failed;
7025        }
7026
7027        region = find_enc_region(kvm, range);
7028        if (!region) {
7029                ret = -EINVAL;
7030                goto failed;
7031        }
7032
7033        __unregister_enc_region_locked(kvm, region);
7034
7035        mutex_unlock(&kvm->lock);
7036        return 0;
7037
7038failed:
7039        mutex_unlock(&kvm->lock);
7040        return ret;
7041}
7042
7043static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7044        .cpu_has_kvm_support = has_svm,
7045        .disabled_by_bios = is_disabled,
7046        .hardware_setup = svm_hardware_setup,
7047        .hardware_unsetup = svm_hardware_unsetup,
7048        .check_processor_compatibility = svm_check_processor_compat,
7049        .hardware_enable = svm_hardware_enable,
7050        .hardware_disable = svm_hardware_disable,
7051        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7052        .has_emulated_msr = svm_has_emulated_msr,
7053
7054        .vcpu_create = svm_create_vcpu,
7055        .vcpu_free = svm_free_vcpu,
7056        .vcpu_reset = svm_vcpu_reset,
7057
7058        .vm_alloc = svm_vm_alloc,
7059        .vm_free = svm_vm_free,
7060        .vm_init = avic_vm_init,
7061        .vm_destroy = svm_vm_destroy,
7062
7063        .prepare_guest_switch = svm_prepare_guest_switch,
7064        .vcpu_load = svm_vcpu_load,
7065        .vcpu_put = svm_vcpu_put,
7066        .vcpu_blocking = svm_vcpu_blocking,
7067        .vcpu_unblocking = svm_vcpu_unblocking,
7068
7069        .update_bp_intercept = update_bp_intercept,
7070        .get_msr_feature = svm_get_msr_feature,
7071        .get_msr = svm_get_msr,
7072        .set_msr = svm_set_msr,
7073        .get_segment_base = svm_get_segment_base,
7074        .get_segment = svm_get_segment,
7075        .set_segment = svm_set_segment,
7076        .get_cpl = svm_get_cpl,
7077        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7078        .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7079        .decache_cr3 = svm_decache_cr3,
7080        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7081        .set_cr0 = svm_set_cr0,
7082        .set_cr3 = svm_set_cr3,
7083        .set_cr4 = svm_set_cr4,
7084        .set_efer = svm_set_efer,
7085        .get_idt = svm_get_idt,
7086        .set_idt = svm_set_idt,
7087        .get_gdt = svm_get_gdt,
7088        .set_gdt = svm_set_gdt,
7089        .get_dr6 = svm_get_dr6,
7090        .set_dr6 = svm_set_dr6,
7091        .set_dr7 = svm_set_dr7,
7092        .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7093        .cache_reg = svm_cache_reg,
7094        .get_rflags = svm_get_rflags,
7095        .set_rflags = svm_set_rflags,
7096
7097        .tlb_flush = svm_flush_tlb,
7098        .tlb_flush_gva = svm_flush_tlb_gva,
7099
7100        .run = svm_vcpu_run,
7101        .handle_exit = handle_exit,
7102        .skip_emulated_instruction = skip_emulated_instruction,
7103        .set_interrupt_shadow = svm_set_interrupt_shadow,
7104        .get_interrupt_shadow = svm_get_interrupt_shadow,
7105        .patch_hypercall = svm_patch_hypercall,
7106        .set_irq = svm_set_irq,
7107        .set_nmi = svm_inject_nmi,
7108        .queue_exception = svm_queue_exception,
7109        .cancel_injection = svm_cancel_injection,
7110        .interrupt_allowed = svm_interrupt_allowed,
7111        .nmi_allowed = svm_nmi_allowed,
7112        .get_nmi_mask = svm_get_nmi_mask,
7113        .set_nmi_mask = svm_set_nmi_mask,
7114        .enable_nmi_window = enable_nmi_window,
7115        .enable_irq_window = enable_irq_window,
7116        .update_cr8_intercept = update_cr8_intercept,
7117        .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7118        .get_enable_apicv = svm_get_enable_apicv,
7119        .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7120        .load_eoi_exitmap = svm_load_eoi_exitmap,
7121        .hwapic_irr_update = svm_hwapic_irr_update,
7122        .hwapic_isr_update = svm_hwapic_isr_update,
7123        .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7124        .apicv_post_state_restore = avic_post_state_restore,
7125
7126        .set_tss_addr = svm_set_tss_addr,
7127        .set_identity_map_addr = svm_set_identity_map_addr,
7128        .get_tdp_level = get_npt_level,
7129        .get_mt_mask = svm_get_mt_mask,
7130
7131        .get_exit_info = svm_get_exit_info,
7132
7133        .get_lpage_level = svm_get_lpage_level,
7134
7135        .cpuid_update = svm_cpuid_update,
7136
7137        .rdtscp_supported = svm_rdtscp_supported,
7138        .invpcid_supported = svm_invpcid_supported,
7139        .mpx_supported = svm_mpx_supported,
7140        .xsaves_supported = svm_xsaves_supported,
7141        .umip_emulated = svm_umip_emulated,
7142
7143        .set_supported_cpuid = svm_set_supported_cpuid,
7144
7145        .has_wbinvd_exit = svm_has_wbinvd_exit,
7146
7147        .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7148        .write_tsc_offset = svm_write_tsc_offset,
7149
7150        .set_tdp_cr3 = set_tdp_cr3,
7151
7152        .check_intercept = svm_check_intercept,
7153        .handle_external_intr = svm_handle_external_intr,
7154
7155        .request_immediate_exit = __kvm_request_immediate_exit,
7156
7157        .sched_in = svm_sched_in,
7158
7159        .pmu_ops = &amd_pmu_ops,
7160        .deliver_posted_interrupt = svm_deliver_avic_intr,
7161        .update_pi_irte = svm_update_pi_irte,
7162        .setup_mce = svm_setup_mce,
7163
7164        .smi_allowed = svm_smi_allowed,
7165        .pre_enter_smm = svm_pre_enter_smm,
7166        .pre_leave_smm = svm_pre_leave_smm,
7167        .enable_smi_window = enable_smi_window,
7168
7169        .mem_enc_op = svm_mem_enc_op,
7170        .mem_enc_reg_region = svm_register_enc_region,
7171        .mem_enc_unreg_region = svm_unregister_enc_region,
7172};
7173
7174static int __init svm_init(void)
7175{
7176        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7177                        __alignof__(struct vcpu_svm), THIS_MODULE);
7178}
7179
7180static void __exit svm_exit(void)
7181{
7182        kvm_exit();
7183}
7184
7185module_init(svm_init)
7186module_exit(svm_exit)
7187