linux/drivers/dma/ti/edma.c
<<
>>
Prefs
   1/*
   2 * TI EDMA DMA engine driver
   3 *
   4 * Copyright 2012 Texas Instruments
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation version 2.
   9 *
  10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11 * kind, whether express or implied; without even the implied warranty
  12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/dmaengine.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/edma.h>
  19#include <linux/err.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/list.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/of.h>
  28#include <linux/of_dma.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/of_device.h>
  32#include <linux/pm_runtime.h>
  33
  34#include <linux/platform_data/edma.h>
  35
  36#include "../dmaengine.h"
  37#include "../virt-dma.h"
  38
  39/* Offsets matching "struct edmacc_param" */
  40#define PARM_OPT                0x00
  41#define PARM_SRC                0x04
  42#define PARM_A_B_CNT            0x08
  43#define PARM_DST                0x0c
  44#define PARM_SRC_DST_BIDX       0x10
  45#define PARM_LINK_BCNTRLD       0x14
  46#define PARM_SRC_DST_CIDX       0x18
  47#define PARM_CCNT               0x1c
  48
  49#define PARM_SIZE               0x20
  50
  51/* Offsets for EDMA CC global channel registers and their shadows */
  52#define SH_ER                   0x00    /* 64 bits */
  53#define SH_ECR                  0x08    /* 64 bits */
  54#define SH_ESR                  0x10    /* 64 bits */
  55#define SH_CER                  0x18    /* 64 bits */
  56#define SH_EER                  0x20    /* 64 bits */
  57#define SH_EECR                 0x28    /* 64 bits */
  58#define SH_EESR                 0x30    /* 64 bits */
  59#define SH_SER                  0x38    /* 64 bits */
  60#define SH_SECR                 0x40    /* 64 bits */
  61#define SH_IER                  0x50    /* 64 bits */
  62#define SH_IECR                 0x58    /* 64 bits */
  63#define SH_IESR                 0x60    /* 64 bits */
  64#define SH_IPR                  0x68    /* 64 bits */
  65#define SH_ICR                  0x70    /* 64 bits */
  66#define SH_IEVAL                0x78
  67#define SH_QER                  0x80
  68#define SH_QEER                 0x84
  69#define SH_QEECR                0x88
  70#define SH_QEESR                0x8c
  71#define SH_QSER                 0x90
  72#define SH_QSECR                0x94
  73#define SH_SIZE                 0x200
  74
  75/* Offsets for EDMA CC global registers */
  76#define EDMA_REV                0x0000
  77#define EDMA_CCCFG              0x0004
  78#define EDMA_QCHMAP             0x0200  /* 8 registers */
  79#define EDMA_DMAQNUM            0x0240  /* 8 registers (4 on OMAP-L1xx) */
  80#define EDMA_QDMAQNUM           0x0260
  81#define EDMA_QUETCMAP           0x0280
  82#define EDMA_QUEPRI             0x0284
  83#define EDMA_EMR                0x0300  /* 64 bits */
  84#define EDMA_EMCR               0x0308  /* 64 bits */
  85#define EDMA_QEMR               0x0310
  86#define EDMA_QEMCR              0x0314
  87#define EDMA_CCERR              0x0318
  88#define EDMA_CCERRCLR           0x031c
  89#define EDMA_EEVAL              0x0320
  90#define EDMA_DRAE               0x0340  /* 4 x 64 bits*/
  91#define EDMA_QRAE               0x0380  /* 4 registers */
  92#define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
  93#define EDMA_QSTAT              0x0600  /* 2 registers */
  94#define EDMA_QWMTHRA            0x0620
  95#define EDMA_QWMTHRB            0x0624
  96#define EDMA_CCSTAT             0x0640
  97
  98#define EDMA_M                  0x1000  /* global channel registers */
  99#define EDMA_ECR                0x1008
 100#define EDMA_ECRH               0x100C
 101#define EDMA_SHADOW0            0x2000  /* 4 shadow regions */
 102#define EDMA_PARM               0x4000  /* PaRAM entries */
 103
 104#define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
 105
 106#define EDMA_DCHMAP             0x0100  /* 64 registers */
 107
 108/* CCCFG register */
 109#define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
 110#define GET_NUM_QDMACH(x)       ((x & 0x70) >> 4) /* bits 4-6 */
 111#define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
 112#define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
 113#define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
 114#define CHMAP_EXIST             BIT(24)
 115
 116/* CCSTAT register */
 117#define EDMA_CCSTAT_ACTV        BIT(4)
 118
 119/*
 120 * Max of 20 segments per channel to conserve PaRAM slots
 121 * Also note that MAX_NR_SG should be atleast the no.of periods
 122 * that are required for ASoC, otherwise DMA prep calls will
 123 * fail. Today davinci-pcm is the only user of this driver and
 124 * requires atleast 17 slots, so we setup the default to 20.
 125 */
 126#define MAX_NR_SG               20
 127#define EDMA_MAX_SLOTS          MAX_NR_SG
 128#define EDMA_DESCRIPTORS        16
 129
 130#define EDMA_CHANNEL_ANY                -1      /* for edma_alloc_channel() */
 131#define EDMA_SLOT_ANY                   -1      /* for edma_alloc_slot() */
 132#define EDMA_CONT_PARAMS_ANY             1001
 133#define EDMA_CONT_PARAMS_FIXED_EXACT     1002
 134#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
 135
 136/* PaRAM slots are laid out like this */
 137struct edmacc_param {
 138        u32 opt;
 139        u32 src;
 140        u32 a_b_cnt;
 141        u32 dst;
 142        u32 src_dst_bidx;
 143        u32 link_bcntrld;
 144        u32 src_dst_cidx;
 145        u32 ccnt;
 146} __packed;
 147
 148/* fields in edmacc_param.opt */
 149#define SAM             BIT(0)
 150#define DAM             BIT(1)
 151#define SYNCDIM         BIT(2)
 152#define STATIC          BIT(3)
 153#define EDMA_FWID       (0x07 << 8)
 154#define TCCMODE         BIT(11)
 155#define EDMA_TCC(t)     ((t) << 12)
 156#define TCINTEN         BIT(20)
 157#define ITCINTEN        BIT(21)
 158#define TCCHEN          BIT(22)
 159#define ITCCHEN         BIT(23)
 160
 161struct edma_pset {
 162        u32                             len;
 163        dma_addr_t                      addr;
 164        struct edmacc_param             param;
 165};
 166
 167struct edma_desc {
 168        struct virt_dma_desc            vdesc;
 169        struct list_head                node;
 170        enum dma_transfer_direction     direction;
 171        int                             cyclic;
 172        int                             absync;
 173        int                             pset_nr;
 174        struct edma_chan                *echan;
 175        int                             processed;
 176
 177        /*
 178         * The following 4 elements are used for residue accounting.
 179         *
 180         * - processed_stat: the number of SG elements we have traversed
 181         * so far to cover accounting. This is updated directly to processed
 182         * during edma_callback and is always <= processed, because processed
 183         * refers to the number of pending transfer (programmed to EDMA
 184         * controller), where as processed_stat tracks number of transfers
 185         * accounted for so far.
 186         *
 187         * - residue: The amount of bytes we have left to transfer for this desc
 188         *
 189         * - residue_stat: The residue in bytes of data we have covered
 190         * so far for accounting. This is updated directly to residue
 191         * during callbacks to keep it current.
 192         *
 193         * - sg_len: Tracks the length of the current intermediate transfer,
 194         * this is required to update the residue during intermediate transfer
 195         * completion callback.
 196         */
 197        int                             processed_stat;
 198        u32                             sg_len;
 199        u32                             residue;
 200        u32                             residue_stat;
 201
 202        struct edma_pset                pset[0];
 203};
 204
 205struct edma_cc;
 206
 207struct edma_tc {
 208        struct device_node              *node;
 209        u16                             id;
 210};
 211
 212struct edma_chan {
 213        struct virt_dma_chan            vchan;
 214        struct list_head                node;
 215        struct edma_desc                *edesc;
 216        struct edma_cc                  *ecc;
 217        struct edma_tc                  *tc;
 218        int                             ch_num;
 219        bool                            alloced;
 220        bool                            hw_triggered;
 221        int                             slot[EDMA_MAX_SLOTS];
 222        int                             missed;
 223        struct dma_slave_config         cfg;
 224};
 225
 226struct edma_cc {
 227        struct device                   *dev;
 228        struct edma_soc_info            *info;
 229        void __iomem                    *base;
 230        int                             id;
 231        bool                            legacy_mode;
 232
 233        /* eDMA3 resource information */
 234        unsigned                        num_channels;
 235        unsigned                        num_qchannels;
 236        unsigned                        num_region;
 237        unsigned                        num_slots;
 238        unsigned                        num_tc;
 239        bool                            chmap_exist;
 240        enum dma_event_q                default_queue;
 241
 242        unsigned int                    ccint;
 243        unsigned int                    ccerrint;
 244
 245        /*
 246         * The slot_inuse bit for each PaRAM slot is clear unless the slot is
 247         * in use by Linux or if it is allocated to be used by DSP.
 248         */
 249        unsigned long *slot_inuse;
 250
 251        struct dma_device               dma_slave;
 252        struct dma_device               *dma_memcpy;
 253        struct edma_chan                *slave_chans;
 254        struct edma_tc                  *tc_list;
 255        int                             dummy_slot;
 256};
 257
 258/* dummy param set used to (re)initialize parameter RAM slots */
 259static const struct edmacc_param dummy_paramset = {
 260        .link_bcntrld = 0xffff,
 261        .ccnt = 1,
 262};
 263
 264#define EDMA_BINDING_LEGACY     0
 265#define EDMA_BINDING_TPCC       1
 266static const u32 edma_binding_type[] = {
 267        [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
 268        [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
 269};
 270
 271static const struct of_device_id edma_of_ids[] = {
 272        {
 273                .compatible = "ti,edma3",
 274                .data = &edma_binding_type[EDMA_BINDING_LEGACY],
 275        },
 276        {
 277                .compatible = "ti,edma3-tpcc",
 278                .data = &edma_binding_type[EDMA_BINDING_TPCC],
 279        },
 280        {}
 281};
 282MODULE_DEVICE_TABLE(of, edma_of_ids);
 283
 284static const struct of_device_id edma_tptc_of_ids[] = {
 285        { .compatible = "ti,edma3-tptc", },
 286        {}
 287};
 288MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
 289
 290static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
 291{
 292        return (unsigned int)__raw_readl(ecc->base + offset);
 293}
 294
 295static inline void edma_write(struct edma_cc *ecc, int offset, int val)
 296{
 297        __raw_writel(val, ecc->base + offset);
 298}
 299
 300static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
 301                               unsigned or)
 302{
 303        unsigned val = edma_read(ecc, offset);
 304
 305        val &= and;
 306        val |= or;
 307        edma_write(ecc, offset, val);
 308}
 309
 310static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
 311{
 312        unsigned val = edma_read(ecc, offset);
 313
 314        val &= and;
 315        edma_write(ecc, offset, val);
 316}
 317
 318static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
 319{
 320        unsigned val = edma_read(ecc, offset);
 321
 322        val |= or;
 323        edma_write(ecc, offset, val);
 324}
 325
 326static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
 327                                           int i)
 328{
 329        return edma_read(ecc, offset + (i << 2));
 330}
 331
 332static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
 333                                    unsigned val)
 334{
 335        edma_write(ecc, offset + (i << 2), val);
 336}
 337
 338static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
 339                                     unsigned and, unsigned or)
 340{
 341        edma_modify(ecc, offset + (i << 2), and, or);
 342}
 343
 344static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
 345                                 unsigned or)
 346{
 347        edma_or(ecc, offset + (i << 2), or);
 348}
 349
 350static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
 351                                  unsigned or)
 352{
 353        edma_or(ecc, offset + ((i * 2 + j) << 2), or);
 354}
 355
 356static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
 357                                     int j, unsigned val)
 358{
 359        edma_write(ecc, offset + ((i * 2 + j) << 2), val);
 360}
 361
 362static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
 363{
 364        return edma_read(ecc, EDMA_SHADOW0 + offset);
 365}
 366
 367static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
 368                                                   int offset, int i)
 369{
 370        return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
 371}
 372
 373static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
 374                                      unsigned val)
 375{
 376        edma_write(ecc, EDMA_SHADOW0 + offset, val);
 377}
 378
 379static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
 380                                            int i, unsigned val)
 381{
 382        edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
 383}
 384
 385static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
 386                                           int param_no)
 387{
 388        return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
 389}
 390
 391static inline void edma_param_write(struct edma_cc *ecc, int offset,
 392                                    int param_no, unsigned val)
 393{
 394        edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
 395}
 396
 397static inline void edma_param_modify(struct edma_cc *ecc, int offset,
 398                                     int param_no, unsigned and, unsigned or)
 399{
 400        edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
 401}
 402
 403static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
 404                                  unsigned and)
 405{
 406        edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
 407}
 408
 409static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
 410                                 unsigned or)
 411{
 412        edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
 413}
 414
 415static inline void edma_set_bits(int offset, int len, unsigned long *p)
 416{
 417        for (; len > 0; len--)
 418                set_bit(offset + (len - 1), p);
 419}
 420
 421static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
 422                                          int priority)
 423{
 424        int bit = queue_no * 4;
 425
 426        edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 427}
 428
 429static void edma_set_chmap(struct edma_chan *echan, int slot)
 430{
 431        struct edma_cc *ecc = echan->ecc;
 432        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 433
 434        if (ecc->chmap_exist) {
 435                slot = EDMA_CHAN_SLOT(slot);
 436                edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
 437        }
 438}
 439
 440static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
 441{
 442        struct edma_cc *ecc = echan->ecc;
 443        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 444
 445        if (enable) {
 446                edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
 447                                         BIT(channel & 0x1f));
 448                edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
 449                                         BIT(channel & 0x1f));
 450        } else {
 451                edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
 452                                         BIT(channel & 0x1f));
 453        }
 454}
 455
 456/*
 457 * paRAM slot management functions
 458 */
 459static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
 460                            const struct edmacc_param *param)
 461{
 462        slot = EDMA_CHAN_SLOT(slot);
 463        if (slot >= ecc->num_slots)
 464                return;
 465        memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
 466}
 467
 468static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
 469                           struct edmacc_param *param)
 470{
 471        slot = EDMA_CHAN_SLOT(slot);
 472        if (slot >= ecc->num_slots)
 473                return -EINVAL;
 474        memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
 475
 476        return 0;
 477}
 478
 479/**
 480 * edma_alloc_slot - allocate DMA parameter RAM
 481 * @ecc: pointer to edma_cc struct
 482 * @slot: specific slot to allocate; negative for "any unused slot"
 483 *
 484 * This allocates a parameter RAM slot, initializing it to hold a
 485 * dummy transfer.  Slots allocated using this routine have not been
 486 * mapped to a hardware DMA channel, and will normally be used by
 487 * linking to them from a slot associated with a DMA channel.
 488 *
 489 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 490 * slots may be allocated on behalf of DSP firmware.
 491 *
 492 * Returns the number of the slot, else negative errno.
 493 */
 494static int edma_alloc_slot(struct edma_cc *ecc, int slot)
 495{
 496        if (slot >= 0) {
 497                slot = EDMA_CHAN_SLOT(slot);
 498                /* Requesting entry paRAM slot for a HW triggered channel. */
 499                if (ecc->chmap_exist && slot < ecc->num_channels)
 500                        slot = EDMA_SLOT_ANY;
 501        }
 502
 503        if (slot < 0) {
 504                if (ecc->chmap_exist)
 505                        slot = 0;
 506                else
 507                        slot = ecc->num_channels;
 508                for (;;) {
 509                        slot = find_next_zero_bit(ecc->slot_inuse,
 510                                                  ecc->num_slots,
 511                                                  slot);
 512                        if (slot == ecc->num_slots)
 513                                return -ENOMEM;
 514                        if (!test_and_set_bit(slot, ecc->slot_inuse))
 515                                break;
 516                }
 517        } else if (slot >= ecc->num_slots) {
 518                return -EINVAL;
 519        } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
 520                return -EBUSY;
 521        }
 522
 523        edma_write_slot(ecc, slot, &dummy_paramset);
 524
 525        return EDMA_CTLR_CHAN(ecc->id, slot);
 526}
 527
 528static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
 529{
 530        slot = EDMA_CHAN_SLOT(slot);
 531        if (slot >= ecc->num_slots)
 532                return;
 533
 534        edma_write_slot(ecc, slot, &dummy_paramset);
 535        clear_bit(slot, ecc->slot_inuse);
 536}
 537
 538/**
 539 * edma_link - link one parameter RAM slot to another
 540 * @ecc: pointer to edma_cc struct
 541 * @from: parameter RAM slot originating the link
 542 * @to: parameter RAM slot which is the link target
 543 *
 544 * The originating slot should not be part of any active DMA transfer.
 545 */
 546static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
 547{
 548        if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
 549                dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
 550
 551        from = EDMA_CHAN_SLOT(from);
 552        to = EDMA_CHAN_SLOT(to);
 553        if (from >= ecc->num_slots || to >= ecc->num_slots)
 554                return;
 555
 556        edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
 557                          PARM_OFFSET(to));
 558}
 559
 560/**
 561 * edma_get_position - returns the current transfer point
 562 * @ecc: pointer to edma_cc struct
 563 * @slot: parameter RAM slot being examined
 564 * @dst:  true selects the dest position, false the source
 565 *
 566 * Returns the position of the current active slot
 567 */
 568static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
 569                                    bool dst)
 570{
 571        u32 offs;
 572
 573        slot = EDMA_CHAN_SLOT(slot);
 574        offs = PARM_OFFSET(slot);
 575        offs += dst ? PARM_DST : PARM_SRC;
 576
 577        return edma_read(ecc, offs);
 578}
 579
 580/*
 581 * Channels with event associations will be triggered by their hardware
 582 * events, and channels without such associations will be triggered by
 583 * software.  (At this writing there is no interface for using software
 584 * triggers except with channels that don't support hardware triggers.)
 585 */
 586static void edma_start(struct edma_chan *echan)
 587{
 588        struct edma_cc *ecc = echan->ecc;
 589        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 590        int j = (channel >> 5);
 591        unsigned int mask = BIT(channel & 0x1f);
 592
 593        if (!echan->hw_triggered) {
 594                /* EDMA channels without event association */
 595                dev_dbg(ecc->dev, "ESR%d %08x\n", j,
 596                        edma_shadow0_read_array(ecc, SH_ESR, j));
 597                edma_shadow0_write_array(ecc, SH_ESR, j, mask);
 598        } else {
 599                /* EDMA channel with event association */
 600                dev_dbg(ecc->dev, "ER%d %08x\n", j,
 601                        edma_shadow0_read_array(ecc, SH_ER, j));
 602                /* Clear any pending event or error */
 603                edma_write_array(ecc, EDMA_ECR, j, mask);
 604                edma_write_array(ecc, EDMA_EMCR, j, mask);
 605                /* Clear any SER */
 606                edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 607                edma_shadow0_write_array(ecc, SH_EESR, j, mask);
 608                dev_dbg(ecc->dev, "EER%d %08x\n", j,
 609                        edma_shadow0_read_array(ecc, SH_EER, j));
 610        }
 611}
 612
 613static void edma_stop(struct edma_chan *echan)
 614{
 615        struct edma_cc *ecc = echan->ecc;
 616        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 617        int j = (channel >> 5);
 618        unsigned int mask = BIT(channel & 0x1f);
 619
 620        edma_shadow0_write_array(ecc, SH_EECR, j, mask);
 621        edma_shadow0_write_array(ecc, SH_ECR, j, mask);
 622        edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 623        edma_write_array(ecc, EDMA_EMCR, j, mask);
 624
 625        /* clear possibly pending completion interrupt */
 626        edma_shadow0_write_array(ecc, SH_ICR, j, mask);
 627
 628        dev_dbg(ecc->dev, "EER%d %08x\n", j,
 629                edma_shadow0_read_array(ecc, SH_EER, j));
 630
 631        /* REVISIT:  consider guarding against inappropriate event
 632         * chaining by overwriting with dummy_paramset.
 633         */
 634}
 635
 636/*
 637 * Temporarily disable EDMA hardware events on the specified channel,
 638 * preventing them from triggering new transfers
 639 */
 640static void edma_pause(struct edma_chan *echan)
 641{
 642        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 643        unsigned int mask = BIT(channel & 0x1f);
 644
 645        edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
 646}
 647
 648/* Re-enable EDMA hardware events on the specified channel.  */
 649static void edma_resume(struct edma_chan *echan)
 650{
 651        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 652        unsigned int mask = BIT(channel & 0x1f);
 653
 654        edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
 655}
 656
 657static void edma_trigger_channel(struct edma_chan *echan)
 658{
 659        struct edma_cc *ecc = echan->ecc;
 660        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 661        unsigned int mask = BIT(channel & 0x1f);
 662
 663        edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
 664
 665        dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
 666                edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
 667}
 668
 669static void edma_clean_channel(struct edma_chan *echan)
 670{
 671        struct edma_cc *ecc = echan->ecc;
 672        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 673        int j = (channel >> 5);
 674        unsigned int mask = BIT(channel & 0x1f);
 675
 676        dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
 677        edma_shadow0_write_array(ecc, SH_ECR, j, mask);
 678        /* Clear the corresponding EMR bits */
 679        edma_write_array(ecc, EDMA_EMCR, j, mask);
 680        /* Clear any SER */
 681        edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 682        edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 683}
 684
 685/* Move channel to a specific event queue */
 686static void edma_assign_channel_eventq(struct edma_chan *echan,
 687                                       enum dma_event_q eventq_no)
 688{
 689        struct edma_cc *ecc = echan->ecc;
 690        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 691        int bit = (channel & 0x7) * 4;
 692
 693        /* default to low priority queue */
 694        if (eventq_no == EVENTQ_DEFAULT)
 695                eventq_no = ecc->default_queue;
 696        if (eventq_no >= ecc->num_tc)
 697                return;
 698
 699        eventq_no &= 7;
 700        edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
 701                          eventq_no << bit);
 702}
 703
 704static int edma_alloc_channel(struct edma_chan *echan,
 705                              enum dma_event_q eventq_no)
 706{
 707        struct edma_cc *ecc = echan->ecc;
 708        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 709
 710        /* ensure access through shadow region 0 */
 711        edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
 712
 713        /* ensure no events are pending */
 714        edma_stop(echan);
 715
 716        edma_setup_interrupt(echan, true);
 717
 718        edma_assign_channel_eventq(echan, eventq_no);
 719
 720        return 0;
 721}
 722
 723static void edma_free_channel(struct edma_chan *echan)
 724{
 725        /* ensure no events are pending */
 726        edma_stop(echan);
 727        /* REVISIT should probably take out of shadow region 0 */
 728        edma_setup_interrupt(echan, false);
 729}
 730
 731static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 732{
 733        return container_of(d, struct edma_cc, dma_slave);
 734}
 735
 736static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 737{
 738        return container_of(c, struct edma_chan, vchan.chan);
 739}
 740
 741static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
 742{
 743        return container_of(tx, struct edma_desc, vdesc.tx);
 744}
 745
 746static void edma_desc_free(struct virt_dma_desc *vdesc)
 747{
 748        kfree(container_of(vdesc, struct edma_desc, vdesc));
 749}
 750
 751/* Dispatch a queued descriptor to the controller (caller holds lock) */
 752static void edma_execute(struct edma_chan *echan)
 753{
 754        struct edma_cc *ecc = echan->ecc;
 755        struct virt_dma_desc *vdesc;
 756        struct edma_desc *edesc;
 757        struct device *dev = echan->vchan.chan.device->dev;
 758        int i, j, left, nslots;
 759
 760        if (!echan->edesc) {
 761                /* Setup is needed for the first transfer */
 762                vdesc = vchan_next_desc(&echan->vchan);
 763                if (!vdesc)
 764                        return;
 765                list_del(&vdesc->node);
 766                echan->edesc = to_edma_desc(&vdesc->tx);
 767        }
 768
 769        edesc = echan->edesc;
 770
 771        /* Find out how many left */
 772        left = edesc->pset_nr - edesc->processed;
 773        nslots = min(MAX_NR_SG, left);
 774        edesc->sg_len = 0;
 775
 776        /* Write descriptor PaRAM set(s) */
 777        for (i = 0; i < nslots; i++) {
 778                j = i + edesc->processed;
 779                edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
 780                edesc->sg_len += edesc->pset[j].len;
 781                dev_vdbg(dev,
 782                         "\n pset[%d]:\n"
 783                         "  chnum\t%d\n"
 784                         "  slot\t%d\n"
 785                         "  opt\t%08x\n"
 786                         "  src\t%08x\n"
 787                         "  dst\t%08x\n"
 788                         "  abcnt\t%08x\n"
 789                         "  ccnt\t%08x\n"
 790                         "  bidx\t%08x\n"
 791                         "  cidx\t%08x\n"
 792                         "  lkrld\t%08x\n",
 793                         j, echan->ch_num, echan->slot[i],
 794                         edesc->pset[j].param.opt,
 795                         edesc->pset[j].param.src,
 796                         edesc->pset[j].param.dst,
 797                         edesc->pset[j].param.a_b_cnt,
 798                         edesc->pset[j].param.ccnt,
 799                         edesc->pset[j].param.src_dst_bidx,
 800                         edesc->pset[j].param.src_dst_cidx,
 801                         edesc->pset[j].param.link_bcntrld);
 802                /* Link to the previous slot if not the last set */
 803                if (i != (nslots - 1))
 804                        edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
 805        }
 806
 807        edesc->processed += nslots;
 808
 809        /*
 810         * If this is either the last set in a set of SG-list transactions
 811         * then setup a link to the dummy slot, this results in all future
 812         * events being absorbed and that's OK because we're done
 813         */
 814        if (edesc->processed == edesc->pset_nr) {
 815                if (edesc->cyclic)
 816                        edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
 817                else
 818                        edma_link(ecc, echan->slot[nslots - 1],
 819                                  echan->ecc->dummy_slot);
 820        }
 821
 822        if (echan->missed) {
 823                /*
 824                 * This happens due to setup times between intermediate
 825                 * transfers in long SG lists which have to be broken up into
 826                 * transfers of MAX_NR_SG
 827                 */
 828                dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 829                edma_clean_channel(echan);
 830                edma_stop(echan);
 831                edma_start(echan);
 832                edma_trigger_channel(echan);
 833                echan->missed = 0;
 834        } else if (edesc->processed <= MAX_NR_SG) {
 835                dev_dbg(dev, "first transfer starting on channel %d\n",
 836                        echan->ch_num);
 837                edma_start(echan);
 838        } else {
 839                dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 840                        echan->ch_num, edesc->processed);
 841                edma_resume(echan);
 842        }
 843}
 844
 845static int edma_terminate_all(struct dma_chan *chan)
 846{
 847        struct edma_chan *echan = to_edma_chan(chan);
 848        unsigned long flags;
 849        LIST_HEAD(head);
 850
 851        spin_lock_irqsave(&echan->vchan.lock, flags);
 852
 853        /*
 854         * Stop DMA activity: we assume the callback will not be called
 855         * after edma_dma() returns (even if it does, it will see
 856         * echan->edesc is NULL and exit.)
 857         */
 858        if (echan->edesc) {
 859                edma_stop(echan);
 860                /* Move the cyclic channel back to default queue */
 861                if (!echan->tc && echan->edesc->cyclic)
 862                        edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
 863
 864                vchan_terminate_vdesc(&echan->edesc->vdesc);
 865                echan->edesc = NULL;
 866        }
 867
 868        vchan_get_all_descriptors(&echan->vchan, &head);
 869        spin_unlock_irqrestore(&echan->vchan.lock, flags);
 870        vchan_dma_desc_free_list(&echan->vchan, &head);
 871
 872        return 0;
 873}
 874
 875static void edma_synchronize(struct dma_chan *chan)
 876{
 877        struct edma_chan *echan = to_edma_chan(chan);
 878
 879        vchan_synchronize(&echan->vchan);
 880}
 881
 882static int edma_slave_config(struct dma_chan *chan,
 883        struct dma_slave_config *cfg)
 884{
 885        struct edma_chan *echan = to_edma_chan(chan);
 886
 887        if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 888            cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 889                return -EINVAL;
 890
 891        if (cfg->src_maxburst > chan->device->max_burst ||
 892            cfg->dst_maxburst > chan->device->max_burst)
 893                return -EINVAL;
 894
 895        memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 896
 897        return 0;
 898}
 899
 900static int edma_dma_pause(struct dma_chan *chan)
 901{
 902        struct edma_chan *echan = to_edma_chan(chan);
 903
 904        if (!echan->edesc)
 905                return -EINVAL;
 906
 907        edma_pause(echan);
 908        return 0;
 909}
 910
 911static int edma_dma_resume(struct dma_chan *chan)
 912{
 913        struct edma_chan *echan = to_edma_chan(chan);
 914
 915        edma_resume(echan);
 916        return 0;
 917}
 918
 919/*
 920 * A PaRAM set configuration abstraction used by other modes
 921 * @chan: Channel who's PaRAM set we're configuring
 922 * @pset: PaRAM set to initialize and setup.
 923 * @src_addr: Source address of the DMA
 924 * @dst_addr: Destination address of the DMA
 925 * @burst: In units of dev_width, how much to send
 926 * @dev_width: How much is the dev_width
 927 * @dma_length: Total length of the DMA transfer
 928 * @direction: Direction of the transfer
 929 */
 930static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 931                            dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 932                            unsigned int acnt, unsigned int dma_length,
 933                            enum dma_transfer_direction direction)
 934{
 935        struct edma_chan *echan = to_edma_chan(chan);
 936        struct device *dev = chan->device->dev;
 937        struct edmacc_param *param = &epset->param;
 938        int bcnt, ccnt, cidx;
 939        int src_bidx, dst_bidx, src_cidx, dst_cidx;
 940        int absync;
 941
 942        /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 943        if (!burst)
 944                burst = 1;
 945        /*
 946         * If the maxburst is equal to the fifo width, use
 947         * A-synced transfers. This allows for large contiguous
 948         * buffer transfers using only one PaRAM set.
 949         */
 950        if (burst == 1) {
 951                /*
 952                 * For the A-sync case, bcnt and ccnt are the remainder
 953                 * and quotient respectively of the division of:
 954                 * (dma_length / acnt) by (SZ_64K -1). This is so
 955                 * that in case bcnt over flows, we have ccnt to use.
 956                 * Note: In A-sync tranfer only, bcntrld is used, but it
 957                 * only applies for sg_dma_len(sg) >= SZ_64K.
 958                 * In this case, the best way adopted is- bccnt for the
 959                 * first frame will be the remainder below. Then for
 960                 * every successive frame, bcnt will be SZ_64K-1. This
 961                 * is assured as bcntrld = 0xffff in end of function.
 962                 */
 963                absync = false;
 964                ccnt = dma_length / acnt / (SZ_64K - 1);
 965                bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 966                /*
 967                 * If bcnt is non-zero, we have a remainder and hence an
 968                 * extra frame to transfer, so increment ccnt.
 969                 */
 970                if (bcnt)
 971                        ccnt++;
 972                else
 973                        bcnt = SZ_64K - 1;
 974                cidx = acnt;
 975        } else {
 976                /*
 977                 * If maxburst is greater than the fifo address_width,
 978                 * use AB-synced transfers where A count is the fifo
 979                 * address_width and B count is the maxburst. In this
 980                 * case, we are limited to transfers of C count frames
 981                 * of (address_width * maxburst) where C count is limited
 982                 * to SZ_64K-1. This places an upper bound on the length
 983                 * of an SG segment that can be handled.
 984                 */
 985                absync = true;
 986                bcnt = burst;
 987                ccnt = dma_length / (acnt * bcnt);
 988                if (ccnt > (SZ_64K - 1)) {
 989                        dev_err(dev, "Exceeded max SG segment size\n");
 990                        return -EINVAL;
 991                }
 992                cidx = acnt * bcnt;
 993        }
 994
 995        epset->len = dma_length;
 996
 997        if (direction == DMA_MEM_TO_DEV) {
 998                src_bidx = acnt;
 999                src_cidx = cidx;
1000                dst_bidx = 0;
1001                dst_cidx = 0;
1002                epset->addr = src_addr;
1003        } else if (direction == DMA_DEV_TO_MEM)  {
1004                src_bidx = 0;
1005                src_cidx = 0;
1006                dst_bidx = acnt;
1007                dst_cidx = cidx;
1008                epset->addr = dst_addr;
1009        } else if (direction == DMA_MEM_TO_MEM)  {
1010                src_bidx = acnt;
1011                src_cidx = cidx;
1012                dst_bidx = acnt;
1013                dst_cidx = cidx;
1014        } else {
1015                dev_err(dev, "%s: direction not implemented yet\n", __func__);
1016                return -EINVAL;
1017        }
1018
1019        param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1020        /* Configure A or AB synchronized transfers */
1021        if (absync)
1022                param->opt |= SYNCDIM;
1023
1024        param->src = src_addr;
1025        param->dst = dst_addr;
1026
1027        param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1028        param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1029
1030        param->a_b_cnt = bcnt << 16 | acnt;
1031        param->ccnt = ccnt;
1032        /*
1033         * Only time when (bcntrld) auto reload is required is for
1034         * A-sync case, and in this case, a requirement of reload value
1035         * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1036         * and then later will be populated by edma_execute.
1037         */
1038        param->link_bcntrld = 0xffffffff;
1039        return absync;
1040}
1041
1042static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1043        struct dma_chan *chan, struct scatterlist *sgl,
1044        unsigned int sg_len, enum dma_transfer_direction direction,
1045        unsigned long tx_flags, void *context)
1046{
1047        struct edma_chan *echan = to_edma_chan(chan);
1048        struct device *dev = chan->device->dev;
1049        struct edma_desc *edesc;
1050        dma_addr_t src_addr = 0, dst_addr = 0;
1051        enum dma_slave_buswidth dev_width;
1052        u32 burst;
1053        struct scatterlist *sg;
1054        int i, nslots, ret;
1055
1056        if (unlikely(!echan || !sgl || !sg_len))
1057                return NULL;
1058
1059        if (direction == DMA_DEV_TO_MEM) {
1060                src_addr = echan->cfg.src_addr;
1061                dev_width = echan->cfg.src_addr_width;
1062                burst = echan->cfg.src_maxburst;
1063        } else if (direction == DMA_MEM_TO_DEV) {
1064                dst_addr = echan->cfg.dst_addr;
1065                dev_width = echan->cfg.dst_addr_width;
1066                burst = echan->cfg.dst_maxburst;
1067        } else {
1068                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1069                return NULL;
1070        }
1071
1072        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1073                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1074                return NULL;
1075        }
1076
1077        edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1078        if (!edesc)
1079                return NULL;
1080
1081        edesc->pset_nr = sg_len;
1082        edesc->residue = 0;
1083        edesc->direction = direction;
1084        edesc->echan = echan;
1085
1086        /* Allocate a PaRAM slot, if needed */
1087        nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1088
1089        for (i = 0; i < nslots; i++) {
1090                if (echan->slot[i] < 0) {
1091                        echan->slot[i] =
1092                                edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1093                        if (echan->slot[i] < 0) {
1094                                kfree(edesc);
1095                                dev_err(dev, "%s: Failed to allocate slot\n",
1096                                        __func__);
1097                                return NULL;
1098                        }
1099                }
1100        }
1101
1102        /* Configure PaRAM sets for each SG */
1103        for_each_sg(sgl, sg, sg_len, i) {
1104                /* Get address for each SG */
1105                if (direction == DMA_DEV_TO_MEM)
1106                        dst_addr = sg_dma_address(sg);
1107                else
1108                        src_addr = sg_dma_address(sg);
1109
1110                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1111                                       dst_addr, burst, dev_width,
1112                                       sg_dma_len(sg), direction);
1113                if (ret < 0) {
1114                        kfree(edesc);
1115                        return NULL;
1116                }
1117
1118                edesc->absync = ret;
1119                edesc->residue += sg_dma_len(sg);
1120
1121                if (i == sg_len - 1)
1122                        /* Enable completion interrupt */
1123                        edesc->pset[i].param.opt |= TCINTEN;
1124                else if (!((i+1) % MAX_NR_SG))
1125                        /*
1126                         * Enable early completion interrupt for the
1127                         * intermediateset. In this case the driver will be
1128                         * notified when the paRAM set is submitted to TC. This
1129                         * will allow more time to set up the next set of slots.
1130                         */
1131                        edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1132        }
1133        edesc->residue_stat = edesc->residue;
1134
1135        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1136}
1137
1138static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1139        struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1140        size_t len, unsigned long tx_flags)
1141{
1142        int ret, nslots;
1143        struct edma_desc *edesc;
1144        struct device *dev = chan->device->dev;
1145        struct edma_chan *echan = to_edma_chan(chan);
1146        unsigned int width, pset_len, array_size;
1147
1148        if (unlikely(!echan || !len))
1149                return NULL;
1150
1151        /* Align the array size (acnt block) with the transfer properties */
1152        switch (__ffs((src | dest | len))) {
1153        case 0:
1154                array_size = SZ_32K - 1;
1155                break;
1156        case 1:
1157                array_size = SZ_32K - 2;
1158                break;
1159        default:
1160                array_size = SZ_32K - 4;
1161                break;
1162        }
1163
1164        if (len < SZ_64K) {
1165                /*
1166                 * Transfer size less than 64K can be handled with one paRAM
1167                 * slot and with one burst.
1168                 * ACNT = length
1169                 */
1170                width = len;
1171                pset_len = len;
1172                nslots = 1;
1173        } else {
1174                /*
1175                 * Transfer size bigger than 64K will be handled with maximum of
1176                 * two paRAM slots.
1177                 * slot1: (full_length / 32767) times 32767 bytes bursts.
1178                 *        ACNT = 32767, length1: (full_length / 32767) * 32767
1179                 * slot2: the remaining amount of data after slot1.
1180                 *        ACNT = full_length - length1, length2 = ACNT
1181                 *
1182                 * When the full_length is multibple of 32767 one slot can be
1183                 * used to complete the transfer.
1184                 */
1185                width = array_size;
1186                pset_len = rounddown(len, width);
1187                /* One slot is enough for lengths multiple of (SZ_32K -1) */
1188                if (unlikely(pset_len == len))
1189                        nslots = 1;
1190                else
1191                        nslots = 2;
1192        }
1193
1194        edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1195        if (!edesc)
1196                return NULL;
1197
1198        edesc->pset_nr = nslots;
1199        edesc->residue = edesc->residue_stat = len;
1200        edesc->direction = DMA_MEM_TO_MEM;
1201        edesc->echan = echan;
1202
1203        ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1204                               width, pset_len, DMA_MEM_TO_MEM);
1205        if (ret < 0) {
1206                kfree(edesc);
1207                return NULL;
1208        }
1209
1210        edesc->absync = ret;
1211
1212        edesc->pset[0].param.opt |= ITCCHEN;
1213        if (nslots == 1) {
1214                /* Enable transfer complete interrupt */
1215                edesc->pset[0].param.opt |= TCINTEN;
1216        } else {
1217                /* Enable transfer complete chaining for the first slot */
1218                edesc->pset[0].param.opt |= TCCHEN;
1219
1220                if (echan->slot[1] < 0) {
1221                        echan->slot[1] = edma_alloc_slot(echan->ecc,
1222                                                         EDMA_SLOT_ANY);
1223                        if (echan->slot[1] < 0) {
1224                                kfree(edesc);
1225                                dev_err(dev, "%s: Failed to allocate slot\n",
1226                                        __func__);
1227                                return NULL;
1228                        }
1229                }
1230                dest += pset_len;
1231                src += pset_len;
1232                pset_len = width = len % array_size;
1233
1234                ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1235                                       width, pset_len, DMA_MEM_TO_MEM);
1236                if (ret < 0) {
1237                        kfree(edesc);
1238                        return NULL;
1239                }
1240
1241                edesc->pset[1].param.opt |= ITCCHEN;
1242                edesc->pset[1].param.opt |= TCINTEN;
1243        }
1244
1245        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1246}
1247
1248static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1249        struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1250        size_t period_len, enum dma_transfer_direction direction,
1251        unsigned long tx_flags)
1252{
1253        struct edma_chan *echan = to_edma_chan(chan);
1254        struct device *dev = chan->device->dev;
1255        struct edma_desc *edesc;
1256        dma_addr_t src_addr, dst_addr;
1257        enum dma_slave_buswidth dev_width;
1258        bool use_intermediate = false;
1259        u32 burst;
1260        int i, ret, nslots;
1261
1262        if (unlikely(!echan || !buf_len || !period_len))
1263                return NULL;
1264
1265        if (direction == DMA_DEV_TO_MEM) {
1266                src_addr = echan->cfg.src_addr;
1267                dst_addr = buf_addr;
1268                dev_width = echan->cfg.src_addr_width;
1269                burst = echan->cfg.src_maxburst;
1270        } else if (direction == DMA_MEM_TO_DEV) {
1271                src_addr = buf_addr;
1272                dst_addr = echan->cfg.dst_addr;
1273                dev_width = echan->cfg.dst_addr_width;
1274                burst = echan->cfg.dst_maxburst;
1275        } else {
1276                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1277                return NULL;
1278        }
1279
1280        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1281                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1282                return NULL;
1283        }
1284
1285        if (unlikely(buf_len % period_len)) {
1286                dev_err(dev, "Period should be multiple of Buffer length\n");
1287                return NULL;
1288        }
1289
1290        nslots = (buf_len / period_len) + 1;
1291
1292        /*
1293         * Cyclic DMA users such as audio cannot tolerate delays introduced
1294         * by cases where the number of periods is more than the maximum
1295         * number of SGs the EDMA driver can handle at a time. For DMA types
1296         * such as Slave SGs, such delays are tolerable and synchronized,
1297         * but the synchronization is difficult to achieve with Cyclic and
1298         * cannot be guaranteed, so we error out early.
1299         */
1300        if (nslots > MAX_NR_SG) {
1301                /*
1302                 * If the burst and period sizes are the same, we can put
1303                 * the full buffer into a single period and activate
1304                 * intermediate interrupts. This will produce interrupts
1305                 * after each burst, which is also after each desired period.
1306                 */
1307                if (burst == period_len) {
1308                        period_len = buf_len;
1309                        nslots = 2;
1310                        use_intermediate = true;
1311                } else {
1312                        return NULL;
1313                }
1314        }
1315
1316        edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1317        if (!edesc)
1318                return NULL;
1319
1320        edesc->cyclic = 1;
1321        edesc->pset_nr = nslots;
1322        edesc->residue = edesc->residue_stat = buf_len;
1323        edesc->direction = direction;
1324        edesc->echan = echan;
1325
1326        dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1327                __func__, echan->ch_num, nslots, period_len, buf_len);
1328
1329        for (i = 0; i < nslots; i++) {
1330                /* Allocate a PaRAM slot, if needed */
1331                if (echan->slot[i] < 0) {
1332                        echan->slot[i] =
1333                                edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1334                        if (echan->slot[i] < 0) {
1335                                kfree(edesc);
1336                                dev_err(dev, "%s: Failed to allocate slot\n",
1337                                        __func__);
1338                                return NULL;
1339                        }
1340                }
1341
1342                if (i == nslots - 1) {
1343                        memcpy(&edesc->pset[i], &edesc->pset[0],
1344                               sizeof(edesc->pset[0]));
1345                        break;
1346                }
1347
1348                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1349                                       dst_addr, burst, dev_width, period_len,
1350                                       direction);
1351                if (ret < 0) {
1352                        kfree(edesc);
1353                        return NULL;
1354                }
1355
1356                if (direction == DMA_DEV_TO_MEM)
1357                        dst_addr += period_len;
1358                else
1359                        src_addr += period_len;
1360
1361                dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1362                dev_vdbg(dev,
1363                        "\n pset[%d]:\n"
1364                        "  chnum\t%d\n"
1365                        "  slot\t%d\n"
1366                        "  opt\t%08x\n"
1367                        "  src\t%08x\n"
1368                        "  dst\t%08x\n"
1369                        "  abcnt\t%08x\n"
1370                        "  ccnt\t%08x\n"
1371                        "  bidx\t%08x\n"
1372                        "  cidx\t%08x\n"
1373                        "  lkrld\t%08x\n",
1374                        i, echan->ch_num, echan->slot[i],
1375                        edesc->pset[i].param.opt,
1376                        edesc->pset[i].param.src,
1377                        edesc->pset[i].param.dst,
1378                        edesc->pset[i].param.a_b_cnt,
1379                        edesc->pset[i].param.ccnt,
1380                        edesc->pset[i].param.src_dst_bidx,
1381                        edesc->pset[i].param.src_dst_cidx,
1382                        edesc->pset[i].param.link_bcntrld);
1383
1384                edesc->absync = ret;
1385
1386                /*
1387                 * Enable period interrupt only if it is requested
1388                 */
1389                if (tx_flags & DMA_PREP_INTERRUPT) {
1390                        edesc->pset[i].param.opt |= TCINTEN;
1391
1392                        /* Also enable intermediate interrupts if necessary */
1393                        if (use_intermediate)
1394                                edesc->pset[i].param.opt |= ITCINTEN;
1395                }
1396        }
1397
1398        /* Place the cyclic channel to highest priority queue */
1399        if (!echan->tc)
1400                edma_assign_channel_eventq(echan, EVENTQ_0);
1401
1402        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1403}
1404
1405static void edma_completion_handler(struct edma_chan *echan)
1406{
1407        struct device *dev = echan->vchan.chan.device->dev;
1408        struct edma_desc *edesc;
1409
1410        spin_lock(&echan->vchan.lock);
1411        edesc = echan->edesc;
1412        if (edesc) {
1413                if (edesc->cyclic) {
1414                        vchan_cyclic_callback(&edesc->vdesc);
1415                        spin_unlock(&echan->vchan.lock);
1416                        return;
1417                } else if (edesc->processed == edesc->pset_nr) {
1418                        edesc->residue = 0;
1419                        edma_stop(echan);
1420                        vchan_cookie_complete(&edesc->vdesc);
1421                        echan->edesc = NULL;
1422
1423                        dev_dbg(dev, "Transfer completed on channel %d\n",
1424                                echan->ch_num);
1425                } else {
1426                        dev_dbg(dev, "Sub transfer completed on channel %d\n",
1427                                echan->ch_num);
1428
1429                        edma_pause(echan);
1430
1431                        /* Update statistics for tx_status */
1432                        edesc->residue -= edesc->sg_len;
1433                        edesc->residue_stat = edesc->residue;
1434                        edesc->processed_stat = edesc->processed;
1435                }
1436                edma_execute(echan);
1437        }
1438
1439        spin_unlock(&echan->vchan.lock);
1440}
1441
1442/* eDMA interrupt handler */
1443static irqreturn_t dma_irq_handler(int irq, void *data)
1444{
1445        struct edma_cc *ecc = data;
1446        int ctlr;
1447        u32 sh_ier;
1448        u32 sh_ipr;
1449        u32 bank;
1450
1451        ctlr = ecc->id;
1452        if (ctlr < 0)
1453                return IRQ_NONE;
1454
1455        dev_vdbg(ecc->dev, "dma_irq_handler\n");
1456
1457        sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1458        if (!sh_ipr) {
1459                sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1460                if (!sh_ipr)
1461                        return IRQ_NONE;
1462                sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1463                bank = 1;
1464        } else {
1465                sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1466                bank = 0;
1467        }
1468
1469        do {
1470                u32 slot;
1471                u32 channel;
1472
1473                slot = __ffs(sh_ipr);
1474                sh_ipr &= ~(BIT(slot));
1475
1476                if (sh_ier & BIT(slot)) {
1477                        channel = (bank << 5) | slot;
1478                        /* Clear the corresponding IPR bits */
1479                        edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1480                        edma_completion_handler(&ecc->slave_chans[channel]);
1481                }
1482        } while (sh_ipr);
1483
1484        edma_shadow0_write(ecc, SH_IEVAL, 1);
1485        return IRQ_HANDLED;
1486}
1487
1488static void edma_error_handler(struct edma_chan *echan)
1489{
1490        struct edma_cc *ecc = echan->ecc;
1491        struct device *dev = echan->vchan.chan.device->dev;
1492        struct edmacc_param p;
1493        int err;
1494
1495        if (!echan->edesc)
1496                return;
1497
1498        spin_lock(&echan->vchan.lock);
1499
1500        err = edma_read_slot(ecc, echan->slot[0], &p);
1501
1502        /*
1503         * Issue later based on missed flag which will be sure
1504         * to happen as:
1505         * (1) we finished transmitting an intermediate slot and
1506         *     edma_execute is coming up.
1507         * (2) or we finished current transfer and issue will
1508         *     call edma_execute.
1509         *
1510         * Important note: issuing can be dangerous here and
1511         * lead to some nasty recursion when we are in a NULL
1512         * slot. So we avoid doing so and set the missed flag.
1513         */
1514        if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1515                dev_dbg(dev, "Error on null slot, setting miss\n");
1516                echan->missed = 1;
1517        } else {
1518                /*
1519                 * The slot is already programmed but the event got
1520                 * missed, so its safe to issue it here.
1521                 */
1522                dev_dbg(dev, "Missed event, TRIGGERING\n");
1523                edma_clean_channel(echan);
1524                edma_stop(echan);
1525                edma_start(echan);
1526                edma_trigger_channel(echan);
1527        }
1528        spin_unlock(&echan->vchan.lock);
1529}
1530
1531static inline bool edma_error_pending(struct edma_cc *ecc)
1532{
1533        if (edma_read_array(ecc, EDMA_EMR, 0) ||
1534            edma_read_array(ecc, EDMA_EMR, 1) ||
1535            edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1536                return true;
1537
1538        return false;
1539}
1540
1541/* eDMA error interrupt handler */
1542static irqreturn_t dma_ccerr_handler(int irq, void *data)
1543{
1544        struct edma_cc *ecc = data;
1545        int i, j;
1546        int ctlr;
1547        unsigned int cnt = 0;
1548        unsigned int val;
1549
1550        ctlr = ecc->id;
1551        if (ctlr < 0)
1552                return IRQ_NONE;
1553
1554        dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1555
1556        if (!edma_error_pending(ecc)) {
1557                /*
1558                 * The registers indicate no pending error event but the irq
1559                 * handler has been called.
1560                 * Ask eDMA to re-evaluate the error registers.
1561                 */
1562                dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1563                        __func__);
1564                edma_write(ecc, EDMA_EEVAL, 1);
1565                return IRQ_NONE;
1566        }
1567
1568        while (1) {
1569                /* Event missed register(s) */
1570                for (j = 0; j < 2; j++) {
1571                        unsigned long emr;
1572
1573                        val = edma_read_array(ecc, EDMA_EMR, j);
1574                        if (!val)
1575                                continue;
1576
1577                        dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1578                        emr = val;
1579                        for (i = find_next_bit(&emr, 32, 0); i < 32;
1580                             i = find_next_bit(&emr, 32, i + 1)) {
1581                                int k = (j << 5) + i;
1582
1583                                /* Clear the corresponding EMR bits */
1584                                edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1585                                /* Clear any SER */
1586                                edma_shadow0_write_array(ecc, SH_SECR, j,
1587                                                         BIT(i));
1588                                edma_error_handler(&ecc->slave_chans[k]);
1589                        }
1590                }
1591
1592                val = edma_read(ecc, EDMA_QEMR);
1593                if (val) {
1594                        dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1595                        /* Not reported, just clear the interrupt reason. */
1596                        edma_write(ecc, EDMA_QEMCR, val);
1597                        edma_shadow0_write(ecc, SH_QSECR, val);
1598                }
1599
1600                val = edma_read(ecc, EDMA_CCERR);
1601                if (val) {
1602                        dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1603                        /* Not reported, just clear the interrupt reason. */
1604                        edma_write(ecc, EDMA_CCERRCLR, val);
1605                }
1606
1607                if (!edma_error_pending(ecc))
1608                        break;
1609                cnt++;
1610                if (cnt > 10)
1611                        break;
1612        }
1613        edma_write(ecc, EDMA_EEVAL, 1);
1614        return IRQ_HANDLED;
1615}
1616
1617/* Alloc channel resources */
1618static int edma_alloc_chan_resources(struct dma_chan *chan)
1619{
1620        struct edma_chan *echan = to_edma_chan(chan);
1621        struct edma_cc *ecc = echan->ecc;
1622        struct device *dev = ecc->dev;
1623        enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1624        int ret;
1625
1626        if (echan->tc) {
1627                eventq_no = echan->tc->id;
1628        } else if (ecc->tc_list) {
1629                /* memcpy channel */
1630                echan->tc = &ecc->tc_list[ecc->info->default_queue];
1631                eventq_no = echan->tc->id;
1632        }
1633
1634        ret = edma_alloc_channel(echan, eventq_no);
1635        if (ret)
1636                return ret;
1637
1638        echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1639        if (echan->slot[0] < 0) {
1640                dev_err(dev, "Entry slot allocation failed for channel %u\n",
1641                        EDMA_CHAN_SLOT(echan->ch_num));
1642                ret = echan->slot[0];
1643                goto err_slot;
1644        }
1645
1646        /* Set up channel -> slot mapping for the entry slot */
1647        edma_set_chmap(echan, echan->slot[0]);
1648        echan->alloced = true;
1649
1650        dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1651                EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1652                echan->hw_triggered ? "HW" : "SW");
1653
1654        return 0;
1655
1656err_slot:
1657        edma_free_channel(echan);
1658        return ret;
1659}
1660
1661/* Free channel resources */
1662static void edma_free_chan_resources(struct dma_chan *chan)
1663{
1664        struct edma_chan *echan = to_edma_chan(chan);
1665        struct device *dev = echan->ecc->dev;
1666        int i;
1667
1668        /* Terminate transfers */
1669        edma_stop(echan);
1670
1671        vchan_free_chan_resources(&echan->vchan);
1672
1673        /* Free EDMA PaRAM slots */
1674        for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1675                if (echan->slot[i] >= 0) {
1676                        edma_free_slot(echan->ecc, echan->slot[i]);
1677                        echan->slot[i] = -1;
1678                }
1679        }
1680
1681        /* Set entry slot to the dummy slot */
1682        edma_set_chmap(echan, echan->ecc->dummy_slot);
1683
1684        /* Free EDMA channel */
1685        if (echan->alloced) {
1686                edma_free_channel(echan);
1687                echan->alloced = false;
1688        }
1689
1690        echan->tc = NULL;
1691        echan->hw_triggered = false;
1692
1693        dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1694                EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1695}
1696
1697/* Send pending descriptor to hardware */
1698static void edma_issue_pending(struct dma_chan *chan)
1699{
1700        struct edma_chan *echan = to_edma_chan(chan);
1701        unsigned long flags;
1702
1703        spin_lock_irqsave(&echan->vchan.lock, flags);
1704        if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1705                edma_execute(echan);
1706        spin_unlock_irqrestore(&echan->vchan.lock, flags);
1707}
1708
1709/*
1710 * This limit exists to avoid a possible infinite loop when waiting for proof
1711 * that a particular transfer is completed. This limit can be hit if there
1712 * are large bursts to/from slow devices or the CPU is never able to catch
1713 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1714 * RX-FIFO, as many as 55 loops have been seen.
1715 */
1716#define EDMA_MAX_TR_WAIT_LOOPS 1000
1717
1718static u32 edma_residue(struct edma_desc *edesc)
1719{
1720        bool dst = edesc->direction == DMA_DEV_TO_MEM;
1721        int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1722        struct edma_chan *echan = edesc->echan;
1723        struct edma_pset *pset = edesc->pset;
1724        dma_addr_t done, pos;
1725        int i;
1726
1727        /*
1728         * We always read the dst/src position from the first RamPar
1729         * pset. That's the one which is active now.
1730         */
1731        pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1732
1733        /*
1734         * "pos" may represent a transfer request that is still being
1735         * processed by the EDMACC or EDMATC. We will busy wait until
1736         * any one of the situations occurs:
1737         *   1. the DMA hardware is idle
1738         *   2. a new transfer request is setup
1739         *   3. we hit the loop limit
1740         */
1741        while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1742                /* check if a new transfer request is setup */
1743                if (edma_get_position(echan->ecc,
1744                                      echan->slot[0], dst) != pos) {
1745                        break;
1746                }
1747
1748                if (!--loop_count) {
1749                        dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1750                                "%s: timeout waiting for PaRAM update\n",
1751                                __func__);
1752                        break;
1753                }
1754
1755                cpu_relax();
1756        }
1757
1758        /*
1759         * Cyclic is simple. Just subtract pset[0].addr from pos.
1760         *
1761         * We never update edesc->residue in the cyclic case, so we
1762         * can tell the remaining room to the end of the circular
1763         * buffer.
1764         */
1765        if (edesc->cyclic) {
1766                done = pos - pset->addr;
1767                edesc->residue_stat = edesc->residue - done;
1768                return edesc->residue_stat;
1769        }
1770
1771        /*
1772         * For SG operation we catch up with the last processed
1773         * status.
1774         */
1775        pset += edesc->processed_stat;
1776
1777        for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1778                /*
1779                 * If we are inside this pset address range, we know
1780                 * this is the active one. Get the current delta and
1781                 * stop walking the psets.
1782                 */
1783                if (pos >= pset->addr && pos < pset->addr + pset->len)
1784                        return edesc->residue_stat - (pos - pset->addr);
1785
1786                /* Otherwise mark it done and update residue_stat. */
1787                edesc->processed_stat++;
1788                edesc->residue_stat -= pset->len;
1789        }
1790        return edesc->residue_stat;
1791}
1792
1793/* Check request completion status */
1794static enum dma_status edma_tx_status(struct dma_chan *chan,
1795                                      dma_cookie_t cookie,
1796                                      struct dma_tx_state *txstate)
1797{
1798        struct edma_chan *echan = to_edma_chan(chan);
1799        struct virt_dma_desc *vdesc;
1800        enum dma_status ret;
1801        unsigned long flags;
1802
1803        ret = dma_cookie_status(chan, cookie, txstate);
1804        if (ret == DMA_COMPLETE || !txstate)
1805                return ret;
1806
1807        spin_lock_irqsave(&echan->vchan.lock, flags);
1808        if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1809                txstate->residue = edma_residue(echan->edesc);
1810        else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1811                txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1812        spin_unlock_irqrestore(&echan->vchan.lock, flags);
1813
1814        return ret;
1815}
1816
1817static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1818{
1819        if (!memcpy_channels)
1820                return false;
1821        while (*memcpy_channels != -1) {
1822                if (*memcpy_channels == ch_num)
1823                        return true;
1824                memcpy_channels++;
1825        }
1826        return false;
1827}
1828
1829#define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1830                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1831                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1832                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1833
1834static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1835{
1836        struct dma_device *s_ddev = &ecc->dma_slave;
1837        struct dma_device *m_ddev = NULL;
1838        s32 *memcpy_channels = ecc->info->memcpy_channels;
1839        int i, j;
1840
1841        dma_cap_zero(s_ddev->cap_mask);
1842        dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1843        dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1844        if (ecc->legacy_mode && !memcpy_channels) {
1845                dev_warn(ecc->dev,
1846                         "Legacy memcpy is enabled, things might not work\n");
1847
1848                dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1849                s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1850                s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1851        }
1852
1853        s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1854        s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1855        s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1856        s_ddev->device_free_chan_resources = edma_free_chan_resources;
1857        s_ddev->device_issue_pending = edma_issue_pending;
1858        s_ddev->device_tx_status = edma_tx_status;
1859        s_ddev->device_config = edma_slave_config;
1860        s_ddev->device_pause = edma_dma_pause;
1861        s_ddev->device_resume = edma_dma_resume;
1862        s_ddev->device_terminate_all = edma_terminate_all;
1863        s_ddev->device_synchronize = edma_synchronize;
1864
1865        s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1866        s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1867        s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1868        s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1869        s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1870
1871        s_ddev->dev = ecc->dev;
1872        INIT_LIST_HEAD(&s_ddev->channels);
1873
1874        if (memcpy_channels) {
1875                m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1876                if (!m_ddev) {
1877                        dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1878                        memcpy_channels = NULL;
1879                        goto ch_setup;
1880                }
1881                ecc->dma_memcpy = m_ddev;
1882
1883                dma_cap_zero(m_ddev->cap_mask);
1884                dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1885
1886                m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1887                m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1888                m_ddev->device_free_chan_resources = edma_free_chan_resources;
1889                m_ddev->device_issue_pending = edma_issue_pending;
1890                m_ddev->device_tx_status = edma_tx_status;
1891                m_ddev->device_config = edma_slave_config;
1892                m_ddev->device_pause = edma_dma_pause;
1893                m_ddev->device_resume = edma_dma_resume;
1894                m_ddev->device_terminate_all = edma_terminate_all;
1895                m_ddev->device_synchronize = edma_synchronize;
1896
1897                m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1898                m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1899                m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1900                m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1901
1902                m_ddev->dev = ecc->dev;
1903                INIT_LIST_HEAD(&m_ddev->channels);
1904        } else if (!ecc->legacy_mode) {
1905                dev_info(ecc->dev, "memcpy is disabled\n");
1906        }
1907
1908ch_setup:
1909        for (i = 0; i < ecc->num_channels; i++) {
1910                struct edma_chan *echan = &ecc->slave_chans[i];
1911                echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1912                echan->ecc = ecc;
1913                echan->vchan.desc_free = edma_desc_free;
1914
1915                if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1916                        vchan_init(&echan->vchan, m_ddev);
1917                else
1918                        vchan_init(&echan->vchan, s_ddev);
1919
1920                INIT_LIST_HEAD(&echan->node);
1921                for (j = 0; j < EDMA_MAX_SLOTS; j++)
1922                        echan->slot[j] = -1;
1923        }
1924}
1925
1926static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1927                              struct edma_cc *ecc)
1928{
1929        int i;
1930        u32 value, cccfg;
1931        s8 (*queue_priority_map)[2];
1932
1933        /* Decode the eDMA3 configuration from CCCFG register */
1934        cccfg = edma_read(ecc, EDMA_CCCFG);
1935
1936        value = GET_NUM_REGN(cccfg);
1937        ecc->num_region = BIT(value);
1938
1939        value = GET_NUM_DMACH(cccfg);
1940        ecc->num_channels = BIT(value + 1);
1941
1942        value = GET_NUM_QDMACH(cccfg);
1943        ecc->num_qchannels = value * 2;
1944
1945        value = GET_NUM_PAENTRY(cccfg);
1946        ecc->num_slots = BIT(value + 4);
1947
1948        value = GET_NUM_EVQUE(cccfg);
1949        ecc->num_tc = value + 1;
1950
1951        ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1952
1953        dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1954        dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1955        dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1956        dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1957        dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1958        dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1959        dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1960
1961        /* Nothing need to be done if queue priority is provided */
1962        if (pdata->queue_priority_mapping)
1963                return 0;
1964
1965        /*
1966         * Configure TC/queue priority as follows:
1967         * Q0 - priority 0
1968         * Q1 - priority 1
1969         * Q2 - priority 2
1970         * ...
1971         * The meaning of priority numbers: 0 highest priority, 7 lowest
1972         * priority. So Q0 is the highest priority queue and the last queue has
1973         * the lowest priority.
1974         */
1975        queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1976                                          GFP_KERNEL);
1977        if (!queue_priority_map)
1978                return -ENOMEM;
1979
1980        for (i = 0; i < ecc->num_tc; i++) {
1981                queue_priority_map[i][0] = i;
1982                queue_priority_map[i][1] = i;
1983        }
1984        queue_priority_map[i][0] = -1;
1985        queue_priority_map[i][1] = -1;
1986
1987        pdata->queue_priority_mapping = queue_priority_map;
1988        /* Default queue has the lowest priority */
1989        pdata->default_queue = i - 1;
1990
1991        return 0;
1992}
1993
1994#if IS_ENABLED(CONFIG_OF)
1995static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1996                               size_t sz)
1997{
1998        const char pname[] = "ti,edma-xbar-event-map";
1999        struct resource res;
2000        void __iomem *xbar;
2001        s16 (*xbar_chans)[2];
2002        size_t nelm = sz / sizeof(s16);
2003        u32 shift, offset, mux;
2004        int ret, i;
2005
2006        xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2007        if (!xbar_chans)
2008                return -ENOMEM;
2009
2010        ret = of_address_to_resource(dev->of_node, 1, &res);
2011        if (ret)
2012                return -ENOMEM;
2013
2014        xbar = devm_ioremap(dev, res.start, resource_size(&res));
2015        if (!xbar)
2016                return -ENOMEM;
2017
2018        ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2019                                         nelm);
2020        if (ret)
2021                return -EIO;
2022
2023        /* Invalidate last entry for the other user of this mess */
2024        nelm >>= 1;
2025        xbar_chans[nelm][0] = -1;
2026        xbar_chans[nelm][1] = -1;
2027
2028        for (i = 0; i < nelm; i++) {
2029                shift = (xbar_chans[i][1] & 0x03) << 3;
2030                offset = xbar_chans[i][1] & 0xfffffffc;
2031                mux = readl(xbar + offset);
2032                mux &= ~(0xff << shift);
2033                mux |= xbar_chans[i][0] << shift;
2034                writel(mux, (xbar + offset));
2035        }
2036
2037        pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2038        return 0;
2039}
2040
2041static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2042                                                     bool legacy_mode)
2043{
2044        struct edma_soc_info *info;
2045        struct property *prop;
2046        int sz, ret;
2047
2048        info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2049        if (!info)
2050                return ERR_PTR(-ENOMEM);
2051
2052        if (legacy_mode) {
2053                prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2054                                        &sz);
2055                if (prop) {
2056                        ret = edma_xbar_event_map(dev, info, sz);
2057                        if (ret)
2058                                return ERR_PTR(ret);
2059                }
2060                return info;
2061        }
2062
2063        /* Get the list of channels allocated to be used for memcpy */
2064        prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2065        if (prop) {
2066                const char pname[] = "ti,edma-memcpy-channels";
2067                size_t nelm = sz / sizeof(s32);
2068                s32 *memcpy_ch;
2069
2070                memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2071                                         GFP_KERNEL);
2072                if (!memcpy_ch)
2073                        return ERR_PTR(-ENOMEM);
2074
2075                ret = of_property_read_u32_array(dev->of_node, pname,
2076                                                 (u32 *)memcpy_ch, nelm);
2077                if (ret)
2078                        return ERR_PTR(ret);
2079
2080                memcpy_ch[nelm] = -1;
2081                info->memcpy_channels = memcpy_ch;
2082        }
2083
2084        prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2085                                &sz);
2086        if (prop) {
2087                const char pname[] = "ti,edma-reserved-slot-ranges";
2088                u32 (*tmp)[2];
2089                s16 (*rsv_slots)[2];
2090                size_t nelm = sz / sizeof(*tmp);
2091                struct edma_rsv_info *rsv_info;
2092                int i;
2093
2094                if (!nelm)
2095                        return info;
2096
2097                tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2098                if (!tmp)
2099                        return ERR_PTR(-ENOMEM);
2100
2101                rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2102                if (!rsv_info) {
2103                        kfree(tmp);
2104                        return ERR_PTR(-ENOMEM);
2105                }
2106
2107                rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2108                                         GFP_KERNEL);
2109                if (!rsv_slots) {
2110                        kfree(tmp);
2111                        return ERR_PTR(-ENOMEM);
2112                }
2113
2114                ret = of_property_read_u32_array(dev->of_node, pname,
2115                                                 (u32 *)tmp, nelm * 2);
2116                if (ret) {
2117                        kfree(tmp);
2118                        return ERR_PTR(ret);
2119                }
2120
2121                for (i = 0; i < nelm; i++) {
2122                        rsv_slots[i][0] = tmp[i][0];
2123                        rsv_slots[i][1] = tmp[i][1];
2124                }
2125                rsv_slots[nelm][0] = -1;
2126                rsv_slots[nelm][1] = -1;
2127
2128                info->rsv = rsv_info;
2129                info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2130
2131                kfree(tmp);
2132        }
2133
2134        return info;
2135}
2136
2137static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2138                                      struct of_dma *ofdma)
2139{
2140        struct edma_cc *ecc = ofdma->of_dma_data;
2141        struct dma_chan *chan = NULL;
2142        struct edma_chan *echan;
2143        int i;
2144
2145        if (!ecc || dma_spec->args_count < 1)
2146                return NULL;
2147
2148        for (i = 0; i < ecc->num_channels; i++) {
2149                echan = &ecc->slave_chans[i];
2150                if (echan->ch_num == dma_spec->args[0]) {
2151                        chan = &echan->vchan.chan;
2152                        break;
2153                }
2154        }
2155
2156        if (!chan)
2157                return NULL;
2158
2159        if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2160                goto out;
2161
2162        if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2163            dma_spec->args[1] < echan->ecc->num_tc) {
2164                echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2165                goto out;
2166        }
2167
2168        return NULL;
2169out:
2170        /* The channel is going to be used as HW synchronized */
2171        echan->hw_triggered = true;
2172        return dma_get_slave_channel(chan);
2173}
2174#else
2175static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2176                                                     bool legacy_mode)
2177{
2178        return ERR_PTR(-EINVAL);
2179}
2180
2181static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2182                                      struct of_dma *ofdma)
2183{
2184        return NULL;
2185}
2186#endif
2187
2188static int edma_probe(struct platform_device *pdev)
2189{
2190        struct edma_soc_info    *info = pdev->dev.platform_data;
2191        s8                      (*queue_priority_mapping)[2];
2192        int                     i, off, ln;
2193        const s16               (*rsv_slots)[2];
2194        const s16               (*xbar_chans)[2];
2195        int                     irq;
2196        char                    *irq_name;
2197        struct resource         *mem;
2198        struct device_node      *node = pdev->dev.of_node;
2199        struct device           *dev = &pdev->dev;
2200        struct edma_cc          *ecc;
2201        bool                    legacy_mode = true;
2202        int ret;
2203
2204        if (node) {
2205                const struct of_device_id *match;
2206
2207                match = of_match_node(edma_of_ids, node);
2208                if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2209                        legacy_mode = false;
2210
2211                info = edma_setup_info_from_dt(dev, legacy_mode);
2212                if (IS_ERR(info)) {
2213                        dev_err(dev, "failed to get DT data\n");
2214                        return PTR_ERR(info);
2215                }
2216        }
2217
2218        if (!info)
2219                return -ENODEV;
2220
2221        pm_runtime_enable(dev);
2222        ret = pm_runtime_get_sync(dev);
2223        if (ret < 0) {
2224                dev_err(dev, "pm_runtime_get_sync() failed\n");
2225                return ret;
2226        }
2227
2228        ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2229        if (ret)
2230                return ret;
2231
2232        ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2233        if (!ecc)
2234                return -ENOMEM;
2235
2236        ecc->dev = dev;
2237        ecc->id = pdev->id;
2238        ecc->legacy_mode = legacy_mode;
2239        /* When booting with DT the pdev->id is -1 */
2240        if (ecc->id < 0)
2241                ecc->id = 0;
2242
2243        mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2244        if (!mem) {
2245                dev_dbg(dev, "mem resource not found, using index 0\n");
2246                mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2247                if (!mem) {
2248                        dev_err(dev, "no mem resource?\n");
2249                        return -ENODEV;
2250                }
2251        }
2252        ecc->base = devm_ioremap_resource(dev, mem);
2253        if (IS_ERR(ecc->base))
2254                return PTR_ERR(ecc->base);
2255
2256        platform_set_drvdata(pdev, ecc);
2257
2258        /* Get eDMA3 configuration from IP */
2259        ret = edma_setup_from_hw(dev, info, ecc);
2260        if (ret)
2261                return ret;
2262
2263        /* Allocate memory based on the information we got from the IP */
2264        ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2265                                        sizeof(*ecc->slave_chans), GFP_KERNEL);
2266        if (!ecc->slave_chans)
2267                return -ENOMEM;
2268
2269        ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2270                                       sizeof(unsigned long), GFP_KERNEL);
2271        if (!ecc->slot_inuse)
2272                return -ENOMEM;
2273
2274        ecc->default_queue = info->default_queue;
2275
2276        for (i = 0; i < ecc->num_slots; i++)
2277                edma_write_slot(ecc, i, &dummy_paramset);
2278
2279        if (info->rsv) {
2280                /* Set the reserved slots in inuse list */
2281                rsv_slots = info->rsv->rsv_slots;
2282                if (rsv_slots) {
2283                        for (i = 0; rsv_slots[i][0] != -1; i++) {
2284                                off = rsv_slots[i][0];
2285                                ln = rsv_slots[i][1];
2286                                edma_set_bits(off, ln, ecc->slot_inuse);
2287                        }
2288                }
2289        }
2290
2291        /* Clear the xbar mapped channels in unused list */
2292        xbar_chans = info->xbar_chans;
2293        if (xbar_chans) {
2294                for (i = 0; xbar_chans[i][1] != -1; i++) {
2295                        off = xbar_chans[i][1];
2296                }
2297        }
2298
2299        irq = platform_get_irq_byname(pdev, "edma3_ccint");
2300        if (irq < 0 && node)
2301                irq = irq_of_parse_and_map(node, 0);
2302
2303        if (irq >= 0) {
2304                irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2305                                          dev_name(dev));
2306                ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2307                                       ecc);
2308                if (ret) {
2309                        dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2310                        return ret;
2311                }
2312                ecc->ccint = irq;
2313        }
2314
2315        irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2316        if (irq < 0 && node)
2317                irq = irq_of_parse_and_map(node, 2);
2318
2319        if (irq >= 0) {
2320                irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2321                                          dev_name(dev));
2322                ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2323                                       ecc);
2324                if (ret) {
2325                        dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2326                        return ret;
2327                }
2328                ecc->ccerrint = irq;
2329        }
2330
2331        ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2332        if (ecc->dummy_slot < 0) {
2333                dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2334                return ecc->dummy_slot;
2335        }
2336
2337        queue_priority_mapping = info->queue_priority_mapping;
2338
2339        if (!ecc->legacy_mode) {
2340                int lowest_priority = 0;
2341                struct of_phandle_args tc_args;
2342
2343                ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2344                                            sizeof(*ecc->tc_list), GFP_KERNEL);
2345                if (!ecc->tc_list)
2346                        return -ENOMEM;
2347
2348                for (i = 0;; i++) {
2349                        ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2350                                                               1, i, &tc_args);
2351                        if (ret || i == ecc->num_tc)
2352                                break;
2353
2354                        ecc->tc_list[i].node = tc_args.np;
2355                        ecc->tc_list[i].id = i;
2356                        queue_priority_mapping[i][1] = tc_args.args[0];
2357                        if (queue_priority_mapping[i][1] > lowest_priority) {
2358                                lowest_priority = queue_priority_mapping[i][1];
2359                                info->default_queue = i;
2360                        }
2361                }
2362        }
2363
2364        /* Event queue priority mapping */
2365        for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2366                edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2367                                              queue_priority_mapping[i][1]);
2368
2369        for (i = 0; i < ecc->num_region; i++) {
2370                edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2371                edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2372                edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2373        }
2374        ecc->info = info;
2375
2376        /* Init the dma device and channels */
2377        edma_dma_init(ecc, legacy_mode);
2378
2379        for (i = 0; i < ecc->num_channels; i++) {
2380                /* Assign all channels to the default queue */
2381                edma_assign_channel_eventq(&ecc->slave_chans[i],
2382                                           info->default_queue);
2383                /* Set entry slot to the dummy slot */
2384                edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2385        }
2386
2387        ecc->dma_slave.filter.map = info->slave_map;
2388        ecc->dma_slave.filter.mapcnt = info->slavecnt;
2389        ecc->dma_slave.filter.fn = edma_filter_fn;
2390
2391        ret = dma_async_device_register(&ecc->dma_slave);
2392        if (ret) {
2393                dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2394                goto err_reg1;
2395        }
2396
2397        if (ecc->dma_memcpy) {
2398                ret = dma_async_device_register(ecc->dma_memcpy);
2399                if (ret) {
2400                        dev_err(dev, "memcpy ddev registration failed (%d)\n",
2401                                ret);
2402                        dma_async_device_unregister(&ecc->dma_slave);
2403                        goto err_reg1;
2404                }
2405        }
2406
2407        if (node)
2408                of_dma_controller_register(node, of_edma_xlate, ecc);
2409
2410        dev_info(dev, "TI EDMA DMA engine driver\n");
2411
2412        return 0;
2413
2414err_reg1:
2415        edma_free_slot(ecc, ecc->dummy_slot);
2416        return ret;
2417}
2418
2419static void edma_cleanupp_vchan(struct dma_device *dmadev)
2420{
2421        struct edma_chan *echan, *_echan;
2422
2423        list_for_each_entry_safe(echan, _echan,
2424                        &dmadev->channels, vchan.chan.device_node) {
2425                list_del(&echan->vchan.chan.device_node);
2426                tasklet_kill(&echan->vchan.task);
2427        }
2428}
2429
2430static int edma_remove(struct platform_device *pdev)
2431{
2432        struct device *dev = &pdev->dev;
2433        struct edma_cc *ecc = dev_get_drvdata(dev);
2434
2435        devm_free_irq(dev, ecc->ccint, ecc);
2436        devm_free_irq(dev, ecc->ccerrint, ecc);
2437
2438        edma_cleanupp_vchan(&ecc->dma_slave);
2439
2440        if (dev->of_node)
2441                of_dma_controller_free(dev->of_node);
2442        dma_async_device_unregister(&ecc->dma_slave);
2443        if (ecc->dma_memcpy)
2444                dma_async_device_unregister(ecc->dma_memcpy);
2445        edma_free_slot(ecc, ecc->dummy_slot);
2446
2447        return 0;
2448}
2449
2450#ifdef CONFIG_PM_SLEEP
2451static int edma_pm_suspend(struct device *dev)
2452{
2453        struct edma_cc *ecc = dev_get_drvdata(dev);
2454        struct edma_chan *echan = ecc->slave_chans;
2455        int i;
2456
2457        for (i = 0; i < ecc->num_channels; i++) {
2458                if (echan[i].alloced)
2459                        edma_setup_interrupt(&echan[i], false);
2460        }
2461
2462        return 0;
2463}
2464
2465static int edma_pm_resume(struct device *dev)
2466{
2467        struct edma_cc *ecc = dev_get_drvdata(dev);
2468        struct edma_chan *echan = ecc->slave_chans;
2469        int i;
2470        s8 (*queue_priority_mapping)[2];
2471
2472        /* re initialize dummy slot to dummy param set */
2473        edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2474
2475        queue_priority_mapping = ecc->info->queue_priority_mapping;
2476
2477        /* Event queue priority mapping */
2478        for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2479                edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2480                                              queue_priority_mapping[i][1]);
2481
2482        for (i = 0; i < ecc->num_channels; i++) {
2483                if (echan[i].alloced) {
2484                        /* ensure access through shadow region 0 */
2485                        edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2486                                       BIT(i & 0x1f));
2487
2488                        edma_setup_interrupt(&echan[i], true);
2489
2490                        /* Set up channel -> slot mapping for the entry slot */
2491                        edma_set_chmap(&echan[i], echan[i].slot[0]);
2492                }
2493        }
2494
2495        return 0;
2496}
2497#endif
2498
2499static const struct dev_pm_ops edma_pm_ops = {
2500        SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2501};
2502
2503static struct platform_driver edma_driver = {
2504        .probe          = edma_probe,
2505        .remove         = edma_remove,
2506        .driver = {
2507                .name   = "edma",
2508                .pm     = &edma_pm_ops,
2509                .of_match_table = edma_of_ids,
2510        },
2511};
2512
2513static int edma_tptc_probe(struct platform_device *pdev)
2514{
2515        pm_runtime_enable(&pdev->dev);
2516        return pm_runtime_get_sync(&pdev->dev);
2517}
2518
2519static struct platform_driver edma_tptc_driver = {
2520        .probe          = edma_tptc_probe,
2521        .driver = {
2522                .name   = "edma3-tptc",
2523                .of_match_table = edma_tptc_of_ids,
2524        },
2525};
2526
2527bool edma_filter_fn(struct dma_chan *chan, void *param)
2528{
2529        bool match = false;
2530
2531        if (chan->device->dev->driver == &edma_driver.driver) {
2532                struct edma_chan *echan = to_edma_chan(chan);
2533                unsigned ch_req = *(unsigned *)param;
2534                if (ch_req == echan->ch_num) {
2535                        /* The channel is going to be used as HW synchronized */
2536                        echan->hw_triggered = true;
2537                        match = true;
2538                }
2539        }
2540        return match;
2541}
2542EXPORT_SYMBOL(edma_filter_fn);
2543
2544static int edma_init(void)
2545{
2546        int ret;
2547
2548        ret = platform_driver_register(&edma_tptc_driver);
2549        if (ret)
2550                return ret;
2551
2552        return platform_driver_register(&edma_driver);
2553}
2554subsys_initcall(edma_init);
2555
2556static void __exit edma_exit(void)
2557{
2558        platform_driver_unregister(&edma_driver);
2559        platform_driver_unregister(&edma_tptc_driver);
2560}
2561module_exit(edma_exit);
2562
2563MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2564MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2565MODULE_LICENSE("GPL v2");
2566