linux/drivers/gpu/drm/i915/i915_perf.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2015-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *   Robert Bragg <robert@sixbynine.org>
  25 */
  26
  27
  28/**
  29 * DOC: i915 Perf Overview
  30 *
  31 * Gen graphics supports a large number of performance counters that can help
  32 * driver and application developers understand and optimize their use of the
  33 * GPU.
  34 *
  35 * This i915 perf interface enables userspace to configure and open a file
  36 * descriptor representing a stream of GPU metrics which can then be read() as
  37 * a stream of sample records.
  38 *
  39 * The interface is particularly suited to exposing buffered metrics that are
  40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
  41 *
  42 * Streams representing a single context are accessible to applications with a
  43 * corresponding drm file descriptor, such that OpenGL can use the interface
  44 * without special privileges. Access to system-wide metrics requires root
  45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
  46 * sysctl option.
  47 *
  48 */
  49
  50/**
  51 * DOC: i915 Perf History and Comparison with Core Perf
  52 *
  53 * The interface was initially inspired by the core Perf infrastructure but
  54 * some notable differences are:
  55 *
  56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
  57 * a perf event primarily corresponds to a single 64bit value, while a stream
  58 * might sample sets of tightly-coupled counters, depending on the
  59 * configuration.  For example the Gen OA unit isn't designed to support
  60 * orthogonal configurations of individual counters; it's configured for a set
  61 * of related counters. Samples for an i915 perf stream capturing OA metrics
  62 * will include a set of counter values packed in a compact HW specific format.
  63 * The OA unit supports a number of different packing formats which can be
  64 * selected by the user opening the stream. Perf has support for grouping
  65 * events, but each event in the group is configured, validated and
  66 * authenticated individually with separate system calls.
  67 *
  68 * i915 perf stream configurations are provided as an array of u64 (key,value)
  69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
  70 * interleaved with event-type specific members.
  71 *
  72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
  73 * The supported metrics are being written to memory by the GPU unsynchronized
  74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
  75 * the constraints on HW configuration require reports to be filtered before it
  76 * would be acceptable to expose them to unprivileged applications - to hide
  77 * the metrics of other processes/contexts. For these use cases a read() based
  78 * interface is a good fit, and provides an opportunity to filter data as it
  79 * gets copied from the GPU mapped buffers to userspace buffers.
  80 *
  81 *
  82 * Issues hit with first prototype based on Core Perf
  83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  84 *
  85 * The first prototype of this driver was based on the core perf
  86 * infrastructure, and while we did make that mostly work, with some changes to
  87 * perf, we found we were breaking or working around too many assumptions baked
  88 * into perf's currently cpu centric design.
  89 *
  90 * In the end we didn't see a clear benefit to making perf's implementation and
  91 * interface more complex by changing design assumptions while we knew we still
  92 * wouldn't be able to use any existing perf based userspace tools.
  93 *
  94 * Also considering the Gen specific nature of the Observability hardware and
  95 * how userspace will sometimes need to combine i915 perf OA metrics with
  96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
  97 * expecting the interface to be used by a platform specific userspace such as
  98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
  99 * a standard vendor/architecture agnostic interface by not using perf.
 100 *
 101 *
 102 * For posterity, in case we might re-visit trying to adapt core perf to be
 103 * better suited to exposing i915 metrics these were the main pain points we
 104 * hit:
 105 *
 106 * - The perf based OA PMU driver broke some significant design assumptions:
 107 *
 108 *   Existing perf pmus are used for profiling work on a cpu and we were
 109 *   introducing the idea of _IS_DEVICE pmus with different security
 110 *   implications, the need to fake cpu-related data (such as user/kernel
 111 *   registers) to fit with perf's current design, and adding _DEVICE records
 112 *   as a way to forward device-specific status records.
 113 *
 114 *   The OA unit writes reports of counters into a circular buffer, without
 115 *   involvement from the CPU, making our PMU driver the first of a kind.
 116 *
 117 *   Given the way we were periodically forward data from the GPU-mapped, OA
 118 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 119 *   we were sampling too fast and so we had to subvert its throttling checks.
 120 *
 121 *   Perf supports groups of counters and allows those to be read via
 122 *   transactions internally but transactions currently seem designed to be
 123 *   explicitly initiated from the cpu (say in response to a userspace read())
 124 *   and while we could pull a report out of the OA buffer we can't
 125 *   trigger a report from the cpu on demand.
 126 *
 127 *   Related to being report based; the OA counters are configured in HW as a
 128 *   set while perf generally expects counter configurations to be orthogonal.
 129 *   Although counters can be associated with a group leader as they are
 130 *   opened, there's no clear precedent for being able to provide group-wide
 131 *   configuration attributes (for example we want to let userspace choose the
 132 *   OA unit report format used to capture all counters in a set, or specify a
 133 *   GPU context to filter metrics on). We avoided using perf's grouping
 134 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 135 *   field. This suited our userspace well considering how coupled the counters
 136 *   are when dealing with normalizing. It would be inconvenient to split
 137 *   counters up into separate events, only to require userspace to recombine
 138 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 139 *   for combining with the side-band raw reports it captures using
 140 *   MI_REPORT_PERF_COUNT commands.
 141 *
 142 *   - As a side note on perf's grouping feature; there was also some concern
 143 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 144 *     would quite drastically inflate our sample sizes, which would likely
 145 *     lower the effective sampling resolutions we could use when the available
 146 *     memory bandwidth is limited.
 147 *
 148 *     With the OA unit's report formats, counters are packed together as 32
 149 *     or 40bit values, with the largest report size being 256 bytes.
 150 *
 151 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 152 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 153 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 154 *
 155 *   Related to counter orthogonality; we can't time share the OA unit, while
 156 *   event scheduling is a central design idea within perf for allowing
 157 *   userspace to open + enable more events than can be configured in HW at any
 158 *   one time.  The OA unit is not designed to allow re-configuration while in
 159 *   use. We can't reconfigure the OA unit without losing internal OA unit
 160 *   state which we can't access explicitly to save and restore. Reconfiguring
 161 *   the OA unit is also relatively slow, involving ~100 register writes. From
 162 *   userspace Mesa also depends on a stable OA configuration when emitting
 163 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 164 *   disabled while there are outstanding MI_RPC commands lest we hang the
 165 *   command streamer.
 166 *
 167 *   The contents of sample records aren't extensible by device drivers (i.e.
 168 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 169 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 170 *   into sample records by using the 'raw' field, but it's tricky to pack more
 171 *   than one thing into this field because events/core.c currently only lets a
 172 *   pmu give a single raw data pointer plus len which will be copied into the
 173 *   ring buffer. To include more than the OA report we'd have to copy the
 174 *   report into an intermediate larger buffer. I'd been considering allowing a
 175 *   vector of data+len values to be specified for copying the raw data, but
 176 *   it felt like a kludge to being using the raw field for this purpose.
 177 *
 178 * - It felt like our perf based PMU was making some technical compromises
 179 *   just for the sake of using perf:
 180 *
 181 *   perf_event_open() requires events to either relate to a pid or a specific
 182 *   cpu core, while our device pmu related to neither.  Events opened with a
 183 *   pid will be automatically enabled/disabled according to the scheduling of
 184 *   that process - so not appropriate for us. When an event is related to a
 185 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 186 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 187 *   perf events for a specific cpu. This was workable but it meant the
 188 *   majority of the OA driver ran in atomic context, including all OA report
 189 *   forwarding, which wasn't really necessary in our case and seems to make
 190 *   our locking requirements somewhat complex as we handled the interaction
 191 *   with the rest of the i915 driver.
 192 */
 193
 194#include <linux/anon_inodes.h>
 195#include <linux/sizes.h>
 196#include <linux/uuid.h>
 197
 198#include "i915_drv.h"
 199#include "i915_oa_hsw.h"
 200#include "i915_oa_bdw.h"
 201#include "i915_oa_chv.h"
 202#include "i915_oa_sklgt2.h"
 203#include "i915_oa_sklgt3.h"
 204#include "i915_oa_sklgt4.h"
 205#include "i915_oa_bxt.h"
 206#include "i915_oa_kblgt2.h"
 207#include "i915_oa_kblgt3.h"
 208#include "i915_oa_glk.h"
 209#include "i915_oa_cflgt2.h"
 210#include "i915_oa_cflgt3.h"
 211#include "i915_oa_cnl.h"
 212#include "i915_oa_icl.h"
 213
 214/* HW requires this to be a power of two, between 128k and 16M, though driver
 215 * is currently generally designed assuming the largest 16M size is used such
 216 * that the overflow cases are unlikely in normal operation.
 217 */
 218#define OA_BUFFER_SIZE          SZ_16M
 219
 220#define OA_TAKEN(tail, head)    ((tail - head) & (OA_BUFFER_SIZE - 1))
 221
 222/**
 223 * DOC: OA Tail Pointer Race
 224 *
 225 * There's a HW race condition between OA unit tail pointer register updates and
 226 * writes to memory whereby the tail pointer can sometimes get ahead of what's
 227 * been written out to the OA buffer so far (in terms of what's visible to the
 228 * CPU).
 229 *
 230 * Although this can be observed explicitly while copying reports to userspace
 231 * by checking for a zeroed report-id field in tail reports, we want to account
 232 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
 233 * read() attempts.
 234 *
 235 * In effect we define a tail pointer for reading that lags the real tail
 236 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
 237 * time for the corresponding reports to become visible to the CPU.
 238 *
 239 * To manage this we actually track two tail pointers:
 240 *  1) An 'aging' tail with an associated timestamp that is tracked until we
 241 *     can trust the corresponding data is visible to the CPU; at which point
 242 *     it is considered 'aged'.
 243 *  2) An 'aged' tail that can be used for read()ing.
 244 *
 245 * The two separate pointers let us decouple read()s from tail pointer aging.
 246 *
 247 * The tail pointers are checked and updated at a limited rate within a hrtimer
 248 * callback (the same callback that is used for delivering EPOLLIN events)
 249 *
 250 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
 251 * indicates that an updated tail pointer is needed.
 252 *
 253 * Most of the implementation details for this workaround are in
 254 * oa_buffer_check_unlocked() and _append_oa_reports()
 255 *
 256 * Note for posterity: previously the driver used to define an effective tail
 257 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 258 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 259 * This was flawed considering that the OA unit may also automatically generate
 260 * non-periodic reports (such as on context switch) or the OA unit may be
 261 * enabled without any periodic sampling.
 262 */
 263#define OA_TAIL_MARGIN_NSEC     100000ULL
 264#define INVALID_TAIL_PTR        0xffffffff
 265
 266/* frequency for checking whether the OA unit has written new reports to the
 267 * circular OA buffer...
 268 */
 269#define POLL_FREQUENCY 200
 270#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
 271
 272/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
 273static int zero;
 274static int one = 1;
 275static u32 i915_perf_stream_paranoid = true;
 276
 277/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 278 * of the 64bit timestamp bits to trigger reports from) but there's currently
 279 * no known use case for sampling as infrequently as once per 47 thousand years.
 280 *
 281 * Since the timestamps included in OA reports are only 32bits it seems
 282 * reasonable to limit the OA exponent where it's still possible to account for
 283 * overflow in OA report timestamps.
 284 */
 285#define OA_EXPONENT_MAX 31
 286
 287#define INVALID_CTX_ID 0xffffffff
 288
 289/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
 290#define OAREPORT_REASON_MASK           0x3f
 291#define OAREPORT_REASON_SHIFT          19
 292#define OAREPORT_REASON_TIMER          (1<<0)
 293#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
 294#define OAREPORT_REASON_CLK_RATIO      (1<<5)
 295
 296
 297/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 298 *
 299 * The highest sampling frequency we can theoretically program the OA unit
 300 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 301 *
 302 * Initialized just before we register the sysctl parameter.
 303 */
 304static int oa_sample_rate_hard_limit;
 305
 306/* Theoretically we can program the OA unit to sample every 160ns but don't
 307 * allow that by default unless root...
 308 *
 309 * The default threshold of 100000Hz is based on perf's similar
 310 * kernel.perf_event_max_sample_rate sysctl parameter.
 311 */
 312static u32 i915_oa_max_sample_rate = 100000;
 313
 314/* XXX: beware if future OA HW adds new report formats that the current
 315 * code assumes all reports have a power-of-two size and ~(size - 1) can
 316 * be used as a mask to align the OA tail pointer.
 317 */
 318static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
 319        [I915_OA_FORMAT_A13]        = { 0, 64 },
 320        [I915_OA_FORMAT_A29]        = { 1, 128 },
 321        [I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
 322        /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
 323        [I915_OA_FORMAT_B4_C8]      = { 4, 64 },
 324        [I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
 325        [I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
 326        [I915_OA_FORMAT_C4_B8]      = { 7, 64 },
 327};
 328
 329static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
 330        [I915_OA_FORMAT_A12]                = { 0, 64 },
 331        [I915_OA_FORMAT_A12_B8_C8]          = { 2, 128 },
 332        [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
 333        [I915_OA_FORMAT_C4_B8]              = { 7, 64 },
 334};
 335
 336#define SAMPLE_OA_REPORT      (1<<0)
 337
 338/**
 339 * struct perf_open_properties - for validated properties given to open a stream
 340 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 341 * @single_context: Whether a single or all gpu contexts should be monitored
 342 * @ctx_handle: A gem ctx handle for use with @single_context
 343 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 344 * @oa_format: An OA unit HW report format
 345 * @oa_periodic: Whether to enable periodic OA unit sampling
 346 * @oa_period_exponent: The OA unit sampling period is derived from this
 347 *
 348 * As read_properties_unlocked() enumerates and validates the properties given
 349 * to open a stream of metrics the configuration is built up in the structure
 350 * which starts out zero initialized.
 351 */
 352struct perf_open_properties {
 353        u32 sample_flags;
 354
 355        u64 single_context:1;
 356        u64 ctx_handle;
 357
 358        /* OA sampling state */
 359        int metrics_set;
 360        int oa_format;
 361        bool oa_periodic;
 362        int oa_period_exponent;
 363};
 364
 365static void free_oa_config(struct drm_i915_private *dev_priv,
 366                           struct i915_oa_config *oa_config)
 367{
 368        if (!PTR_ERR(oa_config->flex_regs))
 369                kfree(oa_config->flex_regs);
 370        if (!PTR_ERR(oa_config->b_counter_regs))
 371                kfree(oa_config->b_counter_regs);
 372        if (!PTR_ERR(oa_config->mux_regs))
 373                kfree(oa_config->mux_regs);
 374        kfree(oa_config);
 375}
 376
 377static void put_oa_config(struct drm_i915_private *dev_priv,
 378                          struct i915_oa_config *oa_config)
 379{
 380        if (!atomic_dec_and_test(&oa_config->ref_count))
 381                return;
 382
 383        free_oa_config(dev_priv, oa_config);
 384}
 385
 386static int get_oa_config(struct drm_i915_private *dev_priv,
 387                         int metrics_set,
 388                         struct i915_oa_config **out_config)
 389{
 390        int ret;
 391
 392        if (metrics_set == 1) {
 393                *out_config = &dev_priv->perf.oa.test_config;
 394                atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
 395                return 0;
 396        }
 397
 398        ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
 399        if (ret)
 400                return ret;
 401
 402        *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
 403        if (!*out_config)
 404                ret = -EINVAL;
 405        else
 406                atomic_inc(&(*out_config)->ref_count);
 407
 408        mutex_unlock(&dev_priv->perf.metrics_lock);
 409
 410        return ret;
 411}
 412
 413static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
 414{
 415        return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
 416}
 417
 418static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
 419{
 420        u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
 421
 422        return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
 423}
 424
 425/**
 426 * oa_buffer_check_unlocked - check for data and update tail ptr state
 427 * @dev_priv: i915 device instance
 428 *
 429 * This is either called via fops (for blocking reads in user ctx) or the poll
 430 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 431 * if there is data available for userspace to read.
 432 *
 433 * This function is central to providing a workaround for the OA unit tail
 434 * pointer having a race with respect to what data is visible to the CPU.
 435 * It is responsible for reading tail pointers from the hardware and giving
 436 * the pointers time to 'age' before they are made available for reading.
 437 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 438 *
 439 * Besides returning true when there is data available to read() this function
 440 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
 441 * and .aged_tail_idx state used for reading.
 442 *
 443 * Note: It's safe to read OA config state here unlocked, assuming that this is
 444 * only called while the stream is enabled, while the global OA configuration
 445 * can't be modified.
 446 *
 447 * Returns: %true if the OA buffer contains data, else %false
 448 */
 449static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
 450{
 451        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 452        unsigned long flags;
 453        unsigned int aged_idx;
 454        u32 head, hw_tail, aged_tail, aging_tail;
 455        u64 now;
 456
 457        /* We have to consider the (unlikely) possibility that read() errors
 458         * could result in an OA buffer reset which might reset the head,
 459         * tails[] and aged_tail state.
 460         */
 461        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 462
 463        /* NB: The head we observe here might effectively be a little out of
 464         * date (between head and tails[aged_idx].offset if there is currently
 465         * a read() in progress.
 466         */
 467        head = dev_priv->perf.oa.oa_buffer.head;
 468
 469        aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 470        aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
 471        aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
 472
 473        hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
 474
 475        /* The tail pointer increases in 64 byte increments,
 476         * not in report_size steps...
 477         */
 478        hw_tail &= ~(report_size - 1);
 479
 480        now = ktime_get_mono_fast_ns();
 481
 482        /* Update the aged tail
 483         *
 484         * Flip the tail pointer available for read()s once the aging tail is
 485         * old enough to trust that the corresponding data will be visible to
 486         * the CPU...
 487         *
 488         * Do this before updating the aging pointer in case we may be able to
 489         * immediately start aging a new pointer too (if new data has become
 490         * available) without needing to wait for a later hrtimer callback.
 491         */
 492        if (aging_tail != INVALID_TAIL_PTR &&
 493            ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
 494             OA_TAIL_MARGIN_NSEC)) {
 495
 496                aged_idx ^= 1;
 497                dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
 498
 499                aged_tail = aging_tail;
 500
 501                /* Mark that we need a new pointer to start aging... */
 502                dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
 503                aging_tail = INVALID_TAIL_PTR;
 504        }
 505
 506        /* Update the aging tail
 507         *
 508         * We throttle aging tail updates until we have a new tail that
 509         * represents >= one report more data than is already available for
 510         * reading. This ensures there will be enough data for a successful
 511         * read once this new pointer has aged and ensures we will give the new
 512         * pointer time to age.
 513         */
 514        if (aging_tail == INVALID_TAIL_PTR &&
 515            (aged_tail == INVALID_TAIL_PTR ||
 516             OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
 517                struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
 518                u32 gtt_offset = i915_ggtt_offset(vma);
 519
 520                /* Be paranoid and do a bounds check on the pointer read back
 521                 * from hardware, just in case some spurious hardware condition
 522                 * could put the tail out of bounds...
 523                 */
 524                if (hw_tail >= gtt_offset &&
 525                    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
 526                        dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
 527                                aging_tail = hw_tail;
 528                        dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
 529                } else {
 530                        DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
 531                                  hw_tail);
 532                }
 533        }
 534
 535        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 536
 537        return aged_tail == INVALID_TAIL_PTR ?
 538                false : OA_TAKEN(aged_tail, head) >= report_size;
 539}
 540
 541/**
 542 * append_oa_status - Appends a status record to a userspace read() buffer.
 543 * @stream: An i915-perf stream opened for OA metrics
 544 * @buf: destination buffer given by userspace
 545 * @count: the number of bytes userspace wants to read
 546 * @offset: (inout): the current position for writing into @buf
 547 * @type: The kind of status to report to userspace
 548 *
 549 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 550 * into the userspace read() buffer.
 551 *
 552 * The @buf @offset will only be updated on success.
 553 *
 554 * Returns: 0 on success, negative error code on failure.
 555 */
 556static int append_oa_status(struct i915_perf_stream *stream,
 557                            char __user *buf,
 558                            size_t count,
 559                            size_t *offset,
 560                            enum drm_i915_perf_record_type type)
 561{
 562        struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
 563
 564        if ((count - *offset) < header.size)
 565                return -ENOSPC;
 566
 567        if (copy_to_user(buf + *offset, &header, sizeof(header)))
 568                return -EFAULT;
 569
 570        (*offset) += header.size;
 571
 572        return 0;
 573}
 574
 575/**
 576 * append_oa_sample - Copies single OA report into userspace read() buffer.
 577 * @stream: An i915-perf stream opened for OA metrics
 578 * @buf: destination buffer given by userspace
 579 * @count: the number of bytes userspace wants to read
 580 * @offset: (inout): the current position for writing into @buf
 581 * @report: A single OA report to (optionally) include as part of the sample
 582 *
 583 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 584 * properties when opening a stream, tracked as `stream->sample_flags`. This
 585 * function copies the requested components of a single sample to the given
 586 * read() @buf.
 587 *
 588 * The @buf @offset will only be updated on success.
 589 *
 590 * Returns: 0 on success, negative error code on failure.
 591 */
 592static int append_oa_sample(struct i915_perf_stream *stream,
 593                            char __user *buf,
 594                            size_t count,
 595                            size_t *offset,
 596                            const u8 *report)
 597{
 598        struct drm_i915_private *dev_priv = stream->dev_priv;
 599        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 600        struct drm_i915_perf_record_header header;
 601        u32 sample_flags = stream->sample_flags;
 602
 603        header.type = DRM_I915_PERF_RECORD_SAMPLE;
 604        header.pad = 0;
 605        header.size = stream->sample_size;
 606
 607        if ((count - *offset) < header.size)
 608                return -ENOSPC;
 609
 610        buf += *offset;
 611        if (copy_to_user(buf, &header, sizeof(header)))
 612                return -EFAULT;
 613        buf += sizeof(header);
 614
 615        if (sample_flags & SAMPLE_OA_REPORT) {
 616                if (copy_to_user(buf, report, report_size))
 617                        return -EFAULT;
 618        }
 619
 620        (*offset) += header.size;
 621
 622        return 0;
 623}
 624
 625/**
 626 * Copies all buffered OA reports into userspace read() buffer.
 627 * @stream: An i915-perf stream opened for OA metrics
 628 * @buf: destination buffer given by userspace
 629 * @count: the number of bytes userspace wants to read
 630 * @offset: (inout): the current position for writing into @buf
 631 *
 632 * Notably any error condition resulting in a short read (-%ENOSPC or
 633 * -%EFAULT) will be returned even though one or more records may
 634 * have been successfully copied. In this case it's up to the caller
 635 * to decide if the error should be squashed before returning to
 636 * userspace.
 637 *
 638 * Note: reports are consumed from the head, and appended to the
 639 * tail, so the tail chases the head?... If you think that's mad
 640 * and back-to-front you're not alone, but this follows the
 641 * Gen PRM naming convention.
 642 *
 643 * Returns: 0 on success, negative error code on failure.
 644 */
 645static int gen8_append_oa_reports(struct i915_perf_stream *stream,
 646                                  char __user *buf,
 647                                  size_t count,
 648                                  size_t *offset)
 649{
 650        struct drm_i915_private *dev_priv = stream->dev_priv;
 651        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 652        u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
 653        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
 654        u32 mask = (OA_BUFFER_SIZE - 1);
 655        size_t start_offset = *offset;
 656        unsigned long flags;
 657        unsigned int aged_tail_idx;
 658        u32 head, tail;
 659        u32 taken;
 660        int ret = 0;
 661
 662        if (WARN_ON(!stream->enabled))
 663                return -EIO;
 664
 665        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 666
 667        head = dev_priv->perf.oa.oa_buffer.head;
 668        aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 669        tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
 670
 671        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 672
 673        /*
 674         * An invalid tail pointer here means we're still waiting for the poll
 675         * hrtimer callback to give us a pointer
 676         */
 677        if (tail == INVALID_TAIL_PTR)
 678                return -EAGAIN;
 679
 680        /*
 681         * NB: oa_buffer.head/tail include the gtt_offset which we don't want
 682         * while indexing relative to oa_buf_base.
 683         */
 684        head -= gtt_offset;
 685        tail -= gtt_offset;
 686
 687        /*
 688         * An out of bounds or misaligned head or tail pointer implies a driver
 689         * bug since we validate + align the tail pointers we read from the
 690         * hardware and we are in full control of the head pointer which should
 691         * only be incremented by multiples of the report size (notably also
 692         * all a power of two).
 693         */
 694        if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
 695                      tail > OA_BUFFER_SIZE || tail % report_size,
 696                      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 697                      head, tail))
 698                return -EIO;
 699
 700
 701        for (/* none */;
 702             (taken = OA_TAKEN(tail, head));
 703             head = (head + report_size) & mask) {
 704                u8 *report = oa_buf_base + head;
 705                u32 *report32 = (void *)report;
 706                u32 ctx_id;
 707                u32 reason;
 708
 709                /*
 710                 * All the report sizes factor neatly into the buffer
 711                 * size so we never expect to see a report split
 712                 * between the beginning and end of the buffer.
 713                 *
 714                 * Given the initial alignment check a misalignment
 715                 * here would imply a driver bug that would result
 716                 * in an overrun.
 717                 */
 718                if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
 719                        DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
 720                        break;
 721                }
 722
 723                /*
 724                 * The reason field includes flags identifying what
 725                 * triggered this specific report (mostly timer
 726                 * triggered or e.g. due to a context switch).
 727                 *
 728                 * This field is never expected to be zero so we can
 729                 * check that the report isn't invalid before copying
 730                 * it to userspace...
 731                 */
 732                reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
 733                          OAREPORT_REASON_MASK);
 734                if (reason == 0) {
 735                        if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
 736                                DRM_NOTE("Skipping spurious, invalid OA report\n");
 737                        continue;
 738                }
 739
 740                ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask;
 741
 742                /*
 743                 * Squash whatever is in the CTX_ID field if it's marked as
 744                 * invalid to be sure we avoid false-positive, single-context
 745                 * filtering below...
 746                 *
 747                 * Note: that we don't clear the valid_ctx_bit so userspace can
 748                 * understand that the ID has been squashed by the kernel.
 749                 */
 750                if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
 751                        ctx_id = report32[2] = INVALID_CTX_ID;
 752
 753                /*
 754                 * NB: For Gen 8 the OA unit no longer supports clock gating
 755                 * off for a specific context and the kernel can't securely
 756                 * stop the counters from updating as system-wide / global
 757                 * values.
 758                 *
 759                 * Automatic reports now include a context ID so reports can be
 760                 * filtered on the cpu but it's not worth trying to
 761                 * automatically subtract/hide counter progress for other
 762                 * contexts while filtering since we can't stop userspace
 763                 * issuing MI_REPORT_PERF_COUNT commands which would still
 764                 * provide a side-band view of the real values.
 765                 *
 766                 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
 767                 * to normalize counters for a single filtered context then it
 768                 * needs be forwarded bookend context-switch reports so that it
 769                 * can track switches in between MI_REPORT_PERF_COUNT commands
 770                 * and can itself subtract/ignore the progress of counters
 771                 * associated with other contexts. Note that the hardware
 772                 * automatically triggers reports when switching to a new
 773                 * context which are tagged with the ID of the newly active
 774                 * context. To avoid the complexity (and likely fragility) of
 775                 * reading ahead while parsing reports to try and minimize
 776                 * forwarding redundant context switch reports (i.e. between
 777                 * other, unrelated contexts) we simply elect to forward them
 778                 * all.
 779                 *
 780                 * We don't rely solely on the reason field to identify context
 781                 * switches since it's not-uncommon for periodic samples to
 782                 * identify a switch before any 'context switch' report.
 783                 */
 784                if (!dev_priv->perf.oa.exclusive_stream->ctx ||
 785                    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
 786                    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
 787                     dev_priv->perf.oa.specific_ctx_id) ||
 788                    reason & OAREPORT_REASON_CTX_SWITCH) {
 789
 790                        /*
 791                         * While filtering for a single context we avoid
 792                         * leaking the IDs of other contexts.
 793                         */
 794                        if (dev_priv->perf.oa.exclusive_stream->ctx &&
 795                            dev_priv->perf.oa.specific_ctx_id != ctx_id) {
 796                                report32[2] = INVALID_CTX_ID;
 797                        }
 798
 799                        ret = append_oa_sample(stream, buf, count, offset,
 800                                               report);
 801                        if (ret)
 802                                break;
 803
 804                        dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
 805                }
 806
 807                /*
 808                 * The above reason field sanity check is based on
 809                 * the assumption that the OA buffer is initially
 810                 * zeroed and we reset the field after copying so the
 811                 * check is still meaningful once old reports start
 812                 * being overwritten.
 813                 */
 814                report32[0] = 0;
 815        }
 816
 817        if (start_offset != *offset) {
 818                spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 819
 820                /*
 821                 * We removed the gtt_offset for the copy loop above, indexing
 822                 * relative to oa_buf_base so put back here...
 823                 */
 824                head += gtt_offset;
 825
 826                I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
 827                dev_priv->perf.oa.oa_buffer.head = head;
 828
 829                spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 830        }
 831
 832        return ret;
 833}
 834
 835/**
 836 * gen8_oa_read - copy status records then buffered OA reports
 837 * @stream: An i915-perf stream opened for OA metrics
 838 * @buf: destination buffer given by userspace
 839 * @count: the number of bytes userspace wants to read
 840 * @offset: (inout): the current position for writing into @buf
 841 *
 842 * Checks OA unit status registers and if necessary appends corresponding
 843 * status records for userspace (such as for a buffer full condition) and then
 844 * initiate appending any buffered OA reports.
 845 *
 846 * Updates @offset according to the number of bytes successfully copied into
 847 * the userspace buffer.
 848 *
 849 * NB: some data may be successfully copied to the userspace buffer
 850 * even if an error is returned, and this is reflected in the
 851 * updated @offset.
 852 *
 853 * Returns: zero on success or a negative error code
 854 */
 855static int gen8_oa_read(struct i915_perf_stream *stream,
 856                        char __user *buf,
 857                        size_t count,
 858                        size_t *offset)
 859{
 860        struct drm_i915_private *dev_priv = stream->dev_priv;
 861        u32 oastatus;
 862        int ret;
 863
 864        if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
 865                return -EIO;
 866
 867        oastatus = I915_READ(GEN8_OASTATUS);
 868
 869        /*
 870         * We treat OABUFFER_OVERFLOW as a significant error:
 871         *
 872         * Although theoretically we could handle this more gracefully
 873         * sometimes, some Gens don't correctly suppress certain
 874         * automatically triggered reports in this condition and so we
 875         * have to assume that old reports are now being trampled
 876         * over.
 877         *
 878         * Considering how we don't currently give userspace control
 879         * over the OA buffer size and always configure a large 16MB
 880         * buffer, then a buffer overflow does anyway likely indicate
 881         * that something has gone quite badly wrong.
 882         */
 883        if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
 884                ret = append_oa_status(stream, buf, count, offset,
 885                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
 886                if (ret)
 887                        return ret;
 888
 889                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
 890                          dev_priv->perf.oa.period_exponent);
 891
 892                dev_priv->perf.oa.ops.oa_disable(dev_priv);
 893                dev_priv->perf.oa.ops.oa_enable(dev_priv);
 894
 895                /*
 896                 * Note: .oa_enable() is expected to re-init the oabuffer and
 897                 * reset GEN8_OASTATUS for us
 898                 */
 899                oastatus = I915_READ(GEN8_OASTATUS);
 900        }
 901
 902        if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
 903                ret = append_oa_status(stream, buf, count, offset,
 904                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
 905                if (ret)
 906                        return ret;
 907                I915_WRITE(GEN8_OASTATUS,
 908                           oastatus & ~GEN8_OASTATUS_REPORT_LOST);
 909        }
 910
 911        return gen8_append_oa_reports(stream, buf, count, offset);
 912}
 913
 914/**
 915 * Copies all buffered OA reports into userspace read() buffer.
 916 * @stream: An i915-perf stream opened for OA metrics
 917 * @buf: destination buffer given by userspace
 918 * @count: the number of bytes userspace wants to read
 919 * @offset: (inout): the current position for writing into @buf
 920 *
 921 * Notably any error condition resulting in a short read (-%ENOSPC or
 922 * -%EFAULT) will be returned even though one or more records may
 923 * have been successfully copied. In this case it's up to the caller
 924 * to decide if the error should be squashed before returning to
 925 * userspace.
 926 *
 927 * Note: reports are consumed from the head, and appended to the
 928 * tail, so the tail chases the head?... If you think that's mad
 929 * and back-to-front you're not alone, but this follows the
 930 * Gen PRM naming convention.
 931 *
 932 * Returns: 0 on success, negative error code on failure.
 933 */
 934static int gen7_append_oa_reports(struct i915_perf_stream *stream,
 935                                  char __user *buf,
 936                                  size_t count,
 937                                  size_t *offset)
 938{
 939        struct drm_i915_private *dev_priv = stream->dev_priv;
 940        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 941        u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
 942        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
 943        u32 mask = (OA_BUFFER_SIZE - 1);
 944        size_t start_offset = *offset;
 945        unsigned long flags;
 946        unsigned int aged_tail_idx;
 947        u32 head, tail;
 948        u32 taken;
 949        int ret = 0;
 950
 951        if (WARN_ON(!stream->enabled))
 952                return -EIO;
 953
 954        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 955
 956        head = dev_priv->perf.oa.oa_buffer.head;
 957        aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 958        tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
 959
 960        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 961
 962        /* An invalid tail pointer here means we're still waiting for the poll
 963         * hrtimer callback to give us a pointer
 964         */
 965        if (tail == INVALID_TAIL_PTR)
 966                return -EAGAIN;
 967
 968        /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
 969         * while indexing relative to oa_buf_base.
 970         */
 971        head -= gtt_offset;
 972        tail -= gtt_offset;
 973
 974        /* An out of bounds or misaligned head or tail pointer implies a driver
 975         * bug since we validate + align the tail pointers we read from the
 976         * hardware and we are in full control of the head pointer which should
 977         * only be incremented by multiples of the report size (notably also
 978         * all a power of two).
 979         */
 980        if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
 981                      tail > OA_BUFFER_SIZE || tail % report_size,
 982                      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 983                      head, tail))
 984                return -EIO;
 985
 986
 987        for (/* none */;
 988             (taken = OA_TAKEN(tail, head));
 989             head = (head + report_size) & mask) {
 990                u8 *report = oa_buf_base + head;
 991                u32 *report32 = (void *)report;
 992
 993                /* All the report sizes factor neatly into the buffer
 994                 * size so we never expect to see a report split
 995                 * between the beginning and end of the buffer.
 996                 *
 997                 * Given the initial alignment check a misalignment
 998                 * here would imply a driver bug that would result
 999                 * in an overrun.
1000                 */
1001                if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1002                        DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1003                        break;
1004                }
1005
1006                /* The report-ID field for periodic samples includes
1007                 * some undocumented flags related to what triggered
1008                 * the report and is never expected to be zero so we
1009                 * can check that the report isn't invalid before
1010                 * copying it to userspace...
1011                 */
1012                if (report32[0] == 0) {
1013                        if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1014                                DRM_NOTE("Skipping spurious, invalid OA report\n");
1015                        continue;
1016                }
1017
1018                ret = append_oa_sample(stream, buf, count, offset, report);
1019                if (ret)
1020                        break;
1021
1022                /* The above report-id field sanity check is based on
1023                 * the assumption that the OA buffer is initially
1024                 * zeroed and we reset the field after copying so the
1025                 * check is still meaningful once old reports start
1026                 * being overwritten.
1027                 */
1028                report32[0] = 0;
1029        }
1030
1031        if (start_offset != *offset) {
1032                spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1033
1034                /* We removed the gtt_offset for the copy loop above, indexing
1035                 * relative to oa_buf_base so put back here...
1036                 */
1037                head += gtt_offset;
1038
1039                I915_WRITE(GEN7_OASTATUS2,
1040                           ((head & GEN7_OASTATUS2_HEAD_MASK) |
1041                            GEN7_OASTATUS2_MEM_SELECT_GGTT));
1042                dev_priv->perf.oa.oa_buffer.head = head;
1043
1044                spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1045        }
1046
1047        return ret;
1048}
1049
1050/**
1051 * gen7_oa_read - copy status records then buffered OA reports
1052 * @stream: An i915-perf stream opened for OA metrics
1053 * @buf: destination buffer given by userspace
1054 * @count: the number of bytes userspace wants to read
1055 * @offset: (inout): the current position for writing into @buf
1056 *
1057 * Checks Gen 7 specific OA unit status registers and if necessary appends
1058 * corresponding status records for userspace (such as for a buffer full
1059 * condition) and then initiate appending any buffered OA reports.
1060 *
1061 * Updates @offset according to the number of bytes successfully copied into
1062 * the userspace buffer.
1063 *
1064 * Returns: zero on success or a negative error code
1065 */
1066static int gen7_oa_read(struct i915_perf_stream *stream,
1067                        char __user *buf,
1068                        size_t count,
1069                        size_t *offset)
1070{
1071        struct drm_i915_private *dev_priv = stream->dev_priv;
1072        u32 oastatus1;
1073        int ret;
1074
1075        if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1076                return -EIO;
1077
1078        oastatus1 = I915_READ(GEN7_OASTATUS1);
1079
1080        /* XXX: On Haswell we don't have a safe way to clear oastatus1
1081         * bits while the OA unit is enabled (while the tail pointer
1082         * may be updated asynchronously) so we ignore status bits
1083         * that have already been reported to userspace.
1084         */
1085        oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1086
1087        /* We treat OABUFFER_OVERFLOW as a significant error:
1088         *
1089         * - The status can be interpreted to mean that the buffer is
1090         *   currently full (with a higher precedence than OA_TAKEN()
1091         *   which will start to report a near-empty buffer after an
1092         *   overflow) but it's awkward that we can't clear the status
1093         *   on Haswell, so without a reset we won't be able to catch
1094         *   the state again.
1095         *
1096         * - Since it also implies the HW has started overwriting old
1097         *   reports it may also affect our sanity checks for invalid
1098         *   reports when copying to userspace that assume new reports
1099         *   are being written to cleared memory.
1100         *
1101         * - In the future we may want to introduce a flight recorder
1102         *   mode where the driver will automatically maintain a safe
1103         *   guard band between head/tail, avoiding this overflow
1104         *   condition, but we avoid the added driver complexity for
1105         *   now.
1106         */
1107        if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1108                ret = append_oa_status(stream, buf, count, offset,
1109                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1110                if (ret)
1111                        return ret;
1112
1113                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1114                          dev_priv->perf.oa.period_exponent);
1115
1116                dev_priv->perf.oa.ops.oa_disable(dev_priv);
1117                dev_priv->perf.oa.ops.oa_enable(dev_priv);
1118
1119                oastatus1 = I915_READ(GEN7_OASTATUS1);
1120        }
1121
1122        if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1123                ret = append_oa_status(stream, buf, count, offset,
1124                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1125                if (ret)
1126                        return ret;
1127                dev_priv->perf.oa.gen7_latched_oastatus1 |=
1128                        GEN7_OASTATUS1_REPORT_LOST;
1129        }
1130
1131        return gen7_append_oa_reports(stream, buf, count, offset);
1132}
1133
1134/**
1135 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1136 * @stream: An i915-perf stream opened for OA metrics
1137 *
1138 * Called when userspace tries to read() from a blocking stream FD opened
1139 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1140 * OA buffer and wakes us.
1141 *
1142 * Note: it's acceptable to have this return with some false positives
1143 * since any subsequent read handling will return -EAGAIN if there isn't
1144 * really data ready for userspace yet.
1145 *
1146 * Returns: zero on success or a negative error code
1147 */
1148static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1149{
1150        struct drm_i915_private *dev_priv = stream->dev_priv;
1151
1152        /* We would wait indefinitely if periodic sampling is not enabled */
1153        if (!dev_priv->perf.oa.periodic)
1154                return -EIO;
1155
1156        return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1157                                        oa_buffer_check_unlocked(dev_priv));
1158}
1159
1160/**
1161 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1162 * @stream: An i915-perf stream opened for OA metrics
1163 * @file: An i915 perf stream file
1164 * @wait: poll() state table
1165 *
1166 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1167 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1168 * when it sees data ready to read in the circular OA buffer.
1169 */
1170static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1171                              struct file *file,
1172                              poll_table *wait)
1173{
1174        struct drm_i915_private *dev_priv = stream->dev_priv;
1175
1176        poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1177}
1178
1179/**
1180 * i915_oa_read - just calls through to &i915_oa_ops->read
1181 * @stream: An i915-perf stream opened for OA metrics
1182 * @buf: destination buffer given by userspace
1183 * @count: the number of bytes userspace wants to read
1184 * @offset: (inout): the current position for writing into @buf
1185 *
1186 * Updates @offset according to the number of bytes successfully copied into
1187 * the userspace buffer.
1188 *
1189 * Returns: zero on success or a negative error code
1190 */
1191static int i915_oa_read(struct i915_perf_stream *stream,
1192                        char __user *buf,
1193                        size_t count,
1194                        size_t *offset)
1195{
1196        struct drm_i915_private *dev_priv = stream->dev_priv;
1197
1198        return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1199}
1200
1201static struct intel_context *oa_pin_context(struct drm_i915_private *i915,
1202                                            struct i915_gem_context *ctx)
1203{
1204        struct intel_engine_cs *engine = i915->engine[RCS];
1205        struct intel_context *ce;
1206        int ret;
1207
1208        ret = i915_mutex_lock_interruptible(&i915->drm);
1209        if (ret)
1210                return ERR_PTR(ret);
1211
1212        /*
1213         * As the ID is the gtt offset of the context's vma we
1214         * pin the vma to ensure the ID remains fixed.
1215         *
1216         * NB: implied RCS engine...
1217         */
1218        ce = intel_context_pin(ctx, engine);
1219        mutex_unlock(&i915->drm.struct_mutex);
1220        if (IS_ERR(ce))
1221                return ce;
1222
1223        i915->perf.oa.pinned_ctx = ce;
1224
1225        return ce;
1226}
1227
1228/**
1229 * oa_get_render_ctx_id - determine and hold ctx hw id
1230 * @stream: An i915-perf stream opened for OA metrics
1231 *
1232 * Determine the render context hw id, and ensure it remains fixed for the
1233 * lifetime of the stream. This ensures that we don't have to worry about
1234 * updating the context ID in OACONTROL on the fly.
1235 *
1236 * Returns: zero on success or a negative error code
1237 */
1238static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1239{
1240        struct drm_i915_private *i915 = stream->dev_priv;
1241        struct intel_context *ce;
1242
1243        ce = oa_pin_context(i915, stream->ctx);
1244        if (IS_ERR(ce))
1245                return PTR_ERR(ce);
1246
1247        switch (INTEL_GEN(i915)) {
1248        case 7: {
1249                /*
1250                 * On Haswell we don't do any post processing of the reports
1251                 * and don't need to use the mask.
1252                 */
1253                i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state);
1254                i915->perf.oa.specific_ctx_id_mask = 0;
1255                break;
1256        }
1257
1258        case 8:
1259        case 9:
1260        case 10:
1261                if (USES_GUC_SUBMISSION(i915)) {
1262                        /*
1263                         * When using GuC, the context descriptor we write in
1264                         * i915 is read by GuC and rewritten before it's
1265                         * actually written into the hardware. The LRCA is
1266                         * what is put into the context id field of the
1267                         * context descriptor by GuC. Because it's aligned to
1268                         * a page, the lower 12bits are always at 0 and
1269                         * dropped by GuC. They won't be part of the context
1270                         * ID in the OA reports, so squash those lower bits.
1271                         */
1272                        i915->perf.oa.specific_ctx_id =
1273                                lower_32_bits(ce->lrc_desc) >> 12;
1274
1275                        /*
1276                         * GuC uses the top bit to signal proxy submission, so
1277                         * ignore that bit.
1278                         */
1279                        i915->perf.oa.specific_ctx_id_mask =
1280                                (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1281                } else {
1282                        i915->perf.oa.specific_ctx_id_mask =
1283                                (1U << GEN8_CTX_ID_WIDTH) - 1;
1284                        i915->perf.oa.specific_ctx_id =
1285                                upper_32_bits(ce->lrc_desc);
1286                        i915->perf.oa.specific_ctx_id &=
1287                                i915->perf.oa.specific_ctx_id_mask;
1288                }
1289                break;
1290
1291        case 11: {
1292                i915->perf.oa.specific_ctx_id_mask =
1293                        ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1294                        ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1295                        ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1296                i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc);
1297                i915->perf.oa.specific_ctx_id &=
1298                        i915->perf.oa.specific_ctx_id_mask;
1299                break;
1300        }
1301
1302        default:
1303                MISSING_CASE(INTEL_GEN(i915));
1304        }
1305
1306        DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1307                         i915->perf.oa.specific_ctx_id,
1308                         i915->perf.oa.specific_ctx_id_mask);
1309
1310        return 0;
1311}
1312
1313/**
1314 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1315 * @stream: An i915-perf stream opened for OA metrics
1316 *
1317 * In case anything needed doing to ensure the context HW ID would remain valid
1318 * for the lifetime of the stream, then that can be undone here.
1319 */
1320static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1321{
1322        struct drm_i915_private *dev_priv = stream->dev_priv;
1323        struct intel_context *ce;
1324
1325        dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1326        dev_priv->perf.oa.specific_ctx_id_mask = 0;
1327
1328        ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx);
1329        if (ce) {
1330                mutex_lock(&dev_priv->drm.struct_mutex);
1331                intel_context_unpin(ce);
1332                mutex_unlock(&dev_priv->drm.struct_mutex);
1333        }
1334}
1335
1336static void
1337free_oa_buffer(struct drm_i915_private *i915)
1338{
1339        mutex_lock(&i915->drm.struct_mutex);
1340
1341        i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1342        i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1343        i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1344
1345        i915->perf.oa.oa_buffer.vma = NULL;
1346        i915->perf.oa.oa_buffer.vaddr = NULL;
1347
1348        mutex_unlock(&i915->drm.struct_mutex);
1349}
1350
1351static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1352{
1353        struct drm_i915_private *dev_priv = stream->dev_priv;
1354
1355        BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1356
1357        /*
1358         * Unset exclusive_stream first, it will be checked while disabling
1359         * the metric set on gen8+.
1360         */
1361        mutex_lock(&dev_priv->drm.struct_mutex);
1362        dev_priv->perf.oa.exclusive_stream = NULL;
1363        dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1364        mutex_unlock(&dev_priv->drm.struct_mutex);
1365
1366        free_oa_buffer(dev_priv);
1367
1368        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1369        intel_runtime_pm_put(dev_priv);
1370
1371        if (stream->ctx)
1372                oa_put_render_ctx_id(stream);
1373
1374        put_oa_config(dev_priv, stream->oa_config);
1375
1376        if (dev_priv->perf.oa.spurious_report_rs.missed) {
1377                DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1378                         dev_priv->perf.oa.spurious_report_rs.missed);
1379        }
1380}
1381
1382static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1383{
1384        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1385        unsigned long flags;
1386
1387        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1388
1389        /* Pre-DevBDW: OABUFFER must be set with counters off,
1390         * before OASTATUS1, but after OASTATUS2
1391         */
1392        I915_WRITE(GEN7_OASTATUS2,
1393                   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1394        dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1395
1396        I915_WRITE(GEN7_OABUFFER, gtt_offset);
1397
1398        I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1399
1400        /* Mark that we need updated tail pointers to read from... */
1401        dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1402        dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1403
1404        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1405
1406        /* On Haswell we have to track which OASTATUS1 flags we've
1407         * already seen since they can't be cleared while periodic
1408         * sampling is enabled.
1409         */
1410        dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1411
1412        /* NB: although the OA buffer will initially be allocated
1413         * zeroed via shmfs (and so this memset is redundant when
1414         * first allocating), we may re-init the OA buffer, either
1415         * when re-enabling a stream or in error/reset paths.
1416         *
1417         * The reason we clear the buffer for each re-init is for the
1418         * sanity check in gen7_append_oa_reports() that looks at the
1419         * report-id field to make sure it's non-zero which relies on
1420         * the assumption that new reports are being written to zeroed
1421         * memory...
1422         */
1423        memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1424
1425        /* Maybe make ->pollin per-stream state if we support multiple
1426         * concurrent streams in the future.
1427         */
1428        dev_priv->perf.oa.pollin = false;
1429}
1430
1431static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1432{
1433        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1434        unsigned long flags;
1435
1436        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1437
1438        I915_WRITE(GEN8_OASTATUS, 0);
1439        I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1440        dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1441
1442        I915_WRITE(GEN8_OABUFFER_UDW, 0);
1443
1444        /*
1445         * PRM says:
1446         *
1447         *  "This MMIO must be set before the OATAILPTR
1448         *  register and after the OAHEADPTR register. This is
1449         *  to enable proper functionality of the overflow
1450         *  bit."
1451         */
1452        I915_WRITE(GEN8_OABUFFER, gtt_offset |
1453                   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1454        I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1455
1456        /* Mark that we need updated tail pointers to read from... */
1457        dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1458        dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1459
1460        /*
1461         * Reset state used to recognise context switches, affecting which
1462         * reports we will forward to userspace while filtering for a single
1463         * context.
1464         */
1465        dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1466
1467        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1468
1469        /*
1470         * NB: although the OA buffer will initially be allocated
1471         * zeroed via shmfs (and so this memset is redundant when
1472         * first allocating), we may re-init the OA buffer, either
1473         * when re-enabling a stream or in error/reset paths.
1474         *
1475         * The reason we clear the buffer for each re-init is for the
1476         * sanity check in gen8_append_oa_reports() that looks at the
1477         * reason field to make sure it's non-zero which relies on
1478         * the assumption that new reports are being written to zeroed
1479         * memory...
1480         */
1481        memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1482
1483        /*
1484         * Maybe make ->pollin per-stream state if we support multiple
1485         * concurrent streams in the future.
1486         */
1487        dev_priv->perf.oa.pollin = false;
1488}
1489
1490static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1491{
1492        struct drm_i915_gem_object *bo;
1493        struct i915_vma *vma;
1494        int ret;
1495
1496        if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1497                return -ENODEV;
1498
1499        ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1500        if (ret)
1501                return ret;
1502
1503        BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1504        BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1505
1506        bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1507        if (IS_ERR(bo)) {
1508                DRM_ERROR("Failed to allocate OA buffer\n");
1509                ret = PTR_ERR(bo);
1510                goto unlock;
1511        }
1512
1513        ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1514        if (ret)
1515                goto err_unref;
1516
1517        /* PreHSW required 512K alignment, HSW requires 16M */
1518        vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1519        if (IS_ERR(vma)) {
1520                ret = PTR_ERR(vma);
1521                goto err_unref;
1522        }
1523        dev_priv->perf.oa.oa_buffer.vma = vma;
1524
1525        dev_priv->perf.oa.oa_buffer.vaddr =
1526                i915_gem_object_pin_map(bo, I915_MAP_WB);
1527        if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1528                ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1529                goto err_unpin;
1530        }
1531
1532        dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1533
1534        DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1535                         i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1536                         dev_priv->perf.oa.oa_buffer.vaddr);
1537
1538        goto unlock;
1539
1540err_unpin:
1541        __i915_vma_unpin(vma);
1542
1543err_unref:
1544        i915_gem_object_put(bo);
1545
1546        dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1547        dev_priv->perf.oa.oa_buffer.vma = NULL;
1548
1549unlock:
1550        mutex_unlock(&dev_priv->drm.struct_mutex);
1551        return ret;
1552}
1553
1554static void config_oa_regs(struct drm_i915_private *dev_priv,
1555                           const struct i915_oa_reg *regs,
1556                           u32 n_regs)
1557{
1558        u32 i;
1559
1560        for (i = 0; i < n_regs; i++) {
1561                const struct i915_oa_reg *reg = regs + i;
1562
1563                I915_WRITE(reg->addr, reg->value);
1564        }
1565}
1566
1567static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1568                                 const struct i915_oa_config *oa_config)
1569{
1570        /* PRM:
1571         *
1572         * OA unit is using “crclk” for its functionality. When trunk
1573         * level clock gating takes place, OA clock would be gated,
1574         * unable to count the events from non-render clock domain.
1575         * Render clock gating must be disabled when OA is enabled to
1576         * count the events from non-render domain. Unit level clock
1577         * gating for RCS should also be disabled.
1578         */
1579        I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1580                                    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1581        I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1582                                  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1583
1584        config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1585
1586        /* It apparently takes a fairly long time for a new MUX
1587         * configuration to be be applied after these register writes.
1588         * This delay duration was derived empirically based on the
1589         * render_basic config but hopefully it covers the maximum
1590         * configuration latency.
1591         *
1592         * As a fallback, the checks in _append_oa_reports() to skip
1593         * invalid OA reports do also seem to work to discard reports
1594         * generated before this config has completed - albeit not
1595         * silently.
1596         *
1597         * Unfortunately this is essentially a magic number, since we
1598         * don't currently know of a reliable mechanism for predicting
1599         * how long the MUX config will take to apply and besides
1600         * seeing invalid reports we don't know of a reliable way to
1601         * explicitly check that the MUX config has landed.
1602         *
1603         * It's even possible we've miss characterized the underlying
1604         * problem - it just seems like the simplest explanation why
1605         * a delay at this location would mitigate any invalid reports.
1606         */
1607        usleep_range(15000, 20000);
1608
1609        config_oa_regs(dev_priv, oa_config->b_counter_regs,
1610                       oa_config->b_counter_regs_len);
1611
1612        return 0;
1613}
1614
1615static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1616{
1617        I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1618                                  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1619        I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1620                                    GEN7_DOP_CLOCK_GATE_ENABLE));
1621
1622        I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1623                                      ~GT_NOA_ENABLE));
1624}
1625
1626/*
1627 * NB: It must always remain pointer safe to run this even if the OA unit
1628 * has been disabled.
1629 *
1630 * It's fine to put out-of-date values into these per-context registers
1631 * in the case that the OA unit has been disabled.
1632 */
1633static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1634                                           u32 *reg_state,
1635                                           const struct i915_oa_config *oa_config)
1636{
1637        struct drm_i915_private *dev_priv = ctx->i915;
1638        u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1639        u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1640        /* The MMIO offsets for Flex EU registers aren't contiguous */
1641        u32 flex_mmio[] = {
1642                i915_mmio_reg_offset(EU_PERF_CNTL0),
1643                i915_mmio_reg_offset(EU_PERF_CNTL1),
1644                i915_mmio_reg_offset(EU_PERF_CNTL2),
1645                i915_mmio_reg_offset(EU_PERF_CNTL3),
1646                i915_mmio_reg_offset(EU_PERF_CNTL4),
1647                i915_mmio_reg_offset(EU_PERF_CNTL5),
1648                i915_mmio_reg_offset(EU_PERF_CNTL6),
1649        };
1650        int i;
1651
1652        reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1653        reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1654                                      GEN8_OA_TIMER_PERIOD_SHIFT) |
1655                                     (dev_priv->perf.oa.periodic ?
1656                                      GEN8_OA_TIMER_ENABLE : 0) |
1657                                     GEN8_OA_COUNTER_RESUME;
1658
1659        for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1660                u32 state_offset = ctx_flexeu0 + i * 2;
1661                u32 mmio = flex_mmio[i];
1662
1663                /*
1664                 * This arbitrary default will select the 'EU FPU0 Pipeline
1665                 * Active' event. In the future it's anticipated that there
1666                 * will be an explicit 'No Event' we can select, but not yet...
1667                 */
1668                u32 value = 0;
1669
1670                if (oa_config) {
1671                        u32 j;
1672
1673                        for (j = 0; j < oa_config->flex_regs_len; j++) {
1674                                if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1675                                        value = oa_config->flex_regs[j].value;
1676                                        break;
1677                                }
1678                        }
1679                }
1680
1681                reg_state[state_offset] = mmio;
1682                reg_state[state_offset+1] = value;
1683        }
1684}
1685
1686/*
1687 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1688 * is only used by the kernel context.
1689 */
1690static int gen8_emit_oa_config(struct i915_request *rq,
1691                               const struct i915_oa_config *oa_config)
1692{
1693        struct drm_i915_private *dev_priv = rq->i915;
1694        /* The MMIO offsets for Flex EU registers aren't contiguous */
1695        u32 flex_mmio[] = {
1696                i915_mmio_reg_offset(EU_PERF_CNTL0),
1697                i915_mmio_reg_offset(EU_PERF_CNTL1),
1698                i915_mmio_reg_offset(EU_PERF_CNTL2),
1699                i915_mmio_reg_offset(EU_PERF_CNTL3),
1700                i915_mmio_reg_offset(EU_PERF_CNTL4),
1701                i915_mmio_reg_offset(EU_PERF_CNTL5),
1702                i915_mmio_reg_offset(EU_PERF_CNTL6),
1703        };
1704        u32 *cs;
1705        int i;
1706
1707        cs = intel_ring_begin(rq, ARRAY_SIZE(flex_mmio) * 2 + 4);
1708        if (IS_ERR(cs))
1709                return PTR_ERR(cs);
1710
1711        *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
1712
1713        *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1714        *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1715                (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1716                GEN8_OA_COUNTER_RESUME;
1717
1718        for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1719                u32 mmio = flex_mmio[i];
1720
1721                /*
1722                 * This arbitrary default will select the 'EU FPU0 Pipeline
1723                 * Active' event. In the future it's anticipated that there
1724                 * will be an explicit 'No Event' we can select, but not
1725                 * yet...
1726                 */
1727                u32 value = 0;
1728
1729                if (oa_config) {
1730                        u32 j;
1731
1732                        for (j = 0; j < oa_config->flex_regs_len; j++) {
1733                                if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1734                                        value = oa_config->flex_regs[j].value;
1735                                        break;
1736                                }
1737                        }
1738                }
1739
1740                *cs++ = mmio;
1741                *cs++ = value;
1742        }
1743
1744        *cs++ = MI_NOOP;
1745        intel_ring_advance(rq, cs);
1746
1747        return 0;
1748}
1749
1750static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1751                                                 const struct i915_oa_config *oa_config)
1752{
1753        struct intel_engine_cs *engine = dev_priv->engine[RCS];
1754        struct i915_timeline *timeline;
1755        struct i915_request *rq;
1756        int ret;
1757
1758        lockdep_assert_held(&dev_priv->drm.struct_mutex);
1759
1760        i915_retire_requests(dev_priv);
1761
1762        rq = i915_request_alloc(engine, dev_priv->kernel_context);
1763        if (IS_ERR(rq))
1764                return PTR_ERR(rq);
1765
1766        ret = gen8_emit_oa_config(rq, oa_config);
1767        if (ret) {
1768                i915_request_add(rq);
1769                return ret;
1770        }
1771
1772        /* Queue this switch after all other activity */
1773        list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1774                struct i915_request *prev;
1775
1776                prev = i915_gem_active_raw(&timeline->last_request,
1777                                           &dev_priv->drm.struct_mutex);
1778                if (prev)
1779                        i915_request_await_dma_fence(rq, &prev->fence);
1780        }
1781
1782        i915_request_add(rq);
1783
1784        return 0;
1785}
1786
1787/*
1788 * Manages updating the per-context aspects of the OA stream
1789 * configuration across all contexts.
1790 *
1791 * The awkward consideration here is that OACTXCONTROL controls the
1792 * exponent for periodic sampling which is primarily used for system
1793 * wide profiling where we'd like a consistent sampling period even in
1794 * the face of context switches.
1795 *
1796 * Our approach of updating the register state context (as opposed to
1797 * say using a workaround batch buffer) ensures that the hardware
1798 * won't automatically reload an out-of-date timer exponent even
1799 * transiently before a WA BB could be parsed.
1800 *
1801 * This function needs to:
1802 * - Ensure the currently running context's per-context OA state is
1803 *   updated
1804 * - Ensure that all existing contexts will have the correct per-context
1805 *   OA state if they are scheduled for use.
1806 * - Ensure any new contexts will be initialized with the correct
1807 *   per-context OA state.
1808 *
1809 * Note: it's only the RCS/Render context that has any OA state.
1810 */
1811static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1812                                       const struct i915_oa_config *oa_config)
1813{
1814        struct intel_engine_cs *engine = dev_priv->engine[RCS];
1815        struct i915_gem_context *ctx;
1816        int ret;
1817        unsigned int wait_flags = I915_WAIT_LOCKED;
1818
1819        lockdep_assert_held(&dev_priv->drm.struct_mutex);
1820
1821        /* Switch away from any user context. */
1822        ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
1823        if (ret)
1824                goto out;
1825
1826        /*
1827         * The OA register config is setup through the context image. This image
1828         * might be written to by the GPU on context switch (in particular on
1829         * lite-restore). This means we can't safely update a context's image,
1830         * if this context is scheduled/submitted to run on the GPU.
1831         *
1832         * We could emit the OA register config through the batch buffer but
1833         * this might leave small interval of time where the OA unit is
1834         * configured at an invalid sampling period.
1835         *
1836         * So far the best way to work around this issue seems to be draining
1837         * the GPU from any submitted work.
1838         */
1839        ret = i915_gem_wait_for_idle(dev_priv,
1840                                     wait_flags,
1841                                     MAX_SCHEDULE_TIMEOUT);
1842        if (ret)
1843                goto out;
1844
1845        /* Update all contexts now that we've stalled the submission. */
1846        list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1847                struct intel_context *ce = to_intel_context(ctx, engine);
1848                u32 *regs;
1849
1850                /* OA settings will be set upon first use */
1851                if (!ce->state)
1852                        continue;
1853
1854                regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1855                if (IS_ERR(regs)) {
1856                        ret = PTR_ERR(regs);
1857                        goto out;
1858                }
1859
1860                ce->state->obj->mm.dirty = true;
1861                regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1862
1863                gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1864
1865                i915_gem_object_unpin_map(ce->state->obj);
1866        }
1867
1868 out:
1869        return ret;
1870}
1871
1872static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1873                                  const struct i915_oa_config *oa_config)
1874{
1875        int ret;
1876
1877        /*
1878         * We disable slice/unslice clock ratio change reports on SKL since
1879         * they are too noisy. The HW generates a lot of redundant reports
1880         * where the ratio hasn't really changed causing a lot of redundant
1881         * work to processes and increasing the chances we'll hit buffer
1882         * overruns.
1883         *
1884         * Although we don't currently use the 'disable overrun' OABUFFER
1885         * feature it's worth noting that clock ratio reports have to be
1886         * disabled before considering to use that feature since the HW doesn't
1887         * correctly block these reports.
1888         *
1889         * Currently none of the high-level metrics we have depend on knowing
1890         * this ratio to normalize.
1891         *
1892         * Note: This register is not power context saved and restored, but
1893         * that's OK considering that we disable RC6 while the OA unit is
1894         * enabled.
1895         *
1896         * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1897         * be read back from automatically triggered reports, as part of the
1898         * RPT_ID field.
1899         */
1900        if (IS_GEN(dev_priv, 9, 11)) {
1901                I915_WRITE(GEN8_OA_DEBUG,
1902                           _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1903                                              GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1904        }
1905
1906        /*
1907         * Update all contexts prior writing the mux configurations as we need
1908         * to make sure all slices/subslices are ON before writing to NOA
1909         * registers.
1910         */
1911        ret = gen8_configure_all_contexts(dev_priv, oa_config);
1912        if (ret)
1913                return ret;
1914
1915        config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1916
1917        config_oa_regs(dev_priv, oa_config->b_counter_regs,
1918                       oa_config->b_counter_regs_len);
1919
1920        return 0;
1921}
1922
1923static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1924{
1925        /* Reset all contexts' slices/subslices configurations. */
1926        gen8_configure_all_contexts(dev_priv, NULL);
1927
1928        I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1929                                      ~GT_NOA_ENABLE));
1930}
1931
1932static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1933{
1934        /* Reset all contexts' slices/subslices configurations. */
1935        gen8_configure_all_contexts(dev_priv, NULL);
1936
1937        /* Make sure we disable noa to save power. */
1938        I915_WRITE(RPM_CONFIG1,
1939                   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1940}
1941
1942static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1943{
1944        struct i915_gem_context *ctx =
1945                        dev_priv->perf.oa.exclusive_stream->ctx;
1946        u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1947        bool periodic = dev_priv->perf.oa.periodic;
1948        u32 period_exponent = dev_priv->perf.oa.period_exponent;
1949        u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1950
1951        /*
1952         * Reset buf pointers so we don't forward reports from before now.
1953         *
1954         * Think carefully if considering trying to avoid this, since it
1955         * also ensures status flags and the buffer itself are cleared
1956         * in error paths, and we have checks for invalid reports based
1957         * on the assumption that certain fields are written to zeroed
1958         * memory which this helps maintains.
1959         */
1960        gen7_init_oa_buffer(dev_priv);
1961
1962        I915_WRITE(GEN7_OACONTROL,
1963                   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1964                   (period_exponent <<
1965                    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1966                   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1967                   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1968                   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1969                   GEN7_OACONTROL_ENABLE);
1970}
1971
1972static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1973{
1974        u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1975
1976        /*
1977         * Reset buf pointers so we don't forward reports from before now.
1978         *
1979         * Think carefully if considering trying to avoid this, since it
1980         * also ensures status flags and the buffer itself are cleared
1981         * in error paths, and we have checks for invalid reports based
1982         * on the assumption that certain fields are written to zeroed
1983         * memory which this helps maintains.
1984         */
1985        gen8_init_oa_buffer(dev_priv);
1986
1987        /*
1988         * Note: we don't rely on the hardware to perform single context
1989         * filtering and instead filter on the cpu based on the context-id
1990         * field of reports
1991         */
1992        I915_WRITE(GEN8_OACONTROL, (report_format <<
1993                                    GEN8_OA_REPORT_FORMAT_SHIFT) |
1994                                   GEN8_OA_COUNTER_ENABLE);
1995}
1996
1997/**
1998 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1999 * @stream: An i915 perf stream opened for OA metrics
2000 *
2001 * [Re]enables hardware periodic sampling according to the period configured
2002 * when opening the stream. This also starts a hrtimer that will periodically
2003 * check for data in the circular OA buffer for notifying userspace (e.g.
2004 * during a read() or poll()).
2005 */
2006static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2007{
2008        struct drm_i915_private *dev_priv = stream->dev_priv;
2009
2010        dev_priv->perf.oa.ops.oa_enable(dev_priv);
2011
2012        if (dev_priv->perf.oa.periodic)
2013                hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
2014                              ns_to_ktime(POLL_PERIOD),
2015                              HRTIMER_MODE_REL_PINNED);
2016}
2017
2018static void gen7_oa_disable(struct drm_i915_private *dev_priv)
2019{
2020        I915_WRITE(GEN7_OACONTROL, 0);
2021        if (intel_wait_for_register(dev_priv,
2022                                    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2023                                    50))
2024                DRM_ERROR("wait for OA to be disabled timed out\n");
2025}
2026
2027static void gen8_oa_disable(struct drm_i915_private *dev_priv)
2028{
2029        I915_WRITE(GEN8_OACONTROL, 0);
2030        if (intel_wait_for_register(dev_priv,
2031                                    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2032                                    50))
2033                DRM_ERROR("wait for OA to be disabled timed out\n");
2034}
2035
2036/**
2037 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2038 * @stream: An i915 perf stream opened for OA metrics
2039 *
2040 * Stops the OA unit from periodically writing counter reports into the
2041 * circular OA buffer. This also stops the hrtimer that periodically checks for
2042 * data in the circular OA buffer, for notifying userspace.
2043 */
2044static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2045{
2046        struct drm_i915_private *dev_priv = stream->dev_priv;
2047
2048        dev_priv->perf.oa.ops.oa_disable(dev_priv);
2049
2050        if (dev_priv->perf.oa.periodic)
2051                hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
2052}
2053
2054static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2055        .destroy = i915_oa_stream_destroy,
2056        .enable = i915_oa_stream_enable,
2057        .disable = i915_oa_stream_disable,
2058        .wait_unlocked = i915_oa_wait_unlocked,
2059        .poll_wait = i915_oa_poll_wait,
2060        .read = i915_oa_read,
2061};
2062
2063/**
2064 * i915_oa_stream_init - validate combined props for OA stream and init
2065 * @stream: An i915 perf stream
2066 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2067 * @props: The property state that configures stream (individually validated)
2068 *
2069 * While read_properties_unlocked() validates properties in isolation it
2070 * doesn't ensure that the combination necessarily makes sense.
2071 *
2072 * At this point it has been determined that userspace wants a stream of
2073 * OA metrics, but still we need to further validate the combined
2074 * properties are OK.
2075 *
2076 * If the configuration makes sense then we can allocate memory for
2077 * a circular OA buffer and apply the requested metric set configuration.
2078 *
2079 * Returns: zero on success or a negative error code.
2080 */
2081static int i915_oa_stream_init(struct i915_perf_stream *stream,
2082                               struct drm_i915_perf_open_param *param,
2083                               struct perf_open_properties *props)
2084{
2085        struct drm_i915_private *dev_priv = stream->dev_priv;
2086        int format_size;
2087        int ret;
2088
2089        /* If the sysfs metrics/ directory wasn't registered for some
2090         * reason then don't let userspace try their luck with config
2091         * IDs
2092         */
2093        if (!dev_priv->perf.metrics_kobj) {
2094                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2095                return -EINVAL;
2096        }
2097
2098        if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2099                DRM_DEBUG("Only OA report sampling supported\n");
2100                return -EINVAL;
2101        }
2102
2103        if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2104                DRM_DEBUG("OA unit not supported\n");
2105                return -ENODEV;
2106        }
2107
2108        /* To avoid the complexity of having to accurately filter
2109         * counter reports and marshal to the appropriate client
2110         * we currently only allow exclusive access
2111         */
2112        if (dev_priv->perf.oa.exclusive_stream) {
2113                DRM_DEBUG("OA unit already in use\n");
2114                return -EBUSY;
2115        }
2116
2117        if (!props->oa_format) {
2118                DRM_DEBUG("OA report format not specified\n");
2119                return -EINVAL;
2120        }
2121
2122        /* We set up some ratelimit state to potentially throttle any _NOTES
2123         * about spurious, invalid OA reports which we don't forward to
2124         * userspace.
2125         *
2126         * The initialization is associated with opening the stream (not driver
2127         * init) considering we print a _NOTE about any throttling when closing
2128         * the stream instead of waiting until driver _fini which no one would
2129         * ever see.
2130         *
2131         * Using the same limiting factors as printk_ratelimit()
2132         */
2133        ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2134                             5 * HZ, 10);
2135        /* Since we use a DRM_NOTE for spurious reports it would be
2136         * inconsistent to let __ratelimit() automatically print a warning for
2137         * throttling.
2138         */
2139        ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2140                            RATELIMIT_MSG_ON_RELEASE);
2141
2142        stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2143
2144        format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2145
2146        stream->sample_flags |= SAMPLE_OA_REPORT;
2147        stream->sample_size += format_size;
2148
2149        dev_priv->perf.oa.oa_buffer.format_size = format_size;
2150        if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2151                return -EINVAL;
2152
2153        dev_priv->perf.oa.oa_buffer.format =
2154                dev_priv->perf.oa.oa_formats[props->oa_format].format;
2155
2156        dev_priv->perf.oa.periodic = props->oa_periodic;
2157        if (dev_priv->perf.oa.periodic)
2158                dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2159
2160        if (stream->ctx) {
2161                ret = oa_get_render_ctx_id(stream);
2162                if (ret) {
2163                        DRM_DEBUG("Invalid context id to filter with\n");
2164                        return ret;
2165                }
2166        }
2167
2168        ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2169        if (ret) {
2170                DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2171                goto err_config;
2172        }
2173
2174        /* PRM - observability performance counters:
2175         *
2176         *   OACONTROL, performance counter enable, note:
2177         *
2178         *   "When this bit is set, in order to have coherent counts,
2179         *   RC6 power state and trunk clock gating must be disabled.
2180         *   This can be achieved by programming MMIO registers as
2181         *   0xA094=0 and 0xA090[31]=1"
2182         *
2183         *   In our case we are expecting that taking pm + FORCEWAKE
2184         *   references will effectively disable RC6.
2185         */
2186        intel_runtime_pm_get(dev_priv);
2187        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2188
2189        ret = alloc_oa_buffer(dev_priv);
2190        if (ret)
2191                goto err_oa_buf_alloc;
2192
2193        ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2194        if (ret)
2195                goto err_lock;
2196
2197        ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2198                                                      stream->oa_config);
2199        if (ret) {
2200                DRM_DEBUG("Unable to enable metric set\n");
2201                goto err_enable;
2202        }
2203
2204        stream->ops = &i915_oa_stream_ops;
2205
2206        dev_priv->perf.oa.exclusive_stream = stream;
2207
2208        mutex_unlock(&dev_priv->drm.struct_mutex);
2209
2210        return 0;
2211
2212err_enable:
2213        dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2214        mutex_unlock(&dev_priv->drm.struct_mutex);
2215
2216err_lock:
2217        free_oa_buffer(dev_priv);
2218
2219err_oa_buf_alloc:
2220        put_oa_config(dev_priv, stream->oa_config);
2221
2222        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2223        intel_runtime_pm_put(dev_priv);
2224
2225err_config:
2226        if (stream->ctx)
2227                oa_put_render_ctx_id(stream);
2228
2229        return ret;
2230}
2231
2232void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2233                            struct i915_gem_context *ctx,
2234                            u32 *reg_state)
2235{
2236        struct i915_perf_stream *stream;
2237
2238        if (engine->id != RCS)
2239                return;
2240
2241        stream = engine->i915->perf.oa.exclusive_stream;
2242        if (stream)
2243                gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2244}
2245
2246/**
2247 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2248 * @stream: An i915 perf stream
2249 * @file: An i915 perf stream file
2250 * @buf: destination buffer given by userspace
2251 * @count: the number of bytes userspace wants to read
2252 * @ppos: (inout) file seek position (unused)
2253 *
2254 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2255 * ensure that if we've successfully copied any data then reporting that takes
2256 * precedence over any internal error status, so the data isn't lost.
2257 *
2258 * For example ret will be -ENOSPC whenever there is more buffered data than
2259 * can be copied to userspace, but that's only interesting if we weren't able
2260 * to copy some data because it implies the userspace buffer is too small to
2261 * receive a single record (and we never split records).
2262 *
2263 * Another case with ret == -EFAULT is more of a grey area since it would seem
2264 * like bad form for userspace to ask us to overrun its buffer, but the user
2265 * knows best:
2266 *
2267 *   http://yarchive.net/comp/linux/partial_reads_writes.html
2268 *
2269 * Returns: The number of bytes copied or a negative error code on failure.
2270 */
2271static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2272                                     struct file *file,
2273                                     char __user *buf,
2274                                     size_t count,
2275                                     loff_t *ppos)
2276{
2277        /* Note we keep the offset (aka bytes read) separate from any
2278         * error status so that the final check for whether we return
2279         * the bytes read with a higher precedence than any error (see
2280         * comment below) doesn't need to be handled/duplicated in
2281         * stream->ops->read() implementations.
2282         */
2283        size_t offset = 0;
2284        int ret = stream->ops->read(stream, buf, count, &offset);
2285
2286        return offset ?: (ret ?: -EAGAIN);
2287}
2288
2289/**
2290 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2291 * @file: An i915 perf stream file
2292 * @buf: destination buffer given by userspace
2293 * @count: the number of bytes userspace wants to read
2294 * @ppos: (inout) file seek position (unused)
2295 *
2296 * The entry point for handling a read() on a stream file descriptor from
2297 * userspace. Most of the work is left to the i915_perf_read_locked() and
2298 * &i915_perf_stream_ops->read but to save having stream implementations (of
2299 * which we might have multiple later) we handle blocking read here.
2300 *
2301 * We can also consistently treat trying to read from a disabled stream
2302 * as an IO error so implementations can assume the stream is enabled
2303 * while reading.
2304 *
2305 * Returns: The number of bytes copied or a negative error code on failure.
2306 */
2307static ssize_t i915_perf_read(struct file *file,
2308                              char __user *buf,
2309                              size_t count,
2310                              loff_t *ppos)
2311{
2312        struct i915_perf_stream *stream = file->private_data;
2313        struct drm_i915_private *dev_priv = stream->dev_priv;
2314        ssize_t ret;
2315
2316        /* To ensure it's handled consistently we simply treat all reads of a
2317         * disabled stream as an error. In particular it might otherwise lead
2318         * to a deadlock for blocking file descriptors...
2319         */
2320        if (!stream->enabled)
2321                return -EIO;
2322
2323        if (!(file->f_flags & O_NONBLOCK)) {
2324                /* There's the small chance of false positives from
2325                 * stream->ops->wait_unlocked.
2326                 *
2327                 * E.g. with single context filtering since we only wait until
2328                 * oabuffer has >= 1 report we don't immediately know whether
2329                 * any reports really belong to the current context
2330                 */
2331                do {
2332                        ret = stream->ops->wait_unlocked(stream);
2333                        if (ret)
2334                                return ret;
2335
2336                        mutex_lock(&dev_priv->perf.lock);
2337                        ret = i915_perf_read_locked(stream, file,
2338                                                    buf, count, ppos);
2339                        mutex_unlock(&dev_priv->perf.lock);
2340                } while (ret == -EAGAIN);
2341        } else {
2342                mutex_lock(&dev_priv->perf.lock);
2343                ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2344                mutex_unlock(&dev_priv->perf.lock);
2345        }
2346
2347        /* We allow the poll checking to sometimes report false positive EPOLLIN
2348         * events where we might actually report EAGAIN on read() if there's
2349         * not really any data available. In this situation though we don't
2350         * want to enter a busy loop between poll() reporting a EPOLLIN event
2351         * and read() returning -EAGAIN. Clearing the oa.pollin state here
2352         * effectively ensures we back off until the next hrtimer callback
2353         * before reporting another EPOLLIN event.
2354         */
2355        if (ret >= 0 || ret == -EAGAIN) {
2356                /* Maybe make ->pollin per-stream state if we support multiple
2357                 * concurrent streams in the future.
2358                 */
2359                dev_priv->perf.oa.pollin = false;
2360        }
2361
2362        return ret;
2363}
2364
2365static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2366{
2367        struct drm_i915_private *dev_priv =
2368                container_of(hrtimer, typeof(*dev_priv),
2369                             perf.oa.poll_check_timer);
2370
2371        if (oa_buffer_check_unlocked(dev_priv)) {
2372                dev_priv->perf.oa.pollin = true;
2373                wake_up(&dev_priv->perf.oa.poll_wq);
2374        }
2375
2376        hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2377
2378        return HRTIMER_RESTART;
2379}
2380
2381/**
2382 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2383 * @dev_priv: i915 device instance
2384 * @stream: An i915 perf stream
2385 * @file: An i915 perf stream file
2386 * @wait: poll() state table
2387 *
2388 * For handling userspace polling on an i915 perf stream, this calls through to
2389 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2390 * will be woken for new stream data.
2391 *
2392 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2393 * with any non-file-operation driver hooks.
2394 *
2395 * Returns: any poll events that are ready without sleeping
2396 */
2397static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2398                                          struct i915_perf_stream *stream,
2399                                          struct file *file,
2400                                          poll_table *wait)
2401{
2402        __poll_t events = 0;
2403
2404        stream->ops->poll_wait(stream, file, wait);
2405
2406        /* Note: we don't explicitly check whether there's something to read
2407         * here since this path may be very hot depending on what else
2408         * userspace is polling, or on the timeout in use. We rely solely on
2409         * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2410         * samples to read.
2411         */
2412        if (dev_priv->perf.oa.pollin)
2413                events |= EPOLLIN;
2414
2415        return events;
2416}
2417
2418/**
2419 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2420 * @file: An i915 perf stream file
2421 * @wait: poll() state table
2422 *
2423 * For handling userspace polling on an i915 perf stream, this ensures
2424 * poll_wait() gets called with a wait queue that will be woken for new stream
2425 * data.
2426 *
2427 * Note: Implementation deferred to i915_perf_poll_locked()
2428 *
2429 * Returns: any poll events that are ready without sleeping
2430 */
2431static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2432{
2433        struct i915_perf_stream *stream = file->private_data;
2434        struct drm_i915_private *dev_priv = stream->dev_priv;
2435        __poll_t ret;
2436
2437        mutex_lock(&dev_priv->perf.lock);
2438        ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2439        mutex_unlock(&dev_priv->perf.lock);
2440
2441        return ret;
2442}
2443
2444/**
2445 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2446 * @stream: A disabled i915 perf stream
2447 *
2448 * [Re]enables the associated capture of data for this stream.
2449 *
2450 * If a stream was previously enabled then there's currently no intention
2451 * to provide userspace any guarantee about the preservation of previously
2452 * buffered data.
2453 */
2454static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2455{
2456        if (stream->enabled)
2457                return;
2458
2459        /* Allow stream->ops->enable() to refer to this */
2460        stream->enabled = true;
2461
2462        if (stream->ops->enable)
2463                stream->ops->enable(stream);
2464}
2465
2466/**
2467 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2468 * @stream: An enabled i915 perf stream
2469 *
2470 * Disables the associated capture of data for this stream.
2471 *
2472 * The intention is that disabling an re-enabling a stream will ideally be
2473 * cheaper than destroying and re-opening a stream with the same configuration,
2474 * though there are no formal guarantees about what state or buffered data
2475 * must be retained between disabling and re-enabling a stream.
2476 *
2477 * Note: while a stream is disabled it's considered an error for userspace
2478 * to attempt to read from the stream (-EIO).
2479 */
2480static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2481{
2482        if (!stream->enabled)
2483                return;
2484
2485        /* Allow stream->ops->disable() to refer to this */
2486        stream->enabled = false;
2487
2488        if (stream->ops->disable)
2489                stream->ops->disable(stream);
2490}
2491
2492/**
2493 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2494 * @stream: An i915 perf stream
2495 * @cmd: the ioctl request
2496 * @arg: the ioctl data
2497 *
2498 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2499 * with any non-file-operation driver hooks.
2500 *
2501 * Returns: zero on success or a negative error code. Returns -EINVAL for
2502 * an unknown ioctl request.
2503 */
2504static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2505                                   unsigned int cmd,
2506                                   unsigned long arg)
2507{
2508        switch (cmd) {
2509        case I915_PERF_IOCTL_ENABLE:
2510                i915_perf_enable_locked(stream);
2511                return 0;
2512        case I915_PERF_IOCTL_DISABLE:
2513                i915_perf_disable_locked(stream);
2514                return 0;
2515        }
2516
2517        return -EINVAL;
2518}
2519
2520/**
2521 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2522 * @file: An i915 perf stream file
2523 * @cmd: the ioctl request
2524 * @arg: the ioctl data
2525 *
2526 * Implementation deferred to i915_perf_ioctl_locked().
2527 *
2528 * Returns: zero on success or a negative error code. Returns -EINVAL for
2529 * an unknown ioctl request.
2530 */
2531static long i915_perf_ioctl(struct file *file,
2532                            unsigned int cmd,
2533                            unsigned long arg)
2534{
2535        struct i915_perf_stream *stream = file->private_data;
2536        struct drm_i915_private *dev_priv = stream->dev_priv;
2537        long ret;
2538
2539        mutex_lock(&dev_priv->perf.lock);
2540        ret = i915_perf_ioctl_locked(stream, cmd, arg);
2541        mutex_unlock(&dev_priv->perf.lock);
2542
2543        return ret;
2544}
2545
2546/**
2547 * i915_perf_destroy_locked - destroy an i915 perf stream
2548 * @stream: An i915 perf stream
2549 *
2550 * Frees all resources associated with the given i915 perf @stream, disabling
2551 * any associated data capture in the process.
2552 *
2553 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2554 * with any non-file-operation driver hooks.
2555 */
2556static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2557{
2558        if (stream->enabled)
2559                i915_perf_disable_locked(stream);
2560
2561        if (stream->ops->destroy)
2562                stream->ops->destroy(stream);
2563
2564        list_del(&stream->link);
2565
2566        if (stream->ctx)
2567                i915_gem_context_put(stream->ctx);
2568
2569        kfree(stream);
2570}
2571
2572/**
2573 * i915_perf_release - handles userspace close() of a stream file
2574 * @inode: anonymous inode associated with file
2575 * @file: An i915 perf stream file
2576 *
2577 * Cleans up any resources associated with an open i915 perf stream file.
2578 *
2579 * NB: close() can't really fail from the userspace point of view.
2580 *
2581 * Returns: zero on success or a negative error code.
2582 */
2583static int i915_perf_release(struct inode *inode, struct file *file)
2584{
2585        struct i915_perf_stream *stream = file->private_data;
2586        struct drm_i915_private *dev_priv = stream->dev_priv;
2587
2588        mutex_lock(&dev_priv->perf.lock);
2589        i915_perf_destroy_locked(stream);
2590        mutex_unlock(&dev_priv->perf.lock);
2591
2592        return 0;
2593}
2594
2595
2596static const struct file_operations fops = {
2597        .owner          = THIS_MODULE,
2598        .llseek         = no_llseek,
2599        .release        = i915_perf_release,
2600        .poll           = i915_perf_poll,
2601        .read           = i915_perf_read,
2602        .unlocked_ioctl = i915_perf_ioctl,
2603        /* Our ioctl have no arguments, so it's safe to use the same function
2604         * to handle 32bits compatibility.
2605         */
2606        .compat_ioctl   = i915_perf_ioctl,
2607};
2608
2609
2610/**
2611 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2612 * @dev_priv: i915 device instance
2613 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2614 * @props: individually validated u64 property value pairs
2615 * @file: drm file
2616 *
2617 * See i915_perf_ioctl_open() for interface details.
2618 *
2619 * Implements further stream config validation and stream initialization on
2620 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2621 * taken to serialize with any non-file-operation driver hooks.
2622 *
2623 * Note: at this point the @props have only been validated in isolation and
2624 * it's still necessary to validate that the combination of properties makes
2625 * sense.
2626 *
2627 * In the case where userspace is interested in OA unit metrics then further
2628 * config validation and stream initialization details will be handled by
2629 * i915_oa_stream_init(). The code here should only validate config state that
2630 * will be relevant to all stream types / backends.
2631 *
2632 * Returns: zero on success or a negative error code.
2633 */
2634static int
2635i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2636                            struct drm_i915_perf_open_param *param,
2637                            struct perf_open_properties *props,
2638                            struct drm_file *file)
2639{
2640        struct i915_gem_context *specific_ctx = NULL;
2641        struct i915_perf_stream *stream = NULL;
2642        unsigned long f_flags = 0;
2643        bool privileged_op = true;
2644        int stream_fd;
2645        int ret;
2646
2647        if (props->single_context) {
2648                u32 ctx_handle = props->ctx_handle;
2649                struct drm_i915_file_private *file_priv = file->driver_priv;
2650
2651                specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2652                if (!specific_ctx) {
2653                        DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2654                                  ctx_handle);
2655                        ret = -ENOENT;
2656                        goto err;
2657                }
2658        }
2659
2660        /*
2661         * On Haswell the OA unit supports clock gating off for a specific
2662         * context and in this mode there's no visibility of metrics for the
2663         * rest of the system, which we consider acceptable for a
2664         * non-privileged client.
2665         *
2666         * For Gen8+ the OA unit no longer supports clock gating off for a
2667         * specific context and the kernel can't securely stop the counters
2668         * from updating as system-wide / global values. Even though we can
2669         * filter reports based on the included context ID we can't block
2670         * clients from seeing the raw / global counter values via
2671         * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2672         * enable the OA unit by default.
2673         */
2674        if (IS_HASWELL(dev_priv) && specific_ctx)
2675                privileged_op = false;
2676
2677        /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2678         * we check a dev.i915.perf_stream_paranoid sysctl option
2679         * to determine if it's ok to access system wide OA counters
2680         * without CAP_SYS_ADMIN privileges.
2681         */
2682        if (privileged_op &&
2683            i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2684                DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2685                ret = -EACCES;
2686                goto err_ctx;
2687        }
2688
2689        stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2690        if (!stream) {
2691                ret = -ENOMEM;
2692                goto err_ctx;
2693        }
2694
2695        stream->dev_priv = dev_priv;
2696        stream->ctx = specific_ctx;
2697
2698        ret = i915_oa_stream_init(stream, param, props);
2699        if (ret)
2700                goto err_alloc;
2701
2702        /* we avoid simply assigning stream->sample_flags = props->sample_flags
2703         * to have _stream_init check the combination of sample flags more
2704         * thoroughly, but still this is the expected result at this point.
2705         */
2706        if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2707                ret = -ENODEV;
2708                goto err_flags;
2709        }
2710
2711        list_add(&stream->link, &dev_priv->perf.streams);
2712
2713        if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2714                f_flags |= O_CLOEXEC;
2715        if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2716                f_flags |= O_NONBLOCK;
2717
2718        stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2719        if (stream_fd < 0) {
2720                ret = stream_fd;
2721                goto err_open;
2722        }
2723
2724        if (!(param->flags & I915_PERF_FLAG_DISABLED))
2725                i915_perf_enable_locked(stream);
2726
2727        return stream_fd;
2728
2729err_open:
2730        list_del(&stream->link);
2731err_flags:
2732        if (stream->ops->destroy)
2733                stream->ops->destroy(stream);
2734err_alloc:
2735        kfree(stream);
2736err_ctx:
2737        if (specific_ctx)
2738                i915_gem_context_put(specific_ctx);
2739err:
2740        return ret;
2741}
2742
2743static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2744{
2745        return div64_u64(1000000000ULL * (2ULL << exponent),
2746                         1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz);
2747}
2748
2749/**
2750 * read_properties_unlocked - validate + copy userspace stream open properties
2751 * @dev_priv: i915 device instance
2752 * @uprops: The array of u64 key value pairs given by userspace
2753 * @n_props: The number of key value pairs expected in @uprops
2754 * @props: The stream configuration built up while validating properties
2755 *
2756 * Note this function only validates properties in isolation it doesn't
2757 * validate that the combination of properties makes sense or that all
2758 * properties necessary for a particular kind of stream have been set.
2759 *
2760 * Note that there currently aren't any ordering requirements for properties so
2761 * we shouldn't validate or assume anything about ordering here. This doesn't
2762 * rule out defining new properties with ordering requirements in the future.
2763 */
2764static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2765                                    u64 __user *uprops,
2766                                    u32 n_props,
2767                                    struct perf_open_properties *props)
2768{
2769        u64 __user *uprop = uprops;
2770        u32 i;
2771
2772        memset(props, 0, sizeof(struct perf_open_properties));
2773
2774        if (!n_props) {
2775                DRM_DEBUG("No i915 perf properties given\n");
2776                return -EINVAL;
2777        }
2778
2779        /* Considering that ID = 0 is reserved and assuming that we don't
2780         * (currently) expect any configurations to ever specify duplicate
2781         * values for a particular property ID then the last _PROP_MAX value is
2782         * one greater than the maximum number of properties we expect to get
2783         * from userspace.
2784         */
2785        if (n_props >= DRM_I915_PERF_PROP_MAX) {
2786                DRM_DEBUG("More i915 perf properties specified than exist\n");
2787                return -EINVAL;
2788        }
2789
2790        for (i = 0; i < n_props; i++) {
2791                u64 oa_period, oa_freq_hz;
2792                u64 id, value;
2793                int ret;
2794
2795                ret = get_user(id, uprop);
2796                if (ret)
2797                        return ret;
2798
2799                ret = get_user(value, uprop + 1);
2800                if (ret)
2801                        return ret;
2802
2803                if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2804                        DRM_DEBUG("Unknown i915 perf property ID\n");
2805                        return -EINVAL;
2806                }
2807
2808                switch ((enum drm_i915_perf_property_id)id) {
2809                case DRM_I915_PERF_PROP_CTX_HANDLE:
2810                        props->single_context = 1;
2811                        props->ctx_handle = value;
2812                        break;
2813                case DRM_I915_PERF_PROP_SAMPLE_OA:
2814                        if (value)
2815                                props->sample_flags |= SAMPLE_OA_REPORT;
2816                        break;
2817                case DRM_I915_PERF_PROP_OA_METRICS_SET:
2818                        if (value == 0) {
2819                                DRM_DEBUG("Unknown OA metric set ID\n");
2820                                return -EINVAL;
2821                        }
2822                        props->metrics_set = value;
2823                        break;
2824                case DRM_I915_PERF_PROP_OA_FORMAT:
2825                        if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2826                                DRM_DEBUG("Out-of-range OA report format %llu\n",
2827                                          value);
2828                                return -EINVAL;
2829                        }
2830                        if (!dev_priv->perf.oa.oa_formats[value].size) {
2831                                DRM_DEBUG("Unsupported OA report format %llu\n",
2832                                          value);
2833                                return -EINVAL;
2834                        }
2835                        props->oa_format = value;
2836                        break;
2837                case DRM_I915_PERF_PROP_OA_EXPONENT:
2838                        if (value > OA_EXPONENT_MAX) {
2839                                DRM_DEBUG("OA timer exponent too high (> %u)\n",
2840                                         OA_EXPONENT_MAX);
2841                                return -EINVAL;
2842                        }
2843
2844                        /* Theoretically we can program the OA unit to sample
2845                         * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2846                         * for BXT. We don't allow such high sampling
2847                         * frequencies by default unless root.
2848                         */
2849
2850                        BUILD_BUG_ON(sizeof(oa_period) != 8);
2851                        oa_period = oa_exponent_to_ns(dev_priv, value);
2852
2853                        /* This check is primarily to ensure that oa_period <=
2854                         * UINT32_MAX (before passing to do_div which only
2855                         * accepts a u32 denominator), but we can also skip
2856                         * checking anything < 1Hz which implicitly can't be
2857                         * limited via an integer oa_max_sample_rate.
2858                         */
2859                        if (oa_period <= NSEC_PER_SEC) {
2860                                u64 tmp = NSEC_PER_SEC;
2861                                do_div(tmp, oa_period);
2862                                oa_freq_hz = tmp;
2863                        } else
2864                                oa_freq_hz = 0;
2865
2866                        if (oa_freq_hz > i915_oa_max_sample_rate &&
2867                            !capable(CAP_SYS_ADMIN)) {
2868                                DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2869                                          i915_oa_max_sample_rate);
2870                                return -EACCES;
2871                        }
2872
2873                        props->oa_periodic = true;
2874                        props->oa_period_exponent = value;
2875                        break;
2876                case DRM_I915_PERF_PROP_MAX:
2877                        MISSING_CASE(id);
2878                        return -EINVAL;
2879                }
2880
2881                uprop += 2;
2882        }
2883
2884        return 0;
2885}
2886
2887/**
2888 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2889 * @dev: drm device
2890 * @data: ioctl data copied from userspace (unvalidated)
2891 * @file: drm file
2892 *
2893 * Validates the stream open parameters given by userspace including flags
2894 * and an array of u64 key, value pair properties.
2895 *
2896 * Very little is assumed up front about the nature of the stream being
2897 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2898 * i915-perf stream is expected to be a suitable interface for other forms of
2899 * buffered data written by the GPU besides periodic OA metrics.
2900 *
2901 * Note we copy the properties from userspace outside of the i915 perf
2902 * mutex to avoid an awkward lockdep with mmap_sem.
2903 *
2904 * Most of the implementation details are handled by
2905 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2906 * mutex for serializing with any non-file-operation driver hooks.
2907 *
2908 * Return: A newly opened i915 Perf stream file descriptor or negative
2909 * error code on failure.
2910 */
2911int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2912                         struct drm_file *file)
2913{
2914        struct drm_i915_private *dev_priv = dev->dev_private;
2915        struct drm_i915_perf_open_param *param = data;
2916        struct perf_open_properties props;
2917        u32 known_open_flags;
2918        int ret;
2919
2920        if (!dev_priv->perf.initialized) {
2921                DRM_DEBUG("i915 perf interface not available for this system\n");
2922                return -ENOTSUPP;
2923        }
2924
2925        known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2926                           I915_PERF_FLAG_FD_NONBLOCK |
2927                           I915_PERF_FLAG_DISABLED;
2928        if (param->flags & ~known_open_flags) {
2929                DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2930                return -EINVAL;
2931        }
2932
2933        ret = read_properties_unlocked(dev_priv,
2934                                       u64_to_user_ptr(param->properties_ptr),
2935                                       param->num_properties,
2936                                       &props);
2937        if (ret)
2938                return ret;
2939
2940        mutex_lock(&dev_priv->perf.lock);
2941        ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2942        mutex_unlock(&dev_priv->perf.lock);
2943
2944        return ret;
2945}
2946
2947/**
2948 * i915_perf_register - exposes i915-perf to userspace
2949 * @dev_priv: i915 device instance
2950 *
2951 * In particular OA metric sets are advertised under a sysfs metrics/
2952 * directory allowing userspace to enumerate valid IDs that can be
2953 * used to open an i915-perf stream.
2954 */
2955void i915_perf_register(struct drm_i915_private *dev_priv)
2956{
2957        int ret;
2958
2959        if (!dev_priv->perf.initialized)
2960                return;
2961
2962        /* To be sure we're synchronized with an attempted
2963         * i915_perf_open_ioctl(); considering that we register after
2964         * being exposed to userspace.
2965         */
2966        mutex_lock(&dev_priv->perf.lock);
2967
2968        dev_priv->perf.metrics_kobj =
2969                kobject_create_and_add("metrics",
2970                                       &dev_priv->drm.primary->kdev->kobj);
2971        if (!dev_priv->perf.metrics_kobj)
2972                goto exit;
2973
2974        sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2975
2976        if (IS_HASWELL(dev_priv)) {
2977                i915_perf_load_test_config_hsw(dev_priv);
2978        } else if (IS_BROADWELL(dev_priv)) {
2979                i915_perf_load_test_config_bdw(dev_priv);
2980        } else if (IS_CHERRYVIEW(dev_priv)) {
2981                i915_perf_load_test_config_chv(dev_priv);
2982        } else if (IS_SKYLAKE(dev_priv)) {
2983                if (IS_SKL_GT2(dev_priv))
2984                        i915_perf_load_test_config_sklgt2(dev_priv);
2985                else if (IS_SKL_GT3(dev_priv))
2986                        i915_perf_load_test_config_sklgt3(dev_priv);
2987                else if (IS_SKL_GT4(dev_priv))
2988                        i915_perf_load_test_config_sklgt4(dev_priv);
2989        } else if (IS_BROXTON(dev_priv)) {
2990                i915_perf_load_test_config_bxt(dev_priv);
2991        } else if (IS_KABYLAKE(dev_priv)) {
2992                if (IS_KBL_GT2(dev_priv))
2993                        i915_perf_load_test_config_kblgt2(dev_priv);
2994                else if (IS_KBL_GT3(dev_priv))
2995                        i915_perf_load_test_config_kblgt3(dev_priv);
2996        } else if (IS_GEMINILAKE(dev_priv)) {
2997                i915_perf_load_test_config_glk(dev_priv);
2998        } else if (IS_COFFEELAKE(dev_priv)) {
2999                if (IS_CFL_GT2(dev_priv))
3000                        i915_perf_load_test_config_cflgt2(dev_priv);
3001                if (IS_CFL_GT3(dev_priv))
3002                        i915_perf_load_test_config_cflgt3(dev_priv);
3003        } else if (IS_CANNONLAKE(dev_priv)) {
3004                i915_perf_load_test_config_cnl(dev_priv);
3005        } else if (IS_ICELAKE(dev_priv)) {
3006                i915_perf_load_test_config_icl(dev_priv);
3007        }
3008
3009        if (dev_priv->perf.oa.test_config.id == 0)
3010                goto sysfs_error;
3011
3012        ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
3013                                 &dev_priv->perf.oa.test_config.sysfs_metric);
3014        if (ret)
3015                goto sysfs_error;
3016
3017        atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
3018
3019        goto exit;
3020
3021sysfs_error:
3022        kobject_put(dev_priv->perf.metrics_kobj);
3023        dev_priv->perf.metrics_kobj = NULL;
3024
3025exit:
3026        mutex_unlock(&dev_priv->perf.lock);
3027}
3028
3029/**
3030 * i915_perf_unregister - hide i915-perf from userspace
3031 * @dev_priv: i915 device instance
3032 *
3033 * i915-perf state cleanup is split up into an 'unregister' and
3034 * 'deinit' phase where the interface is first hidden from
3035 * userspace by i915_perf_unregister() before cleaning up
3036 * remaining state in i915_perf_fini().
3037 */
3038void i915_perf_unregister(struct drm_i915_private *dev_priv)
3039{
3040        if (!dev_priv->perf.metrics_kobj)
3041                return;
3042
3043        sysfs_remove_group(dev_priv->perf.metrics_kobj,
3044                           &dev_priv->perf.oa.test_config.sysfs_metric);
3045
3046        kobject_put(dev_priv->perf.metrics_kobj);
3047        dev_priv->perf.metrics_kobj = NULL;
3048}
3049
3050static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
3051{
3052        static const i915_reg_t flex_eu_regs[] = {
3053                EU_PERF_CNTL0,
3054                EU_PERF_CNTL1,
3055                EU_PERF_CNTL2,
3056                EU_PERF_CNTL3,
3057                EU_PERF_CNTL4,
3058                EU_PERF_CNTL5,
3059                EU_PERF_CNTL6,
3060        };
3061        int i;
3062
3063        for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3064                if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3065                        return true;
3066        }
3067        return false;
3068}
3069
3070static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3071{
3072        return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3073                addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3074                (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3075                 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3076                (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3077                 addr <= i915_mmio_reg_offset(OACEC7_1));
3078}
3079
3080static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3081{
3082        return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3083                (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3084                 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3085                (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3086                 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3087                (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3088                 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3089}
3090
3091static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3092{
3093        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3094                addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3095                (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3096                 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3097}
3098
3099static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3100{
3101        return gen8_is_valid_mux_addr(dev_priv, addr) ||
3102                (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3103                 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3104}
3105
3106static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3107{
3108        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3109                (addr >= 0x25100 && addr <= 0x2FF90) ||
3110                (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3111                 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3112                addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3113}
3114
3115static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3116{
3117        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3118                (addr >= 0x182300 && addr <= 0x1823A4);
3119}
3120
3121static uint32_t mask_reg_value(u32 reg, u32 val)
3122{
3123        /* HALF_SLICE_CHICKEN2 is programmed with a the
3124         * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3125         * programmed by userspace doesn't change this.
3126         */
3127        if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3128                val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3129
3130        /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3131         * indicated by its name and a bunch of selection fields used by OA
3132         * configs.
3133         */
3134        if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3135                val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3136
3137        return val;
3138}
3139
3140static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3141                                         bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3142                                         u32 __user *regs,
3143                                         u32 n_regs)
3144{
3145        struct i915_oa_reg *oa_regs;
3146        int err;
3147        u32 i;
3148
3149        if (!n_regs)
3150                return NULL;
3151
3152        if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3153                return ERR_PTR(-EFAULT);
3154
3155        /* No is_valid function means we're not allowing any register to be programmed. */
3156        GEM_BUG_ON(!is_valid);
3157        if (!is_valid)
3158                return ERR_PTR(-EINVAL);
3159
3160        oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3161        if (!oa_regs)
3162                return ERR_PTR(-ENOMEM);
3163
3164        for (i = 0; i < n_regs; i++) {
3165                u32 addr, value;
3166
3167                err = get_user(addr, regs);
3168                if (err)
3169                        goto addr_err;
3170
3171                if (!is_valid(dev_priv, addr)) {
3172                        DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3173                        err = -EINVAL;
3174                        goto addr_err;
3175                }
3176
3177                err = get_user(value, regs + 1);
3178                if (err)
3179                        goto addr_err;
3180
3181                oa_regs[i].addr = _MMIO(addr);
3182                oa_regs[i].value = mask_reg_value(addr, value);
3183
3184                regs += 2;
3185        }
3186
3187        return oa_regs;
3188
3189addr_err:
3190        kfree(oa_regs);
3191        return ERR_PTR(err);
3192}
3193
3194static ssize_t show_dynamic_id(struct device *dev,
3195                               struct device_attribute *attr,
3196                               char *buf)
3197{
3198        struct i915_oa_config *oa_config =
3199                container_of(attr, typeof(*oa_config), sysfs_metric_id);
3200
3201        return sprintf(buf, "%d\n", oa_config->id);
3202}
3203
3204static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3205                                         struct i915_oa_config *oa_config)
3206{
3207        sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3208        oa_config->sysfs_metric_id.attr.name = "id";
3209        oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3210        oa_config->sysfs_metric_id.show = show_dynamic_id;
3211        oa_config->sysfs_metric_id.store = NULL;
3212
3213        oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3214        oa_config->attrs[1] = NULL;
3215
3216        oa_config->sysfs_metric.name = oa_config->uuid;
3217        oa_config->sysfs_metric.attrs = oa_config->attrs;
3218
3219        return sysfs_create_group(dev_priv->perf.metrics_kobj,
3220                                  &oa_config->sysfs_metric);
3221}
3222
3223/**
3224 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3225 * @dev: drm device
3226 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3227 *        userspace (unvalidated)
3228 * @file: drm file
3229 *
3230 * Validates the submitted OA register to be saved into a new OA config that
3231 * can then be used for programming the OA unit and its NOA network.
3232 *
3233 * Returns: A new allocated config number to be used with the perf open ioctl
3234 * or a negative error code on failure.
3235 */
3236int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3237                               struct drm_file *file)
3238{
3239        struct drm_i915_private *dev_priv = dev->dev_private;
3240        struct drm_i915_perf_oa_config *args = data;
3241        struct i915_oa_config *oa_config, *tmp;
3242        int err, id;
3243
3244        if (!dev_priv->perf.initialized) {
3245                DRM_DEBUG("i915 perf interface not available for this system\n");
3246                return -ENOTSUPP;
3247        }
3248
3249        if (!dev_priv->perf.metrics_kobj) {
3250                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3251                return -EINVAL;
3252        }
3253
3254        if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3255                DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3256                return -EACCES;
3257        }
3258
3259        if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3260            (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3261            (!args->flex_regs_ptr || !args->n_flex_regs)) {
3262                DRM_DEBUG("No OA registers given\n");
3263                return -EINVAL;
3264        }
3265
3266        oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3267        if (!oa_config) {
3268                DRM_DEBUG("Failed to allocate memory for the OA config\n");
3269                return -ENOMEM;
3270        }
3271
3272        atomic_set(&oa_config->ref_count, 1);
3273
3274        if (!uuid_is_valid(args->uuid)) {
3275                DRM_DEBUG("Invalid uuid format for OA config\n");
3276                err = -EINVAL;
3277                goto reg_err;
3278        }
3279
3280        /* Last character in oa_config->uuid will be 0 because oa_config is
3281         * kzalloc.
3282         */
3283        memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3284
3285        oa_config->mux_regs_len = args->n_mux_regs;
3286        oa_config->mux_regs =
3287                alloc_oa_regs(dev_priv,
3288                              dev_priv->perf.oa.ops.is_valid_mux_reg,
3289                              u64_to_user_ptr(args->mux_regs_ptr),
3290                              args->n_mux_regs);
3291
3292        if (IS_ERR(oa_config->mux_regs)) {
3293                DRM_DEBUG("Failed to create OA config for mux_regs\n");
3294                err = PTR_ERR(oa_config->mux_regs);
3295                goto reg_err;
3296        }
3297
3298        oa_config->b_counter_regs_len = args->n_boolean_regs;
3299        oa_config->b_counter_regs =
3300                alloc_oa_regs(dev_priv,
3301                              dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3302                              u64_to_user_ptr(args->boolean_regs_ptr),
3303                              args->n_boolean_regs);
3304
3305        if (IS_ERR(oa_config->b_counter_regs)) {
3306                DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3307                err = PTR_ERR(oa_config->b_counter_regs);
3308                goto reg_err;
3309        }
3310
3311        if (INTEL_GEN(dev_priv) < 8) {
3312                if (args->n_flex_regs != 0) {
3313                        err = -EINVAL;
3314                        goto reg_err;
3315                }
3316        } else {
3317                oa_config->flex_regs_len = args->n_flex_regs;
3318                oa_config->flex_regs =
3319                        alloc_oa_regs(dev_priv,
3320                                      dev_priv->perf.oa.ops.is_valid_flex_reg,
3321                                      u64_to_user_ptr(args->flex_regs_ptr),
3322                                      args->n_flex_regs);
3323
3324                if (IS_ERR(oa_config->flex_regs)) {
3325                        DRM_DEBUG("Failed to create OA config for flex_regs\n");
3326                        err = PTR_ERR(oa_config->flex_regs);
3327                        goto reg_err;
3328                }
3329        }
3330
3331        err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3332        if (err)
3333                goto reg_err;
3334
3335        /* We shouldn't have too many configs, so this iteration shouldn't be
3336         * too costly.
3337         */
3338        idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3339                if (!strcmp(tmp->uuid, oa_config->uuid)) {
3340                        DRM_DEBUG("OA config already exists with this uuid\n");
3341                        err = -EADDRINUSE;
3342                        goto sysfs_err;
3343                }
3344        }
3345
3346        err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3347        if (err) {
3348                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3349                goto sysfs_err;
3350        }
3351
3352        /* Config id 0 is invalid, id 1 for kernel stored test config. */
3353        oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3354                                  oa_config, 2,
3355                                  0, GFP_KERNEL);
3356        if (oa_config->id < 0) {
3357                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3358                err = oa_config->id;
3359                goto sysfs_err;
3360        }
3361
3362        mutex_unlock(&dev_priv->perf.metrics_lock);
3363
3364        DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3365
3366        return oa_config->id;
3367
3368sysfs_err:
3369        mutex_unlock(&dev_priv->perf.metrics_lock);
3370reg_err:
3371        put_oa_config(dev_priv, oa_config);
3372        DRM_DEBUG("Failed to add new OA config\n");
3373        return err;
3374}
3375
3376/**
3377 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3378 * @dev: drm device
3379 * @data: ioctl data (pointer to u64 integer) copied from userspace
3380 * @file: drm file
3381 *
3382 * Configs can be removed while being used, the will stop appearing in sysfs
3383 * and their content will be freed when the stream using the config is closed.
3384 *
3385 * Returns: 0 on success or a negative error code on failure.
3386 */
3387int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3388                                  struct drm_file *file)
3389{
3390        struct drm_i915_private *dev_priv = dev->dev_private;
3391        u64 *arg = data;
3392        struct i915_oa_config *oa_config;
3393        int ret;
3394
3395        if (!dev_priv->perf.initialized) {
3396                DRM_DEBUG("i915 perf interface not available for this system\n");
3397                return -ENOTSUPP;
3398        }
3399
3400        if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3401                DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3402                return -EACCES;
3403        }
3404
3405        ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3406        if (ret)
3407                goto lock_err;
3408
3409        oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3410        if (!oa_config) {
3411                DRM_DEBUG("Failed to remove unknown OA config\n");
3412                ret = -ENOENT;
3413                goto config_err;
3414        }
3415
3416        GEM_BUG_ON(*arg != oa_config->id);
3417
3418        sysfs_remove_group(dev_priv->perf.metrics_kobj,
3419                           &oa_config->sysfs_metric);
3420
3421        idr_remove(&dev_priv->perf.metrics_idr, *arg);
3422
3423        DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3424
3425        put_oa_config(dev_priv, oa_config);
3426
3427config_err:
3428        mutex_unlock(&dev_priv->perf.metrics_lock);
3429lock_err:
3430        return ret;
3431}
3432
3433static struct ctl_table oa_table[] = {
3434        {
3435         .procname = "perf_stream_paranoid",
3436         .data = &i915_perf_stream_paranoid,
3437         .maxlen = sizeof(i915_perf_stream_paranoid),
3438         .mode = 0644,
3439         .proc_handler = proc_dointvec_minmax,
3440         .extra1 = &zero,
3441         .extra2 = &one,
3442         },
3443        {
3444         .procname = "oa_max_sample_rate",
3445         .data = &i915_oa_max_sample_rate,
3446         .maxlen = sizeof(i915_oa_max_sample_rate),
3447         .mode = 0644,
3448         .proc_handler = proc_dointvec_minmax,
3449         .extra1 = &zero,
3450         .extra2 = &oa_sample_rate_hard_limit,
3451         },
3452        {}
3453};
3454
3455static struct ctl_table i915_root[] = {
3456        {
3457         .procname = "i915",
3458         .maxlen = 0,
3459         .mode = 0555,
3460         .child = oa_table,
3461         },
3462        {}
3463};
3464
3465static struct ctl_table dev_root[] = {
3466        {
3467         .procname = "dev",
3468         .maxlen = 0,
3469         .mode = 0555,
3470         .child = i915_root,
3471         },
3472        {}
3473};
3474
3475/**
3476 * i915_perf_init - initialize i915-perf state on module load
3477 * @dev_priv: i915 device instance
3478 *
3479 * Initializes i915-perf state without exposing anything to userspace.
3480 *
3481 * Note: i915-perf initialization is split into an 'init' and 'register'
3482 * phase with the i915_perf_register() exposing state to userspace.
3483 */
3484void i915_perf_init(struct drm_i915_private *dev_priv)
3485{
3486        if (IS_HASWELL(dev_priv)) {
3487                dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3488                        gen7_is_valid_b_counter_addr;
3489                dev_priv->perf.oa.ops.is_valid_mux_reg =
3490                        hsw_is_valid_mux_addr;
3491                dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3492                dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3493                dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3494                dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3495                dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3496                dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3497                dev_priv->perf.oa.ops.read = gen7_oa_read;
3498                dev_priv->perf.oa.ops.oa_hw_tail_read =
3499                        gen7_oa_hw_tail_read;
3500
3501                dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3502        } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3503                /* Note: that although we could theoretically also support the
3504                 * legacy ringbuffer mode on BDW (and earlier iterations of
3505                 * this driver, before upstreaming did this) it didn't seem
3506                 * worth the complexity to maintain now that BDW+ enable
3507                 * execlist mode by default.
3508                 */
3509                dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3510
3511                dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3512                dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3513                dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3514                dev_priv->perf.oa.ops.read = gen8_oa_read;
3515                dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3516
3517                if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) {
3518                        dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3519                                gen7_is_valid_b_counter_addr;
3520                        dev_priv->perf.oa.ops.is_valid_mux_reg =
3521                                gen8_is_valid_mux_addr;
3522                        dev_priv->perf.oa.ops.is_valid_flex_reg =
3523                                gen8_is_valid_flex_addr;
3524
3525                        if (IS_CHERRYVIEW(dev_priv)) {
3526                                dev_priv->perf.oa.ops.is_valid_mux_reg =
3527                                        chv_is_valid_mux_addr;
3528                        }
3529
3530                        dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3531                        dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3532
3533                        if (IS_GEN8(dev_priv)) {
3534                                dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3535                                dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3536
3537                                dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3538                        } else {
3539                                dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3540                                dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3541
3542                                dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3543                        }
3544                } else if (IS_GEN(dev_priv, 10, 11)) {
3545                        dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3546                                gen7_is_valid_b_counter_addr;
3547                        dev_priv->perf.oa.ops.is_valid_mux_reg =
3548                                gen10_is_valid_mux_addr;
3549                        dev_priv->perf.oa.ops.is_valid_flex_reg =
3550                                gen8_is_valid_flex_addr;
3551
3552                        dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3553                        dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3554
3555                        dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3556                        dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3557
3558                        dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3559                }
3560        }
3561
3562        if (dev_priv->perf.oa.ops.enable_metric_set) {
3563                hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3564                                CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3565                dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3566                init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3567
3568                INIT_LIST_HEAD(&dev_priv->perf.streams);
3569                mutex_init(&dev_priv->perf.lock);
3570                spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3571
3572                oa_sample_rate_hard_limit = 1000 *
3573                        (INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3574                dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3575
3576                mutex_init(&dev_priv->perf.metrics_lock);
3577                idr_init(&dev_priv->perf.metrics_idr);
3578
3579                dev_priv->perf.initialized = true;
3580        }
3581}
3582
3583static int destroy_config(int id, void *p, void *data)
3584{
3585        struct drm_i915_private *dev_priv = data;
3586        struct i915_oa_config *oa_config = p;
3587
3588        put_oa_config(dev_priv, oa_config);
3589
3590        return 0;
3591}
3592
3593/**
3594 * i915_perf_fini - Counter part to i915_perf_init()
3595 * @dev_priv: i915 device instance
3596 */
3597void i915_perf_fini(struct drm_i915_private *dev_priv)
3598{
3599        if (!dev_priv->perf.initialized)
3600                return;
3601
3602        idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3603        idr_destroy(&dev_priv->perf.metrics_idr);
3604
3605        unregister_sysctl_table(dev_priv->perf.sysctl_header);
3606
3607        memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3608
3609        dev_priv->perf.initialized = false;
3610}
3611