linux/drivers/iommu/amd_iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <jroedel@suse.de>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/ratelimit.h>
  21#include <linux/pci.h>
  22#include <linux/acpi.h>
  23#include <linux/amba/bus.h>
  24#include <linux/platform_device.h>
  25#include <linux/pci-ats.h>
  26#include <linux/bitmap.h>
  27#include <linux/slab.h>
  28#include <linux/debugfs.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/dma-direct.h>
  32#include <linux/iommu-helper.h>
  33#include <linux/iommu.h>
  34#include <linux/delay.h>
  35#include <linux/amd-iommu.h>
  36#include <linux/notifier.h>
  37#include <linux/export.h>
  38#include <linux/irq.h>
  39#include <linux/msi.h>
  40#include <linux/dma-contiguous.h>
  41#include <linux/irqdomain.h>
  42#include <linux/percpu.h>
  43#include <linux/iova.h>
  44#include <asm/irq_remapping.h>
  45#include <asm/io_apic.h>
  46#include <asm/apic.h>
  47#include <asm/hw_irq.h>
  48#include <asm/msidef.h>
  49#include <asm/proto.h>
  50#include <asm/iommu.h>
  51#include <asm/gart.h>
  52#include <asm/dma.h>
  53
  54#include "amd_iommu_proto.h"
  55#include "amd_iommu_types.h"
  56#include "irq_remapping.h"
  57
  58#define AMD_IOMMU_MAPPING_ERROR 0
  59
  60#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  61
  62#define LOOP_TIMEOUT    100000
  63
  64/* IO virtual address start page frame number */
  65#define IOVA_START_PFN          (1)
  66#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  67
  68/* Reserved IOVA ranges */
  69#define MSI_RANGE_START         (0xfee00000)
  70#define MSI_RANGE_END           (0xfeefffff)
  71#define HT_RANGE_START          (0xfd00000000ULL)
  72#define HT_RANGE_END            (0xffffffffffULL)
  73
  74/*
  75 * This bitmap is used to advertise the page sizes our hardware support
  76 * to the IOMMU core, which will then use this information to split
  77 * physically contiguous memory regions it is mapping into page sizes
  78 * that we support.
  79 *
  80 * 512GB Pages are not supported due to a hardware bug
  81 */
  82#define AMD_IOMMU_PGSIZES       ((~0xFFFUL) & ~(2ULL << 38))
  83
  84static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
  85static DEFINE_SPINLOCK(pd_bitmap_lock);
  86
  87/* List of all available dev_data structures */
  88static LLIST_HEAD(dev_data_list);
  89
  90LIST_HEAD(ioapic_map);
  91LIST_HEAD(hpet_map);
  92LIST_HEAD(acpihid_map);
  93
  94/*
  95 * Domain for untranslated devices - only allocated
  96 * if iommu=pt passed on kernel cmd line.
  97 */
  98const struct iommu_ops amd_iommu_ops;
  99
 100static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
 101int amd_iommu_max_glx_val = -1;
 102
 103static const struct dma_map_ops amd_iommu_dma_ops;
 104
 105/*
 106 * general struct to manage commands send to an IOMMU
 107 */
 108struct iommu_cmd {
 109        u32 data[4];
 110};
 111
 112struct kmem_cache *amd_iommu_irq_cache;
 113
 114static void update_domain(struct protection_domain *domain);
 115static int protection_domain_init(struct protection_domain *domain);
 116static void detach_device(struct device *dev);
 117static void iova_domain_flush_tlb(struct iova_domain *iovad);
 118
 119/*
 120 * Data container for a dma_ops specific protection domain
 121 */
 122struct dma_ops_domain {
 123        /* generic protection domain information */
 124        struct protection_domain domain;
 125
 126        /* IOVA RB-Tree */
 127        struct iova_domain iovad;
 128};
 129
 130static struct iova_domain reserved_iova_ranges;
 131static struct lock_class_key reserved_rbtree_key;
 132
 133/****************************************************************************
 134 *
 135 * Helper functions
 136 *
 137 ****************************************************************************/
 138
 139static inline int match_hid_uid(struct device *dev,
 140                                struct acpihid_map_entry *entry)
 141{
 142        const char *hid, *uid;
 143
 144        hid = acpi_device_hid(ACPI_COMPANION(dev));
 145        uid = acpi_device_uid(ACPI_COMPANION(dev));
 146
 147        if (!hid || !(*hid))
 148                return -ENODEV;
 149
 150        if (!uid || !(*uid))
 151                return strcmp(hid, entry->hid);
 152
 153        if (!(*entry->uid))
 154                return strcmp(hid, entry->hid);
 155
 156        return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
 157}
 158
 159static inline u16 get_pci_device_id(struct device *dev)
 160{
 161        struct pci_dev *pdev = to_pci_dev(dev);
 162
 163        return PCI_DEVID(pdev->bus->number, pdev->devfn);
 164}
 165
 166static inline int get_acpihid_device_id(struct device *dev,
 167                                        struct acpihid_map_entry **entry)
 168{
 169        struct acpihid_map_entry *p;
 170
 171        list_for_each_entry(p, &acpihid_map, list) {
 172                if (!match_hid_uid(dev, p)) {
 173                        if (entry)
 174                                *entry = p;
 175                        return p->devid;
 176                }
 177        }
 178        return -EINVAL;
 179}
 180
 181static inline int get_device_id(struct device *dev)
 182{
 183        int devid;
 184
 185        if (dev_is_pci(dev))
 186                devid = get_pci_device_id(dev);
 187        else
 188                devid = get_acpihid_device_id(dev, NULL);
 189
 190        return devid;
 191}
 192
 193static struct protection_domain *to_pdomain(struct iommu_domain *dom)
 194{
 195        return container_of(dom, struct protection_domain, domain);
 196}
 197
 198static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
 199{
 200        BUG_ON(domain->flags != PD_DMA_OPS_MASK);
 201        return container_of(domain, struct dma_ops_domain, domain);
 202}
 203
 204static struct iommu_dev_data *alloc_dev_data(u16 devid)
 205{
 206        struct iommu_dev_data *dev_data;
 207
 208        dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 209        if (!dev_data)
 210                return NULL;
 211
 212        dev_data->devid = devid;
 213        ratelimit_default_init(&dev_data->rs);
 214
 215        llist_add(&dev_data->dev_data_list, &dev_data_list);
 216        return dev_data;
 217}
 218
 219static struct iommu_dev_data *search_dev_data(u16 devid)
 220{
 221        struct iommu_dev_data *dev_data;
 222        struct llist_node *node;
 223
 224        if (llist_empty(&dev_data_list))
 225                return NULL;
 226
 227        node = dev_data_list.first;
 228        llist_for_each_entry(dev_data, node, dev_data_list) {
 229                if (dev_data->devid == devid)
 230                        return dev_data;
 231        }
 232
 233        return NULL;
 234}
 235
 236static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
 237{
 238        *(u16 *)data = alias;
 239        return 0;
 240}
 241
 242static u16 get_alias(struct device *dev)
 243{
 244        struct pci_dev *pdev = to_pci_dev(dev);
 245        u16 devid, ivrs_alias, pci_alias;
 246
 247        /* The callers make sure that get_device_id() does not fail here */
 248        devid = get_device_id(dev);
 249
 250        /* For ACPI HID devices, we simply return the devid as such */
 251        if (!dev_is_pci(dev))
 252                return devid;
 253
 254        ivrs_alias = amd_iommu_alias_table[devid];
 255
 256        pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
 257
 258        if (ivrs_alias == pci_alias)
 259                return ivrs_alias;
 260
 261        /*
 262         * DMA alias showdown
 263         *
 264         * The IVRS is fairly reliable in telling us about aliases, but it
 265         * can't know about every screwy device.  If we don't have an IVRS
 266         * reported alias, use the PCI reported alias.  In that case we may
 267         * still need to initialize the rlookup and dev_table entries if the
 268         * alias is to a non-existent device.
 269         */
 270        if (ivrs_alias == devid) {
 271                if (!amd_iommu_rlookup_table[pci_alias]) {
 272                        amd_iommu_rlookup_table[pci_alias] =
 273                                amd_iommu_rlookup_table[devid];
 274                        memcpy(amd_iommu_dev_table[pci_alias].data,
 275                               amd_iommu_dev_table[devid].data,
 276                               sizeof(amd_iommu_dev_table[pci_alias].data));
 277                }
 278
 279                return pci_alias;
 280        }
 281
 282        pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
 283                "for device %s[%04x:%04x], kernel reported alias "
 284                "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
 285                PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
 286                PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
 287                PCI_FUNC(pci_alias));
 288
 289        /*
 290         * If we don't have a PCI DMA alias and the IVRS alias is on the same
 291         * bus, then the IVRS table may know about a quirk that we don't.
 292         */
 293        if (pci_alias == devid &&
 294            PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
 295                pci_add_dma_alias(pdev, ivrs_alias & 0xff);
 296                pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
 297                        PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
 298                        dev_name(dev));
 299        }
 300
 301        return ivrs_alias;
 302}
 303
 304static struct iommu_dev_data *find_dev_data(u16 devid)
 305{
 306        struct iommu_dev_data *dev_data;
 307        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
 308
 309        dev_data = search_dev_data(devid);
 310
 311        if (dev_data == NULL) {
 312                dev_data = alloc_dev_data(devid);
 313                if (!dev_data)
 314                        return NULL;
 315
 316                if (translation_pre_enabled(iommu))
 317                        dev_data->defer_attach = true;
 318        }
 319
 320        return dev_data;
 321}
 322
 323struct iommu_dev_data *get_dev_data(struct device *dev)
 324{
 325        return dev->archdata.iommu;
 326}
 327EXPORT_SYMBOL(get_dev_data);
 328
 329/*
 330* Find or create an IOMMU group for a acpihid device.
 331*/
 332static struct iommu_group *acpihid_device_group(struct device *dev)
 333{
 334        struct acpihid_map_entry *p, *entry = NULL;
 335        int devid;
 336
 337        devid = get_acpihid_device_id(dev, &entry);
 338        if (devid < 0)
 339                return ERR_PTR(devid);
 340
 341        list_for_each_entry(p, &acpihid_map, list) {
 342                if ((devid == p->devid) && p->group)
 343                        entry->group = p->group;
 344        }
 345
 346        if (!entry->group)
 347                entry->group = generic_device_group(dev);
 348        else
 349                iommu_group_ref_get(entry->group);
 350
 351        return entry->group;
 352}
 353
 354static bool pci_iommuv2_capable(struct pci_dev *pdev)
 355{
 356        static const int caps[] = {
 357                PCI_EXT_CAP_ID_ATS,
 358                PCI_EXT_CAP_ID_PRI,
 359                PCI_EXT_CAP_ID_PASID,
 360        };
 361        int i, pos;
 362
 363        if (pci_ats_disabled())
 364                return false;
 365
 366        for (i = 0; i < 3; ++i) {
 367                pos = pci_find_ext_capability(pdev, caps[i]);
 368                if (pos == 0)
 369                        return false;
 370        }
 371
 372        return true;
 373}
 374
 375static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 376{
 377        struct iommu_dev_data *dev_data;
 378
 379        dev_data = get_dev_data(&pdev->dev);
 380
 381        return dev_data->errata & (1 << erratum) ? true : false;
 382}
 383
 384/*
 385 * This function checks if the driver got a valid device from the caller to
 386 * avoid dereferencing invalid pointers.
 387 */
 388static bool check_device(struct device *dev)
 389{
 390        int devid;
 391
 392        if (!dev || !dev->dma_mask)
 393                return false;
 394
 395        devid = get_device_id(dev);
 396        if (devid < 0)
 397                return false;
 398
 399        /* Out of our scope? */
 400        if (devid > amd_iommu_last_bdf)
 401                return false;
 402
 403        if (amd_iommu_rlookup_table[devid] == NULL)
 404                return false;
 405
 406        return true;
 407}
 408
 409static void init_iommu_group(struct device *dev)
 410{
 411        struct iommu_group *group;
 412
 413        group = iommu_group_get_for_dev(dev);
 414        if (IS_ERR(group))
 415                return;
 416
 417        iommu_group_put(group);
 418}
 419
 420static int iommu_init_device(struct device *dev)
 421{
 422        struct iommu_dev_data *dev_data;
 423        struct amd_iommu *iommu;
 424        int devid;
 425
 426        if (dev->archdata.iommu)
 427                return 0;
 428
 429        devid = get_device_id(dev);
 430        if (devid < 0)
 431                return devid;
 432
 433        iommu = amd_iommu_rlookup_table[devid];
 434
 435        dev_data = find_dev_data(devid);
 436        if (!dev_data)
 437                return -ENOMEM;
 438
 439        dev_data->alias = get_alias(dev);
 440
 441        if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
 442                struct amd_iommu *iommu;
 443
 444                iommu = amd_iommu_rlookup_table[dev_data->devid];
 445                dev_data->iommu_v2 = iommu->is_iommu_v2;
 446        }
 447
 448        dev->archdata.iommu = dev_data;
 449
 450        iommu_device_link(&iommu->iommu, dev);
 451
 452        return 0;
 453}
 454
 455static void iommu_ignore_device(struct device *dev)
 456{
 457        u16 alias;
 458        int devid;
 459
 460        devid = get_device_id(dev);
 461        if (devid < 0)
 462                return;
 463
 464        alias = get_alias(dev);
 465
 466        memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 467        memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 468
 469        amd_iommu_rlookup_table[devid] = NULL;
 470        amd_iommu_rlookup_table[alias] = NULL;
 471}
 472
 473static void iommu_uninit_device(struct device *dev)
 474{
 475        struct iommu_dev_data *dev_data;
 476        struct amd_iommu *iommu;
 477        int devid;
 478
 479        devid = get_device_id(dev);
 480        if (devid < 0)
 481                return;
 482
 483        iommu = amd_iommu_rlookup_table[devid];
 484
 485        dev_data = search_dev_data(devid);
 486        if (!dev_data)
 487                return;
 488
 489        if (dev_data->domain)
 490                detach_device(dev);
 491
 492        iommu_device_unlink(&iommu->iommu, dev);
 493
 494        iommu_group_remove_device(dev);
 495
 496        /* Remove dma-ops */
 497        dev->dma_ops = NULL;
 498
 499        /*
 500         * We keep dev_data around for unplugged devices and reuse it when the
 501         * device is re-plugged - not doing so would introduce a ton of races.
 502         */
 503}
 504
 505/****************************************************************************
 506 *
 507 * Interrupt handling functions
 508 *
 509 ****************************************************************************/
 510
 511static void dump_dte_entry(u16 devid)
 512{
 513        int i;
 514
 515        for (i = 0; i < 4; ++i)
 516                pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
 517                        amd_iommu_dev_table[devid].data[i]);
 518}
 519
 520static void dump_command(unsigned long phys_addr)
 521{
 522        struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
 523        int i;
 524
 525        for (i = 0; i < 4; ++i)
 526                pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 527}
 528
 529static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
 530                                        u64 address, int flags)
 531{
 532        struct iommu_dev_data *dev_data = NULL;
 533        struct pci_dev *pdev;
 534
 535        pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
 536                                           devid & 0xff);
 537        if (pdev)
 538                dev_data = get_dev_data(&pdev->dev);
 539
 540        if (dev_data && __ratelimit(&dev_data->rs)) {
 541                dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 542                        domain_id, address, flags);
 543        } else if (printk_ratelimit()) {
 544                pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 545                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 546                        domain_id, address, flags);
 547        }
 548
 549        if (pdev)
 550                pci_dev_put(pdev);
 551}
 552
 553static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 554{
 555        struct device *dev = iommu->iommu.dev;
 556        int type, devid, pasid, flags, tag;
 557        volatile u32 *event = __evt;
 558        int count = 0;
 559        u64 address;
 560
 561retry:
 562        type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 563        devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 564        pasid   = PPR_PASID(*(u64 *)&event[0]);
 565        flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 566        address = (u64)(((u64)event[3]) << 32) | event[2];
 567
 568        if (type == 0) {
 569                /* Did we hit the erratum? */
 570                if (++count == LOOP_TIMEOUT) {
 571                        pr_err("AMD-Vi: No event written to event log\n");
 572                        return;
 573                }
 574                udelay(1);
 575                goto retry;
 576        }
 577
 578        if (type == EVENT_TYPE_IO_FAULT) {
 579                amd_iommu_report_page_fault(devid, pasid, address, flags);
 580                return;
 581        } else {
 582                dev_err(dev, "AMD-Vi: Event logged [");
 583        }
 584
 585        switch (type) {
 586        case EVENT_TYPE_ILL_DEV:
 587                dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
 588                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 589                        pasid, address, flags);
 590                dump_dte_entry(devid);
 591                break;
 592        case EVENT_TYPE_DEV_TAB_ERR:
 593                dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 594                        "address=0x%016llx flags=0x%04x]\n",
 595                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 596                        address, flags);
 597                break;
 598        case EVENT_TYPE_PAGE_TAB_ERR:
 599                dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 600                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 601                        pasid, address, flags);
 602                break;
 603        case EVENT_TYPE_ILL_CMD:
 604                dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 605                dump_command(address);
 606                break;
 607        case EVENT_TYPE_CMD_HARD_ERR:
 608                dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
 609                        address, flags);
 610                break;
 611        case EVENT_TYPE_IOTLB_INV_TO:
 612                dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
 613                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 614                        address);
 615                break;
 616        case EVENT_TYPE_INV_DEV_REQ:
 617                dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
 618                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 619                        pasid, address, flags);
 620                break;
 621        case EVENT_TYPE_INV_PPR_REQ:
 622                pasid = ((event[0] >> 16) & 0xFFFF)
 623                        | ((event[1] << 6) & 0xF0000);
 624                tag = event[1] & 0x03FF;
 625                dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
 626                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 627                        pasid, address, flags);
 628                break;
 629        default:
 630                dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
 631                        event[0], event[1], event[2], event[3]);
 632        }
 633
 634        memset(__evt, 0, 4 * sizeof(u32));
 635}
 636
 637static void iommu_poll_events(struct amd_iommu *iommu)
 638{
 639        u32 head, tail;
 640
 641        head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 642        tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 643
 644        while (head != tail) {
 645                iommu_print_event(iommu, iommu->evt_buf + head);
 646                head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
 647        }
 648
 649        writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 650}
 651
 652static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 653{
 654        struct amd_iommu_fault fault;
 655
 656        if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 657                pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
 658                return;
 659        }
 660
 661        fault.address   = raw[1];
 662        fault.pasid     = PPR_PASID(raw[0]);
 663        fault.device_id = PPR_DEVID(raw[0]);
 664        fault.tag       = PPR_TAG(raw[0]);
 665        fault.flags     = PPR_FLAGS(raw[0]);
 666
 667        atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 668}
 669
 670static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 671{
 672        u32 head, tail;
 673
 674        if (iommu->ppr_log == NULL)
 675                return;
 676
 677        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 678        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 679
 680        while (head != tail) {
 681                volatile u64 *raw;
 682                u64 entry[2];
 683                int i;
 684
 685                raw = (u64 *)(iommu->ppr_log + head);
 686
 687                /*
 688                 * Hardware bug: Interrupt may arrive before the entry is
 689                 * written to memory. If this happens we need to wait for the
 690                 * entry to arrive.
 691                 */
 692                for (i = 0; i < LOOP_TIMEOUT; ++i) {
 693                        if (PPR_REQ_TYPE(raw[0]) != 0)
 694                                break;
 695                        udelay(1);
 696                }
 697
 698                /* Avoid memcpy function-call overhead */
 699                entry[0] = raw[0];
 700                entry[1] = raw[1];
 701
 702                /*
 703                 * To detect the hardware bug we need to clear the entry
 704                 * back to zero.
 705                 */
 706                raw[0] = raw[1] = 0UL;
 707
 708                /* Update head pointer of hardware ring-buffer */
 709                head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 710                writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 711
 712                /* Handle PPR entry */
 713                iommu_handle_ppr_entry(iommu, entry);
 714
 715                /* Refresh ring-buffer information */
 716                head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 717                tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 718        }
 719}
 720
 721#ifdef CONFIG_IRQ_REMAP
 722static int (*iommu_ga_log_notifier)(u32);
 723
 724int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
 725{
 726        iommu_ga_log_notifier = notifier;
 727
 728        return 0;
 729}
 730EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
 731
 732static void iommu_poll_ga_log(struct amd_iommu *iommu)
 733{
 734        u32 head, tail, cnt = 0;
 735
 736        if (iommu->ga_log == NULL)
 737                return;
 738
 739        head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 740        tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
 741
 742        while (head != tail) {
 743                volatile u64 *raw;
 744                u64 log_entry;
 745
 746                raw = (u64 *)(iommu->ga_log + head);
 747                cnt++;
 748
 749                /* Avoid memcpy function-call overhead */
 750                log_entry = *raw;
 751
 752                /* Update head pointer of hardware ring-buffer */
 753                head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
 754                writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 755
 756                /* Handle GA entry */
 757                switch (GA_REQ_TYPE(log_entry)) {
 758                case GA_GUEST_NR:
 759                        if (!iommu_ga_log_notifier)
 760                                break;
 761
 762                        pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
 763                                 __func__, GA_DEVID(log_entry),
 764                                 GA_TAG(log_entry));
 765
 766                        if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
 767                                pr_err("AMD-Vi: GA log notifier failed.\n");
 768                        break;
 769                default:
 770                        break;
 771                }
 772        }
 773}
 774#endif /* CONFIG_IRQ_REMAP */
 775
 776#define AMD_IOMMU_INT_MASK      \
 777        (MMIO_STATUS_EVT_INT_MASK | \
 778         MMIO_STATUS_PPR_INT_MASK | \
 779         MMIO_STATUS_GALOG_INT_MASK)
 780
 781irqreturn_t amd_iommu_int_thread(int irq, void *data)
 782{
 783        struct amd_iommu *iommu = (struct amd_iommu *) data;
 784        u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 785
 786        while (status & AMD_IOMMU_INT_MASK) {
 787                /* Enable EVT and PPR and GA interrupts again */
 788                writel(AMD_IOMMU_INT_MASK,
 789                        iommu->mmio_base + MMIO_STATUS_OFFSET);
 790
 791                if (status & MMIO_STATUS_EVT_INT_MASK) {
 792                        pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
 793                        iommu_poll_events(iommu);
 794                }
 795
 796                if (status & MMIO_STATUS_PPR_INT_MASK) {
 797                        pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
 798                        iommu_poll_ppr_log(iommu);
 799                }
 800
 801#ifdef CONFIG_IRQ_REMAP
 802                if (status & MMIO_STATUS_GALOG_INT_MASK) {
 803                        pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
 804                        iommu_poll_ga_log(iommu);
 805                }
 806#endif
 807
 808                /*
 809                 * Hardware bug: ERBT1312
 810                 * When re-enabling interrupt (by writing 1
 811                 * to clear the bit), the hardware might also try to set
 812                 * the interrupt bit in the event status register.
 813                 * In this scenario, the bit will be set, and disable
 814                 * subsequent interrupts.
 815                 *
 816                 * Workaround: The IOMMU driver should read back the
 817                 * status register and check if the interrupt bits are cleared.
 818                 * If not, driver will need to go through the interrupt handler
 819                 * again and re-clear the bits
 820                 */
 821                status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 822        }
 823        return IRQ_HANDLED;
 824}
 825
 826irqreturn_t amd_iommu_int_handler(int irq, void *data)
 827{
 828        return IRQ_WAKE_THREAD;
 829}
 830
 831/****************************************************************************
 832 *
 833 * IOMMU command queuing functions
 834 *
 835 ****************************************************************************/
 836
 837static int wait_on_sem(volatile u64 *sem)
 838{
 839        int i = 0;
 840
 841        while (*sem == 0 && i < LOOP_TIMEOUT) {
 842                udelay(1);
 843                i += 1;
 844        }
 845
 846        if (i == LOOP_TIMEOUT) {
 847                pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 848                return -EIO;
 849        }
 850
 851        return 0;
 852}
 853
 854static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 855                               struct iommu_cmd *cmd)
 856{
 857        u8 *target;
 858
 859        target = iommu->cmd_buf + iommu->cmd_buf_tail;
 860
 861        iommu->cmd_buf_tail += sizeof(*cmd);
 862        iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
 863
 864        /* Copy command to buffer */
 865        memcpy(target, cmd, sizeof(*cmd));
 866
 867        /* Tell the IOMMU about it */
 868        writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 869}
 870
 871static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 872{
 873        u64 paddr = iommu_virt_to_phys((void *)address);
 874
 875        WARN_ON(address & 0x7ULL);
 876
 877        memset(cmd, 0, sizeof(*cmd));
 878        cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
 879        cmd->data[1] = upper_32_bits(paddr);
 880        cmd->data[2] = 1;
 881        CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 882}
 883
 884static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 885{
 886        memset(cmd, 0, sizeof(*cmd));
 887        cmd->data[0] = devid;
 888        CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 889}
 890
 891static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 892                                  size_t size, u16 domid, int pde)
 893{
 894        u64 pages;
 895        bool s;
 896
 897        pages = iommu_num_pages(address, size, PAGE_SIZE);
 898        s     = false;
 899
 900        if (pages > 1) {
 901                /*
 902                 * If we have to flush more than one page, flush all
 903                 * TLB entries for this domain
 904                 */
 905                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 906                s = true;
 907        }
 908
 909        address &= PAGE_MASK;
 910
 911        memset(cmd, 0, sizeof(*cmd));
 912        cmd->data[1] |= domid;
 913        cmd->data[2]  = lower_32_bits(address);
 914        cmd->data[3]  = upper_32_bits(address);
 915        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 916        if (s) /* size bit - we flush more than one 4kb page */
 917                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 918        if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 919                cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 920}
 921
 922static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 923                                  u64 address, size_t size)
 924{
 925        u64 pages;
 926        bool s;
 927
 928        pages = iommu_num_pages(address, size, PAGE_SIZE);
 929        s     = false;
 930
 931        if (pages > 1) {
 932                /*
 933                 * If we have to flush more than one page, flush all
 934                 * TLB entries for this domain
 935                 */
 936                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 937                s = true;
 938        }
 939
 940        address &= PAGE_MASK;
 941
 942        memset(cmd, 0, sizeof(*cmd));
 943        cmd->data[0]  = devid;
 944        cmd->data[0] |= (qdep & 0xff) << 24;
 945        cmd->data[1]  = devid;
 946        cmd->data[2]  = lower_32_bits(address);
 947        cmd->data[3]  = upper_32_bits(address);
 948        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 949        if (s)
 950                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 951}
 952
 953static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 954                                  u64 address, bool size)
 955{
 956        memset(cmd, 0, sizeof(*cmd));
 957
 958        address &= ~(0xfffULL);
 959
 960        cmd->data[0]  = pasid;
 961        cmd->data[1]  = domid;
 962        cmd->data[2]  = lower_32_bits(address);
 963        cmd->data[3]  = upper_32_bits(address);
 964        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 965        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 966        if (size)
 967                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 968        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 969}
 970
 971static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 972                                  int qdep, u64 address, bool size)
 973{
 974        memset(cmd, 0, sizeof(*cmd));
 975
 976        address &= ~(0xfffULL);
 977
 978        cmd->data[0]  = devid;
 979        cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
 980        cmd->data[0] |= (qdep  & 0xff) << 24;
 981        cmd->data[1]  = devid;
 982        cmd->data[1] |= (pasid & 0xff) << 16;
 983        cmd->data[2]  = lower_32_bits(address);
 984        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 985        cmd->data[3]  = upper_32_bits(address);
 986        if (size)
 987                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 988        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 989}
 990
 991static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 992                               int status, int tag, bool gn)
 993{
 994        memset(cmd, 0, sizeof(*cmd));
 995
 996        cmd->data[0]  = devid;
 997        if (gn) {
 998                cmd->data[1]  = pasid;
 999                cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1000        }
1001        cmd->data[3]  = tag & 0x1ff;
1002        cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1003
1004        CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1005}
1006
1007static void build_inv_all(struct iommu_cmd *cmd)
1008{
1009        memset(cmd, 0, sizeof(*cmd));
1010        CMD_SET_TYPE(cmd, CMD_INV_ALL);
1011}
1012
1013static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1014{
1015        memset(cmd, 0, sizeof(*cmd));
1016        cmd->data[0] = devid;
1017        CMD_SET_TYPE(cmd, CMD_INV_IRT);
1018}
1019
1020/*
1021 * Writes the command to the IOMMUs command buffer and informs the
1022 * hardware about the new command.
1023 */
1024static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1025                                      struct iommu_cmd *cmd,
1026                                      bool sync)
1027{
1028        unsigned int count = 0;
1029        u32 left, next_tail;
1030
1031        next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1032again:
1033        left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1034
1035        if (left <= 0x20) {
1036                /* Skip udelay() the first time around */
1037                if (count++) {
1038                        if (count == LOOP_TIMEOUT) {
1039                                pr_err("AMD-Vi: Command buffer timeout\n");
1040                                return -EIO;
1041                        }
1042
1043                        udelay(1);
1044                }
1045
1046                /* Update head and recheck remaining space */
1047                iommu->cmd_buf_head = readl(iommu->mmio_base +
1048                                            MMIO_CMD_HEAD_OFFSET);
1049
1050                goto again;
1051        }
1052
1053        copy_cmd_to_buffer(iommu, cmd);
1054
1055        /* Do we need to make sure all commands are processed? */
1056        iommu->need_sync = sync;
1057
1058        return 0;
1059}
1060
1061static int iommu_queue_command_sync(struct amd_iommu *iommu,
1062                                    struct iommu_cmd *cmd,
1063                                    bool sync)
1064{
1065        unsigned long flags;
1066        int ret;
1067
1068        raw_spin_lock_irqsave(&iommu->lock, flags);
1069        ret = __iommu_queue_command_sync(iommu, cmd, sync);
1070        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1071
1072        return ret;
1073}
1074
1075static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1076{
1077        return iommu_queue_command_sync(iommu, cmd, true);
1078}
1079
1080/*
1081 * This function queues a completion wait command into the command
1082 * buffer of an IOMMU
1083 */
1084static int iommu_completion_wait(struct amd_iommu *iommu)
1085{
1086        struct iommu_cmd cmd;
1087        unsigned long flags;
1088        int ret;
1089
1090        if (!iommu->need_sync)
1091                return 0;
1092
1093
1094        build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1095
1096        raw_spin_lock_irqsave(&iommu->lock, flags);
1097
1098        iommu->cmd_sem = 0;
1099
1100        ret = __iommu_queue_command_sync(iommu, &cmd, false);
1101        if (ret)
1102                goto out_unlock;
1103
1104        ret = wait_on_sem(&iommu->cmd_sem);
1105
1106out_unlock:
1107        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1108
1109        return ret;
1110}
1111
1112static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1113{
1114        struct iommu_cmd cmd;
1115
1116        build_inv_dte(&cmd, devid);
1117
1118        return iommu_queue_command(iommu, &cmd);
1119}
1120
1121static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1122{
1123        u32 devid;
1124
1125        for (devid = 0; devid <= 0xffff; ++devid)
1126                iommu_flush_dte(iommu, devid);
1127
1128        iommu_completion_wait(iommu);
1129}
1130
1131/*
1132 * This function uses heavy locking and may disable irqs for some time. But
1133 * this is no issue because it is only called during resume.
1134 */
1135static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1136{
1137        u32 dom_id;
1138
1139        for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1140                struct iommu_cmd cmd;
1141                build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1142                                      dom_id, 1);
1143                iommu_queue_command(iommu, &cmd);
1144        }
1145
1146        iommu_completion_wait(iommu);
1147}
1148
1149static void amd_iommu_flush_all(struct amd_iommu *iommu)
1150{
1151        struct iommu_cmd cmd;
1152
1153        build_inv_all(&cmd);
1154
1155        iommu_queue_command(iommu, &cmd);
1156        iommu_completion_wait(iommu);
1157}
1158
1159static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1160{
1161        struct iommu_cmd cmd;
1162
1163        build_inv_irt(&cmd, devid);
1164
1165        iommu_queue_command(iommu, &cmd);
1166}
1167
1168static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1169{
1170        u32 devid;
1171
1172        for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1173                iommu_flush_irt(iommu, devid);
1174
1175        iommu_completion_wait(iommu);
1176}
1177
1178void iommu_flush_all_caches(struct amd_iommu *iommu)
1179{
1180        if (iommu_feature(iommu, FEATURE_IA)) {
1181                amd_iommu_flush_all(iommu);
1182        } else {
1183                amd_iommu_flush_dte_all(iommu);
1184                amd_iommu_flush_irt_all(iommu);
1185                amd_iommu_flush_tlb_all(iommu);
1186        }
1187}
1188
1189/*
1190 * Command send function for flushing on-device TLB
1191 */
1192static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1193                              u64 address, size_t size)
1194{
1195        struct amd_iommu *iommu;
1196        struct iommu_cmd cmd;
1197        int qdep;
1198
1199        qdep     = dev_data->ats.qdep;
1200        iommu    = amd_iommu_rlookup_table[dev_data->devid];
1201
1202        build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1203
1204        return iommu_queue_command(iommu, &cmd);
1205}
1206
1207/*
1208 * Command send function for invalidating a device table entry
1209 */
1210static int device_flush_dte(struct iommu_dev_data *dev_data)
1211{
1212        struct amd_iommu *iommu;
1213        u16 alias;
1214        int ret;
1215
1216        iommu = amd_iommu_rlookup_table[dev_data->devid];
1217        alias = dev_data->alias;
1218
1219        ret = iommu_flush_dte(iommu, dev_data->devid);
1220        if (!ret && alias != dev_data->devid)
1221                ret = iommu_flush_dte(iommu, alias);
1222        if (ret)
1223                return ret;
1224
1225        if (dev_data->ats.enabled)
1226                ret = device_flush_iotlb(dev_data, 0, ~0UL);
1227
1228        return ret;
1229}
1230
1231/*
1232 * TLB invalidation function which is called from the mapping functions.
1233 * It invalidates a single PTE if the range to flush is within a single
1234 * page. Otherwise it flushes the whole TLB of the IOMMU.
1235 */
1236static void __domain_flush_pages(struct protection_domain *domain,
1237                                 u64 address, size_t size, int pde)
1238{
1239        struct iommu_dev_data *dev_data;
1240        struct iommu_cmd cmd;
1241        int ret = 0, i;
1242
1243        build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1244
1245        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1246                if (!domain->dev_iommu[i])
1247                        continue;
1248
1249                /*
1250                 * Devices of this domain are behind this IOMMU
1251                 * We need a TLB flush
1252                 */
1253                ret |= iommu_queue_command(amd_iommus[i], &cmd);
1254        }
1255
1256        list_for_each_entry(dev_data, &domain->dev_list, list) {
1257
1258                if (!dev_data->ats.enabled)
1259                        continue;
1260
1261                ret |= device_flush_iotlb(dev_data, address, size);
1262        }
1263
1264        WARN_ON(ret);
1265}
1266
1267static void domain_flush_pages(struct protection_domain *domain,
1268                               u64 address, size_t size)
1269{
1270        __domain_flush_pages(domain, address, size, 0);
1271}
1272
1273/* Flush the whole IO/TLB for a given protection domain */
1274static void domain_flush_tlb(struct protection_domain *domain)
1275{
1276        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1277}
1278
1279/* Flush the whole IO/TLB for a given protection domain - including PDE */
1280static void domain_flush_tlb_pde(struct protection_domain *domain)
1281{
1282        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1283}
1284
1285static void domain_flush_complete(struct protection_domain *domain)
1286{
1287        int i;
1288
1289        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1290                if (domain && !domain->dev_iommu[i])
1291                        continue;
1292
1293                /*
1294                 * Devices of this domain are behind this IOMMU
1295                 * We need to wait for completion of all commands.
1296                 */
1297                iommu_completion_wait(amd_iommus[i]);
1298        }
1299}
1300
1301
1302/*
1303 * This function flushes the DTEs for all devices in domain
1304 */
1305static void domain_flush_devices(struct protection_domain *domain)
1306{
1307        struct iommu_dev_data *dev_data;
1308
1309        list_for_each_entry(dev_data, &domain->dev_list, list)
1310                device_flush_dte(dev_data);
1311}
1312
1313/****************************************************************************
1314 *
1315 * The functions below are used the create the page table mappings for
1316 * unity mapped regions.
1317 *
1318 ****************************************************************************/
1319
1320/*
1321 * This function is used to add another level to an IO page table. Adding
1322 * another level increases the size of the address space by 9 bits to a size up
1323 * to 64 bits.
1324 */
1325static bool increase_address_space(struct protection_domain *domain,
1326                                   gfp_t gfp)
1327{
1328        u64 *pte;
1329
1330        if (domain->mode == PAGE_MODE_6_LEVEL)
1331                /* address space already 64 bit large */
1332                return false;
1333
1334        pte = (void *)get_zeroed_page(gfp);
1335        if (!pte)
1336                return false;
1337
1338        *pte             = PM_LEVEL_PDE(domain->mode,
1339                                        iommu_virt_to_phys(domain->pt_root));
1340        domain->pt_root  = pte;
1341        domain->mode    += 1;
1342        domain->updated  = true;
1343
1344        return true;
1345}
1346
1347static u64 *alloc_pte(struct protection_domain *domain,
1348                      unsigned long address,
1349                      unsigned long page_size,
1350                      u64 **pte_page,
1351                      gfp_t gfp)
1352{
1353        int level, end_lvl;
1354        u64 *pte, *page;
1355
1356        BUG_ON(!is_power_of_2(page_size));
1357
1358        while (address > PM_LEVEL_SIZE(domain->mode))
1359                increase_address_space(domain, gfp);
1360
1361        level   = domain->mode - 1;
1362        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1363        address = PAGE_SIZE_ALIGN(address, page_size);
1364        end_lvl = PAGE_SIZE_LEVEL(page_size);
1365
1366        while (level > end_lvl) {
1367                u64 __pte, __npte;
1368
1369                __pte = *pte;
1370
1371                if (!IOMMU_PTE_PRESENT(__pte)) {
1372                        page = (u64 *)get_zeroed_page(gfp);
1373                        if (!page)
1374                                return NULL;
1375
1376                        __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1377
1378                        /* pte could have been changed somewhere. */
1379                        if (cmpxchg64(pte, __pte, __npte) != __pte) {
1380                                free_page((unsigned long)page);
1381                                continue;
1382                        }
1383                }
1384
1385                /* No level skipping support yet */
1386                if (PM_PTE_LEVEL(*pte) != level)
1387                        return NULL;
1388
1389                level -= 1;
1390
1391                pte = IOMMU_PTE_PAGE(*pte);
1392
1393                if (pte_page && level == end_lvl)
1394                        *pte_page = pte;
1395
1396                pte = &pte[PM_LEVEL_INDEX(level, address)];
1397        }
1398
1399        return pte;
1400}
1401
1402/*
1403 * This function checks if there is a PTE for a given dma address. If
1404 * there is one, it returns the pointer to it.
1405 */
1406static u64 *fetch_pte(struct protection_domain *domain,
1407                      unsigned long address,
1408                      unsigned long *page_size)
1409{
1410        int level;
1411        u64 *pte;
1412
1413        *page_size = 0;
1414
1415        if (address > PM_LEVEL_SIZE(domain->mode))
1416                return NULL;
1417
1418        level      =  domain->mode - 1;
1419        pte        = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1420        *page_size =  PTE_LEVEL_PAGE_SIZE(level);
1421
1422        while (level > 0) {
1423
1424                /* Not Present */
1425                if (!IOMMU_PTE_PRESENT(*pte))
1426                        return NULL;
1427
1428                /* Large PTE */
1429                if (PM_PTE_LEVEL(*pte) == 7 ||
1430                    PM_PTE_LEVEL(*pte) == 0)
1431                        break;
1432
1433                /* No level skipping support yet */
1434                if (PM_PTE_LEVEL(*pte) != level)
1435                        return NULL;
1436
1437                level -= 1;
1438
1439                /* Walk to the next level */
1440                pte        = IOMMU_PTE_PAGE(*pte);
1441                pte        = &pte[PM_LEVEL_INDEX(level, address)];
1442                *page_size = PTE_LEVEL_PAGE_SIZE(level);
1443        }
1444
1445        if (PM_PTE_LEVEL(*pte) == 0x07) {
1446                unsigned long pte_mask;
1447
1448                /*
1449                 * If we have a series of large PTEs, make
1450                 * sure to return a pointer to the first one.
1451                 */
1452                *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1453                pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1454                pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1455        }
1456
1457        return pte;
1458}
1459
1460/*
1461 * Generic mapping functions. It maps a physical address into a DMA
1462 * address space. It allocates the page table pages if necessary.
1463 * In the future it can be extended to a generic mapping function
1464 * supporting all features of AMD IOMMU page tables like level skipping
1465 * and full 64 bit address spaces.
1466 */
1467static int iommu_map_page(struct protection_domain *dom,
1468                          unsigned long bus_addr,
1469                          unsigned long phys_addr,
1470                          unsigned long page_size,
1471                          int prot,
1472                          gfp_t gfp)
1473{
1474        u64 __pte, *pte;
1475        int i, count;
1476
1477        BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1478        BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1479
1480        if (!(prot & IOMMU_PROT_MASK))
1481                return -EINVAL;
1482
1483        count = PAGE_SIZE_PTE_COUNT(page_size);
1484        pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1485
1486        if (!pte)
1487                return -ENOMEM;
1488
1489        for (i = 0; i < count; ++i)
1490                if (IOMMU_PTE_PRESENT(pte[i]))
1491                        return -EBUSY;
1492
1493        if (count > 1) {
1494                __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1495                __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1496        } else
1497                __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1498
1499        if (prot & IOMMU_PROT_IR)
1500                __pte |= IOMMU_PTE_IR;
1501        if (prot & IOMMU_PROT_IW)
1502                __pte |= IOMMU_PTE_IW;
1503
1504        for (i = 0; i < count; ++i)
1505                pte[i] = __pte;
1506
1507        update_domain(dom);
1508
1509        return 0;
1510}
1511
1512static unsigned long iommu_unmap_page(struct protection_domain *dom,
1513                                      unsigned long bus_addr,
1514                                      unsigned long page_size)
1515{
1516        unsigned long long unmapped;
1517        unsigned long unmap_size;
1518        u64 *pte;
1519
1520        BUG_ON(!is_power_of_2(page_size));
1521
1522        unmapped = 0;
1523
1524        while (unmapped < page_size) {
1525
1526                pte = fetch_pte(dom, bus_addr, &unmap_size);
1527
1528                if (pte) {
1529                        int i, count;
1530
1531                        count = PAGE_SIZE_PTE_COUNT(unmap_size);
1532                        for (i = 0; i < count; i++)
1533                                pte[i] = 0ULL;
1534                }
1535
1536                bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1537                unmapped += unmap_size;
1538        }
1539
1540        BUG_ON(unmapped && !is_power_of_2(unmapped));
1541
1542        return unmapped;
1543}
1544
1545/****************************************************************************
1546 *
1547 * The next functions belong to the address allocator for the dma_ops
1548 * interface functions.
1549 *
1550 ****************************************************************************/
1551
1552
1553static unsigned long dma_ops_alloc_iova(struct device *dev,
1554                                        struct dma_ops_domain *dma_dom,
1555                                        unsigned int pages, u64 dma_mask)
1556{
1557        unsigned long pfn = 0;
1558
1559        pages = __roundup_pow_of_two(pages);
1560
1561        if (dma_mask > DMA_BIT_MASK(32))
1562                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1563                                      IOVA_PFN(DMA_BIT_MASK(32)), false);
1564
1565        if (!pfn)
1566                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1567                                      IOVA_PFN(dma_mask), true);
1568
1569        return (pfn << PAGE_SHIFT);
1570}
1571
1572static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1573                              unsigned long address,
1574                              unsigned int pages)
1575{
1576        pages = __roundup_pow_of_two(pages);
1577        address >>= PAGE_SHIFT;
1578
1579        free_iova_fast(&dma_dom->iovad, address, pages);
1580}
1581
1582/****************************************************************************
1583 *
1584 * The next functions belong to the domain allocation. A domain is
1585 * allocated for every IOMMU as the default domain. If device isolation
1586 * is enabled, every device get its own domain. The most important thing
1587 * about domains is the page table mapping the DMA address space they
1588 * contain.
1589 *
1590 ****************************************************************************/
1591
1592/*
1593 * This function adds a protection domain to the global protection domain list
1594 */
1595static void add_domain_to_list(struct protection_domain *domain)
1596{
1597        unsigned long flags;
1598
1599        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1600        list_add(&domain->list, &amd_iommu_pd_list);
1601        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1602}
1603
1604/*
1605 * This function removes a protection domain to the global
1606 * protection domain list
1607 */
1608static void del_domain_from_list(struct protection_domain *domain)
1609{
1610        unsigned long flags;
1611
1612        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1613        list_del(&domain->list);
1614        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1615}
1616
1617static u16 domain_id_alloc(void)
1618{
1619        int id;
1620
1621        spin_lock(&pd_bitmap_lock);
1622        id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1623        BUG_ON(id == 0);
1624        if (id > 0 && id < MAX_DOMAIN_ID)
1625                __set_bit(id, amd_iommu_pd_alloc_bitmap);
1626        else
1627                id = 0;
1628        spin_unlock(&pd_bitmap_lock);
1629
1630        return id;
1631}
1632
1633static void domain_id_free(int id)
1634{
1635        spin_lock(&pd_bitmap_lock);
1636        if (id > 0 && id < MAX_DOMAIN_ID)
1637                __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1638        spin_unlock(&pd_bitmap_lock);
1639}
1640
1641#define DEFINE_FREE_PT_FN(LVL, FN)                              \
1642static void free_pt_##LVL (unsigned long __pt)                  \
1643{                                                               \
1644        unsigned long p;                                        \
1645        u64 *pt;                                                \
1646        int i;                                                  \
1647                                                                \
1648        pt = (u64 *)__pt;                                       \
1649                                                                \
1650        for (i = 0; i < 512; ++i) {                             \
1651                /* PTE present? */                              \
1652                if (!IOMMU_PTE_PRESENT(pt[i]))                  \
1653                        continue;                               \
1654                                                                \
1655                /* Large PTE? */                                \
1656                if (PM_PTE_LEVEL(pt[i]) == 0 ||                 \
1657                    PM_PTE_LEVEL(pt[i]) == 7)                   \
1658                        continue;                               \
1659                                                                \
1660                p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);       \
1661                FN(p);                                          \
1662        }                                                       \
1663        free_page((unsigned long)pt);                           \
1664}
1665
1666DEFINE_FREE_PT_FN(l2, free_page)
1667DEFINE_FREE_PT_FN(l3, free_pt_l2)
1668DEFINE_FREE_PT_FN(l4, free_pt_l3)
1669DEFINE_FREE_PT_FN(l5, free_pt_l4)
1670DEFINE_FREE_PT_FN(l6, free_pt_l5)
1671
1672static void free_pagetable(struct protection_domain *domain)
1673{
1674        unsigned long root = (unsigned long)domain->pt_root;
1675
1676        switch (domain->mode) {
1677        case PAGE_MODE_NONE:
1678                break;
1679        case PAGE_MODE_1_LEVEL:
1680                free_page(root);
1681                break;
1682        case PAGE_MODE_2_LEVEL:
1683                free_pt_l2(root);
1684                break;
1685        case PAGE_MODE_3_LEVEL:
1686                free_pt_l3(root);
1687                break;
1688        case PAGE_MODE_4_LEVEL:
1689                free_pt_l4(root);
1690                break;
1691        case PAGE_MODE_5_LEVEL:
1692                free_pt_l5(root);
1693                break;
1694        case PAGE_MODE_6_LEVEL:
1695                free_pt_l6(root);
1696                break;
1697        default:
1698                BUG();
1699        }
1700}
1701
1702static void free_gcr3_tbl_level1(u64 *tbl)
1703{
1704        u64 *ptr;
1705        int i;
1706
1707        for (i = 0; i < 512; ++i) {
1708                if (!(tbl[i] & GCR3_VALID))
1709                        continue;
1710
1711                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1712
1713                free_page((unsigned long)ptr);
1714        }
1715}
1716
1717static void free_gcr3_tbl_level2(u64 *tbl)
1718{
1719        u64 *ptr;
1720        int i;
1721
1722        for (i = 0; i < 512; ++i) {
1723                if (!(tbl[i] & GCR3_VALID))
1724                        continue;
1725
1726                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1727
1728                free_gcr3_tbl_level1(ptr);
1729        }
1730}
1731
1732static void free_gcr3_table(struct protection_domain *domain)
1733{
1734        if (domain->glx == 2)
1735                free_gcr3_tbl_level2(domain->gcr3_tbl);
1736        else if (domain->glx == 1)
1737                free_gcr3_tbl_level1(domain->gcr3_tbl);
1738        else
1739                BUG_ON(domain->glx != 0);
1740
1741        free_page((unsigned long)domain->gcr3_tbl);
1742}
1743
1744static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1745{
1746        domain_flush_tlb(&dom->domain);
1747        domain_flush_complete(&dom->domain);
1748}
1749
1750static void iova_domain_flush_tlb(struct iova_domain *iovad)
1751{
1752        struct dma_ops_domain *dom;
1753
1754        dom = container_of(iovad, struct dma_ops_domain, iovad);
1755
1756        dma_ops_domain_flush_tlb(dom);
1757}
1758
1759/*
1760 * Free a domain, only used if something went wrong in the
1761 * allocation path and we need to free an already allocated page table
1762 */
1763static void dma_ops_domain_free(struct dma_ops_domain *dom)
1764{
1765        if (!dom)
1766                return;
1767
1768        del_domain_from_list(&dom->domain);
1769
1770        put_iova_domain(&dom->iovad);
1771
1772        free_pagetable(&dom->domain);
1773
1774        if (dom->domain.id)
1775                domain_id_free(dom->domain.id);
1776
1777        kfree(dom);
1778}
1779
1780/*
1781 * Allocates a new protection domain usable for the dma_ops functions.
1782 * It also initializes the page table and the address allocator data
1783 * structures required for the dma_ops interface
1784 */
1785static struct dma_ops_domain *dma_ops_domain_alloc(void)
1786{
1787        struct dma_ops_domain *dma_dom;
1788
1789        dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1790        if (!dma_dom)
1791                return NULL;
1792
1793        if (protection_domain_init(&dma_dom->domain))
1794                goto free_dma_dom;
1795
1796        dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1797        dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1798        dma_dom->domain.flags = PD_DMA_OPS_MASK;
1799        if (!dma_dom->domain.pt_root)
1800                goto free_dma_dom;
1801
1802        init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1803
1804        if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1805                goto free_dma_dom;
1806
1807        /* Initialize reserved ranges */
1808        copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1809
1810        add_domain_to_list(&dma_dom->domain);
1811
1812        return dma_dom;
1813
1814free_dma_dom:
1815        dma_ops_domain_free(dma_dom);
1816
1817        return NULL;
1818}
1819
1820/*
1821 * little helper function to check whether a given protection domain is a
1822 * dma_ops domain
1823 */
1824static bool dma_ops_domain(struct protection_domain *domain)
1825{
1826        return domain->flags & PD_DMA_OPS_MASK;
1827}
1828
1829static void set_dte_entry(u16 devid, struct protection_domain *domain,
1830                          bool ats, bool ppr)
1831{
1832        u64 pte_root = 0;
1833        u64 flags = 0;
1834
1835        if (domain->mode != PAGE_MODE_NONE)
1836                pte_root = iommu_virt_to_phys(domain->pt_root);
1837
1838        pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1839                    << DEV_ENTRY_MODE_SHIFT;
1840        pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1841
1842        flags = amd_iommu_dev_table[devid].data[1];
1843
1844        if (ats)
1845                flags |= DTE_FLAG_IOTLB;
1846
1847        if (ppr) {
1848                struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1849
1850                if (iommu_feature(iommu, FEATURE_EPHSUP))
1851                        pte_root |= 1ULL << DEV_ENTRY_PPR;
1852        }
1853
1854        if (domain->flags & PD_IOMMUV2_MASK) {
1855                u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1856                u64 glx  = domain->glx;
1857                u64 tmp;
1858
1859                pte_root |= DTE_FLAG_GV;
1860                pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1861
1862                /* First mask out possible old values for GCR3 table */
1863                tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1864                flags    &= ~tmp;
1865
1866                tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1867                flags    &= ~tmp;
1868
1869                /* Encode GCR3 table into DTE */
1870                tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1871                pte_root |= tmp;
1872
1873                tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1874                flags    |= tmp;
1875
1876                tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1877                flags    |= tmp;
1878        }
1879
1880        flags &= ~DEV_DOMID_MASK;
1881        flags |= domain->id;
1882
1883        amd_iommu_dev_table[devid].data[1]  = flags;
1884        amd_iommu_dev_table[devid].data[0]  = pte_root;
1885}
1886
1887static void clear_dte_entry(u16 devid)
1888{
1889        /* remove entry from the device table seen by the hardware */
1890        amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1891        amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1892
1893        amd_iommu_apply_erratum_63(devid);
1894}
1895
1896static void do_attach(struct iommu_dev_data *dev_data,
1897                      struct protection_domain *domain)
1898{
1899        struct amd_iommu *iommu;
1900        u16 alias;
1901        bool ats;
1902
1903        iommu = amd_iommu_rlookup_table[dev_data->devid];
1904        alias = dev_data->alias;
1905        ats   = dev_data->ats.enabled;
1906
1907        /* Update data structures */
1908        dev_data->domain = domain;
1909        list_add(&dev_data->list, &domain->dev_list);
1910
1911        /* Do reference counting */
1912        domain->dev_iommu[iommu->index] += 1;
1913        domain->dev_cnt                 += 1;
1914
1915        /* Update device table */
1916        set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1917        if (alias != dev_data->devid)
1918                set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1919
1920        device_flush_dte(dev_data);
1921}
1922
1923static void do_detach(struct iommu_dev_data *dev_data)
1924{
1925        struct amd_iommu *iommu;
1926        u16 alias;
1927
1928        iommu = amd_iommu_rlookup_table[dev_data->devid];
1929        alias = dev_data->alias;
1930
1931        /* decrease reference counters */
1932        dev_data->domain->dev_iommu[iommu->index] -= 1;
1933        dev_data->domain->dev_cnt                 -= 1;
1934
1935        /* Update data structures */
1936        dev_data->domain = NULL;
1937        list_del(&dev_data->list);
1938        clear_dte_entry(dev_data->devid);
1939        if (alias != dev_data->devid)
1940                clear_dte_entry(alias);
1941
1942        /* Flush the DTE entry */
1943        device_flush_dte(dev_data);
1944}
1945
1946/*
1947 * If a device is not yet associated with a domain, this function makes the
1948 * device visible in the domain
1949 */
1950static int __attach_device(struct iommu_dev_data *dev_data,
1951                           struct protection_domain *domain)
1952{
1953        int ret;
1954
1955        /* lock domain */
1956        spin_lock(&domain->lock);
1957
1958        ret = -EBUSY;
1959        if (dev_data->domain != NULL)
1960                goto out_unlock;
1961
1962        /* Attach alias group root */
1963        do_attach(dev_data, domain);
1964
1965        ret = 0;
1966
1967out_unlock:
1968
1969        /* ready */
1970        spin_unlock(&domain->lock);
1971
1972        return ret;
1973}
1974
1975
1976static void pdev_iommuv2_disable(struct pci_dev *pdev)
1977{
1978        pci_disable_ats(pdev);
1979        pci_disable_pri(pdev);
1980        pci_disable_pasid(pdev);
1981}
1982
1983/* FIXME: Change generic reset-function to do the same */
1984static int pri_reset_while_enabled(struct pci_dev *pdev)
1985{
1986        u16 control;
1987        int pos;
1988
1989        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1990        if (!pos)
1991                return -EINVAL;
1992
1993        pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1994        control |= PCI_PRI_CTRL_RESET;
1995        pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1996
1997        return 0;
1998}
1999
2000static int pdev_iommuv2_enable(struct pci_dev *pdev)
2001{
2002        bool reset_enable;
2003        int reqs, ret;
2004
2005        /* FIXME: Hardcode number of outstanding requests for now */
2006        reqs = 32;
2007        if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2008                reqs = 1;
2009        reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2010
2011        /* Only allow access to user-accessible pages */
2012        ret = pci_enable_pasid(pdev, 0);
2013        if (ret)
2014                goto out_err;
2015
2016        /* First reset the PRI state of the device */
2017        ret = pci_reset_pri(pdev);
2018        if (ret)
2019                goto out_err;
2020
2021        /* Enable PRI */
2022        ret = pci_enable_pri(pdev, reqs);
2023        if (ret)
2024                goto out_err;
2025
2026        if (reset_enable) {
2027                ret = pri_reset_while_enabled(pdev);
2028                if (ret)
2029                        goto out_err;
2030        }
2031
2032        ret = pci_enable_ats(pdev, PAGE_SHIFT);
2033        if (ret)
2034                goto out_err;
2035
2036        return 0;
2037
2038out_err:
2039        pci_disable_pri(pdev);
2040        pci_disable_pasid(pdev);
2041
2042        return ret;
2043}
2044
2045/* FIXME: Move this to PCI code */
2046#define PCI_PRI_TLP_OFF         (1 << 15)
2047
2048static bool pci_pri_tlp_required(struct pci_dev *pdev)
2049{
2050        u16 status;
2051        int pos;
2052
2053        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2054        if (!pos)
2055                return false;
2056
2057        pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2058
2059        return (status & PCI_PRI_TLP_OFF) ? true : false;
2060}
2061
2062/*
2063 * If a device is not yet associated with a domain, this function makes the
2064 * device visible in the domain
2065 */
2066static int attach_device(struct device *dev,
2067                         struct protection_domain *domain)
2068{
2069        struct pci_dev *pdev;
2070        struct iommu_dev_data *dev_data;
2071        unsigned long flags;
2072        int ret;
2073
2074        dev_data = get_dev_data(dev);
2075
2076        if (!dev_is_pci(dev))
2077                goto skip_ats_check;
2078
2079        pdev = to_pci_dev(dev);
2080        if (domain->flags & PD_IOMMUV2_MASK) {
2081                if (!dev_data->passthrough)
2082                        return -EINVAL;
2083
2084                if (dev_data->iommu_v2) {
2085                        if (pdev_iommuv2_enable(pdev) != 0)
2086                                return -EINVAL;
2087
2088                        dev_data->ats.enabled = true;
2089                        dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2090                        dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2091                }
2092        } else if (amd_iommu_iotlb_sup &&
2093                   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2094                dev_data->ats.enabled = true;
2095                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2096        }
2097
2098skip_ats_check:
2099        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2100        ret = __attach_device(dev_data, domain);
2101        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2102
2103        /*
2104         * We might boot into a crash-kernel here. The crashed kernel
2105         * left the caches in the IOMMU dirty. So we have to flush
2106         * here to evict all dirty stuff.
2107         */
2108        domain_flush_tlb_pde(domain);
2109
2110        return ret;
2111}
2112
2113/*
2114 * Removes a device from a protection domain (unlocked)
2115 */
2116static void __detach_device(struct iommu_dev_data *dev_data)
2117{
2118        struct protection_domain *domain;
2119
2120        domain = dev_data->domain;
2121
2122        spin_lock(&domain->lock);
2123
2124        do_detach(dev_data);
2125
2126        spin_unlock(&domain->lock);
2127}
2128
2129/*
2130 * Removes a device from a protection domain (with devtable_lock held)
2131 */
2132static void detach_device(struct device *dev)
2133{
2134        struct protection_domain *domain;
2135        struct iommu_dev_data *dev_data;
2136        unsigned long flags;
2137
2138        dev_data = get_dev_data(dev);
2139        domain   = dev_data->domain;
2140
2141        /*
2142         * First check if the device is still attached. It might already
2143         * be detached from its domain because the generic
2144         * iommu_detach_group code detached it and we try again here in
2145         * our alias handling.
2146         */
2147        if (WARN_ON(!dev_data->domain))
2148                return;
2149
2150        /* lock device table */
2151        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2152        __detach_device(dev_data);
2153        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2154
2155        if (!dev_is_pci(dev))
2156                return;
2157
2158        if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2159                pdev_iommuv2_disable(to_pci_dev(dev));
2160        else if (dev_data->ats.enabled)
2161                pci_disable_ats(to_pci_dev(dev));
2162
2163        dev_data->ats.enabled = false;
2164}
2165
2166static int amd_iommu_add_device(struct device *dev)
2167{
2168        struct iommu_dev_data *dev_data;
2169        struct iommu_domain *domain;
2170        struct amd_iommu *iommu;
2171        int ret, devid;
2172
2173        if (!check_device(dev) || get_dev_data(dev))
2174                return 0;
2175
2176        devid = get_device_id(dev);
2177        if (devid < 0)
2178                return devid;
2179
2180        iommu = amd_iommu_rlookup_table[devid];
2181
2182        ret = iommu_init_device(dev);
2183        if (ret) {
2184                if (ret != -ENOTSUPP)
2185                        pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2186                                dev_name(dev));
2187
2188                iommu_ignore_device(dev);
2189                dev->dma_ops = &dma_direct_ops;
2190                goto out;
2191        }
2192        init_iommu_group(dev);
2193
2194        dev_data = get_dev_data(dev);
2195
2196        BUG_ON(!dev_data);
2197
2198        if (iommu_pass_through || dev_data->iommu_v2)
2199                iommu_request_dm_for_dev(dev);
2200
2201        /* Domains are initialized for this device - have a look what we ended up with */
2202        domain = iommu_get_domain_for_dev(dev);
2203        if (domain->type == IOMMU_DOMAIN_IDENTITY)
2204                dev_data->passthrough = true;
2205        else
2206                dev->dma_ops = &amd_iommu_dma_ops;
2207
2208out:
2209        iommu_completion_wait(iommu);
2210
2211        return 0;
2212}
2213
2214static void amd_iommu_remove_device(struct device *dev)
2215{
2216        struct amd_iommu *iommu;
2217        int devid;
2218
2219        if (!check_device(dev))
2220                return;
2221
2222        devid = get_device_id(dev);
2223        if (devid < 0)
2224                return;
2225
2226        iommu = amd_iommu_rlookup_table[devid];
2227
2228        iommu_uninit_device(dev);
2229        iommu_completion_wait(iommu);
2230}
2231
2232static struct iommu_group *amd_iommu_device_group(struct device *dev)
2233{
2234        if (dev_is_pci(dev))
2235                return pci_device_group(dev);
2236
2237        return acpihid_device_group(dev);
2238}
2239
2240/*****************************************************************************
2241 *
2242 * The next functions belong to the dma_ops mapping/unmapping code.
2243 *
2244 *****************************************************************************/
2245
2246/*
2247 * In the dma_ops path we only have the struct device. This function
2248 * finds the corresponding IOMMU, the protection domain and the
2249 * requestor id for a given device.
2250 * If the device is not yet associated with a domain this is also done
2251 * in this function.
2252 */
2253static struct protection_domain *get_domain(struct device *dev)
2254{
2255        struct protection_domain *domain;
2256        struct iommu_domain *io_domain;
2257
2258        if (!check_device(dev))
2259                return ERR_PTR(-EINVAL);
2260
2261        domain = get_dev_data(dev)->domain;
2262        if (domain == NULL && get_dev_data(dev)->defer_attach) {
2263                get_dev_data(dev)->defer_attach = false;
2264                io_domain = iommu_get_domain_for_dev(dev);
2265                domain = to_pdomain(io_domain);
2266                attach_device(dev, domain);
2267        }
2268        if (domain == NULL)
2269                return ERR_PTR(-EBUSY);
2270
2271        if (!dma_ops_domain(domain))
2272                return ERR_PTR(-EBUSY);
2273
2274        return domain;
2275}
2276
2277static void update_device_table(struct protection_domain *domain)
2278{
2279        struct iommu_dev_data *dev_data;
2280
2281        list_for_each_entry(dev_data, &domain->dev_list, list) {
2282                set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2283                              dev_data->iommu_v2);
2284
2285                if (dev_data->devid == dev_data->alias)
2286                        continue;
2287
2288                /* There is an alias, update device table entry for it */
2289                set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2290                              dev_data->iommu_v2);
2291        }
2292}
2293
2294static void update_domain(struct protection_domain *domain)
2295{
2296        if (!domain->updated)
2297                return;
2298
2299        update_device_table(domain);
2300
2301        domain_flush_devices(domain);
2302        domain_flush_tlb_pde(domain);
2303
2304        domain->updated = false;
2305}
2306
2307static int dir2prot(enum dma_data_direction direction)
2308{
2309        if (direction == DMA_TO_DEVICE)
2310                return IOMMU_PROT_IR;
2311        else if (direction == DMA_FROM_DEVICE)
2312                return IOMMU_PROT_IW;
2313        else if (direction == DMA_BIDIRECTIONAL)
2314                return IOMMU_PROT_IW | IOMMU_PROT_IR;
2315        else
2316                return 0;
2317}
2318
2319/*
2320 * This function contains common code for mapping of a physically
2321 * contiguous memory region into DMA address space. It is used by all
2322 * mapping functions provided with this IOMMU driver.
2323 * Must be called with the domain lock held.
2324 */
2325static dma_addr_t __map_single(struct device *dev,
2326                               struct dma_ops_domain *dma_dom,
2327                               phys_addr_t paddr,
2328                               size_t size,
2329                               enum dma_data_direction direction,
2330                               u64 dma_mask)
2331{
2332        dma_addr_t offset = paddr & ~PAGE_MASK;
2333        dma_addr_t address, start, ret;
2334        unsigned int pages;
2335        int prot = 0;
2336        int i;
2337
2338        pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2339        paddr &= PAGE_MASK;
2340
2341        address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2342        if (address == AMD_IOMMU_MAPPING_ERROR)
2343                goto out;
2344
2345        prot = dir2prot(direction);
2346
2347        start = address;
2348        for (i = 0; i < pages; ++i) {
2349                ret = iommu_map_page(&dma_dom->domain, start, paddr,
2350                                     PAGE_SIZE, prot, GFP_ATOMIC);
2351                if (ret)
2352                        goto out_unmap;
2353
2354                paddr += PAGE_SIZE;
2355                start += PAGE_SIZE;
2356        }
2357        address += offset;
2358
2359        if (unlikely(amd_iommu_np_cache)) {
2360                domain_flush_pages(&dma_dom->domain, address, size);
2361                domain_flush_complete(&dma_dom->domain);
2362        }
2363
2364out:
2365        return address;
2366
2367out_unmap:
2368
2369        for (--i; i >= 0; --i) {
2370                start -= PAGE_SIZE;
2371                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2372        }
2373
2374        domain_flush_tlb(&dma_dom->domain);
2375        domain_flush_complete(&dma_dom->domain);
2376
2377        dma_ops_free_iova(dma_dom, address, pages);
2378
2379        return AMD_IOMMU_MAPPING_ERROR;
2380}
2381
2382/*
2383 * Does the reverse of the __map_single function. Must be called with
2384 * the domain lock held too
2385 */
2386static void __unmap_single(struct dma_ops_domain *dma_dom,
2387                           dma_addr_t dma_addr,
2388                           size_t size,
2389                           int dir)
2390{
2391        dma_addr_t i, start;
2392        unsigned int pages;
2393
2394        pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2395        dma_addr &= PAGE_MASK;
2396        start = dma_addr;
2397
2398        for (i = 0; i < pages; ++i) {
2399                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2400                start += PAGE_SIZE;
2401        }
2402
2403        if (amd_iommu_unmap_flush) {
2404                domain_flush_tlb(&dma_dom->domain);
2405                domain_flush_complete(&dma_dom->domain);
2406                dma_ops_free_iova(dma_dom, dma_addr, pages);
2407        } else {
2408                pages = __roundup_pow_of_two(pages);
2409                queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2410        }
2411}
2412
2413/*
2414 * The exported map_single function for dma_ops.
2415 */
2416static dma_addr_t map_page(struct device *dev, struct page *page,
2417                           unsigned long offset, size_t size,
2418                           enum dma_data_direction dir,
2419                           unsigned long attrs)
2420{
2421        phys_addr_t paddr = page_to_phys(page) + offset;
2422        struct protection_domain *domain;
2423        struct dma_ops_domain *dma_dom;
2424        u64 dma_mask;
2425
2426        domain = get_domain(dev);
2427        if (PTR_ERR(domain) == -EINVAL)
2428                return (dma_addr_t)paddr;
2429        else if (IS_ERR(domain))
2430                return AMD_IOMMU_MAPPING_ERROR;
2431
2432        dma_mask = *dev->dma_mask;
2433        dma_dom = to_dma_ops_domain(domain);
2434
2435        return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2436}
2437
2438/*
2439 * The exported unmap_single function for dma_ops.
2440 */
2441static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2442                       enum dma_data_direction dir, unsigned long attrs)
2443{
2444        struct protection_domain *domain;
2445        struct dma_ops_domain *dma_dom;
2446
2447        domain = get_domain(dev);
2448        if (IS_ERR(domain))
2449                return;
2450
2451        dma_dom = to_dma_ops_domain(domain);
2452
2453        __unmap_single(dma_dom, dma_addr, size, dir);
2454}
2455
2456static int sg_num_pages(struct device *dev,
2457                        struct scatterlist *sglist,
2458                        int nelems)
2459{
2460        unsigned long mask, boundary_size;
2461        struct scatterlist *s;
2462        int i, npages = 0;
2463
2464        mask          = dma_get_seg_boundary(dev);
2465        boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2466                                   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2467
2468        for_each_sg(sglist, s, nelems, i) {
2469                int p, n;
2470
2471                s->dma_address = npages << PAGE_SHIFT;
2472                p = npages % boundary_size;
2473                n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2474                if (p + n > boundary_size)
2475                        npages += boundary_size - p;
2476                npages += n;
2477        }
2478
2479        return npages;
2480}
2481
2482/*
2483 * The exported map_sg function for dma_ops (handles scatter-gather
2484 * lists).
2485 */
2486static int map_sg(struct device *dev, struct scatterlist *sglist,
2487                  int nelems, enum dma_data_direction direction,
2488                  unsigned long attrs)
2489{
2490        int mapped_pages = 0, npages = 0, prot = 0, i;
2491        struct protection_domain *domain;
2492        struct dma_ops_domain *dma_dom;
2493        struct scatterlist *s;
2494        unsigned long address;
2495        u64 dma_mask;
2496
2497        domain = get_domain(dev);
2498        if (IS_ERR(domain))
2499                return 0;
2500
2501        dma_dom  = to_dma_ops_domain(domain);
2502        dma_mask = *dev->dma_mask;
2503
2504        npages = sg_num_pages(dev, sglist, nelems);
2505
2506        address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2507        if (address == AMD_IOMMU_MAPPING_ERROR)
2508                goto out_err;
2509
2510        prot = dir2prot(direction);
2511
2512        /* Map all sg entries */
2513        for_each_sg(sglist, s, nelems, i) {
2514                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2515
2516                for (j = 0; j < pages; ++j) {
2517                        unsigned long bus_addr, phys_addr;
2518                        int ret;
2519
2520                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2521                        phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2522                        ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2523                        if (ret)
2524                                goto out_unmap;
2525
2526                        mapped_pages += 1;
2527                }
2528        }
2529
2530        /* Everything is mapped - write the right values into s->dma_address */
2531        for_each_sg(sglist, s, nelems, i) {
2532                s->dma_address += address + s->offset;
2533                s->dma_length   = s->length;
2534        }
2535
2536        return nelems;
2537
2538out_unmap:
2539        pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2540               dev_name(dev), npages);
2541
2542        for_each_sg(sglist, s, nelems, i) {
2543                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2544
2545                for (j = 0; j < pages; ++j) {
2546                        unsigned long bus_addr;
2547
2548                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2549                        iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2550
2551                        if (--mapped_pages)
2552                                goto out_free_iova;
2553                }
2554        }
2555
2556out_free_iova:
2557        free_iova_fast(&dma_dom->iovad, address, npages);
2558
2559out_err:
2560        return 0;
2561}
2562
2563/*
2564 * The exported map_sg function for dma_ops (handles scatter-gather
2565 * lists).
2566 */
2567static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2568                     int nelems, enum dma_data_direction dir,
2569                     unsigned long attrs)
2570{
2571        struct protection_domain *domain;
2572        struct dma_ops_domain *dma_dom;
2573        unsigned long startaddr;
2574        int npages = 2;
2575
2576        domain = get_domain(dev);
2577        if (IS_ERR(domain))
2578                return;
2579
2580        startaddr = sg_dma_address(sglist) & PAGE_MASK;
2581        dma_dom   = to_dma_ops_domain(domain);
2582        npages    = sg_num_pages(dev, sglist, nelems);
2583
2584        __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2585}
2586
2587/*
2588 * The exported alloc_coherent function for dma_ops.
2589 */
2590static void *alloc_coherent(struct device *dev, size_t size,
2591                            dma_addr_t *dma_addr, gfp_t flag,
2592                            unsigned long attrs)
2593{
2594        u64 dma_mask = dev->coherent_dma_mask;
2595        struct protection_domain *domain;
2596        struct dma_ops_domain *dma_dom;
2597        struct page *page;
2598
2599        domain = get_domain(dev);
2600        if (PTR_ERR(domain) == -EINVAL) {
2601                page = alloc_pages(flag, get_order(size));
2602                *dma_addr = page_to_phys(page);
2603                return page_address(page);
2604        } else if (IS_ERR(domain))
2605                return NULL;
2606
2607        dma_dom   = to_dma_ops_domain(domain);
2608        size      = PAGE_ALIGN(size);
2609        dma_mask  = dev->coherent_dma_mask;
2610        flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2611        flag     |= __GFP_ZERO;
2612
2613        page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2614        if (!page) {
2615                if (!gfpflags_allow_blocking(flag))
2616                        return NULL;
2617
2618                page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2619                                        get_order(size), flag & __GFP_NOWARN);
2620                if (!page)
2621                        return NULL;
2622        }
2623
2624        if (!dma_mask)
2625                dma_mask = *dev->dma_mask;
2626
2627        *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2628                                 size, DMA_BIDIRECTIONAL, dma_mask);
2629
2630        if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2631                goto out_free;
2632
2633        return page_address(page);
2634
2635out_free:
2636
2637        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2638                __free_pages(page, get_order(size));
2639
2640        return NULL;
2641}
2642
2643/*
2644 * The exported free_coherent function for dma_ops.
2645 */
2646static void free_coherent(struct device *dev, size_t size,
2647                          void *virt_addr, dma_addr_t dma_addr,
2648                          unsigned long attrs)
2649{
2650        struct protection_domain *domain;
2651        struct dma_ops_domain *dma_dom;
2652        struct page *page;
2653
2654        page = virt_to_page(virt_addr);
2655        size = PAGE_ALIGN(size);
2656
2657        domain = get_domain(dev);
2658        if (IS_ERR(domain))
2659                goto free_mem;
2660
2661        dma_dom = to_dma_ops_domain(domain);
2662
2663        __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2664
2665free_mem:
2666        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2667                __free_pages(page, get_order(size));
2668}
2669
2670/*
2671 * This function is called by the DMA layer to find out if we can handle a
2672 * particular device. It is part of the dma_ops.
2673 */
2674static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2675{
2676        if (!dma_direct_supported(dev, mask))
2677                return 0;
2678        return check_device(dev);
2679}
2680
2681static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2682{
2683        return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2684}
2685
2686static const struct dma_map_ops amd_iommu_dma_ops = {
2687        .alloc          = alloc_coherent,
2688        .free           = free_coherent,
2689        .map_page       = map_page,
2690        .unmap_page     = unmap_page,
2691        .map_sg         = map_sg,
2692        .unmap_sg       = unmap_sg,
2693        .dma_supported  = amd_iommu_dma_supported,
2694        .mapping_error  = amd_iommu_mapping_error,
2695};
2696
2697static int init_reserved_iova_ranges(void)
2698{
2699        struct pci_dev *pdev = NULL;
2700        struct iova *val;
2701
2702        init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2703
2704        lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2705                          &reserved_rbtree_key);
2706
2707        /* MSI memory range */
2708        val = reserve_iova(&reserved_iova_ranges,
2709                           IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2710        if (!val) {
2711                pr_err("Reserving MSI range failed\n");
2712                return -ENOMEM;
2713        }
2714
2715        /* HT memory range */
2716        val = reserve_iova(&reserved_iova_ranges,
2717                           IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2718        if (!val) {
2719                pr_err("Reserving HT range failed\n");
2720                return -ENOMEM;
2721        }
2722
2723        /*
2724         * Memory used for PCI resources
2725         * FIXME: Check whether we can reserve the PCI-hole completly
2726         */
2727        for_each_pci_dev(pdev) {
2728                int i;
2729
2730                for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2731                        struct resource *r = &pdev->resource[i];
2732
2733                        if (!(r->flags & IORESOURCE_MEM))
2734                                continue;
2735
2736                        val = reserve_iova(&reserved_iova_ranges,
2737                                           IOVA_PFN(r->start),
2738                                           IOVA_PFN(r->end));
2739                        if (!val) {
2740                                pr_err("Reserve pci-resource range failed\n");
2741                                return -ENOMEM;
2742                        }
2743                }
2744        }
2745
2746        return 0;
2747}
2748
2749int __init amd_iommu_init_api(void)
2750{
2751        int ret, err = 0;
2752
2753        ret = iova_cache_get();
2754        if (ret)
2755                return ret;
2756
2757        ret = init_reserved_iova_ranges();
2758        if (ret)
2759                return ret;
2760
2761        err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2762        if (err)
2763                return err;
2764#ifdef CONFIG_ARM_AMBA
2765        err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2766        if (err)
2767                return err;
2768#endif
2769        err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2770        if (err)
2771                return err;
2772
2773        return 0;
2774}
2775
2776int __init amd_iommu_init_dma_ops(void)
2777{
2778        swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2779        iommu_detected = 1;
2780
2781        /*
2782         * In case we don't initialize SWIOTLB (actually the common case
2783         * when AMD IOMMU is enabled and SME is not active), make sure there
2784         * are global dma_ops set as a fall-back for devices not handled by
2785         * this driver (for example non-PCI devices). When SME is active,
2786         * make sure that swiotlb variable remains set so the global dma_ops
2787         * continue to be SWIOTLB.
2788         */
2789        if (!swiotlb)
2790                dma_ops = &dma_direct_ops;
2791
2792        if (amd_iommu_unmap_flush)
2793                pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2794        else
2795                pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2796
2797        return 0;
2798
2799}
2800
2801/*****************************************************************************
2802 *
2803 * The following functions belong to the exported interface of AMD IOMMU
2804 *
2805 * This interface allows access to lower level functions of the IOMMU
2806 * like protection domain handling and assignement of devices to domains
2807 * which is not possible with the dma_ops interface.
2808 *
2809 *****************************************************************************/
2810
2811static void cleanup_domain(struct protection_domain *domain)
2812{
2813        struct iommu_dev_data *entry;
2814        unsigned long flags;
2815
2816        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2817
2818        while (!list_empty(&domain->dev_list)) {
2819                entry = list_first_entry(&domain->dev_list,
2820                                         struct iommu_dev_data, list);
2821                BUG_ON(!entry->domain);
2822                __detach_device(entry);
2823        }
2824
2825        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2826}
2827
2828static void protection_domain_free(struct protection_domain *domain)
2829{
2830        if (!domain)
2831                return;
2832
2833        del_domain_from_list(domain);
2834
2835        if (domain->id)
2836                domain_id_free(domain->id);
2837
2838        kfree(domain);
2839}
2840
2841static int protection_domain_init(struct protection_domain *domain)
2842{
2843        spin_lock_init(&domain->lock);
2844        mutex_init(&domain->api_lock);
2845        domain->id = domain_id_alloc();
2846        if (!domain->id)
2847                return -ENOMEM;
2848        INIT_LIST_HEAD(&domain->dev_list);
2849
2850        return 0;
2851}
2852
2853static struct protection_domain *protection_domain_alloc(void)
2854{
2855        struct protection_domain *domain;
2856
2857        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2858        if (!domain)
2859                return NULL;
2860
2861        if (protection_domain_init(domain))
2862                goto out_err;
2863
2864        add_domain_to_list(domain);
2865
2866        return domain;
2867
2868out_err:
2869        kfree(domain);
2870
2871        return NULL;
2872}
2873
2874static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2875{
2876        struct protection_domain *pdomain;
2877        struct dma_ops_domain *dma_domain;
2878
2879        switch (type) {
2880        case IOMMU_DOMAIN_UNMANAGED:
2881                pdomain = protection_domain_alloc();
2882                if (!pdomain)
2883                        return NULL;
2884
2885                pdomain->mode    = PAGE_MODE_3_LEVEL;
2886                pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2887                if (!pdomain->pt_root) {
2888                        protection_domain_free(pdomain);
2889                        return NULL;
2890                }
2891
2892                pdomain->domain.geometry.aperture_start = 0;
2893                pdomain->domain.geometry.aperture_end   = ~0ULL;
2894                pdomain->domain.geometry.force_aperture = true;
2895
2896                break;
2897        case IOMMU_DOMAIN_DMA:
2898                dma_domain = dma_ops_domain_alloc();
2899                if (!dma_domain) {
2900                        pr_err("AMD-Vi: Failed to allocate\n");
2901                        return NULL;
2902                }
2903                pdomain = &dma_domain->domain;
2904                break;
2905        case IOMMU_DOMAIN_IDENTITY:
2906                pdomain = protection_domain_alloc();
2907                if (!pdomain)
2908                        return NULL;
2909
2910                pdomain->mode = PAGE_MODE_NONE;
2911                break;
2912        default:
2913                return NULL;
2914        }
2915
2916        return &pdomain->domain;
2917}
2918
2919static void amd_iommu_domain_free(struct iommu_domain *dom)
2920{
2921        struct protection_domain *domain;
2922        struct dma_ops_domain *dma_dom;
2923
2924        domain = to_pdomain(dom);
2925
2926        if (domain->dev_cnt > 0)
2927                cleanup_domain(domain);
2928
2929        BUG_ON(domain->dev_cnt != 0);
2930
2931        if (!dom)
2932                return;
2933
2934        switch (dom->type) {
2935        case IOMMU_DOMAIN_DMA:
2936                /* Now release the domain */
2937                dma_dom = to_dma_ops_domain(domain);
2938                dma_ops_domain_free(dma_dom);
2939                break;
2940        default:
2941                if (domain->mode != PAGE_MODE_NONE)
2942                        free_pagetable(domain);
2943
2944                if (domain->flags & PD_IOMMUV2_MASK)
2945                        free_gcr3_table(domain);
2946
2947                protection_domain_free(domain);
2948                break;
2949        }
2950}
2951
2952static void amd_iommu_detach_device(struct iommu_domain *dom,
2953                                    struct device *dev)
2954{
2955        struct iommu_dev_data *dev_data = dev->archdata.iommu;
2956        struct amd_iommu *iommu;
2957        int devid;
2958
2959        if (!check_device(dev))
2960                return;
2961
2962        devid = get_device_id(dev);
2963        if (devid < 0)
2964                return;
2965
2966        if (dev_data->domain != NULL)
2967                detach_device(dev);
2968
2969        iommu = amd_iommu_rlookup_table[devid];
2970        if (!iommu)
2971                return;
2972
2973#ifdef CONFIG_IRQ_REMAP
2974        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2975            (dom->type == IOMMU_DOMAIN_UNMANAGED))
2976                dev_data->use_vapic = 0;
2977#endif
2978
2979        iommu_completion_wait(iommu);
2980}
2981
2982static int amd_iommu_attach_device(struct iommu_domain *dom,
2983                                   struct device *dev)
2984{
2985        struct protection_domain *domain = to_pdomain(dom);
2986        struct iommu_dev_data *dev_data;
2987        struct amd_iommu *iommu;
2988        int ret;
2989
2990        if (!check_device(dev))
2991                return -EINVAL;
2992
2993        dev_data = dev->archdata.iommu;
2994
2995        iommu = amd_iommu_rlookup_table[dev_data->devid];
2996        if (!iommu)
2997                return -EINVAL;
2998
2999        if (dev_data->domain)
3000                detach_device(dev);
3001
3002        ret = attach_device(dev, domain);
3003
3004#ifdef CONFIG_IRQ_REMAP
3005        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3006                if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3007                        dev_data->use_vapic = 1;
3008                else
3009                        dev_data->use_vapic = 0;
3010        }
3011#endif
3012
3013        iommu_completion_wait(iommu);
3014
3015        return ret;
3016}
3017
3018static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3019                         phys_addr_t paddr, size_t page_size, int iommu_prot)
3020{
3021        struct protection_domain *domain = to_pdomain(dom);
3022        int prot = 0;
3023        int ret;
3024
3025        if (domain->mode == PAGE_MODE_NONE)
3026                return -EINVAL;
3027
3028        if (iommu_prot & IOMMU_READ)
3029                prot |= IOMMU_PROT_IR;
3030        if (iommu_prot & IOMMU_WRITE)
3031                prot |= IOMMU_PROT_IW;
3032
3033        mutex_lock(&domain->api_lock);
3034        ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3035        mutex_unlock(&domain->api_lock);
3036
3037        return ret;
3038}
3039
3040static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3041                           size_t page_size)
3042{
3043        struct protection_domain *domain = to_pdomain(dom);
3044        size_t unmap_size;
3045
3046        if (domain->mode == PAGE_MODE_NONE)
3047                return 0;
3048
3049        mutex_lock(&domain->api_lock);
3050        unmap_size = iommu_unmap_page(domain, iova, page_size);
3051        mutex_unlock(&domain->api_lock);
3052
3053        return unmap_size;
3054}
3055
3056static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3057                                          dma_addr_t iova)
3058{
3059        struct protection_domain *domain = to_pdomain(dom);
3060        unsigned long offset_mask, pte_pgsize;
3061        u64 *pte, __pte;
3062
3063        if (domain->mode == PAGE_MODE_NONE)
3064                return iova;
3065
3066        pte = fetch_pte(domain, iova, &pte_pgsize);
3067
3068        if (!pte || !IOMMU_PTE_PRESENT(*pte))
3069                return 0;
3070
3071        offset_mask = pte_pgsize - 1;
3072        __pte       = __sme_clr(*pte & PM_ADDR_MASK);
3073
3074        return (__pte & ~offset_mask) | (iova & offset_mask);
3075}
3076
3077static bool amd_iommu_capable(enum iommu_cap cap)
3078{
3079        switch (cap) {
3080        case IOMMU_CAP_CACHE_COHERENCY:
3081                return true;
3082        case IOMMU_CAP_INTR_REMAP:
3083                return (irq_remapping_enabled == 1);
3084        case IOMMU_CAP_NOEXEC:
3085                return false;
3086        }
3087
3088        return false;
3089}
3090
3091static void amd_iommu_get_resv_regions(struct device *dev,
3092                                       struct list_head *head)
3093{
3094        struct iommu_resv_region *region;
3095        struct unity_map_entry *entry;
3096        int devid;
3097
3098        devid = get_device_id(dev);
3099        if (devid < 0)
3100                return;
3101
3102        list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3103                size_t length;
3104                int prot = 0;
3105
3106                if (devid < entry->devid_start || devid > entry->devid_end)
3107                        continue;
3108
3109                length = entry->address_end - entry->address_start;
3110                if (entry->prot & IOMMU_PROT_IR)
3111                        prot |= IOMMU_READ;
3112                if (entry->prot & IOMMU_PROT_IW)
3113                        prot |= IOMMU_WRITE;
3114
3115                region = iommu_alloc_resv_region(entry->address_start,
3116                                                 length, prot,
3117                                                 IOMMU_RESV_DIRECT);
3118                if (!region) {
3119                        pr_err("Out of memory allocating dm-regions for %s\n",
3120                                dev_name(dev));
3121                        return;
3122                }
3123                list_add_tail(&region->list, head);
3124        }
3125
3126        region = iommu_alloc_resv_region(MSI_RANGE_START,
3127                                         MSI_RANGE_END - MSI_RANGE_START + 1,
3128                                         0, IOMMU_RESV_MSI);
3129        if (!region)
3130                return;
3131        list_add_tail(&region->list, head);
3132
3133        region = iommu_alloc_resv_region(HT_RANGE_START,
3134                                         HT_RANGE_END - HT_RANGE_START + 1,
3135                                         0, IOMMU_RESV_RESERVED);
3136        if (!region)
3137                return;
3138        list_add_tail(&region->list, head);
3139}
3140
3141static void amd_iommu_put_resv_regions(struct device *dev,
3142                                     struct list_head *head)
3143{
3144        struct iommu_resv_region *entry, *next;
3145
3146        list_for_each_entry_safe(entry, next, head, list)
3147                kfree(entry);
3148}
3149
3150static void amd_iommu_apply_resv_region(struct device *dev,
3151                                      struct iommu_domain *domain,
3152                                      struct iommu_resv_region *region)
3153{
3154        struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3155        unsigned long start, end;
3156
3157        start = IOVA_PFN(region->start);
3158        end   = IOVA_PFN(region->start + region->length - 1);
3159
3160        WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3161}
3162
3163static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3164                                         struct device *dev)
3165{
3166        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3167        return dev_data->defer_attach;
3168}
3169
3170static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3171{
3172        struct protection_domain *dom = to_pdomain(domain);
3173
3174        domain_flush_tlb_pde(dom);
3175        domain_flush_complete(dom);
3176}
3177
3178static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3179                                      unsigned long iova, size_t size)
3180{
3181}
3182
3183const struct iommu_ops amd_iommu_ops = {
3184        .capable = amd_iommu_capable,
3185        .domain_alloc = amd_iommu_domain_alloc,
3186        .domain_free  = amd_iommu_domain_free,
3187        .attach_dev = amd_iommu_attach_device,
3188        .detach_dev = amd_iommu_detach_device,
3189        .map = amd_iommu_map,
3190        .unmap = amd_iommu_unmap,
3191        .iova_to_phys = amd_iommu_iova_to_phys,
3192        .add_device = amd_iommu_add_device,
3193        .remove_device = amd_iommu_remove_device,
3194        .device_group = amd_iommu_device_group,
3195        .get_resv_regions = amd_iommu_get_resv_regions,
3196        .put_resv_regions = amd_iommu_put_resv_regions,
3197        .apply_resv_region = amd_iommu_apply_resv_region,
3198        .is_attach_deferred = amd_iommu_is_attach_deferred,
3199        .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
3200        .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3201        .iotlb_range_add = amd_iommu_iotlb_range_add,
3202        .iotlb_sync = amd_iommu_flush_iotlb_all,
3203};
3204
3205/*****************************************************************************
3206 *
3207 * The next functions do a basic initialization of IOMMU for pass through
3208 * mode
3209 *
3210 * In passthrough mode the IOMMU is initialized and enabled but not used for
3211 * DMA-API translation.
3212 *
3213 *****************************************************************************/
3214
3215/* IOMMUv2 specific functions */
3216int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3217{
3218        return atomic_notifier_chain_register(&ppr_notifier, nb);
3219}
3220EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3221
3222int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3223{
3224        return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3225}
3226EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3227
3228void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3229{
3230        struct protection_domain *domain = to_pdomain(dom);
3231        unsigned long flags;
3232
3233        spin_lock_irqsave(&domain->lock, flags);
3234
3235        /* Update data structure */
3236        domain->mode    = PAGE_MODE_NONE;
3237        domain->updated = true;
3238
3239        /* Make changes visible to IOMMUs */
3240        update_domain(domain);
3241
3242        /* Page-table is not visible to IOMMU anymore, so free it */
3243        free_pagetable(domain);
3244
3245        spin_unlock_irqrestore(&domain->lock, flags);
3246}
3247EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3248
3249int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3250{
3251        struct protection_domain *domain = to_pdomain(dom);
3252        unsigned long flags;
3253        int levels, ret;
3254
3255        if (pasids <= 0 || pasids > (PASID_MASK + 1))
3256                return -EINVAL;
3257
3258        /* Number of GCR3 table levels required */
3259        for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3260                levels += 1;
3261
3262        if (levels > amd_iommu_max_glx_val)
3263                return -EINVAL;
3264
3265        spin_lock_irqsave(&domain->lock, flags);
3266
3267        /*
3268         * Save us all sanity checks whether devices already in the
3269         * domain support IOMMUv2. Just force that the domain has no
3270         * devices attached when it is switched into IOMMUv2 mode.
3271         */
3272        ret = -EBUSY;
3273        if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3274                goto out;
3275
3276        ret = -ENOMEM;
3277        domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3278        if (domain->gcr3_tbl == NULL)
3279                goto out;
3280
3281        domain->glx      = levels;
3282        domain->flags   |= PD_IOMMUV2_MASK;
3283        domain->updated  = true;
3284
3285        update_domain(domain);
3286
3287        ret = 0;
3288
3289out:
3290        spin_unlock_irqrestore(&domain->lock, flags);
3291
3292        return ret;
3293}
3294EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3295
3296static int __flush_pasid(struct protection_domain *domain, int pasid,
3297                         u64 address, bool size)
3298{
3299        struct iommu_dev_data *dev_data;
3300        struct iommu_cmd cmd;
3301        int i, ret;
3302
3303        if (!(domain->flags & PD_IOMMUV2_MASK))
3304                return -EINVAL;
3305
3306        build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3307
3308        /*
3309         * IOMMU TLB needs to be flushed before Device TLB to
3310         * prevent device TLB refill from IOMMU TLB
3311         */
3312        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3313                if (domain->dev_iommu[i] == 0)
3314                        continue;
3315
3316                ret = iommu_queue_command(amd_iommus[i], &cmd);
3317                if (ret != 0)
3318                        goto out;
3319        }
3320
3321        /* Wait until IOMMU TLB flushes are complete */
3322        domain_flush_complete(domain);
3323
3324        /* Now flush device TLBs */
3325        list_for_each_entry(dev_data, &domain->dev_list, list) {
3326                struct amd_iommu *iommu;
3327                int qdep;
3328
3329                /*
3330                   There might be non-IOMMUv2 capable devices in an IOMMUv2
3331                 * domain.
3332                 */
3333                if (!dev_data->ats.enabled)
3334                        continue;
3335
3336                qdep  = dev_data->ats.qdep;
3337                iommu = amd_iommu_rlookup_table[dev_data->devid];
3338
3339                build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3340                                      qdep, address, size);
3341
3342                ret = iommu_queue_command(iommu, &cmd);
3343                if (ret != 0)
3344                        goto out;
3345        }
3346
3347        /* Wait until all device TLBs are flushed */
3348        domain_flush_complete(domain);
3349
3350        ret = 0;
3351
3352out:
3353
3354        return ret;
3355}
3356
3357static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3358                                  u64 address)
3359{
3360        return __flush_pasid(domain, pasid, address, false);
3361}
3362
3363int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3364                         u64 address)
3365{
3366        struct protection_domain *domain = to_pdomain(dom);
3367        unsigned long flags;
3368        int ret;
3369
3370        spin_lock_irqsave(&domain->lock, flags);
3371        ret = __amd_iommu_flush_page(domain, pasid, address);
3372        spin_unlock_irqrestore(&domain->lock, flags);
3373
3374        return ret;
3375}
3376EXPORT_SYMBOL(amd_iommu_flush_page);
3377
3378static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3379{
3380        return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3381                             true);
3382}
3383
3384int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3385{
3386        struct protection_domain *domain = to_pdomain(dom);
3387        unsigned long flags;
3388        int ret;
3389
3390        spin_lock_irqsave(&domain->lock, flags);
3391        ret = __amd_iommu_flush_tlb(domain, pasid);
3392        spin_unlock_irqrestore(&domain->lock, flags);
3393
3394        return ret;
3395}
3396EXPORT_SYMBOL(amd_iommu_flush_tlb);
3397
3398static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3399{
3400        int index;
3401        u64 *pte;
3402
3403        while (true) {
3404
3405                index = (pasid >> (9 * level)) & 0x1ff;
3406                pte   = &root[index];
3407
3408                if (level == 0)
3409                        break;
3410
3411                if (!(*pte & GCR3_VALID)) {
3412                        if (!alloc)
3413                                return NULL;
3414
3415                        root = (void *)get_zeroed_page(GFP_ATOMIC);
3416                        if (root == NULL)
3417                                return NULL;
3418
3419                        *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3420                }
3421
3422                root = iommu_phys_to_virt(*pte & PAGE_MASK);
3423
3424                level -= 1;
3425        }
3426
3427        return pte;
3428}
3429
3430static int __set_gcr3(struct protection_domain *domain, int pasid,
3431                      unsigned long cr3)
3432{
3433        u64 *pte;
3434
3435        if (domain->mode != PAGE_MODE_NONE)
3436                return -EINVAL;
3437
3438        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3439        if (pte == NULL)
3440                return -ENOMEM;
3441
3442        *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3443
3444        return __amd_iommu_flush_tlb(domain, pasid);
3445}
3446
3447static int __clear_gcr3(struct protection_domain *domain, int pasid)
3448{
3449        u64 *pte;
3450
3451        if (domain->mode != PAGE_MODE_NONE)
3452                return -EINVAL;
3453
3454        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3455        if (pte == NULL)
3456                return 0;
3457
3458        *pte = 0;
3459
3460        return __amd_iommu_flush_tlb(domain, pasid);
3461}
3462
3463int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3464                              unsigned long cr3)
3465{
3466        struct protection_domain *domain = to_pdomain(dom);
3467        unsigned long flags;
3468        int ret;
3469
3470        spin_lock_irqsave(&domain->lock, flags);
3471        ret = __set_gcr3(domain, pasid, cr3);
3472        spin_unlock_irqrestore(&domain->lock, flags);
3473
3474        return ret;
3475}
3476EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3477
3478int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3479{
3480        struct protection_domain *domain = to_pdomain(dom);
3481        unsigned long flags;
3482        int ret;
3483
3484        spin_lock_irqsave(&domain->lock, flags);
3485        ret = __clear_gcr3(domain, pasid);
3486        spin_unlock_irqrestore(&domain->lock, flags);
3487
3488        return ret;
3489}
3490EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3491
3492int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3493                           int status, int tag)
3494{
3495        struct iommu_dev_data *dev_data;
3496        struct amd_iommu *iommu;
3497        struct iommu_cmd cmd;
3498
3499        dev_data = get_dev_data(&pdev->dev);
3500        iommu    = amd_iommu_rlookup_table[dev_data->devid];
3501
3502        build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3503                           tag, dev_data->pri_tlp);
3504
3505        return iommu_queue_command(iommu, &cmd);
3506}
3507EXPORT_SYMBOL(amd_iommu_complete_ppr);
3508
3509struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3510{
3511        struct protection_domain *pdomain;
3512
3513        pdomain = get_domain(&pdev->dev);
3514        if (IS_ERR(pdomain))
3515                return NULL;
3516
3517        /* Only return IOMMUv2 domains */
3518        if (!(pdomain->flags & PD_IOMMUV2_MASK))
3519                return NULL;
3520
3521        return &pdomain->domain;
3522}
3523EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3524
3525void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3526{
3527        struct iommu_dev_data *dev_data;
3528
3529        if (!amd_iommu_v2_supported())
3530                return;
3531
3532        dev_data = get_dev_data(&pdev->dev);
3533        dev_data->errata |= (1 << erratum);
3534}
3535EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3536
3537int amd_iommu_device_info(struct pci_dev *pdev,
3538                          struct amd_iommu_device_info *info)
3539{
3540        int max_pasids;
3541        int pos;
3542
3543        if (pdev == NULL || info == NULL)
3544                return -EINVAL;
3545
3546        if (!amd_iommu_v2_supported())
3547                return -EINVAL;
3548
3549        memset(info, 0, sizeof(*info));
3550
3551        if (!pci_ats_disabled()) {
3552                pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3553                if (pos)
3554                        info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3555        }
3556
3557        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3558        if (pos)
3559                info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3560
3561        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3562        if (pos) {
3563                int features;
3564
3565                max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3566                max_pasids = min(max_pasids, (1 << 20));
3567
3568                info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3569                info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3570
3571                features = pci_pasid_features(pdev);
3572                if (features & PCI_PASID_CAP_EXEC)
3573                        info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3574                if (features & PCI_PASID_CAP_PRIV)
3575                        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3576        }
3577
3578        return 0;
3579}
3580EXPORT_SYMBOL(amd_iommu_device_info);
3581
3582#ifdef CONFIG_IRQ_REMAP
3583
3584/*****************************************************************************
3585 *
3586 * Interrupt Remapping Implementation
3587 *
3588 *****************************************************************************/
3589
3590static struct irq_chip amd_ir_chip;
3591static DEFINE_SPINLOCK(iommu_table_lock);
3592
3593static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3594{
3595        u64 dte;
3596
3597        dte     = amd_iommu_dev_table[devid].data[2];
3598        dte     &= ~DTE_IRQ_PHYS_ADDR_MASK;
3599        dte     |= iommu_virt_to_phys(table->table);
3600        dte     |= DTE_IRQ_REMAP_INTCTL;
3601        dte     |= DTE_IRQ_TABLE_LEN;
3602        dte     |= DTE_IRQ_REMAP_ENABLE;
3603
3604        amd_iommu_dev_table[devid].data[2] = dte;
3605}
3606
3607static struct irq_remap_table *get_irq_table(u16 devid)
3608{
3609        struct irq_remap_table *table;
3610
3611        if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3612                      "%s: no iommu for devid %x\n", __func__, devid))
3613                return NULL;
3614
3615        table = irq_lookup_table[devid];
3616        if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3617                return NULL;
3618
3619        return table;
3620}
3621
3622static struct irq_remap_table *__alloc_irq_table(void)
3623{
3624        struct irq_remap_table *table;
3625
3626        table = kzalloc(sizeof(*table), GFP_KERNEL);
3627        if (!table)
3628                return NULL;
3629
3630        table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3631        if (!table->table) {
3632                kfree(table);
3633                return NULL;
3634        }
3635        raw_spin_lock_init(&table->lock);
3636
3637        if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3638                memset(table->table, 0,
3639                       MAX_IRQS_PER_TABLE * sizeof(u32));
3640        else
3641                memset(table->table, 0,
3642                       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3643        return table;
3644}
3645
3646static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3647                                  struct irq_remap_table *table)
3648{
3649        irq_lookup_table[devid] = table;
3650        set_dte_irq_entry(devid, table);
3651        iommu_flush_dte(iommu, devid);
3652}
3653
3654static struct irq_remap_table *alloc_irq_table(u16 devid)
3655{
3656        struct irq_remap_table *table = NULL;
3657        struct irq_remap_table *new_table = NULL;
3658        struct amd_iommu *iommu;
3659        unsigned long flags;
3660        u16 alias;
3661
3662        spin_lock_irqsave(&iommu_table_lock, flags);
3663
3664        iommu = amd_iommu_rlookup_table[devid];
3665        if (!iommu)
3666                goto out_unlock;
3667
3668        table = irq_lookup_table[devid];
3669        if (table)
3670                goto out_unlock;
3671
3672        alias = amd_iommu_alias_table[devid];
3673        table = irq_lookup_table[alias];
3674        if (table) {
3675                set_remap_table_entry(iommu, devid, table);
3676                goto out_wait;
3677        }
3678        spin_unlock_irqrestore(&iommu_table_lock, flags);
3679
3680        /* Nothing there yet, allocate new irq remapping table */
3681        new_table = __alloc_irq_table();
3682        if (!new_table)
3683                return NULL;
3684
3685        spin_lock_irqsave(&iommu_table_lock, flags);
3686
3687        table = irq_lookup_table[devid];
3688        if (table)
3689                goto out_unlock;
3690
3691        table = irq_lookup_table[alias];
3692        if (table) {
3693                set_remap_table_entry(iommu, devid, table);
3694                goto out_wait;
3695        }
3696
3697        table = new_table;
3698        new_table = NULL;
3699
3700        set_remap_table_entry(iommu, devid, table);
3701        if (devid != alias)
3702                set_remap_table_entry(iommu, alias, table);
3703
3704out_wait:
3705        iommu_completion_wait(iommu);
3706
3707out_unlock:
3708        spin_unlock_irqrestore(&iommu_table_lock, flags);
3709
3710        if (new_table) {
3711                kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3712                kfree(new_table);
3713        }
3714        return table;
3715}
3716
3717static int alloc_irq_index(u16 devid, int count, bool align)
3718{
3719        struct irq_remap_table *table;
3720        int index, c, alignment = 1;
3721        unsigned long flags;
3722        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3723
3724        if (!iommu)
3725                return -ENODEV;
3726
3727        table = alloc_irq_table(devid);
3728        if (!table)
3729                return -ENODEV;
3730
3731        if (align)
3732                alignment = roundup_pow_of_two(count);
3733
3734        raw_spin_lock_irqsave(&table->lock, flags);
3735
3736        /* Scan table for free entries */
3737        for (index = ALIGN(table->min_index, alignment), c = 0;
3738             index < MAX_IRQS_PER_TABLE;) {
3739                if (!iommu->irte_ops->is_allocated(table, index)) {
3740                        c += 1;
3741                } else {
3742                        c     = 0;
3743                        index = ALIGN(index + 1, alignment);
3744                        continue;
3745                }
3746
3747                if (c == count) {
3748                        for (; c != 0; --c)
3749                                iommu->irte_ops->set_allocated(table, index - c + 1);
3750
3751                        index -= count - 1;
3752                        goto out;
3753                }
3754
3755                index++;
3756        }
3757
3758        index = -ENOSPC;
3759
3760out:
3761        raw_spin_unlock_irqrestore(&table->lock, flags);
3762
3763        return index;
3764}
3765
3766static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3767                          struct amd_ir_data *data)
3768{
3769        struct irq_remap_table *table;
3770        struct amd_iommu *iommu;
3771        unsigned long flags;
3772        struct irte_ga *entry;
3773
3774        iommu = amd_iommu_rlookup_table[devid];
3775        if (iommu == NULL)
3776                return -EINVAL;
3777
3778        table = get_irq_table(devid);
3779        if (!table)
3780                return -ENOMEM;
3781
3782        raw_spin_lock_irqsave(&table->lock, flags);
3783
3784        entry = (struct irte_ga *)table->table;
3785        entry = &entry[index];
3786        entry->lo.fields_remap.valid = 0;
3787        entry->hi.val = irte->hi.val;
3788        entry->lo.val = irte->lo.val;
3789        entry->lo.fields_remap.valid = 1;
3790        if (data)
3791                data->ref = entry;
3792
3793        raw_spin_unlock_irqrestore(&table->lock, flags);
3794
3795        iommu_flush_irt(iommu, devid);
3796        iommu_completion_wait(iommu);
3797
3798        return 0;
3799}
3800
3801static int modify_irte(u16 devid, int index, union irte *irte)
3802{
3803        struct irq_remap_table *table;
3804        struct amd_iommu *iommu;
3805        unsigned long flags;
3806
3807        iommu = amd_iommu_rlookup_table[devid];
3808        if (iommu == NULL)
3809                return -EINVAL;
3810
3811        table = get_irq_table(devid);
3812        if (!table)
3813                return -ENOMEM;
3814
3815        raw_spin_lock_irqsave(&table->lock, flags);
3816        table->table[index] = irte->val;
3817        raw_spin_unlock_irqrestore(&table->lock, flags);
3818
3819        iommu_flush_irt(iommu, devid);
3820        iommu_completion_wait(iommu);
3821
3822        return 0;
3823}
3824
3825static void free_irte(u16 devid, int index)
3826{
3827        struct irq_remap_table *table;
3828        struct amd_iommu *iommu;
3829        unsigned long flags;
3830
3831        iommu = amd_iommu_rlookup_table[devid];
3832        if (iommu == NULL)
3833                return;
3834
3835        table = get_irq_table(devid);
3836        if (!table)
3837                return;
3838
3839        raw_spin_lock_irqsave(&table->lock, flags);
3840        iommu->irte_ops->clear_allocated(table, index);
3841        raw_spin_unlock_irqrestore(&table->lock, flags);
3842
3843        iommu_flush_irt(iommu, devid);
3844        iommu_completion_wait(iommu);
3845}
3846
3847static void irte_prepare(void *entry,
3848                         u32 delivery_mode, u32 dest_mode,
3849                         u8 vector, u32 dest_apicid, int devid)
3850{
3851        union irte *irte = (union irte *) entry;
3852
3853        irte->val                = 0;
3854        irte->fields.vector      = vector;
3855        irte->fields.int_type    = delivery_mode;
3856        irte->fields.destination = dest_apicid;
3857        irte->fields.dm          = dest_mode;
3858        irte->fields.valid       = 1;
3859}
3860
3861static void irte_ga_prepare(void *entry,
3862                            u32 delivery_mode, u32 dest_mode,
3863                            u8 vector, u32 dest_apicid, int devid)
3864{
3865        struct irte_ga *irte = (struct irte_ga *) entry;
3866
3867        irte->lo.val                      = 0;
3868        irte->hi.val                      = 0;
3869        irte->lo.fields_remap.int_type    = delivery_mode;
3870        irte->lo.fields_remap.dm          = dest_mode;
3871        irte->hi.fields.vector            = vector;
3872        irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3873        irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3874        irte->lo.fields_remap.valid       = 1;
3875}
3876
3877static void irte_activate(void *entry, u16 devid, u16 index)
3878{
3879        union irte *irte = (union irte *) entry;
3880
3881        irte->fields.valid = 1;
3882        modify_irte(devid, index, irte);
3883}
3884
3885static void irte_ga_activate(void *entry, u16 devid, u16 index)
3886{
3887        struct irte_ga *irte = (struct irte_ga *) entry;
3888
3889        irte->lo.fields_remap.valid = 1;
3890        modify_irte_ga(devid, index, irte, NULL);
3891}
3892
3893static void irte_deactivate(void *entry, u16 devid, u16 index)
3894{
3895        union irte *irte = (union irte *) entry;
3896
3897        irte->fields.valid = 0;
3898        modify_irte(devid, index, irte);
3899}
3900
3901static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3902{
3903        struct irte_ga *irte = (struct irte_ga *) entry;
3904
3905        irte->lo.fields_remap.valid = 0;
3906        modify_irte_ga(devid, index, irte, NULL);
3907}
3908
3909static void irte_set_affinity(void *entry, u16 devid, u16 index,
3910                              u8 vector, u32 dest_apicid)
3911{
3912        union irte *irte = (union irte *) entry;
3913
3914        irte->fields.vector = vector;
3915        irte->fields.destination = dest_apicid;
3916        modify_irte(devid, index, irte);
3917}
3918
3919static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3920                                 u8 vector, u32 dest_apicid)
3921{
3922        struct irte_ga *irte = (struct irte_ga *) entry;
3923
3924        if (!irte->lo.fields_remap.guest_mode) {
3925                irte->hi.fields.vector = vector;
3926                irte->lo.fields_remap.destination =
3927                                        APICID_TO_IRTE_DEST_LO(dest_apicid);
3928                irte->hi.fields.destination =
3929                                        APICID_TO_IRTE_DEST_HI(dest_apicid);
3930                modify_irte_ga(devid, index, irte, NULL);
3931        }
3932}
3933
3934#define IRTE_ALLOCATED (~1U)
3935static void irte_set_allocated(struct irq_remap_table *table, int index)
3936{
3937        table->table[index] = IRTE_ALLOCATED;
3938}
3939
3940static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3941{
3942        struct irte_ga *ptr = (struct irte_ga *)table->table;
3943        struct irte_ga *irte = &ptr[index];
3944
3945        memset(&irte->lo.val, 0, sizeof(u64));
3946        memset(&irte->hi.val, 0, sizeof(u64));
3947        irte->hi.fields.vector = 0xff;
3948}
3949
3950static bool irte_is_allocated(struct irq_remap_table *table, int index)
3951{
3952        union irte *ptr = (union irte *)table->table;
3953        union irte *irte = &ptr[index];
3954
3955        return irte->val != 0;
3956}
3957
3958static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3959{
3960        struct irte_ga *ptr = (struct irte_ga *)table->table;
3961        struct irte_ga *irte = &ptr[index];
3962
3963        return irte->hi.fields.vector != 0;
3964}
3965
3966static void irte_clear_allocated(struct irq_remap_table *table, int index)
3967{
3968        table->table[index] = 0;
3969}
3970
3971static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3972{
3973        struct irte_ga *ptr = (struct irte_ga *)table->table;
3974        struct irte_ga *irte = &ptr[index];
3975
3976        memset(&irte->lo.val, 0, sizeof(u64));
3977        memset(&irte->hi.val, 0, sizeof(u64));
3978}
3979
3980static int get_devid(struct irq_alloc_info *info)
3981{
3982        int devid = -1;
3983
3984        switch (info->type) {
3985        case X86_IRQ_ALLOC_TYPE_IOAPIC:
3986                devid     = get_ioapic_devid(info->ioapic_id);
3987                break;
3988        case X86_IRQ_ALLOC_TYPE_HPET:
3989                devid     = get_hpet_devid(info->hpet_id);
3990                break;
3991        case X86_IRQ_ALLOC_TYPE_MSI:
3992        case X86_IRQ_ALLOC_TYPE_MSIX:
3993                devid = get_device_id(&info->msi_dev->dev);
3994                break;
3995        default:
3996                BUG_ON(1);
3997                break;
3998        }
3999
4000        return devid;
4001}
4002
4003static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4004{
4005        struct amd_iommu *iommu;
4006        int devid;
4007
4008        if (!info)
4009                return NULL;
4010
4011        devid = get_devid(info);
4012        if (devid >= 0) {
4013                iommu = amd_iommu_rlookup_table[devid];
4014                if (iommu)
4015                        return iommu->ir_domain;
4016        }
4017
4018        return NULL;
4019}
4020
4021static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4022{
4023        struct amd_iommu *iommu;
4024        int devid;
4025
4026        if (!info)
4027                return NULL;
4028
4029        switch (info->type) {
4030        case X86_IRQ_ALLOC_TYPE_MSI:
4031        case X86_IRQ_ALLOC_TYPE_MSIX:
4032                devid = get_device_id(&info->msi_dev->dev);
4033                if (devid < 0)
4034                        return NULL;
4035
4036                iommu = amd_iommu_rlookup_table[devid];
4037                if (iommu)
4038                        return iommu->msi_domain;
4039                break;
4040        default:
4041                break;
4042        }
4043
4044        return NULL;
4045}
4046
4047struct irq_remap_ops amd_iommu_irq_ops = {
4048        .prepare                = amd_iommu_prepare,
4049        .enable                 = amd_iommu_enable,
4050        .disable                = amd_iommu_disable,
4051        .reenable               = amd_iommu_reenable,
4052        .enable_faulting        = amd_iommu_enable_faulting,
4053        .get_ir_irq_domain      = get_ir_irq_domain,
4054        .get_irq_domain         = get_irq_domain,
4055};
4056
4057static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4058                                       struct irq_cfg *irq_cfg,
4059                                       struct irq_alloc_info *info,
4060                                       int devid, int index, int sub_handle)
4061{
4062        struct irq_2_irte *irte_info = &data->irq_2_irte;
4063        struct msi_msg *msg = &data->msi_entry;
4064        struct IO_APIC_route_entry *entry;
4065        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4066
4067        if (!iommu)
4068                return;
4069
4070        data->irq_2_irte.devid = devid;
4071        data->irq_2_irte.index = index + sub_handle;
4072        iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4073                                 apic->irq_dest_mode, irq_cfg->vector,
4074                                 irq_cfg->dest_apicid, devid);
4075
4076        switch (info->type) {
4077        case X86_IRQ_ALLOC_TYPE_IOAPIC:
4078                /* Setup IOAPIC entry */
4079                entry = info->ioapic_entry;
4080                info->ioapic_entry = NULL;
4081                memset(entry, 0, sizeof(*entry));
4082                entry->vector        = index;
4083                entry->mask          = 0;
4084                entry->trigger       = info->ioapic_trigger;
4085                entry->polarity      = info->ioapic_polarity;
4086                /* Mask level triggered irqs. */
4087                if (info->ioapic_trigger)
4088                        entry->mask = 1;
4089                break;
4090
4091        case X86_IRQ_ALLOC_TYPE_HPET:
4092        case X86_IRQ_ALLOC_TYPE_MSI:
4093        case X86_IRQ_ALLOC_TYPE_MSIX:
4094                msg->address_hi = MSI_ADDR_BASE_HI;
4095                msg->address_lo = MSI_ADDR_BASE_LO;
4096                msg->data = irte_info->index;
4097                break;
4098
4099        default:
4100                BUG_ON(1);
4101                break;
4102        }
4103}
4104
4105struct amd_irte_ops irte_32_ops = {
4106        .prepare = irte_prepare,
4107        .activate = irte_activate,
4108        .deactivate = irte_deactivate,
4109        .set_affinity = irte_set_affinity,
4110        .set_allocated = irte_set_allocated,
4111        .is_allocated = irte_is_allocated,
4112        .clear_allocated = irte_clear_allocated,
4113};
4114
4115struct amd_irte_ops irte_128_ops = {
4116        .prepare = irte_ga_prepare,
4117        .activate = irte_ga_activate,
4118        .deactivate = irte_ga_deactivate,
4119        .set_affinity = irte_ga_set_affinity,
4120        .set_allocated = irte_ga_set_allocated,
4121        .is_allocated = irte_ga_is_allocated,
4122        .clear_allocated = irte_ga_clear_allocated,
4123};
4124
4125static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4126                               unsigned int nr_irqs, void *arg)
4127{
4128        struct irq_alloc_info *info = arg;
4129        struct irq_data *irq_data;
4130        struct amd_ir_data *data = NULL;
4131        struct irq_cfg *cfg;
4132        int i, ret, devid;
4133        int index;
4134
4135        if (!info)
4136                return -EINVAL;
4137        if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4138            info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4139                return -EINVAL;
4140
4141        /*
4142         * With IRQ remapping enabled, don't need contiguous CPU vectors
4143         * to support multiple MSI interrupts.
4144         */
4145        if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4146                info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4147
4148        devid = get_devid(info);
4149        if (devid < 0)
4150                return -EINVAL;
4151
4152        ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4153        if (ret < 0)
4154                return ret;
4155
4156        if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4157                struct irq_remap_table *table;
4158                struct amd_iommu *iommu;
4159
4160                table = alloc_irq_table(devid);
4161                if (table) {
4162                        if (!table->min_index) {
4163                                /*
4164                                 * Keep the first 32 indexes free for IOAPIC
4165                                 * interrupts.
4166                                 */
4167                                table->min_index = 32;
4168                                iommu = amd_iommu_rlookup_table[devid];
4169                                for (i = 0; i < 32; ++i)
4170                                        iommu->irte_ops->set_allocated(table, i);
4171                        }
4172                        WARN_ON(table->min_index != 32);
4173                        index = info->ioapic_pin;
4174                } else {
4175                        index = -ENOMEM;
4176                }
4177        } else {
4178                bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4179
4180                index = alloc_irq_index(devid, nr_irqs, align);
4181        }
4182        if (index < 0) {
4183                pr_warn("Failed to allocate IRTE\n");
4184                ret = index;
4185                goto out_free_parent;
4186        }
4187
4188        for (i = 0; i < nr_irqs; i++) {
4189                irq_data = irq_domain_get_irq_data(domain, virq + i);
4190                cfg = irqd_cfg(irq_data);
4191                if (!irq_data || !cfg) {
4192                        ret = -EINVAL;
4193                        goto out_free_data;
4194                }
4195
4196                ret = -ENOMEM;
4197                data = kzalloc(sizeof(*data), GFP_KERNEL);
4198                if (!data)
4199                        goto out_free_data;
4200
4201                if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4202                        data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4203                else
4204                        data->entry = kzalloc(sizeof(struct irte_ga),
4205                                                     GFP_KERNEL);
4206                if (!data->entry) {
4207                        kfree(data);
4208                        goto out_free_data;
4209                }
4210
4211                irq_data->hwirq = (devid << 16) + i;
4212                irq_data->chip_data = data;
4213                irq_data->chip = &amd_ir_chip;
4214                irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4215                irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4216        }
4217
4218        return 0;
4219
4220out_free_data:
4221        for (i--; i >= 0; i--) {
4222                irq_data = irq_domain_get_irq_data(domain, virq + i);
4223                if (irq_data)
4224                        kfree(irq_data->chip_data);
4225        }
4226        for (i = 0; i < nr_irqs; i++)
4227                free_irte(devid, index + i);
4228out_free_parent:
4229        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4230        return ret;
4231}
4232
4233static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4234                               unsigned int nr_irqs)
4235{
4236        struct irq_2_irte *irte_info;
4237        struct irq_data *irq_data;
4238        struct amd_ir_data *data;
4239        int i;
4240
4241        for (i = 0; i < nr_irqs; i++) {
4242                irq_data = irq_domain_get_irq_data(domain, virq  + i);
4243                if (irq_data && irq_data->chip_data) {
4244                        data = irq_data->chip_data;
4245                        irte_info = &data->irq_2_irte;
4246                        free_irte(irte_info->devid, irte_info->index);
4247                        kfree(data->entry);
4248                        kfree(data);
4249                }
4250        }
4251        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4252}
4253
4254static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4255                               struct amd_ir_data *ir_data,
4256                               struct irq_2_irte *irte_info,
4257                               struct irq_cfg *cfg);
4258
4259static int irq_remapping_activate(struct irq_domain *domain,
4260                                  struct irq_data *irq_data, bool reserve)
4261{
4262        struct amd_ir_data *data = irq_data->chip_data;
4263        struct irq_2_irte *irte_info = &data->irq_2_irte;
4264        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4265        struct irq_cfg *cfg = irqd_cfg(irq_data);
4266
4267        if (!iommu)
4268                return 0;
4269
4270        iommu->irte_ops->activate(data->entry, irte_info->devid,
4271                                  irte_info->index);
4272        amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4273        return 0;
4274}
4275
4276static void irq_remapping_deactivate(struct irq_domain *domain,
4277                                     struct irq_data *irq_data)
4278{
4279        struct amd_ir_data *data = irq_data->chip_data;
4280        struct irq_2_irte *irte_info = &data->irq_2_irte;
4281        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4282
4283        if (iommu)
4284                iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4285                                            irte_info->index);
4286}
4287
4288static const struct irq_domain_ops amd_ir_domain_ops = {
4289        .alloc = irq_remapping_alloc,
4290        .free = irq_remapping_free,
4291        .activate = irq_remapping_activate,
4292        .deactivate = irq_remapping_deactivate,
4293};
4294
4295static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4296{
4297        struct amd_iommu *iommu;
4298        struct amd_iommu_pi_data *pi_data = vcpu_info;
4299        struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4300        struct amd_ir_data *ir_data = data->chip_data;
4301        struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4302        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4303        struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4304
4305        /* Note:
4306         * This device has never been set up for guest mode.
4307         * we should not modify the IRTE
4308         */
4309        if (!dev_data || !dev_data->use_vapic)
4310                return 0;
4311
4312        pi_data->ir_data = ir_data;
4313
4314        /* Note:
4315         * SVM tries to set up for VAPIC mode, but we are in
4316         * legacy mode. So, we force legacy mode instead.
4317         */
4318        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4319                pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4320                         __func__);
4321                pi_data->is_guest_mode = false;
4322        }
4323
4324        iommu = amd_iommu_rlookup_table[irte_info->devid];
4325        if (iommu == NULL)
4326                return -EINVAL;
4327
4328        pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4329        if (pi_data->is_guest_mode) {
4330                /* Setting */
4331                irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4332                irte->hi.fields.vector = vcpu_pi_info->vector;
4333                irte->lo.fields_vapic.ga_log_intr = 1;
4334                irte->lo.fields_vapic.guest_mode = 1;
4335                irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4336
4337                ir_data->cached_ga_tag = pi_data->ga_tag;
4338        } else {
4339                /* Un-Setting */
4340                struct irq_cfg *cfg = irqd_cfg(data);
4341
4342                irte->hi.val = 0;
4343                irte->lo.val = 0;
4344                irte->hi.fields.vector = cfg->vector;
4345                irte->lo.fields_remap.guest_mode = 0;
4346                irte->lo.fields_remap.destination =
4347                                APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4348                irte->hi.fields.destination =
4349                                APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4350                irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4351                irte->lo.fields_remap.dm = apic->irq_dest_mode;
4352
4353                /*
4354                 * This communicates the ga_tag back to the caller
4355                 * so that it can do all the necessary clean up.
4356                 */
4357                ir_data->cached_ga_tag = 0;
4358        }
4359
4360        return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4361}
4362
4363
4364static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4365                               struct amd_ir_data *ir_data,
4366                               struct irq_2_irte *irte_info,
4367                               struct irq_cfg *cfg)
4368{
4369
4370        /*
4371         * Atomically updates the IRTE with the new destination, vector
4372         * and flushes the interrupt entry cache.
4373         */
4374        iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4375                                      irte_info->index, cfg->vector,
4376                                      cfg->dest_apicid);
4377}
4378
4379static int amd_ir_set_affinity(struct irq_data *data,
4380                               const struct cpumask *mask, bool force)
4381{
4382        struct amd_ir_data *ir_data = data->chip_data;
4383        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4384        struct irq_cfg *cfg = irqd_cfg(data);
4385        struct irq_data *parent = data->parent_data;
4386        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4387        int ret;
4388
4389        if (!iommu)
4390                return -ENODEV;
4391
4392        ret = parent->chip->irq_set_affinity(parent, mask, force);
4393        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4394                return ret;
4395
4396        amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4397        /*
4398         * After this point, all the interrupts will start arriving
4399         * at the new destination. So, time to cleanup the previous
4400         * vector allocation.
4401         */
4402        send_cleanup_vector(cfg);
4403
4404        return IRQ_SET_MASK_OK_DONE;
4405}
4406
4407static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4408{
4409        struct amd_ir_data *ir_data = irq_data->chip_data;
4410
4411        *msg = ir_data->msi_entry;
4412}
4413
4414static struct irq_chip amd_ir_chip = {
4415        .name                   = "AMD-IR",
4416        .irq_ack                = apic_ack_irq,
4417        .irq_set_affinity       = amd_ir_set_affinity,
4418        .irq_set_vcpu_affinity  = amd_ir_set_vcpu_affinity,
4419        .irq_compose_msi_msg    = ir_compose_msi_msg,
4420};
4421
4422int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4423{
4424        struct fwnode_handle *fn;
4425
4426        fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4427        if (!fn)
4428                return -ENOMEM;
4429        iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4430        irq_domain_free_fwnode(fn);
4431        if (!iommu->ir_domain)
4432                return -ENOMEM;
4433
4434        iommu->ir_domain->parent = arch_get_ir_parent_domain();
4435        iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4436                                                             "AMD-IR-MSI",
4437                                                             iommu->index);
4438        return 0;
4439}
4440
4441int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4442{
4443        unsigned long flags;
4444        struct amd_iommu *iommu;
4445        struct irq_remap_table *table;
4446        struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4447        int devid = ir_data->irq_2_irte.devid;
4448        struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4449        struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4450
4451        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4452            !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4453                return 0;
4454
4455        iommu = amd_iommu_rlookup_table[devid];
4456        if (!iommu)
4457                return -ENODEV;
4458
4459        table = get_irq_table(devid);
4460        if (!table)
4461                return -ENODEV;
4462
4463        raw_spin_lock_irqsave(&table->lock, flags);
4464
4465        if (ref->lo.fields_vapic.guest_mode) {
4466                if (cpu >= 0) {
4467                        ref->lo.fields_vapic.destination =
4468                                                APICID_TO_IRTE_DEST_LO(cpu);
4469                        ref->hi.fields.destination =
4470                                                APICID_TO_IRTE_DEST_HI(cpu);
4471                }
4472                ref->lo.fields_vapic.is_run = is_run;
4473                barrier();
4474        }
4475
4476        raw_spin_unlock_irqrestore(&table->lock, flags);
4477
4478        iommu_flush_irt(iommu, devid);
4479        iommu_completion_wait(iommu);
4480        return 0;
4481}
4482EXPORT_SYMBOL(amd_iommu_update_ga);
4483#endif
4484