linux/drivers/input/input.c
<<
>>
Prefs
   1/*
   2 * The input core
   3 *
   4 * Copyright (c) 1999-2002 Vojtech Pavlik
   5 */
   6
   7/*
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License version 2 as published by
  10 * the Free Software Foundation.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  14
  15#include <linux/init.h>
  16#include <linux/types.h>
  17#include <linux/idr.h>
  18#include <linux/input/mt.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/random.h>
  22#include <linux/major.h>
  23#include <linux/proc_fs.h>
  24#include <linux/sched.h>
  25#include <linux/seq_file.h>
  26#include <linux/poll.h>
  27#include <linux/device.h>
  28#include <linux/mutex.h>
  29#include <linux/rcupdate.h>
  30#include "input-compat.h"
  31
  32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  33MODULE_DESCRIPTION("Input core");
  34MODULE_LICENSE("GPL");
  35
  36#define INPUT_MAX_CHAR_DEVICES          1024
  37#define INPUT_FIRST_DYNAMIC_DEV         256
  38static DEFINE_IDA(input_ida);
  39
  40static LIST_HEAD(input_dev_list);
  41static LIST_HEAD(input_handler_list);
  42
  43/*
  44 * input_mutex protects access to both input_dev_list and input_handler_list.
  45 * This also causes input_[un]register_device and input_[un]register_handler
  46 * be mutually exclusive which simplifies locking in drivers implementing
  47 * input handlers.
  48 */
  49static DEFINE_MUTEX(input_mutex);
  50
  51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  52
  53static inline int is_event_supported(unsigned int code,
  54                                     unsigned long *bm, unsigned int max)
  55{
  56        return code <= max && test_bit(code, bm);
  57}
  58
  59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  60{
  61        if (fuzz) {
  62                if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  63                        return old_val;
  64
  65                if (value > old_val - fuzz && value < old_val + fuzz)
  66                        return (old_val * 3 + value) / 4;
  67
  68                if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  69                        return (old_val + value) / 2;
  70        }
  71
  72        return value;
  73}
  74
  75static void input_start_autorepeat(struct input_dev *dev, int code)
  76{
  77        if (test_bit(EV_REP, dev->evbit) &&
  78            dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  79            dev->timer.function) {
  80                dev->repeat_key = code;
  81                mod_timer(&dev->timer,
  82                          jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  83        }
  84}
  85
  86static void input_stop_autorepeat(struct input_dev *dev)
  87{
  88        del_timer(&dev->timer);
  89}
  90
  91/*
  92 * Pass event first through all filters and then, if event has not been
  93 * filtered out, through all open handles. This function is called with
  94 * dev->event_lock held and interrupts disabled.
  95 */
  96static unsigned int input_to_handler(struct input_handle *handle,
  97                        struct input_value *vals, unsigned int count)
  98{
  99        struct input_handler *handler = handle->handler;
 100        struct input_value *end = vals;
 101        struct input_value *v;
 102
 103        if (handler->filter) {
 104                for (v = vals; v != vals + count; v++) {
 105                        if (handler->filter(handle, v->type, v->code, v->value))
 106                                continue;
 107                        if (end != v)
 108                                *end = *v;
 109                        end++;
 110                }
 111                count = end - vals;
 112        }
 113
 114        if (!count)
 115                return 0;
 116
 117        if (handler->events)
 118                handler->events(handle, vals, count);
 119        else if (handler->event)
 120                for (v = vals; v != vals + count; v++)
 121                        handler->event(handle, v->type, v->code, v->value);
 122
 123        return count;
 124}
 125
 126/*
 127 * Pass values first through all filters and then, if event has not been
 128 * filtered out, through all open handles. This function is called with
 129 * dev->event_lock held and interrupts disabled.
 130 */
 131static void input_pass_values(struct input_dev *dev,
 132                              struct input_value *vals, unsigned int count)
 133{
 134        struct input_handle *handle;
 135        struct input_value *v;
 136
 137        if (!count)
 138                return;
 139
 140        rcu_read_lock();
 141
 142        handle = rcu_dereference(dev->grab);
 143        if (handle) {
 144                count = input_to_handler(handle, vals, count);
 145        } else {
 146                list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 147                        if (handle->open) {
 148                                count = input_to_handler(handle, vals, count);
 149                                if (!count)
 150                                        break;
 151                        }
 152        }
 153
 154        rcu_read_unlock();
 155
 156        /* trigger auto repeat for key events */
 157        if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 158                for (v = vals; v != vals + count; v++) {
 159                        if (v->type == EV_KEY && v->value != 2) {
 160                                if (v->value)
 161                                        input_start_autorepeat(dev, v->code);
 162                                else
 163                                        input_stop_autorepeat(dev);
 164                        }
 165                }
 166        }
 167}
 168
 169static void input_pass_event(struct input_dev *dev,
 170                             unsigned int type, unsigned int code, int value)
 171{
 172        struct input_value vals[] = { { type, code, value } };
 173
 174        input_pass_values(dev, vals, ARRAY_SIZE(vals));
 175}
 176
 177/*
 178 * Generate software autorepeat event. Note that we take
 179 * dev->event_lock here to avoid racing with input_event
 180 * which may cause keys get "stuck".
 181 */
 182static void input_repeat_key(struct timer_list *t)
 183{
 184        struct input_dev *dev = from_timer(dev, t, timer);
 185        unsigned long flags;
 186
 187        spin_lock_irqsave(&dev->event_lock, flags);
 188
 189        if (test_bit(dev->repeat_key, dev->key) &&
 190            is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
 191                struct input_value vals[] =  {
 192                        { EV_KEY, dev->repeat_key, 2 },
 193                        input_value_sync
 194                };
 195
 196                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 197
 198                if (dev->rep[REP_PERIOD])
 199                        mod_timer(&dev->timer, jiffies +
 200                                        msecs_to_jiffies(dev->rep[REP_PERIOD]));
 201        }
 202
 203        spin_unlock_irqrestore(&dev->event_lock, flags);
 204}
 205
 206#define INPUT_IGNORE_EVENT      0
 207#define INPUT_PASS_TO_HANDLERS  1
 208#define INPUT_PASS_TO_DEVICE    2
 209#define INPUT_SLOT              4
 210#define INPUT_FLUSH             8
 211#define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 212
 213static int input_handle_abs_event(struct input_dev *dev,
 214                                  unsigned int code, int *pval)
 215{
 216        struct input_mt *mt = dev->mt;
 217        bool is_mt_event;
 218        int *pold;
 219
 220        if (code == ABS_MT_SLOT) {
 221                /*
 222                 * "Stage" the event; we'll flush it later, when we
 223                 * get actual touch data.
 224                 */
 225                if (mt && *pval >= 0 && *pval < mt->num_slots)
 226                        mt->slot = *pval;
 227
 228                return INPUT_IGNORE_EVENT;
 229        }
 230
 231        is_mt_event = input_is_mt_value(code);
 232
 233        if (!is_mt_event) {
 234                pold = &dev->absinfo[code].value;
 235        } else if (mt) {
 236                pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 237        } else {
 238                /*
 239                 * Bypass filtering for multi-touch events when
 240                 * not employing slots.
 241                 */
 242                pold = NULL;
 243        }
 244
 245        if (pold) {
 246                *pval = input_defuzz_abs_event(*pval, *pold,
 247                                                dev->absinfo[code].fuzz);
 248                if (*pold == *pval)
 249                        return INPUT_IGNORE_EVENT;
 250
 251                *pold = *pval;
 252        }
 253
 254        /* Flush pending "slot" event */
 255        if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
 256                input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
 257                return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 258        }
 259
 260        return INPUT_PASS_TO_HANDLERS;
 261}
 262
 263static int input_get_disposition(struct input_dev *dev,
 264                          unsigned int type, unsigned int code, int *pval)
 265{
 266        int disposition = INPUT_IGNORE_EVENT;
 267        int value = *pval;
 268
 269        switch (type) {
 270
 271        case EV_SYN:
 272                switch (code) {
 273                case SYN_CONFIG:
 274                        disposition = INPUT_PASS_TO_ALL;
 275                        break;
 276
 277                case SYN_REPORT:
 278                        disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 279                        break;
 280                case SYN_MT_REPORT:
 281                        disposition = INPUT_PASS_TO_HANDLERS;
 282                        break;
 283                }
 284                break;
 285
 286        case EV_KEY:
 287                if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 288
 289                        /* auto-repeat bypasses state updates */
 290                        if (value == 2) {
 291                                disposition = INPUT_PASS_TO_HANDLERS;
 292                                break;
 293                        }
 294
 295                        if (!!test_bit(code, dev->key) != !!value) {
 296
 297                                __change_bit(code, dev->key);
 298                                disposition = INPUT_PASS_TO_HANDLERS;
 299                        }
 300                }
 301                break;
 302
 303        case EV_SW:
 304                if (is_event_supported(code, dev->swbit, SW_MAX) &&
 305                    !!test_bit(code, dev->sw) != !!value) {
 306
 307                        __change_bit(code, dev->sw);
 308                        disposition = INPUT_PASS_TO_HANDLERS;
 309                }
 310                break;
 311
 312        case EV_ABS:
 313                if (is_event_supported(code, dev->absbit, ABS_MAX))
 314                        disposition = input_handle_abs_event(dev, code, &value);
 315
 316                break;
 317
 318        case EV_REL:
 319                if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 320                        disposition = INPUT_PASS_TO_HANDLERS;
 321
 322                break;
 323
 324        case EV_MSC:
 325                if (is_event_supported(code, dev->mscbit, MSC_MAX))
 326                        disposition = INPUT_PASS_TO_ALL;
 327
 328                break;
 329
 330        case EV_LED:
 331                if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 332                    !!test_bit(code, dev->led) != !!value) {
 333
 334                        __change_bit(code, dev->led);
 335                        disposition = INPUT_PASS_TO_ALL;
 336                }
 337                break;
 338
 339        case EV_SND:
 340                if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 341
 342                        if (!!test_bit(code, dev->snd) != !!value)
 343                                __change_bit(code, dev->snd);
 344                        disposition = INPUT_PASS_TO_ALL;
 345                }
 346                break;
 347
 348        case EV_REP:
 349                if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 350                        dev->rep[code] = value;
 351                        disposition = INPUT_PASS_TO_ALL;
 352                }
 353                break;
 354
 355        case EV_FF:
 356                if (value >= 0)
 357                        disposition = INPUT_PASS_TO_ALL;
 358                break;
 359
 360        case EV_PWR:
 361                disposition = INPUT_PASS_TO_ALL;
 362                break;
 363        }
 364
 365        *pval = value;
 366        return disposition;
 367}
 368
 369static void input_handle_event(struct input_dev *dev,
 370                               unsigned int type, unsigned int code, int value)
 371{
 372        int disposition = input_get_disposition(dev, type, code, &value);
 373
 374        if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
 375                add_input_randomness(type, code, value);
 376
 377        if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 378                dev->event(dev, type, code, value);
 379
 380        if (!dev->vals)
 381                return;
 382
 383        if (disposition & INPUT_PASS_TO_HANDLERS) {
 384                struct input_value *v;
 385
 386                if (disposition & INPUT_SLOT) {
 387                        v = &dev->vals[dev->num_vals++];
 388                        v->type = EV_ABS;
 389                        v->code = ABS_MT_SLOT;
 390                        v->value = dev->mt->slot;
 391                }
 392
 393                v = &dev->vals[dev->num_vals++];
 394                v->type = type;
 395                v->code = code;
 396                v->value = value;
 397        }
 398
 399        if (disposition & INPUT_FLUSH) {
 400                if (dev->num_vals >= 2)
 401                        input_pass_values(dev, dev->vals, dev->num_vals);
 402                dev->num_vals = 0;
 403        } else if (dev->num_vals >= dev->max_vals - 2) {
 404                dev->vals[dev->num_vals++] = input_value_sync;
 405                input_pass_values(dev, dev->vals, dev->num_vals);
 406                dev->num_vals = 0;
 407        }
 408
 409}
 410
 411/**
 412 * input_event() - report new input event
 413 * @dev: device that generated the event
 414 * @type: type of the event
 415 * @code: event code
 416 * @value: value of the event
 417 *
 418 * This function should be used by drivers implementing various input
 419 * devices to report input events. See also input_inject_event().
 420 *
 421 * NOTE: input_event() may be safely used right after input device was
 422 * allocated with input_allocate_device(), even before it is registered
 423 * with input_register_device(), but the event will not reach any of the
 424 * input handlers. Such early invocation of input_event() may be used
 425 * to 'seed' initial state of a switch or initial position of absolute
 426 * axis, etc.
 427 */
 428void input_event(struct input_dev *dev,
 429                 unsigned int type, unsigned int code, int value)
 430{
 431        unsigned long flags;
 432
 433        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 434
 435                spin_lock_irqsave(&dev->event_lock, flags);
 436                input_handle_event(dev, type, code, value);
 437                spin_unlock_irqrestore(&dev->event_lock, flags);
 438        }
 439}
 440EXPORT_SYMBOL(input_event);
 441
 442/**
 443 * input_inject_event() - send input event from input handler
 444 * @handle: input handle to send event through
 445 * @type: type of the event
 446 * @code: event code
 447 * @value: value of the event
 448 *
 449 * Similar to input_event() but will ignore event if device is
 450 * "grabbed" and handle injecting event is not the one that owns
 451 * the device.
 452 */
 453void input_inject_event(struct input_handle *handle,
 454                        unsigned int type, unsigned int code, int value)
 455{
 456        struct input_dev *dev = handle->dev;
 457        struct input_handle *grab;
 458        unsigned long flags;
 459
 460        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 461                spin_lock_irqsave(&dev->event_lock, flags);
 462
 463                rcu_read_lock();
 464                grab = rcu_dereference(dev->grab);
 465                if (!grab || grab == handle)
 466                        input_handle_event(dev, type, code, value);
 467                rcu_read_unlock();
 468
 469                spin_unlock_irqrestore(&dev->event_lock, flags);
 470        }
 471}
 472EXPORT_SYMBOL(input_inject_event);
 473
 474/**
 475 * input_alloc_absinfo - allocates array of input_absinfo structs
 476 * @dev: the input device emitting absolute events
 477 *
 478 * If the absinfo struct the caller asked for is already allocated, this
 479 * functions will not do anything.
 480 */
 481void input_alloc_absinfo(struct input_dev *dev)
 482{
 483        if (dev->absinfo)
 484                return;
 485
 486        dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
 487        if (!dev->absinfo) {
 488                dev_err(dev->dev.parent ?: &dev->dev,
 489                        "%s: unable to allocate memory\n", __func__);
 490                /*
 491                 * We will handle this allocation failure in
 492                 * input_register_device() when we refuse to register input
 493                 * device with ABS bits but without absinfo.
 494                 */
 495        }
 496}
 497EXPORT_SYMBOL(input_alloc_absinfo);
 498
 499void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 500                          int min, int max, int fuzz, int flat)
 501{
 502        struct input_absinfo *absinfo;
 503
 504        input_alloc_absinfo(dev);
 505        if (!dev->absinfo)
 506                return;
 507
 508        absinfo = &dev->absinfo[axis];
 509        absinfo->minimum = min;
 510        absinfo->maximum = max;
 511        absinfo->fuzz = fuzz;
 512        absinfo->flat = flat;
 513
 514        __set_bit(EV_ABS, dev->evbit);
 515        __set_bit(axis, dev->absbit);
 516}
 517EXPORT_SYMBOL(input_set_abs_params);
 518
 519
 520/**
 521 * input_grab_device - grabs device for exclusive use
 522 * @handle: input handle that wants to own the device
 523 *
 524 * When a device is grabbed by an input handle all events generated by
 525 * the device are delivered only to this handle. Also events injected
 526 * by other input handles are ignored while device is grabbed.
 527 */
 528int input_grab_device(struct input_handle *handle)
 529{
 530        struct input_dev *dev = handle->dev;
 531        int retval;
 532
 533        retval = mutex_lock_interruptible(&dev->mutex);
 534        if (retval)
 535                return retval;
 536
 537        if (dev->grab) {
 538                retval = -EBUSY;
 539                goto out;
 540        }
 541
 542        rcu_assign_pointer(dev->grab, handle);
 543
 544 out:
 545        mutex_unlock(&dev->mutex);
 546        return retval;
 547}
 548EXPORT_SYMBOL(input_grab_device);
 549
 550static void __input_release_device(struct input_handle *handle)
 551{
 552        struct input_dev *dev = handle->dev;
 553        struct input_handle *grabber;
 554
 555        grabber = rcu_dereference_protected(dev->grab,
 556                                            lockdep_is_held(&dev->mutex));
 557        if (grabber == handle) {
 558                rcu_assign_pointer(dev->grab, NULL);
 559                /* Make sure input_pass_event() notices that grab is gone */
 560                synchronize_rcu();
 561
 562                list_for_each_entry(handle, &dev->h_list, d_node)
 563                        if (handle->open && handle->handler->start)
 564                                handle->handler->start(handle);
 565        }
 566}
 567
 568/**
 569 * input_release_device - release previously grabbed device
 570 * @handle: input handle that owns the device
 571 *
 572 * Releases previously grabbed device so that other input handles can
 573 * start receiving input events. Upon release all handlers attached
 574 * to the device have their start() method called so they have a change
 575 * to synchronize device state with the rest of the system.
 576 */
 577void input_release_device(struct input_handle *handle)
 578{
 579        struct input_dev *dev = handle->dev;
 580
 581        mutex_lock(&dev->mutex);
 582        __input_release_device(handle);
 583        mutex_unlock(&dev->mutex);
 584}
 585EXPORT_SYMBOL(input_release_device);
 586
 587/**
 588 * input_open_device - open input device
 589 * @handle: handle through which device is being accessed
 590 *
 591 * This function should be called by input handlers when they
 592 * want to start receive events from given input device.
 593 */
 594int input_open_device(struct input_handle *handle)
 595{
 596        struct input_dev *dev = handle->dev;
 597        int retval;
 598
 599        retval = mutex_lock_interruptible(&dev->mutex);
 600        if (retval)
 601                return retval;
 602
 603        if (dev->going_away) {
 604                retval = -ENODEV;
 605                goto out;
 606        }
 607
 608        handle->open++;
 609
 610        if (!dev->users++ && dev->open)
 611                retval = dev->open(dev);
 612
 613        if (retval) {
 614                dev->users--;
 615                if (!--handle->open) {
 616                        /*
 617                         * Make sure we are not delivering any more events
 618                         * through this handle
 619                         */
 620                        synchronize_rcu();
 621                }
 622        }
 623
 624 out:
 625        mutex_unlock(&dev->mutex);
 626        return retval;
 627}
 628EXPORT_SYMBOL(input_open_device);
 629
 630int input_flush_device(struct input_handle *handle, struct file *file)
 631{
 632        struct input_dev *dev = handle->dev;
 633        int retval;
 634
 635        retval = mutex_lock_interruptible(&dev->mutex);
 636        if (retval)
 637                return retval;
 638
 639        if (dev->flush)
 640                retval = dev->flush(dev, file);
 641
 642        mutex_unlock(&dev->mutex);
 643        return retval;
 644}
 645EXPORT_SYMBOL(input_flush_device);
 646
 647/**
 648 * input_close_device - close input device
 649 * @handle: handle through which device is being accessed
 650 *
 651 * This function should be called by input handlers when they
 652 * want to stop receive events from given input device.
 653 */
 654void input_close_device(struct input_handle *handle)
 655{
 656        struct input_dev *dev = handle->dev;
 657
 658        mutex_lock(&dev->mutex);
 659
 660        __input_release_device(handle);
 661
 662        if (!--dev->users && dev->close)
 663                dev->close(dev);
 664
 665        if (!--handle->open) {
 666                /*
 667                 * synchronize_rcu() makes sure that input_pass_event()
 668                 * completed and that no more input events are delivered
 669                 * through this handle
 670                 */
 671                synchronize_rcu();
 672        }
 673
 674        mutex_unlock(&dev->mutex);
 675}
 676EXPORT_SYMBOL(input_close_device);
 677
 678/*
 679 * Simulate keyup events for all keys that are marked as pressed.
 680 * The function must be called with dev->event_lock held.
 681 */
 682static void input_dev_release_keys(struct input_dev *dev)
 683{
 684        bool need_sync = false;
 685        int code;
 686
 687        if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 688                for_each_set_bit(code, dev->key, KEY_CNT) {
 689                        input_pass_event(dev, EV_KEY, code, 0);
 690                        need_sync = true;
 691                }
 692
 693                if (need_sync)
 694                        input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 695
 696                memset(dev->key, 0, sizeof(dev->key));
 697        }
 698}
 699
 700/*
 701 * Prepare device for unregistering
 702 */
 703static void input_disconnect_device(struct input_dev *dev)
 704{
 705        struct input_handle *handle;
 706
 707        /*
 708         * Mark device as going away. Note that we take dev->mutex here
 709         * not to protect access to dev->going_away but rather to ensure
 710         * that there are no threads in the middle of input_open_device()
 711         */
 712        mutex_lock(&dev->mutex);
 713        dev->going_away = true;
 714        mutex_unlock(&dev->mutex);
 715
 716        spin_lock_irq(&dev->event_lock);
 717
 718        /*
 719         * Simulate keyup events for all pressed keys so that handlers
 720         * are not left with "stuck" keys. The driver may continue
 721         * generate events even after we done here but they will not
 722         * reach any handlers.
 723         */
 724        input_dev_release_keys(dev);
 725
 726        list_for_each_entry(handle, &dev->h_list, d_node)
 727                handle->open = 0;
 728
 729        spin_unlock_irq(&dev->event_lock);
 730}
 731
 732/**
 733 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 734 * @ke: keymap entry containing scancode to be converted.
 735 * @scancode: pointer to the location where converted scancode should
 736 *      be stored.
 737 *
 738 * This function is used to convert scancode stored in &struct keymap_entry
 739 * into scalar form understood by legacy keymap handling methods. These
 740 * methods expect scancodes to be represented as 'unsigned int'.
 741 */
 742int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 743                             unsigned int *scancode)
 744{
 745        switch (ke->len) {
 746        case 1:
 747                *scancode = *((u8 *)ke->scancode);
 748                break;
 749
 750        case 2:
 751                *scancode = *((u16 *)ke->scancode);
 752                break;
 753
 754        case 4:
 755                *scancode = *((u32 *)ke->scancode);
 756                break;
 757
 758        default:
 759                return -EINVAL;
 760        }
 761
 762        return 0;
 763}
 764EXPORT_SYMBOL(input_scancode_to_scalar);
 765
 766/*
 767 * Those routines handle the default case where no [gs]etkeycode() is
 768 * defined. In this case, an array indexed by the scancode is used.
 769 */
 770
 771static unsigned int input_fetch_keycode(struct input_dev *dev,
 772                                        unsigned int index)
 773{
 774        switch (dev->keycodesize) {
 775        case 1:
 776                return ((u8 *)dev->keycode)[index];
 777
 778        case 2:
 779                return ((u16 *)dev->keycode)[index];
 780
 781        default:
 782                return ((u32 *)dev->keycode)[index];
 783        }
 784}
 785
 786static int input_default_getkeycode(struct input_dev *dev,
 787                                    struct input_keymap_entry *ke)
 788{
 789        unsigned int index;
 790        int error;
 791
 792        if (!dev->keycodesize)
 793                return -EINVAL;
 794
 795        if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 796                index = ke->index;
 797        else {
 798                error = input_scancode_to_scalar(ke, &index);
 799                if (error)
 800                        return error;
 801        }
 802
 803        if (index >= dev->keycodemax)
 804                return -EINVAL;
 805
 806        ke->keycode = input_fetch_keycode(dev, index);
 807        ke->index = index;
 808        ke->len = sizeof(index);
 809        memcpy(ke->scancode, &index, sizeof(index));
 810
 811        return 0;
 812}
 813
 814static int input_default_setkeycode(struct input_dev *dev,
 815                                    const struct input_keymap_entry *ke,
 816                                    unsigned int *old_keycode)
 817{
 818        unsigned int index;
 819        int error;
 820        int i;
 821
 822        if (!dev->keycodesize)
 823                return -EINVAL;
 824
 825        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 826                index = ke->index;
 827        } else {
 828                error = input_scancode_to_scalar(ke, &index);
 829                if (error)
 830                        return error;
 831        }
 832
 833        if (index >= dev->keycodemax)
 834                return -EINVAL;
 835
 836        if (dev->keycodesize < sizeof(ke->keycode) &&
 837                        (ke->keycode >> (dev->keycodesize * 8)))
 838                return -EINVAL;
 839
 840        switch (dev->keycodesize) {
 841                case 1: {
 842                        u8 *k = (u8 *)dev->keycode;
 843                        *old_keycode = k[index];
 844                        k[index] = ke->keycode;
 845                        break;
 846                }
 847                case 2: {
 848                        u16 *k = (u16 *)dev->keycode;
 849                        *old_keycode = k[index];
 850                        k[index] = ke->keycode;
 851                        break;
 852                }
 853                default: {
 854                        u32 *k = (u32 *)dev->keycode;
 855                        *old_keycode = k[index];
 856                        k[index] = ke->keycode;
 857                        break;
 858                }
 859        }
 860
 861        __clear_bit(*old_keycode, dev->keybit);
 862        __set_bit(ke->keycode, dev->keybit);
 863
 864        for (i = 0; i < dev->keycodemax; i++) {
 865                if (input_fetch_keycode(dev, i) == *old_keycode) {
 866                        __set_bit(*old_keycode, dev->keybit);
 867                        break; /* Setting the bit twice is useless, so break */
 868                }
 869        }
 870
 871        return 0;
 872}
 873
 874/**
 875 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 876 * @dev: input device which keymap is being queried
 877 * @ke: keymap entry
 878 *
 879 * This function should be called by anyone interested in retrieving current
 880 * keymap. Presently evdev handlers use it.
 881 */
 882int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 883{
 884        unsigned long flags;
 885        int retval;
 886
 887        spin_lock_irqsave(&dev->event_lock, flags);
 888        retval = dev->getkeycode(dev, ke);
 889        spin_unlock_irqrestore(&dev->event_lock, flags);
 890
 891        return retval;
 892}
 893EXPORT_SYMBOL(input_get_keycode);
 894
 895/**
 896 * input_set_keycode - attribute a keycode to a given scancode
 897 * @dev: input device which keymap is being updated
 898 * @ke: new keymap entry
 899 *
 900 * This function should be called by anyone needing to update current
 901 * keymap. Presently keyboard and evdev handlers use it.
 902 */
 903int input_set_keycode(struct input_dev *dev,
 904                      const struct input_keymap_entry *ke)
 905{
 906        unsigned long flags;
 907        unsigned int old_keycode;
 908        int retval;
 909
 910        if (ke->keycode > KEY_MAX)
 911                return -EINVAL;
 912
 913        spin_lock_irqsave(&dev->event_lock, flags);
 914
 915        retval = dev->setkeycode(dev, ke, &old_keycode);
 916        if (retval)
 917                goto out;
 918
 919        /* Make sure KEY_RESERVED did not get enabled. */
 920        __clear_bit(KEY_RESERVED, dev->keybit);
 921
 922        /*
 923         * Simulate keyup event if keycode is not present
 924         * in the keymap anymore
 925         */
 926        if (test_bit(EV_KEY, dev->evbit) &&
 927            !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 928            __test_and_clear_bit(old_keycode, dev->key)) {
 929                struct input_value vals[] =  {
 930                        { EV_KEY, old_keycode, 0 },
 931                        input_value_sync
 932                };
 933
 934                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 935        }
 936
 937 out:
 938        spin_unlock_irqrestore(&dev->event_lock, flags);
 939
 940        return retval;
 941}
 942EXPORT_SYMBOL(input_set_keycode);
 943
 944bool input_match_device_id(const struct input_dev *dev,
 945                           const struct input_device_id *id)
 946{
 947        if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 948                if (id->bustype != dev->id.bustype)
 949                        return false;
 950
 951        if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 952                if (id->vendor != dev->id.vendor)
 953                        return false;
 954
 955        if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 956                if (id->product != dev->id.product)
 957                        return false;
 958
 959        if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 960                if (id->version != dev->id.version)
 961                        return false;
 962
 963        if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
 964            !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
 965            !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
 966            !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
 967            !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
 968            !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
 969            !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
 970            !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
 971            !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
 972            !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
 973                return false;
 974        }
 975
 976        return true;
 977}
 978EXPORT_SYMBOL(input_match_device_id);
 979
 980static const struct input_device_id *input_match_device(struct input_handler *handler,
 981                                                        struct input_dev *dev)
 982{
 983        const struct input_device_id *id;
 984
 985        for (id = handler->id_table; id->flags || id->driver_info; id++) {
 986                if (input_match_device_id(dev, id) &&
 987                    (!handler->match || handler->match(handler, dev))) {
 988                        return id;
 989                }
 990        }
 991
 992        return NULL;
 993}
 994
 995static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
 996{
 997        const struct input_device_id *id;
 998        int error;
 999
1000        id = input_match_device(handler, dev);
1001        if (!id)
1002                return -ENODEV;
1003
1004        error = handler->connect(handler, dev, id);
1005        if (error && error != -ENODEV)
1006                pr_err("failed to attach handler %s to device %s, error: %d\n",
1007                       handler->name, kobject_name(&dev->dev.kobj), error);
1008
1009        return error;
1010}
1011
1012#ifdef CONFIG_COMPAT
1013
1014static int input_bits_to_string(char *buf, int buf_size,
1015                                unsigned long bits, bool skip_empty)
1016{
1017        int len = 0;
1018
1019        if (in_compat_syscall()) {
1020                u32 dword = bits >> 32;
1021                if (dword || !skip_empty)
1022                        len += snprintf(buf, buf_size, "%x ", dword);
1023
1024                dword = bits & 0xffffffffUL;
1025                if (dword || !skip_empty || len)
1026                        len += snprintf(buf + len, max(buf_size - len, 0),
1027                                        "%x", dword);
1028        } else {
1029                if (bits || !skip_empty)
1030                        len += snprintf(buf, buf_size, "%lx", bits);
1031        }
1032
1033        return len;
1034}
1035
1036#else /* !CONFIG_COMPAT */
1037
1038static int input_bits_to_string(char *buf, int buf_size,
1039                                unsigned long bits, bool skip_empty)
1040{
1041        return bits || !skip_empty ?
1042                snprintf(buf, buf_size, "%lx", bits) : 0;
1043}
1044
1045#endif
1046
1047#ifdef CONFIG_PROC_FS
1048
1049static struct proc_dir_entry *proc_bus_input_dir;
1050static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1051static int input_devices_state;
1052
1053static inline void input_wakeup_procfs_readers(void)
1054{
1055        input_devices_state++;
1056        wake_up(&input_devices_poll_wait);
1057}
1058
1059static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1060{
1061        poll_wait(file, &input_devices_poll_wait, wait);
1062        if (file->f_version != input_devices_state) {
1063                file->f_version = input_devices_state;
1064                return EPOLLIN | EPOLLRDNORM;
1065        }
1066
1067        return 0;
1068}
1069
1070union input_seq_state {
1071        struct {
1072                unsigned short pos;
1073                bool mutex_acquired;
1074        };
1075        void *p;
1076};
1077
1078static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1079{
1080        union input_seq_state *state = (union input_seq_state *)&seq->private;
1081        int error;
1082
1083        /* We need to fit into seq->private pointer */
1084        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1085
1086        error = mutex_lock_interruptible(&input_mutex);
1087        if (error) {
1088                state->mutex_acquired = false;
1089                return ERR_PTR(error);
1090        }
1091
1092        state->mutex_acquired = true;
1093
1094        return seq_list_start(&input_dev_list, *pos);
1095}
1096
1097static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1098{
1099        return seq_list_next(v, &input_dev_list, pos);
1100}
1101
1102static void input_seq_stop(struct seq_file *seq, void *v)
1103{
1104        union input_seq_state *state = (union input_seq_state *)&seq->private;
1105
1106        if (state->mutex_acquired)
1107                mutex_unlock(&input_mutex);
1108}
1109
1110static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1111                                   unsigned long *bitmap, int max)
1112{
1113        int i;
1114        bool skip_empty = true;
1115        char buf[18];
1116
1117        seq_printf(seq, "B: %s=", name);
1118
1119        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1120                if (input_bits_to_string(buf, sizeof(buf),
1121                                         bitmap[i], skip_empty)) {
1122                        skip_empty = false;
1123                        seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1124                }
1125        }
1126
1127        /*
1128         * If no output was produced print a single 0.
1129         */
1130        if (skip_empty)
1131                seq_putc(seq, '0');
1132
1133        seq_putc(seq, '\n');
1134}
1135
1136static int input_devices_seq_show(struct seq_file *seq, void *v)
1137{
1138        struct input_dev *dev = container_of(v, struct input_dev, node);
1139        const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1140        struct input_handle *handle;
1141
1142        seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1143                   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1144
1145        seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1146        seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1147        seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1148        seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1149        seq_puts(seq, "H: Handlers=");
1150
1151        list_for_each_entry(handle, &dev->h_list, d_node)
1152                seq_printf(seq, "%s ", handle->name);
1153        seq_putc(seq, '\n');
1154
1155        input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1156
1157        input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1158        if (test_bit(EV_KEY, dev->evbit))
1159                input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1160        if (test_bit(EV_REL, dev->evbit))
1161                input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1162        if (test_bit(EV_ABS, dev->evbit))
1163                input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1164        if (test_bit(EV_MSC, dev->evbit))
1165                input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1166        if (test_bit(EV_LED, dev->evbit))
1167                input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1168        if (test_bit(EV_SND, dev->evbit))
1169                input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1170        if (test_bit(EV_FF, dev->evbit))
1171                input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1172        if (test_bit(EV_SW, dev->evbit))
1173                input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1174
1175        seq_putc(seq, '\n');
1176
1177        kfree(path);
1178        return 0;
1179}
1180
1181static const struct seq_operations input_devices_seq_ops = {
1182        .start  = input_devices_seq_start,
1183        .next   = input_devices_seq_next,
1184        .stop   = input_seq_stop,
1185        .show   = input_devices_seq_show,
1186};
1187
1188static int input_proc_devices_open(struct inode *inode, struct file *file)
1189{
1190        return seq_open(file, &input_devices_seq_ops);
1191}
1192
1193static const struct file_operations input_devices_fileops = {
1194        .owner          = THIS_MODULE,
1195        .open           = input_proc_devices_open,
1196        .poll           = input_proc_devices_poll,
1197        .read           = seq_read,
1198        .llseek         = seq_lseek,
1199        .release        = seq_release,
1200};
1201
1202static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1203{
1204        union input_seq_state *state = (union input_seq_state *)&seq->private;
1205        int error;
1206
1207        /* We need to fit into seq->private pointer */
1208        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1209
1210        error = mutex_lock_interruptible(&input_mutex);
1211        if (error) {
1212                state->mutex_acquired = false;
1213                return ERR_PTR(error);
1214        }
1215
1216        state->mutex_acquired = true;
1217        state->pos = *pos;
1218
1219        return seq_list_start(&input_handler_list, *pos);
1220}
1221
1222static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1223{
1224        union input_seq_state *state = (union input_seq_state *)&seq->private;
1225
1226        state->pos = *pos + 1;
1227        return seq_list_next(v, &input_handler_list, pos);
1228}
1229
1230static int input_handlers_seq_show(struct seq_file *seq, void *v)
1231{
1232        struct input_handler *handler = container_of(v, struct input_handler, node);
1233        union input_seq_state *state = (union input_seq_state *)&seq->private;
1234
1235        seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1236        if (handler->filter)
1237                seq_puts(seq, " (filter)");
1238        if (handler->legacy_minors)
1239                seq_printf(seq, " Minor=%d", handler->minor);
1240        seq_putc(seq, '\n');
1241
1242        return 0;
1243}
1244
1245static const struct seq_operations input_handlers_seq_ops = {
1246        .start  = input_handlers_seq_start,
1247        .next   = input_handlers_seq_next,
1248        .stop   = input_seq_stop,
1249        .show   = input_handlers_seq_show,
1250};
1251
1252static int input_proc_handlers_open(struct inode *inode, struct file *file)
1253{
1254        return seq_open(file, &input_handlers_seq_ops);
1255}
1256
1257static const struct file_operations input_handlers_fileops = {
1258        .owner          = THIS_MODULE,
1259        .open           = input_proc_handlers_open,
1260        .read           = seq_read,
1261        .llseek         = seq_lseek,
1262        .release        = seq_release,
1263};
1264
1265static int __init input_proc_init(void)
1266{
1267        struct proc_dir_entry *entry;
1268
1269        proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1270        if (!proc_bus_input_dir)
1271                return -ENOMEM;
1272
1273        entry = proc_create("devices", 0, proc_bus_input_dir,
1274                            &input_devices_fileops);
1275        if (!entry)
1276                goto fail1;
1277
1278        entry = proc_create("handlers", 0, proc_bus_input_dir,
1279                            &input_handlers_fileops);
1280        if (!entry)
1281                goto fail2;
1282
1283        return 0;
1284
1285 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1286 fail1: remove_proc_entry("bus/input", NULL);
1287        return -ENOMEM;
1288}
1289
1290static void input_proc_exit(void)
1291{
1292        remove_proc_entry("devices", proc_bus_input_dir);
1293        remove_proc_entry("handlers", proc_bus_input_dir);
1294        remove_proc_entry("bus/input", NULL);
1295}
1296
1297#else /* !CONFIG_PROC_FS */
1298static inline void input_wakeup_procfs_readers(void) { }
1299static inline int input_proc_init(void) { return 0; }
1300static inline void input_proc_exit(void) { }
1301#endif
1302
1303#define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
1304static ssize_t input_dev_show_##name(struct device *dev,                \
1305                                     struct device_attribute *attr,     \
1306                                     char *buf)                         \
1307{                                                                       \
1308        struct input_dev *input_dev = to_input_dev(dev);                \
1309                                                                        \
1310        return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1311                         input_dev->name ? input_dev->name : "");       \
1312}                                                                       \
1313static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1314
1315INPUT_DEV_STRING_ATTR_SHOW(name);
1316INPUT_DEV_STRING_ATTR_SHOW(phys);
1317INPUT_DEV_STRING_ATTR_SHOW(uniq);
1318
1319static int input_print_modalias_bits(char *buf, int size,
1320                                     char name, unsigned long *bm,
1321                                     unsigned int min_bit, unsigned int max_bit)
1322{
1323        int len = 0, i;
1324
1325        len += snprintf(buf, max(size, 0), "%c", name);
1326        for (i = min_bit; i < max_bit; i++)
1327                if (bm[BIT_WORD(i)] & BIT_MASK(i))
1328                        len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1329        return len;
1330}
1331
1332static int input_print_modalias(char *buf, int size, struct input_dev *id,
1333                                int add_cr)
1334{
1335        int len;
1336
1337        len = snprintf(buf, max(size, 0),
1338                       "input:b%04Xv%04Xp%04Xe%04X-",
1339                       id->id.bustype, id->id.vendor,
1340                       id->id.product, id->id.version);
1341
1342        len += input_print_modalias_bits(buf + len, size - len,
1343                                'e', id->evbit, 0, EV_MAX);
1344        len += input_print_modalias_bits(buf + len, size - len,
1345                                'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1346        len += input_print_modalias_bits(buf + len, size - len,
1347                                'r', id->relbit, 0, REL_MAX);
1348        len += input_print_modalias_bits(buf + len, size - len,
1349                                'a', id->absbit, 0, ABS_MAX);
1350        len += input_print_modalias_bits(buf + len, size - len,
1351                                'm', id->mscbit, 0, MSC_MAX);
1352        len += input_print_modalias_bits(buf + len, size - len,
1353                                'l', id->ledbit, 0, LED_MAX);
1354        len += input_print_modalias_bits(buf + len, size - len,
1355                                's', id->sndbit, 0, SND_MAX);
1356        len += input_print_modalias_bits(buf + len, size - len,
1357                                'f', id->ffbit, 0, FF_MAX);
1358        len += input_print_modalias_bits(buf + len, size - len,
1359                                'w', id->swbit, 0, SW_MAX);
1360
1361        if (add_cr)
1362                len += snprintf(buf + len, max(size - len, 0), "\n");
1363
1364        return len;
1365}
1366
1367static ssize_t input_dev_show_modalias(struct device *dev,
1368                                       struct device_attribute *attr,
1369                                       char *buf)
1370{
1371        struct input_dev *id = to_input_dev(dev);
1372        ssize_t len;
1373
1374        len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1375
1376        return min_t(int, len, PAGE_SIZE);
1377}
1378static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1379
1380static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1381                              int max, int add_cr);
1382
1383static ssize_t input_dev_show_properties(struct device *dev,
1384                                         struct device_attribute *attr,
1385                                         char *buf)
1386{
1387        struct input_dev *input_dev = to_input_dev(dev);
1388        int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1389                                     INPUT_PROP_MAX, true);
1390        return min_t(int, len, PAGE_SIZE);
1391}
1392static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1393
1394static struct attribute *input_dev_attrs[] = {
1395        &dev_attr_name.attr,
1396        &dev_attr_phys.attr,
1397        &dev_attr_uniq.attr,
1398        &dev_attr_modalias.attr,
1399        &dev_attr_properties.attr,
1400        NULL
1401};
1402
1403static const struct attribute_group input_dev_attr_group = {
1404        .attrs  = input_dev_attrs,
1405};
1406
1407#define INPUT_DEV_ID_ATTR(name)                                         \
1408static ssize_t input_dev_show_id_##name(struct device *dev,             \
1409                                        struct device_attribute *attr,  \
1410                                        char *buf)                      \
1411{                                                                       \
1412        struct input_dev *input_dev = to_input_dev(dev);                \
1413        return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1414}                                                                       \
1415static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1416
1417INPUT_DEV_ID_ATTR(bustype);
1418INPUT_DEV_ID_ATTR(vendor);
1419INPUT_DEV_ID_ATTR(product);
1420INPUT_DEV_ID_ATTR(version);
1421
1422static struct attribute *input_dev_id_attrs[] = {
1423        &dev_attr_bustype.attr,
1424        &dev_attr_vendor.attr,
1425        &dev_attr_product.attr,
1426        &dev_attr_version.attr,
1427        NULL
1428};
1429
1430static const struct attribute_group input_dev_id_attr_group = {
1431        .name   = "id",
1432        .attrs  = input_dev_id_attrs,
1433};
1434
1435static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1436                              int max, int add_cr)
1437{
1438        int i;
1439        int len = 0;
1440        bool skip_empty = true;
1441
1442        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1443                len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1444                                            bitmap[i], skip_empty);
1445                if (len) {
1446                        skip_empty = false;
1447                        if (i > 0)
1448                                len += snprintf(buf + len, max(buf_size - len, 0), " ");
1449                }
1450        }
1451
1452        /*
1453         * If no output was produced print a single 0.
1454         */
1455        if (len == 0)
1456                len = snprintf(buf, buf_size, "%d", 0);
1457
1458        if (add_cr)
1459                len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1460
1461        return len;
1462}
1463
1464#define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
1465static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
1466                                       struct device_attribute *attr,   \
1467                                       char *buf)                       \
1468{                                                                       \
1469        struct input_dev *input_dev = to_input_dev(dev);                \
1470        int len = input_print_bitmap(buf, PAGE_SIZE,                    \
1471                                     input_dev->bm##bit, ev##_MAX,      \
1472                                     true);                             \
1473        return min_t(int, len, PAGE_SIZE);                              \
1474}                                                                       \
1475static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1476
1477INPUT_DEV_CAP_ATTR(EV, ev);
1478INPUT_DEV_CAP_ATTR(KEY, key);
1479INPUT_DEV_CAP_ATTR(REL, rel);
1480INPUT_DEV_CAP_ATTR(ABS, abs);
1481INPUT_DEV_CAP_ATTR(MSC, msc);
1482INPUT_DEV_CAP_ATTR(LED, led);
1483INPUT_DEV_CAP_ATTR(SND, snd);
1484INPUT_DEV_CAP_ATTR(FF, ff);
1485INPUT_DEV_CAP_ATTR(SW, sw);
1486
1487static struct attribute *input_dev_caps_attrs[] = {
1488        &dev_attr_ev.attr,
1489        &dev_attr_key.attr,
1490        &dev_attr_rel.attr,
1491        &dev_attr_abs.attr,
1492        &dev_attr_msc.attr,
1493        &dev_attr_led.attr,
1494        &dev_attr_snd.attr,
1495        &dev_attr_ff.attr,
1496        &dev_attr_sw.attr,
1497        NULL
1498};
1499
1500static const struct attribute_group input_dev_caps_attr_group = {
1501        .name   = "capabilities",
1502        .attrs  = input_dev_caps_attrs,
1503};
1504
1505static const struct attribute_group *input_dev_attr_groups[] = {
1506        &input_dev_attr_group,
1507        &input_dev_id_attr_group,
1508        &input_dev_caps_attr_group,
1509        NULL
1510};
1511
1512static void input_dev_release(struct device *device)
1513{
1514        struct input_dev *dev = to_input_dev(device);
1515
1516        input_ff_destroy(dev);
1517        input_mt_destroy_slots(dev);
1518        kfree(dev->absinfo);
1519        kfree(dev->vals);
1520        kfree(dev);
1521
1522        module_put(THIS_MODULE);
1523}
1524
1525/*
1526 * Input uevent interface - loading event handlers based on
1527 * device bitfields.
1528 */
1529static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1530                                   const char *name, unsigned long *bitmap, int max)
1531{
1532        int len;
1533
1534        if (add_uevent_var(env, "%s", name))
1535                return -ENOMEM;
1536
1537        len = input_print_bitmap(&env->buf[env->buflen - 1],
1538                                 sizeof(env->buf) - env->buflen,
1539                                 bitmap, max, false);
1540        if (len >= (sizeof(env->buf) - env->buflen))
1541                return -ENOMEM;
1542
1543        env->buflen += len;
1544        return 0;
1545}
1546
1547static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1548                                         struct input_dev *dev)
1549{
1550        int len;
1551
1552        if (add_uevent_var(env, "MODALIAS="))
1553                return -ENOMEM;
1554
1555        len = input_print_modalias(&env->buf[env->buflen - 1],
1556                                   sizeof(env->buf) - env->buflen,
1557                                   dev, 0);
1558        if (len >= (sizeof(env->buf) - env->buflen))
1559                return -ENOMEM;
1560
1561        env->buflen += len;
1562        return 0;
1563}
1564
1565#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
1566        do {                                                            \
1567                int err = add_uevent_var(env, fmt, val);                \
1568                if (err)                                                \
1569                        return err;                                     \
1570        } while (0)
1571
1572#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
1573        do {                                                            \
1574                int err = input_add_uevent_bm_var(env, name, bm, max);  \
1575                if (err)                                                \
1576                        return err;                                     \
1577        } while (0)
1578
1579#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
1580        do {                                                            \
1581                int err = input_add_uevent_modalias_var(env, dev);      \
1582                if (err)                                                \
1583                        return err;                                     \
1584        } while (0)
1585
1586static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1587{
1588        struct input_dev *dev = to_input_dev(device);
1589
1590        INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1591                                dev->id.bustype, dev->id.vendor,
1592                                dev->id.product, dev->id.version);
1593        if (dev->name)
1594                INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1595        if (dev->phys)
1596                INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1597        if (dev->uniq)
1598                INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1599
1600        INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1601
1602        INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1603        if (test_bit(EV_KEY, dev->evbit))
1604                INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1605        if (test_bit(EV_REL, dev->evbit))
1606                INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1607        if (test_bit(EV_ABS, dev->evbit))
1608                INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1609        if (test_bit(EV_MSC, dev->evbit))
1610                INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1611        if (test_bit(EV_LED, dev->evbit))
1612                INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1613        if (test_bit(EV_SND, dev->evbit))
1614                INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1615        if (test_bit(EV_FF, dev->evbit))
1616                INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1617        if (test_bit(EV_SW, dev->evbit))
1618                INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1619
1620        INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1621
1622        return 0;
1623}
1624
1625#define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
1626        do {                                                            \
1627                int i;                                                  \
1628                bool active;                                            \
1629                                                                        \
1630                if (!test_bit(EV_##type, dev->evbit))                   \
1631                        break;                                          \
1632                                                                        \
1633                for_each_set_bit(i, dev->bits##bit, type##_CNT) {       \
1634                        active = test_bit(i, dev->bits);                \
1635                        if (!active && !on)                             \
1636                                continue;                               \
1637                                                                        \
1638                        dev->event(dev, EV_##type, i, on ? active : 0); \
1639                }                                                       \
1640        } while (0)
1641
1642static void input_dev_toggle(struct input_dev *dev, bool activate)
1643{
1644        if (!dev->event)
1645                return;
1646
1647        INPUT_DO_TOGGLE(dev, LED, led, activate);
1648        INPUT_DO_TOGGLE(dev, SND, snd, activate);
1649
1650        if (activate && test_bit(EV_REP, dev->evbit)) {
1651                dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1652                dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1653        }
1654}
1655
1656/**
1657 * input_reset_device() - reset/restore the state of input device
1658 * @dev: input device whose state needs to be reset
1659 *
1660 * This function tries to reset the state of an opened input device and
1661 * bring internal state and state if the hardware in sync with each other.
1662 * We mark all keys as released, restore LED state, repeat rate, etc.
1663 */
1664void input_reset_device(struct input_dev *dev)
1665{
1666        unsigned long flags;
1667
1668        mutex_lock(&dev->mutex);
1669        spin_lock_irqsave(&dev->event_lock, flags);
1670
1671        input_dev_toggle(dev, true);
1672        input_dev_release_keys(dev);
1673
1674        spin_unlock_irqrestore(&dev->event_lock, flags);
1675        mutex_unlock(&dev->mutex);
1676}
1677EXPORT_SYMBOL(input_reset_device);
1678
1679#ifdef CONFIG_PM_SLEEP
1680static int input_dev_suspend(struct device *dev)
1681{
1682        struct input_dev *input_dev = to_input_dev(dev);
1683
1684        spin_lock_irq(&input_dev->event_lock);
1685
1686        /*
1687         * Keys that are pressed now are unlikely to be
1688         * still pressed when we resume.
1689         */
1690        input_dev_release_keys(input_dev);
1691
1692        /* Turn off LEDs and sounds, if any are active. */
1693        input_dev_toggle(input_dev, false);
1694
1695        spin_unlock_irq(&input_dev->event_lock);
1696
1697        return 0;
1698}
1699
1700static int input_dev_resume(struct device *dev)
1701{
1702        struct input_dev *input_dev = to_input_dev(dev);
1703
1704        spin_lock_irq(&input_dev->event_lock);
1705
1706        /* Restore state of LEDs and sounds, if any were active. */
1707        input_dev_toggle(input_dev, true);
1708
1709        spin_unlock_irq(&input_dev->event_lock);
1710
1711        return 0;
1712}
1713
1714static int input_dev_freeze(struct device *dev)
1715{
1716        struct input_dev *input_dev = to_input_dev(dev);
1717
1718        spin_lock_irq(&input_dev->event_lock);
1719
1720        /*
1721         * Keys that are pressed now are unlikely to be
1722         * still pressed when we resume.
1723         */
1724        input_dev_release_keys(input_dev);
1725
1726        spin_unlock_irq(&input_dev->event_lock);
1727
1728        return 0;
1729}
1730
1731static int input_dev_poweroff(struct device *dev)
1732{
1733        struct input_dev *input_dev = to_input_dev(dev);
1734
1735        spin_lock_irq(&input_dev->event_lock);
1736
1737        /* Turn off LEDs and sounds, if any are active. */
1738        input_dev_toggle(input_dev, false);
1739
1740        spin_unlock_irq(&input_dev->event_lock);
1741
1742        return 0;
1743}
1744
1745static const struct dev_pm_ops input_dev_pm_ops = {
1746        .suspend        = input_dev_suspend,
1747        .resume         = input_dev_resume,
1748        .freeze         = input_dev_freeze,
1749        .poweroff       = input_dev_poweroff,
1750        .restore        = input_dev_resume,
1751};
1752#endif /* CONFIG_PM */
1753
1754static const struct device_type input_dev_type = {
1755        .groups         = input_dev_attr_groups,
1756        .release        = input_dev_release,
1757        .uevent         = input_dev_uevent,
1758#ifdef CONFIG_PM_SLEEP
1759        .pm             = &input_dev_pm_ops,
1760#endif
1761};
1762
1763static char *input_devnode(struct device *dev, umode_t *mode)
1764{
1765        return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1766}
1767
1768struct class input_class = {
1769        .name           = "input",
1770        .devnode        = input_devnode,
1771};
1772EXPORT_SYMBOL_GPL(input_class);
1773
1774/**
1775 * input_allocate_device - allocate memory for new input device
1776 *
1777 * Returns prepared struct input_dev or %NULL.
1778 *
1779 * NOTE: Use input_free_device() to free devices that have not been
1780 * registered; input_unregister_device() should be used for already
1781 * registered devices.
1782 */
1783struct input_dev *input_allocate_device(void)
1784{
1785        static atomic_t input_no = ATOMIC_INIT(-1);
1786        struct input_dev *dev;
1787
1788        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1789        if (dev) {
1790                dev->dev.type = &input_dev_type;
1791                dev->dev.class = &input_class;
1792                device_initialize(&dev->dev);
1793                mutex_init(&dev->mutex);
1794                spin_lock_init(&dev->event_lock);
1795                timer_setup(&dev->timer, NULL, 0);
1796                INIT_LIST_HEAD(&dev->h_list);
1797                INIT_LIST_HEAD(&dev->node);
1798
1799                dev_set_name(&dev->dev, "input%lu",
1800                             (unsigned long)atomic_inc_return(&input_no));
1801
1802                __module_get(THIS_MODULE);
1803        }
1804
1805        return dev;
1806}
1807EXPORT_SYMBOL(input_allocate_device);
1808
1809struct input_devres {
1810        struct input_dev *input;
1811};
1812
1813static int devm_input_device_match(struct device *dev, void *res, void *data)
1814{
1815        struct input_devres *devres = res;
1816
1817        return devres->input == data;
1818}
1819
1820static void devm_input_device_release(struct device *dev, void *res)
1821{
1822        struct input_devres *devres = res;
1823        struct input_dev *input = devres->input;
1824
1825        dev_dbg(dev, "%s: dropping reference to %s\n",
1826                __func__, dev_name(&input->dev));
1827        input_put_device(input);
1828}
1829
1830/**
1831 * devm_input_allocate_device - allocate managed input device
1832 * @dev: device owning the input device being created
1833 *
1834 * Returns prepared struct input_dev or %NULL.
1835 *
1836 * Managed input devices do not need to be explicitly unregistered or
1837 * freed as it will be done automatically when owner device unbinds from
1838 * its driver (or binding fails). Once managed input device is allocated,
1839 * it is ready to be set up and registered in the same fashion as regular
1840 * input device. There are no special devm_input_device_[un]register()
1841 * variants, regular ones work with both managed and unmanaged devices,
1842 * should you need them. In most cases however, managed input device need
1843 * not be explicitly unregistered or freed.
1844 *
1845 * NOTE: the owner device is set up as parent of input device and users
1846 * should not override it.
1847 */
1848struct input_dev *devm_input_allocate_device(struct device *dev)
1849{
1850        struct input_dev *input;
1851        struct input_devres *devres;
1852
1853        devres = devres_alloc(devm_input_device_release,
1854                              sizeof(*devres), GFP_KERNEL);
1855        if (!devres)
1856                return NULL;
1857
1858        input = input_allocate_device();
1859        if (!input) {
1860                devres_free(devres);
1861                return NULL;
1862        }
1863
1864        input->dev.parent = dev;
1865        input->devres_managed = true;
1866
1867        devres->input = input;
1868        devres_add(dev, devres);
1869
1870        return input;
1871}
1872EXPORT_SYMBOL(devm_input_allocate_device);
1873
1874/**
1875 * input_free_device - free memory occupied by input_dev structure
1876 * @dev: input device to free
1877 *
1878 * This function should only be used if input_register_device()
1879 * was not called yet or if it failed. Once device was registered
1880 * use input_unregister_device() and memory will be freed once last
1881 * reference to the device is dropped.
1882 *
1883 * Device should be allocated by input_allocate_device().
1884 *
1885 * NOTE: If there are references to the input device then memory
1886 * will not be freed until last reference is dropped.
1887 */
1888void input_free_device(struct input_dev *dev)
1889{
1890        if (dev) {
1891                if (dev->devres_managed)
1892                        WARN_ON(devres_destroy(dev->dev.parent,
1893                                                devm_input_device_release,
1894                                                devm_input_device_match,
1895                                                dev));
1896                input_put_device(dev);
1897        }
1898}
1899EXPORT_SYMBOL(input_free_device);
1900
1901/**
1902 * input_set_capability - mark device as capable of a certain event
1903 * @dev: device that is capable of emitting or accepting event
1904 * @type: type of the event (EV_KEY, EV_REL, etc...)
1905 * @code: event code
1906 *
1907 * In addition to setting up corresponding bit in appropriate capability
1908 * bitmap the function also adjusts dev->evbit.
1909 */
1910void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1911{
1912        switch (type) {
1913        case EV_KEY:
1914                __set_bit(code, dev->keybit);
1915                break;
1916
1917        case EV_REL:
1918                __set_bit(code, dev->relbit);
1919                break;
1920
1921        case EV_ABS:
1922                input_alloc_absinfo(dev);
1923                if (!dev->absinfo)
1924                        return;
1925
1926                __set_bit(code, dev->absbit);
1927                break;
1928
1929        case EV_MSC:
1930                __set_bit(code, dev->mscbit);
1931                break;
1932
1933        case EV_SW:
1934                __set_bit(code, dev->swbit);
1935                break;
1936
1937        case EV_LED:
1938                __set_bit(code, dev->ledbit);
1939                break;
1940
1941        case EV_SND:
1942                __set_bit(code, dev->sndbit);
1943                break;
1944
1945        case EV_FF:
1946                __set_bit(code, dev->ffbit);
1947                break;
1948
1949        case EV_PWR:
1950                /* do nothing */
1951                break;
1952
1953        default:
1954                pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
1955                dump_stack();
1956                return;
1957        }
1958
1959        __set_bit(type, dev->evbit);
1960}
1961EXPORT_SYMBOL(input_set_capability);
1962
1963static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1964{
1965        int mt_slots;
1966        int i;
1967        unsigned int events;
1968
1969        if (dev->mt) {
1970                mt_slots = dev->mt->num_slots;
1971        } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1972                mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1973                           dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1974                mt_slots = clamp(mt_slots, 2, 32);
1975        } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1976                mt_slots = 2;
1977        } else {
1978                mt_slots = 0;
1979        }
1980
1981        events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1982
1983        if (test_bit(EV_ABS, dev->evbit))
1984                for_each_set_bit(i, dev->absbit, ABS_CNT)
1985                        events += input_is_mt_axis(i) ? mt_slots : 1;
1986
1987        if (test_bit(EV_REL, dev->evbit))
1988                events += bitmap_weight(dev->relbit, REL_CNT);
1989
1990        /* Make room for KEY and MSC events */
1991        events += 7;
1992
1993        return events;
1994}
1995
1996#define INPUT_CLEANSE_BITMASK(dev, type, bits)                          \
1997        do {                                                            \
1998                if (!test_bit(EV_##type, dev->evbit))                   \
1999                        memset(dev->bits##bit, 0,                       \
2000                                sizeof(dev->bits##bit));                \
2001        } while (0)
2002
2003static void input_cleanse_bitmasks(struct input_dev *dev)
2004{
2005        INPUT_CLEANSE_BITMASK(dev, KEY, key);
2006        INPUT_CLEANSE_BITMASK(dev, REL, rel);
2007        INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2008        INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2009        INPUT_CLEANSE_BITMASK(dev, LED, led);
2010        INPUT_CLEANSE_BITMASK(dev, SND, snd);
2011        INPUT_CLEANSE_BITMASK(dev, FF, ff);
2012        INPUT_CLEANSE_BITMASK(dev, SW, sw);
2013}
2014
2015static void __input_unregister_device(struct input_dev *dev)
2016{
2017        struct input_handle *handle, *next;
2018
2019        input_disconnect_device(dev);
2020
2021        mutex_lock(&input_mutex);
2022
2023        list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2024                handle->handler->disconnect(handle);
2025        WARN_ON(!list_empty(&dev->h_list));
2026
2027        del_timer_sync(&dev->timer);
2028        list_del_init(&dev->node);
2029
2030        input_wakeup_procfs_readers();
2031
2032        mutex_unlock(&input_mutex);
2033
2034        device_del(&dev->dev);
2035}
2036
2037static void devm_input_device_unregister(struct device *dev, void *res)
2038{
2039        struct input_devres *devres = res;
2040        struct input_dev *input = devres->input;
2041
2042        dev_dbg(dev, "%s: unregistering device %s\n",
2043                __func__, dev_name(&input->dev));
2044        __input_unregister_device(input);
2045}
2046
2047/**
2048 * input_enable_softrepeat - enable software autorepeat
2049 * @dev: input device
2050 * @delay: repeat delay
2051 * @period: repeat period
2052 *
2053 * Enable software autorepeat on the input device.
2054 */
2055void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2056{
2057        dev->timer.function = input_repeat_key;
2058        dev->rep[REP_DELAY] = delay;
2059        dev->rep[REP_PERIOD] = period;
2060}
2061EXPORT_SYMBOL(input_enable_softrepeat);
2062
2063/**
2064 * input_register_device - register device with input core
2065 * @dev: device to be registered
2066 *
2067 * This function registers device with input core. The device must be
2068 * allocated with input_allocate_device() and all it's capabilities
2069 * set up before registering.
2070 * If function fails the device must be freed with input_free_device().
2071 * Once device has been successfully registered it can be unregistered
2072 * with input_unregister_device(); input_free_device() should not be
2073 * called in this case.
2074 *
2075 * Note that this function is also used to register managed input devices
2076 * (ones allocated with devm_input_allocate_device()). Such managed input
2077 * devices need not be explicitly unregistered or freed, their tear down
2078 * is controlled by the devres infrastructure. It is also worth noting
2079 * that tear down of managed input devices is internally a 2-step process:
2080 * registered managed input device is first unregistered, but stays in
2081 * memory and can still handle input_event() calls (although events will
2082 * not be delivered anywhere). The freeing of managed input device will
2083 * happen later, when devres stack is unwound to the point where device
2084 * allocation was made.
2085 */
2086int input_register_device(struct input_dev *dev)
2087{
2088        struct input_devres *devres = NULL;
2089        struct input_handler *handler;
2090        unsigned int packet_size;
2091        const char *path;
2092        int error;
2093
2094        if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2095                dev_err(&dev->dev,
2096                        "Absolute device without dev->absinfo, refusing to register\n");
2097                return -EINVAL;
2098        }
2099
2100        if (dev->devres_managed) {
2101                devres = devres_alloc(devm_input_device_unregister,
2102                                      sizeof(*devres), GFP_KERNEL);
2103                if (!devres)
2104                        return -ENOMEM;
2105
2106                devres->input = dev;
2107        }
2108
2109        /* Every input device generates EV_SYN/SYN_REPORT events. */
2110        __set_bit(EV_SYN, dev->evbit);
2111
2112        /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2113        __clear_bit(KEY_RESERVED, dev->keybit);
2114
2115        /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2116        input_cleanse_bitmasks(dev);
2117
2118        packet_size = input_estimate_events_per_packet(dev);
2119        if (dev->hint_events_per_packet < packet_size)
2120                dev->hint_events_per_packet = packet_size;
2121
2122        dev->max_vals = dev->hint_events_per_packet + 2;
2123        dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2124        if (!dev->vals) {
2125                error = -ENOMEM;
2126                goto err_devres_free;
2127        }
2128
2129        /*
2130         * If delay and period are pre-set by the driver, then autorepeating
2131         * is handled by the driver itself and we don't do it in input.c.
2132         */
2133        if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2134                input_enable_softrepeat(dev, 250, 33);
2135
2136        if (!dev->getkeycode)
2137                dev->getkeycode = input_default_getkeycode;
2138
2139        if (!dev->setkeycode)
2140                dev->setkeycode = input_default_setkeycode;
2141
2142        error = device_add(&dev->dev);
2143        if (error)
2144                goto err_free_vals;
2145
2146        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2147        pr_info("%s as %s\n",
2148                dev->name ? dev->name : "Unspecified device",
2149                path ? path : "N/A");
2150        kfree(path);
2151
2152        error = mutex_lock_interruptible(&input_mutex);
2153        if (error)
2154                goto err_device_del;
2155
2156        list_add_tail(&dev->node, &input_dev_list);
2157
2158        list_for_each_entry(handler, &input_handler_list, node)
2159                input_attach_handler(dev, handler);
2160
2161        input_wakeup_procfs_readers();
2162
2163        mutex_unlock(&input_mutex);
2164
2165        if (dev->devres_managed) {
2166                dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2167                        __func__, dev_name(&dev->dev));
2168                devres_add(dev->dev.parent, devres);
2169        }
2170        return 0;
2171
2172err_device_del:
2173        device_del(&dev->dev);
2174err_free_vals:
2175        kfree(dev->vals);
2176        dev->vals = NULL;
2177err_devres_free:
2178        devres_free(devres);
2179        return error;
2180}
2181EXPORT_SYMBOL(input_register_device);
2182
2183/**
2184 * input_unregister_device - unregister previously registered device
2185 * @dev: device to be unregistered
2186 *
2187 * This function unregisters an input device. Once device is unregistered
2188 * the caller should not try to access it as it may get freed at any moment.
2189 */
2190void input_unregister_device(struct input_dev *dev)
2191{
2192        if (dev->devres_managed) {
2193                WARN_ON(devres_destroy(dev->dev.parent,
2194                                        devm_input_device_unregister,
2195                                        devm_input_device_match,
2196                                        dev));
2197                __input_unregister_device(dev);
2198                /*
2199                 * We do not do input_put_device() here because it will be done
2200                 * when 2nd devres fires up.
2201                 */
2202        } else {
2203                __input_unregister_device(dev);
2204                input_put_device(dev);
2205        }
2206}
2207EXPORT_SYMBOL(input_unregister_device);
2208
2209/**
2210 * input_register_handler - register a new input handler
2211 * @handler: handler to be registered
2212 *
2213 * This function registers a new input handler (interface) for input
2214 * devices in the system and attaches it to all input devices that
2215 * are compatible with the handler.
2216 */
2217int input_register_handler(struct input_handler *handler)
2218{
2219        struct input_dev *dev;
2220        int error;
2221
2222        error = mutex_lock_interruptible(&input_mutex);
2223        if (error)
2224                return error;
2225
2226        INIT_LIST_HEAD(&handler->h_list);
2227
2228        list_add_tail(&handler->node, &input_handler_list);
2229
2230        list_for_each_entry(dev, &input_dev_list, node)
2231                input_attach_handler(dev, handler);
2232
2233        input_wakeup_procfs_readers();
2234
2235        mutex_unlock(&input_mutex);
2236        return 0;
2237}
2238EXPORT_SYMBOL(input_register_handler);
2239
2240/**
2241 * input_unregister_handler - unregisters an input handler
2242 * @handler: handler to be unregistered
2243 *
2244 * This function disconnects a handler from its input devices and
2245 * removes it from lists of known handlers.
2246 */
2247void input_unregister_handler(struct input_handler *handler)
2248{
2249        struct input_handle *handle, *next;
2250
2251        mutex_lock(&input_mutex);
2252
2253        list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2254                handler->disconnect(handle);
2255        WARN_ON(!list_empty(&handler->h_list));
2256
2257        list_del_init(&handler->node);
2258
2259        input_wakeup_procfs_readers();
2260
2261        mutex_unlock(&input_mutex);
2262}
2263EXPORT_SYMBOL(input_unregister_handler);
2264
2265/**
2266 * input_handler_for_each_handle - handle iterator
2267 * @handler: input handler to iterate
2268 * @data: data for the callback
2269 * @fn: function to be called for each handle
2270 *
2271 * Iterate over @bus's list of devices, and call @fn for each, passing
2272 * it @data and stop when @fn returns a non-zero value. The function is
2273 * using RCU to traverse the list and therefore may be using in atomic
2274 * contexts. The @fn callback is invoked from RCU critical section and
2275 * thus must not sleep.
2276 */
2277int input_handler_for_each_handle(struct input_handler *handler, void *data,
2278                                  int (*fn)(struct input_handle *, void *))
2279{
2280        struct input_handle *handle;
2281        int retval = 0;
2282
2283        rcu_read_lock();
2284
2285        list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2286                retval = fn(handle, data);
2287                if (retval)
2288                        break;
2289        }
2290
2291        rcu_read_unlock();
2292
2293        return retval;
2294}
2295EXPORT_SYMBOL(input_handler_for_each_handle);
2296
2297/**
2298 * input_register_handle - register a new input handle
2299 * @handle: handle to register
2300 *
2301 * This function puts a new input handle onto device's
2302 * and handler's lists so that events can flow through
2303 * it once it is opened using input_open_device().
2304 *
2305 * This function is supposed to be called from handler's
2306 * connect() method.
2307 */
2308int input_register_handle(struct input_handle *handle)
2309{
2310        struct input_handler *handler = handle->handler;
2311        struct input_dev *dev = handle->dev;
2312        int error;
2313
2314        /*
2315         * We take dev->mutex here to prevent race with
2316         * input_release_device().
2317         */
2318        error = mutex_lock_interruptible(&dev->mutex);
2319        if (error)
2320                return error;
2321
2322        /*
2323         * Filters go to the head of the list, normal handlers
2324         * to the tail.
2325         */
2326        if (handler->filter)
2327                list_add_rcu(&handle->d_node, &dev->h_list);
2328        else
2329                list_add_tail_rcu(&handle->d_node, &dev->h_list);
2330
2331        mutex_unlock(&dev->mutex);
2332
2333        /*
2334         * Since we are supposed to be called from ->connect()
2335         * which is mutually exclusive with ->disconnect()
2336         * we can't be racing with input_unregister_handle()
2337         * and so separate lock is not needed here.
2338         */
2339        list_add_tail_rcu(&handle->h_node, &handler->h_list);
2340
2341        if (handler->start)
2342                handler->start(handle);
2343
2344        return 0;
2345}
2346EXPORT_SYMBOL(input_register_handle);
2347
2348/**
2349 * input_unregister_handle - unregister an input handle
2350 * @handle: handle to unregister
2351 *
2352 * This function removes input handle from device's
2353 * and handler's lists.
2354 *
2355 * This function is supposed to be called from handler's
2356 * disconnect() method.
2357 */
2358void input_unregister_handle(struct input_handle *handle)
2359{
2360        struct input_dev *dev = handle->dev;
2361
2362        list_del_rcu(&handle->h_node);
2363
2364        /*
2365         * Take dev->mutex to prevent race with input_release_device().
2366         */
2367        mutex_lock(&dev->mutex);
2368        list_del_rcu(&handle->d_node);
2369        mutex_unlock(&dev->mutex);
2370
2371        synchronize_rcu();
2372}
2373EXPORT_SYMBOL(input_unregister_handle);
2374
2375/**
2376 * input_get_new_minor - allocates a new input minor number
2377 * @legacy_base: beginning or the legacy range to be searched
2378 * @legacy_num: size of legacy range
2379 * @allow_dynamic: whether we can also take ID from the dynamic range
2380 *
2381 * This function allocates a new device minor for from input major namespace.
2382 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2383 * parameters and whether ID can be allocated from dynamic range if there are
2384 * no free IDs in legacy range.
2385 */
2386int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2387                        bool allow_dynamic)
2388{
2389        /*
2390         * This function should be called from input handler's ->connect()
2391         * methods, which are serialized with input_mutex, so no additional
2392         * locking is needed here.
2393         */
2394        if (legacy_base >= 0) {
2395                int minor = ida_simple_get(&input_ida,
2396                                           legacy_base,
2397                                           legacy_base + legacy_num,
2398                                           GFP_KERNEL);
2399                if (minor >= 0 || !allow_dynamic)
2400                        return minor;
2401        }
2402
2403        return ida_simple_get(&input_ida,
2404                              INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2405                              GFP_KERNEL);
2406}
2407EXPORT_SYMBOL(input_get_new_minor);
2408
2409/**
2410 * input_free_minor - release previously allocated minor
2411 * @minor: minor to be released
2412 *
2413 * This function releases previously allocated input minor so that it can be
2414 * reused later.
2415 */
2416void input_free_minor(unsigned int minor)
2417{
2418        ida_simple_remove(&input_ida, minor);
2419}
2420EXPORT_SYMBOL(input_free_minor);
2421
2422static int __init input_init(void)
2423{
2424        int err;
2425
2426        err = class_register(&input_class);
2427        if (err) {
2428                pr_err("unable to register input_dev class\n");
2429                return err;
2430        }
2431
2432        err = input_proc_init();
2433        if (err)
2434                goto fail1;
2435
2436        err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2437                                     INPUT_MAX_CHAR_DEVICES, "input");
2438        if (err) {
2439                pr_err("unable to register char major %d", INPUT_MAJOR);
2440                goto fail2;
2441        }
2442
2443        return 0;
2444
2445 fail2: input_proc_exit();
2446 fail1: class_unregister(&input_class);
2447        return err;
2448}
2449
2450static void __exit input_exit(void)
2451{
2452        input_proc_exit();
2453        unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2454                                 INPUT_MAX_CHAR_DEVICES);
2455        class_unregister(&input_class);
2456}
2457
2458subsys_initcall(input_init);
2459module_exit(input_exit);
2460