1
2
3
4
5
6
7
8
9
10
11
12
13#define DISABLE_BRANCH_PROFILING
14
15#include <linux/linkage.h>
16#include <linux/init.h>
17#include <linux/mm.h>
18#include <linux/dma-direct.h>
19#include <linux/swiotlb.h>
20#include <linux/mem_encrypt.h>
21
22#include <asm/tlbflush.h>
23#include <asm/fixmap.h>
24#include <asm/setup.h>
25#include <asm/bootparam.h>
26#include <asm/set_memory.h>
27#include <asm/cacheflush.h>
28#include <asm/processor-flags.h>
29#include <asm/msr.h>
30#include <asm/cmdline.h>
31
32#include "mm_internal.h"
33
34
35
36
37
38
39u64 sme_me_mask __section(.data) = 0;
40EXPORT_SYMBOL(sme_me_mask);
41DEFINE_STATIC_KEY_FALSE(sev_enable_key);
42EXPORT_SYMBOL_GPL(sev_enable_key);
43
44bool sev_enabled __section(.data);
45
46
47static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
48
49
50
51
52
53
54
55
56
57
58static void __init __sme_early_enc_dec(resource_size_t paddr,
59 unsigned long size, bool enc)
60{
61 void *src, *dst;
62 size_t len;
63
64 if (!sme_me_mask)
65 return;
66
67 wbinvd();
68
69
70
71
72
73 while (size) {
74 len = min_t(size_t, sizeof(sme_early_buffer), size);
75
76
77
78
79
80 src = enc ? early_memremap_decrypted_wp(paddr, len) :
81 early_memremap_encrypted_wp(paddr, len);
82
83 dst = enc ? early_memremap_encrypted(paddr, len) :
84 early_memremap_decrypted(paddr, len);
85
86
87
88
89
90
91 BUG_ON(!src || !dst);
92
93
94
95
96
97 memcpy(sme_early_buffer, src, len);
98 memcpy(dst, sme_early_buffer, len);
99
100 early_memunmap(dst, len);
101 early_memunmap(src, len);
102
103 paddr += len;
104 size -= len;
105 }
106}
107
108void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
109{
110 __sme_early_enc_dec(paddr, size, true);
111}
112
113void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
114{
115 __sme_early_enc_dec(paddr, size, false);
116}
117
118static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
119 bool map)
120{
121 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
122 pmdval_t pmd_flags, pmd;
123
124
125 pmd_flags = __sme_clr(early_pmd_flags);
126
127 do {
128 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
129 __early_make_pgtable((unsigned long)vaddr, pmd);
130
131 vaddr += PMD_SIZE;
132 paddr += PMD_SIZE;
133 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
134 } while (size);
135
136 __native_flush_tlb();
137}
138
139void __init sme_unmap_bootdata(char *real_mode_data)
140{
141 struct boot_params *boot_data;
142 unsigned long cmdline_paddr;
143
144 if (!sme_active())
145 return;
146
147
148 boot_data = (struct boot_params *)real_mode_data;
149 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
150
151 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
152
153 if (!cmdline_paddr)
154 return;
155
156 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
157}
158
159void __init sme_map_bootdata(char *real_mode_data)
160{
161 struct boot_params *boot_data;
162 unsigned long cmdline_paddr;
163
164 if (!sme_active())
165 return;
166
167 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
168
169
170 boot_data = (struct boot_params *)real_mode_data;
171 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
172
173 if (!cmdline_paddr)
174 return;
175
176 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
177}
178
179void __init sme_early_init(void)
180{
181 unsigned int i;
182
183 if (!sme_me_mask)
184 return;
185
186 early_pmd_flags = __sme_set(early_pmd_flags);
187
188 __supported_pte_mask = __sme_set(__supported_pte_mask);
189
190
191 for (i = 0; i < ARRAY_SIZE(protection_map); i++)
192 protection_map[i] = pgprot_encrypted(protection_map[i]);
193
194 if (sev_active())
195 swiotlb_force = SWIOTLB_FORCE;
196}
197
198static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
199{
200 pgprot_t old_prot, new_prot;
201 unsigned long pfn, pa, size;
202 pte_t new_pte;
203
204 switch (level) {
205 case PG_LEVEL_4K:
206 pfn = pte_pfn(*kpte);
207 old_prot = pte_pgprot(*kpte);
208 break;
209 case PG_LEVEL_2M:
210 pfn = pmd_pfn(*(pmd_t *)kpte);
211 old_prot = pmd_pgprot(*(pmd_t *)kpte);
212 break;
213 case PG_LEVEL_1G:
214 pfn = pud_pfn(*(pud_t *)kpte);
215 old_prot = pud_pgprot(*(pud_t *)kpte);
216 break;
217 default:
218 return;
219 }
220
221 new_prot = old_prot;
222 if (enc)
223 pgprot_val(new_prot) |= _PAGE_ENC;
224 else
225 pgprot_val(new_prot) &= ~_PAGE_ENC;
226
227
228 if (pgprot_val(old_prot) == pgprot_val(new_prot))
229 return;
230
231 pa = pfn << page_level_shift(level);
232 size = page_level_size(level);
233
234
235
236
237
238
239 clflush_cache_range(__va(pa), size);
240
241
242 if (enc)
243 sme_early_encrypt(pa, size);
244 else
245 sme_early_decrypt(pa, size);
246
247
248 new_pte = pfn_pte(pfn, new_prot);
249 set_pte_atomic(kpte, new_pte);
250}
251
252static int __init early_set_memory_enc_dec(unsigned long vaddr,
253 unsigned long size, bool enc)
254{
255 unsigned long vaddr_end, vaddr_next;
256 unsigned long psize, pmask;
257 int split_page_size_mask;
258 int level, ret;
259 pte_t *kpte;
260
261 vaddr_next = vaddr;
262 vaddr_end = vaddr + size;
263
264 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
265 kpte = lookup_address(vaddr, &level);
266 if (!kpte || pte_none(*kpte)) {
267 ret = 1;
268 goto out;
269 }
270
271 if (level == PG_LEVEL_4K) {
272 __set_clr_pte_enc(kpte, level, enc);
273 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
274 continue;
275 }
276
277 psize = page_level_size(level);
278 pmask = page_level_mask(level);
279
280
281
282
283
284
285
286 if (vaddr == (vaddr & pmask) &&
287 ((vaddr_end - vaddr) >= psize)) {
288 __set_clr_pte_enc(kpte, level, enc);
289 vaddr_next = (vaddr & pmask) + psize;
290 continue;
291 }
292
293
294
295
296
297
298
299 if (level == PG_LEVEL_2M)
300 split_page_size_mask = 0;
301 else
302 split_page_size_mask = 1 << PG_LEVEL_2M;
303
304 kernel_physical_mapping_init(__pa(vaddr & pmask),
305 __pa((vaddr_end & pmask) + psize),
306 split_page_size_mask);
307 }
308
309 ret = 0;
310
311out:
312 __flush_tlb_all();
313 return ret;
314}
315
316int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
317{
318 return early_set_memory_enc_dec(vaddr, size, false);
319}
320
321int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
322{
323 return early_set_memory_enc_dec(vaddr, size, true);
324}
325
326
327
328
329
330
331
332
333
334
335
336
337
338bool sme_active(void)
339{
340 return sme_me_mask && !sev_enabled;
341}
342EXPORT_SYMBOL(sme_active);
343
344bool sev_active(void)
345{
346 return sme_me_mask && sev_enabled;
347}
348EXPORT_SYMBOL(sev_active);
349
350
351void __init mem_encrypt_free_decrypted_mem(void)
352{
353 unsigned long vaddr, vaddr_end, npages;
354 int r;
355
356 vaddr = (unsigned long)__start_bss_decrypted_unused;
357 vaddr_end = (unsigned long)__end_bss_decrypted;
358 npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
359
360
361
362
363
364 if (mem_encrypt_active()) {
365 r = set_memory_encrypted(vaddr, npages);
366 if (r) {
367 pr_warn("failed to free unused decrypted pages\n");
368 return;
369 }
370 }
371
372 free_init_pages("unused decrypted", vaddr, vaddr_end);
373}
374
375void __init mem_encrypt_init(void)
376{
377 if (!sme_me_mask)
378 return;
379
380
381 swiotlb_update_mem_attributes();
382
383
384
385
386
387 if (sev_active())
388 dma_ops = &swiotlb_dma_ops;
389
390
391
392
393 if (sev_active())
394 static_branch_enable(&sev_enable_key);
395
396 pr_info("AMD %s active\n",
397 sev_active() ? "Secure Encrypted Virtualization (SEV)"
398 : "Secure Memory Encryption (SME)");
399}
400
401