linux/drivers/crypto/atmel-ecc.c
<<
>>
Prefs
   1/*
   2 * Microchip / Atmel ECC (I2C) driver.
   3 *
   4 * Copyright (c) 2017, Microchip Technology Inc.
   5 * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
   6 *
   7 * This software is licensed under the terms of the GNU General Public
   8 * License version 2, as published by the Free Software Foundation, and
   9 * may be copied, distributed, and modified under those terms.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 */
  17
  18#include <linux/bitrev.h>
  19#include <linux/crc16.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/err.h>
  23#include <linux/errno.h>
  24#include <linux/i2c.h>
  25#include <linux/init.h>
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/of_device.h>
  29#include <linux/scatterlist.h>
  30#include <linux/slab.h>
  31#include <linux/workqueue.h>
  32#include <crypto/internal/kpp.h>
  33#include <crypto/ecdh.h>
  34#include <crypto/kpp.h>
  35#include "atmel-ecc.h"
  36
  37/* Used for binding tfm objects to i2c clients. */
  38struct atmel_ecc_driver_data {
  39        struct list_head i2c_client_list;
  40        spinlock_t i2c_list_lock;
  41} ____cacheline_aligned;
  42
  43static struct atmel_ecc_driver_data driver_data;
  44
  45/**
  46 * atmel_ecc_i2c_client_priv - i2c_client private data
  47 * @client              : pointer to i2c client device
  48 * @i2c_client_list_node: part of i2c_client_list
  49 * @lock                : lock for sending i2c commands
  50 * @wake_token          : wake token array of zeros
  51 * @wake_token_sz       : size in bytes of the wake_token
  52 * @tfm_count           : number of active crypto transformations on i2c client
  53 *
  54 * Reads and writes from/to the i2c client are sequential. The first byte
  55 * transmitted to the device is treated as the byte size. Any attempt to send
  56 * more than this number of bytes will cause the device to not ACK those bytes.
  57 * After the host writes a single command byte to the input buffer, reads are
  58 * prohibited until after the device completes command execution. Use a mutex
  59 * when sending i2c commands.
  60 */
  61struct atmel_ecc_i2c_client_priv {
  62        struct i2c_client *client;
  63        struct list_head i2c_client_list_node;
  64        struct mutex lock;
  65        u8 wake_token[WAKE_TOKEN_MAX_SIZE];
  66        size_t wake_token_sz;
  67        atomic_t tfm_count ____cacheline_aligned;
  68};
  69
  70/**
  71 * atmel_ecdh_ctx - transformation context
  72 * @client     : pointer to i2c client device
  73 * @fallback   : used for unsupported curves or when user wants to use its own
  74 *               private key.
  75 * @public_key : generated when calling set_secret(). It's the responsibility
  76 *               of the user to not call set_secret() while
  77 *               generate_public_key() or compute_shared_secret() are in flight.
  78 * @curve_id   : elliptic curve id
  79 * @n_sz       : size in bytes of the n prime
  80 * @do_fallback: true when the device doesn't support the curve or when the user
  81 *               wants to use its own private key.
  82 */
  83struct atmel_ecdh_ctx {
  84        struct i2c_client *client;
  85        struct crypto_kpp *fallback;
  86        const u8 *public_key;
  87        unsigned int curve_id;
  88        size_t n_sz;
  89        bool do_fallback;
  90};
  91
  92/**
  93 * atmel_ecc_work_data - data structure representing the work
  94 * @ctx : transformation context.
  95 * @cbk : pointer to a callback function to be invoked upon completion of this
  96 *        request. This has the form:
  97 *        callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
  98 *        where:
  99 *        @work_data: data structure representing the work
 100 *        @areq     : optional pointer to an argument passed with the original
 101 *                    request.
 102 *        @status   : status returned from the i2c client device or i2c error.
 103 * @areq: optional pointer to a user argument for use at callback time.
 104 * @work: describes the task to be executed.
 105 * @cmd : structure used for communicating with the device.
 106 */
 107struct atmel_ecc_work_data {
 108        struct atmel_ecdh_ctx *ctx;
 109        void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq,
 110                    int status);
 111        void *areq;
 112        struct work_struct work;
 113        struct atmel_ecc_cmd cmd;
 114};
 115
 116static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len)
 117{
 118        return cpu_to_le16(bitrev16(crc16(crc, buffer, len)));
 119}
 120
 121/**
 122 * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
 123 * CRC16 verification of the count, opcode, param1, param2 and data bytes.
 124 * The checksum is saved in little-endian format in the least significant
 125 * two bytes of the command. CRC polynomial is 0x8005 and the initial register
 126 * value should be zero.
 127 *
 128 * @cmd : structure used for communicating with the device.
 129 */
 130static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd)
 131{
 132        u8 *data = &cmd->count;
 133        size_t len = cmd->count - CRC_SIZE;
 134        u16 *crc16 = (u16 *)(data + len);
 135
 136        *crc16 = atmel_ecc_crc16(0, data, len);
 137}
 138
 139static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd)
 140{
 141        cmd->word_addr = COMMAND;
 142        cmd->opcode = OPCODE_READ;
 143        /*
 144         * Read the word from Configuration zone that contains the lock bytes
 145         * (UserExtra, Selector, LockValue, LockConfig).
 146         */
 147        cmd->param1 = CONFIG_ZONE;
 148        cmd->param2 = DEVICE_LOCK_ADDR;
 149        cmd->count = READ_COUNT;
 150
 151        atmel_ecc_checksum(cmd);
 152
 153        cmd->msecs = MAX_EXEC_TIME_READ;
 154        cmd->rxsize = READ_RSP_SIZE;
 155}
 156
 157static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid)
 158{
 159        cmd->word_addr = COMMAND;
 160        cmd->count = GENKEY_COUNT;
 161        cmd->opcode = OPCODE_GENKEY;
 162        cmd->param1 = GENKEY_MODE_PRIVATE;
 163        /* a random private key will be generated and stored in slot keyID */
 164        cmd->param2 = cpu_to_le16(keyid);
 165
 166        atmel_ecc_checksum(cmd);
 167
 168        cmd->msecs = MAX_EXEC_TIME_GENKEY;
 169        cmd->rxsize = GENKEY_RSP_SIZE;
 170}
 171
 172static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd,
 173                                   struct scatterlist *pubkey)
 174{
 175        size_t copied;
 176
 177        cmd->word_addr = COMMAND;
 178        cmd->count = ECDH_COUNT;
 179        cmd->opcode = OPCODE_ECDH;
 180        cmd->param1 = ECDH_PREFIX_MODE;
 181        /* private key slot */
 182        cmd->param2 = cpu_to_le16(DATA_SLOT_2);
 183
 184        /*
 185         * The device only supports NIST P256 ECC keys. The public key size will
 186         * always be the same. Use a macro for the key size to avoid unnecessary
 187         * computations.
 188         */
 189        copied = sg_copy_to_buffer(pubkey,
 190                                   sg_nents_for_len(pubkey,
 191                                                    ATMEL_ECC_PUBKEY_SIZE),
 192                                   cmd->data, ATMEL_ECC_PUBKEY_SIZE);
 193        if (copied != ATMEL_ECC_PUBKEY_SIZE)
 194                return -EINVAL;
 195
 196        atmel_ecc_checksum(cmd);
 197
 198        cmd->msecs = MAX_EXEC_TIME_ECDH;
 199        cmd->rxsize = ECDH_RSP_SIZE;
 200
 201        return 0;
 202}
 203
 204/*
 205 * After wake and after execution of a command, there will be error, status, or
 206 * result bytes in the device's output register that can be retrieved by the
 207 * system. When the length of that group is four bytes, the codes returned are
 208 * detailed in error_list.
 209 */
 210static int atmel_ecc_status(struct device *dev, u8 *status)
 211{
 212        size_t err_list_len = ARRAY_SIZE(error_list);
 213        int i;
 214        u8 err_id = status[1];
 215
 216        if (*status != STATUS_SIZE)
 217                return 0;
 218
 219        if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
 220                return 0;
 221
 222        for (i = 0; i < err_list_len; i++)
 223                if (error_list[i].value == err_id)
 224                        break;
 225
 226        /* if err_id is not in the error_list then ignore it */
 227        if (i != err_list_len) {
 228                dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
 229                return err_id;
 230        }
 231
 232        return 0;
 233}
 234
 235static int atmel_ecc_wakeup(struct i2c_client *client)
 236{
 237        struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
 238        u8 status[STATUS_RSP_SIZE];
 239        int ret;
 240
 241        /*
 242         * The device ignores any levels or transitions on the SCL pin when the
 243         * device is idle, asleep or during waking up. Don't check for error
 244         * when waking up the device.
 245         */
 246        i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);
 247
 248        /*
 249         * Wait to wake the device. Typical execution times for ecdh and genkey
 250         * are around tens of milliseconds. Delta is chosen to 50 microseconds.
 251         */
 252        usleep_range(TWHI_MIN, TWHI_MAX);
 253
 254        ret = i2c_master_recv(client, status, STATUS_SIZE);
 255        if (ret < 0)
 256                return ret;
 257
 258        return atmel_ecc_status(&client->dev, status);
 259}
 260
 261static int atmel_ecc_sleep(struct i2c_client *client)
 262{
 263        u8 sleep = SLEEP_TOKEN;
 264
 265        return i2c_master_send(client, &sleep, 1);
 266}
 267
 268static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq,
 269                            int status)
 270{
 271        struct kpp_request *req = areq;
 272        struct atmel_ecdh_ctx *ctx = work_data->ctx;
 273        struct atmel_ecc_cmd *cmd = &work_data->cmd;
 274        size_t copied, n_sz;
 275
 276        if (status)
 277                goto free_work_data;
 278
 279        /* might want less than we've got */
 280        n_sz = min_t(size_t, ctx->n_sz, req->dst_len);
 281
 282        /* copy the shared secret */
 283        copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz),
 284                                     &cmd->data[RSP_DATA_IDX], n_sz);
 285        if (copied != n_sz)
 286                status = -EINVAL;
 287
 288        /* fall through */
 289free_work_data:
 290        kzfree(work_data);
 291        kpp_request_complete(req, status);
 292}
 293
 294/*
 295 * atmel_ecc_send_receive() - send a command to the device and receive its
 296 *                            response.
 297 * @client: i2c client device
 298 * @cmd   : structure used to communicate with the device
 299 *
 300 * After the device receives a Wake token, a watchdog counter starts within the
 301 * device. After the watchdog timer expires, the device enters sleep mode
 302 * regardless of whether some I/O transmission or command execution is in
 303 * progress. If a command is attempted when insufficient time remains prior to
 304 * watchdog timer execution, the device will return the watchdog timeout error
 305 * code without attempting to execute the command. There is no way to reset the
 306 * counter other than to put the device into sleep or idle mode and then
 307 * wake it up again.
 308 */
 309static int atmel_ecc_send_receive(struct i2c_client *client,
 310                                  struct atmel_ecc_cmd *cmd)
 311{
 312        struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
 313        int ret;
 314
 315        mutex_lock(&i2c_priv->lock);
 316
 317        ret = atmel_ecc_wakeup(client);
 318        if (ret)
 319                goto err;
 320
 321        /* send the command */
 322        ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
 323        if (ret < 0)
 324                goto err;
 325
 326        /* delay the appropriate amount of time for command to execute */
 327        msleep(cmd->msecs);
 328
 329        /* receive the response */
 330        ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
 331        if (ret < 0)
 332                goto err;
 333
 334        /* put the device into low-power mode */
 335        ret = atmel_ecc_sleep(client);
 336        if (ret < 0)
 337                goto err;
 338
 339        mutex_unlock(&i2c_priv->lock);
 340        return atmel_ecc_status(&client->dev, cmd->data);
 341err:
 342        mutex_unlock(&i2c_priv->lock);
 343        return ret;
 344}
 345
 346static void atmel_ecc_work_handler(struct work_struct *work)
 347{
 348        struct atmel_ecc_work_data *work_data =
 349                        container_of(work, struct atmel_ecc_work_data, work);
 350        struct atmel_ecc_cmd *cmd = &work_data->cmd;
 351        struct i2c_client *client = work_data->ctx->client;
 352        int status;
 353
 354        status = atmel_ecc_send_receive(client, cmd);
 355        work_data->cbk(work_data, work_data->areq, status);
 356}
 357
 358static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data,
 359                              void (*cbk)(struct atmel_ecc_work_data *work_data,
 360                                          void *areq, int status),
 361                              void *areq)
 362{
 363        work_data->cbk = (void *)cbk;
 364        work_data->areq = areq;
 365
 366        INIT_WORK(&work_data->work, atmel_ecc_work_handler);
 367        schedule_work(&work_data->work);
 368}
 369
 370static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
 371{
 372        if (curve_id == ECC_CURVE_NIST_P256)
 373                return ATMEL_ECC_NIST_P256_N_SIZE;
 374
 375        return 0;
 376}
 377
 378/*
 379 * A random private key is generated and stored in the device. The device
 380 * returns the pair public key.
 381 */
 382static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
 383                                 unsigned int len)
 384{
 385        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 386        struct atmel_ecc_cmd *cmd;
 387        void *public_key;
 388        struct ecdh params;
 389        int ret = -ENOMEM;
 390
 391        /* free the old public key, if any */
 392        kfree(ctx->public_key);
 393        /* make sure you don't free the old public key twice */
 394        ctx->public_key = NULL;
 395
 396        if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
 397                dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
 398                return -EINVAL;
 399        }
 400
 401        ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
 402        if (!ctx->n_sz || params.key_size) {
 403                /* fallback to ecdh software implementation */
 404                ctx->do_fallback = true;
 405                return crypto_kpp_set_secret(ctx->fallback, buf, len);
 406        }
 407
 408        cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
 409        if (!cmd)
 410                return -ENOMEM;
 411
 412        /*
 413         * The device only supports NIST P256 ECC keys. The public key size will
 414         * always be the same. Use a macro for the key size to avoid unnecessary
 415         * computations.
 416         */
 417        public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
 418        if (!public_key)
 419                goto free_cmd;
 420
 421        ctx->do_fallback = false;
 422        ctx->curve_id = params.curve_id;
 423
 424        atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2);
 425
 426        ret = atmel_ecc_send_receive(ctx->client, cmd);
 427        if (ret)
 428                goto free_public_key;
 429
 430        /* save the public key */
 431        memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
 432        ctx->public_key = public_key;
 433
 434        kfree(cmd);
 435        return 0;
 436
 437free_public_key:
 438        kfree(public_key);
 439free_cmd:
 440        kfree(cmd);
 441        return ret;
 442}
 443
 444static int atmel_ecdh_generate_public_key(struct kpp_request *req)
 445{
 446        struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
 447        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 448        size_t copied, nbytes;
 449        int ret = 0;
 450
 451        if (ctx->do_fallback) {
 452                kpp_request_set_tfm(req, ctx->fallback);
 453                return crypto_kpp_generate_public_key(req);
 454        }
 455
 456        /* might want less than we've got */
 457        nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len);
 458
 459        /* public key was saved at private key generation */
 460        copied = sg_copy_from_buffer(req->dst,
 461                                     sg_nents_for_len(req->dst, nbytes),
 462                                     ctx->public_key, nbytes);
 463        if (copied != nbytes)
 464                ret = -EINVAL;
 465
 466        return ret;
 467}
 468
 469static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
 470{
 471        struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
 472        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 473        struct atmel_ecc_work_data *work_data;
 474        gfp_t gfp;
 475        int ret;
 476
 477        if (ctx->do_fallback) {
 478                kpp_request_set_tfm(req, ctx->fallback);
 479                return crypto_kpp_compute_shared_secret(req);
 480        }
 481
 482        /* must have exactly two points to be on the curve */
 483        if (req->src_len != ATMEL_ECC_PUBKEY_SIZE)
 484                return -EINVAL;
 485
 486        gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
 487                                                             GFP_ATOMIC;
 488
 489        work_data = kmalloc(sizeof(*work_data), gfp);
 490        if (!work_data)
 491                return -ENOMEM;
 492
 493        work_data->ctx = ctx;
 494
 495        ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src);
 496        if (ret)
 497                goto free_work_data;
 498
 499        atmel_ecc_enqueue(work_data, atmel_ecdh_done, req);
 500
 501        return -EINPROGRESS;
 502
 503free_work_data:
 504        kfree(work_data);
 505        return ret;
 506}
 507
 508static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
 509{
 510        struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
 511        struct i2c_client *client = ERR_PTR(-ENODEV);
 512        int min_tfm_cnt = INT_MAX;
 513        int tfm_cnt;
 514
 515        spin_lock(&driver_data.i2c_list_lock);
 516
 517        if (list_empty(&driver_data.i2c_client_list)) {
 518                spin_unlock(&driver_data.i2c_list_lock);
 519                return ERR_PTR(-ENODEV);
 520        }
 521
 522        list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
 523                            i2c_client_list_node) {
 524                tfm_cnt = atomic_read(&i2c_priv->tfm_count);
 525                if (tfm_cnt < min_tfm_cnt) {
 526                        min_tfm_cnt = tfm_cnt;
 527                        min_i2c_priv = i2c_priv;
 528                }
 529                if (!min_tfm_cnt)
 530                        break;
 531        }
 532
 533        if (min_i2c_priv) {
 534                atomic_inc(&min_i2c_priv->tfm_count);
 535                client = min_i2c_priv->client;
 536        }
 537
 538        spin_unlock(&driver_data.i2c_list_lock);
 539
 540        return client;
 541}
 542
 543static void atmel_ecc_i2c_client_free(struct i2c_client *client)
 544{
 545        struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
 546
 547        atomic_dec(&i2c_priv->tfm_count);
 548}
 549
 550static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
 551{
 552        const char *alg = kpp_alg_name(tfm);
 553        struct crypto_kpp *fallback;
 554        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 555
 556        ctx->client = atmel_ecc_i2c_client_alloc();
 557        if (IS_ERR(ctx->client)) {
 558                pr_err("tfm - i2c_client binding failed\n");
 559                return PTR_ERR(ctx->client);
 560        }
 561
 562        fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
 563        if (IS_ERR(fallback)) {
 564                dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
 565                        alg, PTR_ERR(fallback));
 566                return PTR_ERR(fallback);
 567        }
 568
 569        crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
 570        ctx->fallback = fallback;
 571
 572        return 0;
 573}
 574
 575static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
 576{
 577        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 578
 579        kfree(ctx->public_key);
 580        crypto_free_kpp(ctx->fallback);
 581        atmel_ecc_i2c_client_free(ctx->client);
 582}
 583
 584static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
 585{
 586        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 587
 588        if (ctx->fallback)
 589                return crypto_kpp_maxsize(ctx->fallback);
 590
 591        /*
 592         * The device only supports NIST P256 ECC keys. The public key size will
 593         * always be the same. Use a macro for the key size to avoid unnecessary
 594         * computations.
 595         */
 596        return ATMEL_ECC_PUBKEY_SIZE;
 597}
 598
 599static struct kpp_alg atmel_ecdh = {
 600        .set_secret = atmel_ecdh_set_secret,
 601        .generate_public_key = atmel_ecdh_generate_public_key,
 602        .compute_shared_secret = atmel_ecdh_compute_shared_secret,
 603        .init = atmel_ecdh_init_tfm,
 604        .exit = atmel_ecdh_exit_tfm,
 605        .max_size = atmel_ecdh_max_size,
 606        .base = {
 607                .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
 608                .cra_name = "ecdh",
 609                .cra_driver_name = "atmel-ecdh",
 610                .cra_priority = ATMEL_ECC_PRIORITY,
 611                .cra_module = THIS_MODULE,
 612                .cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
 613        },
 614};
 615
 616static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate)
 617{
 618        u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
 619
 620        /* return the size of the wake_token in bytes */
 621        return DIV_ROUND_UP(no_of_bits, 8);
 622}
 623
 624static int device_sanity_check(struct i2c_client *client)
 625{
 626        struct atmel_ecc_cmd *cmd;
 627        int ret;
 628
 629        cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
 630        if (!cmd)
 631                return -ENOMEM;
 632
 633        atmel_ecc_init_read_cmd(cmd);
 634
 635        ret = atmel_ecc_send_receive(client, cmd);
 636        if (ret)
 637                goto free_cmd;
 638
 639        /*
 640         * It is vital that the Configuration, Data and OTP zones be locked
 641         * prior to release into the field of the system containing the device.
 642         * Failure to lock these zones may permit modification of any secret
 643         * keys and may lead to other security problems.
 644         */
 645        if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
 646                dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
 647                ret = -ENOTSUPP;
 648        }
 649
 650        /* fall through */
 651free_cmd:
 652        kfree(cmd);
 653        return ret;
 654}
 655
 656static int atmel_ecc_probe(struct i2c_client *client,
 657                           const struct i2c_device_id *id)
 658{
 659        struct atmel_ecc_i2c_client_priv *i2c_priv;
 660        struct device *dev = &client->dev;
 661        int ret;
 662        u32 bus_clk_rate;
 663
 664        if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
 665                dev_err(dev, "I2C_FUNC_I2C not supported\n");
 666                return -ENODEV;
 667        }
 668
 669        ret = of_property_read_u32(client->adapter->dev.of_node,
 670                                   "clock-frequency", &bus_clk_rate);
 671        if (ret) {
 672                dev_err(dev, "of: failed to read clock-frequency property\n");
 673                return ret;
 674        }
 675
 676        if (bus_clk_rate > 1000000L) {
 677                dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
 678                        bus_clk_rate);
 679                return -EINVAL;
 680        }
 681
 682        i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
 683        if (!i2c_priv)
 684                return -ENOMEM;
 685
 686        i2c_priv->client = client;
 687        mutex_init(&i2c_priv->lock);
 688
 689        /*
 690         * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
 691         * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
 692         * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
 693         */
 694        i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate);
 695
 696        memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
 697
 698        atomic_set(&i2c_priv->tfm_count, 0);
 699
 700        i2c_set_clientdata(client, i2c_priv);
 701
 702        ret = device_sanity_check(client);
 703        if (ret)
 704                return ret;
 705
 706        spin_lock(&driver_data.i2c_list_lock);
 707        list_add_tail(&i2c_priv->i2c_client_list_node,
 708                      &driver_data.i2c_client_list);
 709        spin_unlock(&driver_data.i2c_list_lock);
 710
 711        ret = crypto_register_kpp(&atmel_ecdh);
 712        if (ret) {
 713                spin_lock(&driver_data.i2c_list_lock);
 714                list_del(&i2c_priv->i2c_client_list_node);
 715                spin_unlock(&driver_data.i2c_list_lock);
 716
 717                dev_err(dev, "%s alg registration failed\n",
 718                        atmel_ecdh.base.cra_driver_name);
 719        } else {
 720                dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n");
 721        }
 722
 723        return ret;
 724}
 725
 726static int atmel_ecc_remove(struct i2c_client *client)
 727{
 728        struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
 729
 730        /* Return EBUSY if i2c client already allocated. */
 731        if (atomic_read(&i2c_priv->tfm_count)) {
 732                dev_err(&client->dev, "Device is busy\n");
 733                return -EBUSY;
 734        }
 735
 736        crypto_unregister_kpp(&atmel_ecdh);
 737
 738        spin_lock(&driver_data.i2c_list_lock);
 739        list_del(&i2c_priv->i2c_client_list_node);
 740        spin_unlock(&driver_data.i2c_list_lock);
 741
 742        return 0;
 743}
 744
 745#ifdef CONFIG_OF
 746static const struct of_device_id atmel_ecc_dt_ids[] = {
 747        {
 748                .compatible = "atmel,atecc508a",
 749        }, {
 750                /* sentinel */
 751        }
 752};
 753MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
 754#endif
 755
 756static const struct i2c_device_id atmel_ecc_id[] = {
 757        { "atecc508a", 0 },
 758        { }
 759};
 760MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
 761
 762static struct i2c_driver atmel_ecc_driver = {
 763        .driver = {
 764                .name   = "atmel-ecc",
 765                .of_match_table = of_match_ptr(atmel_ecc_dt_ids),
 766        },
 767        .probe          = atmel_ecc_probe,
 768        .remove         = atmel_ecc_remove,
 769        .id_table       = atmel_ecc_id,
 770};
 771
 772static int __init atmel_ecc_init(void)
 773{
 774        spin_lock_init(&driver_data.i2c_list_lock);
 775        INIT_LIST_HEAD(&driver_data.i2c_client_list);
 776        return i2c_add_driver(&atmel_ecc_driver);
 777}
 778
 779static void __exit atmel_ecc_exit(void)
 780{
 781        flush_scheduled_work();
 782        i2c_del_driver(&atmel_ecc_driver);
 783}
 784
 785module_init(atmel_ecc_init);
 786module_exit(atmel_ecc_exit);
 787
 788MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
 789MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
 790MODULE_LICENSE("GPL v2");
 791