1
2
3
4
5
6
7
8
9
10
11
12
13
14
15#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/delay.h>
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/dmi.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25
26#include <asm/unaligned.h>
27
28#include <acpi/cppc_acpi.h>
29
30
31#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
32
33
34#define DMI_PROCESSOR_MAX_SPEED 0x14
35
36
37
38
39
40
41
42
43static struct cppc_cpudata **all_cpu_data;
44
45
46static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
47{
48 const u8 *dmi_data = (const u8 *)dm;
49 u16 *mhz = (u16 *)private;
50
51 if (dm->type == DMI_ENTRY_PROCESSOR &&
52 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
53 u16 val = (u16)get_unaligned((const u16 *)
54 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
55 *mhz = val > *mhz ? val : *mhz;
56 }
57}
58
59
60static u64 cppc_get_dmi_max_khz(void)
61{
62 u16 mhz = 0;
63
64 dmi_walk(cppc_find_dmi_mhz, &mhz);
65
66
67
68
69
70 mhz = mhz ? mhz : 1;
71
72 return (1000 * mhz);
73}
74
75
76
77
78
79
80
81
82
83
84static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
85 unsigned int perf)
86{
87 static u64 max_khz;
88 struct cppc_perf_caps *caps = &cpu->perf_caps;
89 u64 mul, div;
90
91 if (caps->lowest_freq && caps->nominal_freq) {
92 if (perf >= caps->nominal_perf) {
93 mul = caps->nominal_freq;
94 div = caps->nominal_perf;
95 } else {
96 mul = caps->nominal_freq - caps->lowest_freq;
97 div = caps->nominal_perf - caps->lowest_perf;
98 }
99 } else {
100 if (!max_khz)
101 max_khz = cppc_get_dmi_max_khz();
102 mul = max_khz;
103 div = cpu->perf_caps.highest_perf;
104 }
105 return (u64)perf * mul / div;
106}
107
108static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
109 unsigned int freq)
110{
111 static u64 max_khz;
112 struct cppc_perf_caps *caps = &cpu->perf_caps;
113 u64 mul, div;
114
115 if (caps->lowest_freq && caps->nominal_freq) {
116 if (freq >= caps->nominal_freq) {
117 mul = caps->nominal_perf;
118 div = caps->nominal_freq;
119 } else {
120 mul = caps->lowest_perf;
121 div = caps->lowest_freq;
122 }
123 } else {
124 if (!max_khz)
125 max_khz = cppc_get_dmi_max_khz();
126 mul = cpu->perf_caps.highest_perf;
127 div = max_khz;
128 }
129
130 return (u64)freq * mul / div;
131}
132
133static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
134 unsigned int target_freq,
135 unsigned int relation)
136{
137 struct cppc_cpudata *cpu;
138 struct cpufreq_freqs freqs;
139 u32 desired_perf;
140 int ret = 0;
141
142 cpu = all_cpu_data[policy->cpu];
143
144 desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
145
146 if (desired_perf == cpu->perf_ctrls.desired_perf)
147 return ret;
148
149 cpu->perf_ctrls.desired_perf = desired_perf;
150 freqs.old = policy->cur;
151 freqs.new = target_freq;
152
153 cpufreq_freq_transition_begin(policy, &freqs);
154 ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
155 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
156
157 if (ret)
158 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
159 cpu->cpu, ret);
160
161 return ret;
162}
163
164static int cppc_verify_policy(struct cpufreq_policy *policy)
165{
166 cpufreq_verify_within_cpu_limits(policy);
167 return 0;
168}
169
170static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
171{
172 int cpu_num = policy->cpu;
173 struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
174 int ret;
175
176 cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
177
178 ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
179 if (ret)
180 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
181 cpu->perf_caps.lowest_perf, cpu_num, ret);
182}
183
184
185
186
187
188
189
190#ifdef CONFIG_ARM64
191#include <asm/cputype.h>
192
193static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
194{
195 unsigned long implementor = read_cpuid_implementor();
196 unsigned long part_num = read_cpuid_part_number();
197 unsigned int delay_us = 0;
198
199 switch (implementor) {
200 case ARM_CPU_IMP_QCOM:
201 switch (part_num) {
202 case QCOM_CPU_PART_FALKOR_V1:
203 case QCOM_CPU_PART_FALKOR:
204 delay_us = 10000;
205 break;
206 default:
207 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
208 break;
209 }
210 break;
211 default:
212 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
213 break;
214 }
215
216 return delay_us;
217}
218
219#else
220
221static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
222{
223 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
224}
225#endif
226
227static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
228{
229 struct cppc_cpudata *cpu;
230 unsigned int cpu_num = policy->cpu;
231 int ret = 0;
232
233 cpu = all_cpu_data[policy->cpu];
234
235 cpu->cpu = cpu_num;
236 ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
237
238 if (ret) {
239 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
240 cpu_num, ret);
241 return ret;
242 }
243
244
245 cpu->perf_caps.lowest_freq *= 1000;
246 cpu->perf_caps.nominal_freq *= 1000;
247
248
249
250
251
252 policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
253 policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
254
255
256
257
258
259
260 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
261 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
262
263 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
264 policy->shared_type = cpu->shared_type;
265
266 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
267 int i;
268
269 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
270
271 for_each_cpu(i, policy->cpus) {
272 if (unlikely(i == policy->cpu))
273 continue;
274
275 memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
276 sizeof(cpu->perf_caps));
277 }
278 } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
279
280 pr_debug("Unsupported CPU co-ord type\n");
281 return -EFAULT;
282 }
283
284 cpu->cur_policy = policy;
285
286
287 policy->cur = cppc_cpufreq_perf_to_khz(cpu,
288 cpu->perf_caps.highest_perf);
289 cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
290
291 ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
292 if (ret)
293 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
294 cpu->perf_caps.highest_perf, cpu_num, ret);
295
296 return ret;
297}
298
299static inline u64 get_delta(u64 t1, u64 t0)
300{
301 if (t1 > t0 || t0 > ~(u32)0)
302 return t1 - t0;
303
304 return (u32)t1 - (u32)t0;
305}
306
307static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
308 struct cppc_perf_fb_ctrs fb_ctrs_t0,
309 struct cppc_perf_fb_ctrs fb_ctrs_t1)
310{
311 u64 delta_reference, delta_delivered;
312 u64 reference_perf, delivered_perf;
313
314 reference_perf = fb_ctrs_t0.reference_perf;
315
316 delta_reference = get_delta(fb_ctrs_t1.reference,
317 fb_ctrs_t0.reference);
318 delta_delivered = get_delta(fb_ctrs_t1.delivered,
319 fb_ctrs_t0.delivered);
320
321
322 if (delta_reference || delta_delivered)
323 delivered_perf = (reference_perf * delta_delivered) /
324 delta_reference;
325 else
326 delivered_perf = cpu->perf_ctrls.desired_perf;
327
328 return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
329}
330
331static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
332{
333 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
334 struct cppc_cpudata *cpu = all_cpu_data[cpunum];
335 int ret;
336
337 ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
338 if (ret)
339 return ret;
340
341 udelay(2);
342
343 ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
344 if (ret)
345 return ret;
346
347 return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
348}
349
350static struct cpufreq_driver cppc_cpufreq_driver = {
351 .flags = CPUFREQ_CONST_LOOPS,
352 .verify = cppc_verify_policy,
353 .target = cppc_cpufreq_set_target,
354 .get = cppc_cpufreq_get_rate,
355 .init = cppc_cpufreq_cpu_init,
356 .stop_cpu = cppc_cpufreq_stop_cpu,
357 .name = "cppc_cpufreq",
358};
359
360static int __init cppc_cpufreq_init(void)
361{
362 int i, ret = 0;
363 struct cppc_cpudata *cpu;
364
365 if (acpi_disabled)
366 return -ENODEV;
367
368 all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
369 GFP_KERNEL);
370 if (!all_cpu_data)
371 return -ENOMEM;
372
373 for_each_possible_cpu(i) {
374 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
375 if (!all_cpu_data[i])
376 goto out;
377
378 cpu = all_cpu_data[i];
379 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
380 goto out;
381 }
382
383 ret = acpi_get_psd_map(all_cpu_data);
384 if (ret) {
385 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
386 goto out;
387 }
388
389 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
390 if (ret)
391 goto out;
392
393 return ret;
394
395out:
396 for_each_possible_cpu(i) {
397 cpu = all_cpu_data[i];
398 if (!cpu)
399 break;
400 free_cpumask_var(cpu->shared_cpu_map);
401 kfree(cpu);
402 }
403
404 kfree(all_cpu_data);
405 return -ENODEV;
406}
407
408static void __exit cppc_cpufreq_exit(void)
409{
410 struct cppc_cpudata *cpu;
411 int i;
412
413 cpufreq_unregister_driver(&cppc_cpufreq_driver);
414
415 for_each_possible_cpu(i) {
416 cpu = all_cpu_data[i];
417 free_cpumask_var(cpu->shared_cpu_map);
418 kfree(cpu);
419 }
420
421 kfree(all_cpu_data);
422}
423
424module_exit(cppc_cpufreq_exit);
425MODULE_AUTHOR("Ashwin Chaugule");
426MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
427MODULE_LICENSE("GPL");
428
429late_initcall(cppc_cpufreq_init);
430
431static const struct acpi_device_id cppc_acpi_ids[] = {
432 {ACPI_PROCESSOR_DEVICE_HID, },
433 {}
434};
435
436MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
437