linux/drivers/iommu/intel-iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2006-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * Authors: David Woodhouse <dwmw2@infradead.org>,
  14 *          Ashok Raj <ashok.raj@intel.com>,
  15 *          Shaohua Li <shaohua.li@intel.com>,
  16 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
  17 *          Fenghua Yu <fenghua.yu@intel.com>
  18 *          Joerg Roedel <jroedel@suse.de>
  19 */
  20
  21#define pr_fmt(fmt)     "DMAR: " fmt
  22
  23#include <linux/init.h>
  24#include <linux/bitmap.h>
  25#include <linux/debugfs.h>
  26#include <linux/export.h>
  27#include <linux/slab.h>
  28#include <linux/irq.h>
  29#include <linux/interrupt.h>
  30#include <linux/spinlock.h>
  31#include <linux/pci.h>
  32#include <linux/dmar.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/mempool.h>
  35#include <linux/memory.h>
  36#include <linux/cpu.h>
  37#include <linux/timer.h>
  38#include <linux/io.h>
  39#include <linux/iova.h>
  40#include <linux/iommu.h>
  41#include <linux/intel-iommu.h>
  42#include <linux/syscore_ops.h>
  43#include <linux/tboot.h>
  44#include <linux/dmi.h>
  45#include <linux/pci-ats.h>
  46#include <linux/memblock.h>
  47#include <linux/dma-contiguous.h>
  48#include <linux/dma-direct.h>
  49#include <linux/crash_dump.h>
  50#include <asm/irq_remapping.h>
  51#include <asm/cacheflush.h>
  52#include <asm/iommu.h>
  53
  54#include "irq_remapping.h"
  55#include "intel-pasid.h"
  56
  57#define ROOT_SIZE               VTD_PAGE_SIZE
  58#define CONTEXT_SIZE            VTD_PAGE_SIZE
  59
  60#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
  61#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
  62#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
  63#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
  64
  65#define IOAPIC_RANGE_START      (0xfee00000)
  66#define IOAPIC_RANGE_END        (0xfeefffff)
  67#define IOVA_START_ADDR         (0x1000)
  68
  69#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
  70
  71#define MAX_AGAW_WIDTH 64
  72#define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
  73
  74#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
  75#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
  76
  77/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
  78   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
  79#define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
  80                                __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
  81#define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
  82
  83/* IO virtual address start page frame number */
  84#define IOVA_START_PFN          (1)
  85
  86#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  87
  88/* page table handling */
  89#define LEVEL_STRIDE            (9)
  90#define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
  91
  92/*
  93 * This bitmap is used to advertise the page sizes our hardware support
  94 * to the IOMMU core, which will then use this information to split
  95 * physically contiguous memory regions it is mapping into page sizes
  96 * that we support.
  97 *
  98 * Traditionally the IOMMU core just handed us the mappings directly,
  99 * after making sure the size is an order of a 4KiB page and that the
 100 * mapping has natural alignment.
 101 *
 102 * To retain this behavior, we currently advertise that we support
 103 * all page sizes that are an order of 4KiB.
 104 *
 105 * If at some point we'd like to utilize the IOMMU core's new behavior,
 106 * we could change this to advertise the real page sizes we support.
 107 */
 108#define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
 109
 110static inline int agaw_to_level(int agaw)
 111{
 112        return agaw + 2;
 113}
 114
 115static inline int agaw_to_width(int agaw)
 116{
 117        return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
 118}
 119
 120static inline int width_to_agaw(int width)
 121{
 122        return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
 123}
 124
 125static inline unsigned int level_to_offset_bits(int level)
 126{
 127        return (level - 1) * LEVEL_STRIDE;
 128}
 129
 130static inline int pfn_level_offset(unsigned long pfn, int level)
 131{
 132        return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
 133}
 134
 135static inline unsigned long level_mask(int level)
 136{
 137        return -1UL << level_to_offset_bits(level);
 138}
 139
 140static inline unsigned long level_size(int level)
 141{
 142        return 1UL << level_to_offset_bits(level);
 143}
 144
 145static inline unsigned long align_to_level(unsigned long pfn, int level)
 146{
 147        return (pfn + level_size(level) - 1) & level_mask(level);
 148}
 149
 150static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
 151{
 152        return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
 153}
 154
 155/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
 156   are never going to work. */
 157static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
 158{
 159        return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
 160}
 161
 162static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
 163{
 164        return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
 165}
 166static inline unsigned long page_to_dma_pfn(struct page *pg)
 167{
 168        return mm_to_dma_pfn(page_to_pfn(pg));
 169}
 170static inline unsigned long virt_to_dma_pfn(void *p)
 171{
 172        return page_to_dma_pfn(virt_to_page(p));
 173}
 174
 175/* global iommu list, set NULL for ignored DMAR units */
 176static struct intel_iommu **g_iommus;
 177
 178static void __init check_tylersburg_isoch(void);
 179static int rwbf_quirk;
 180
 181/*
 182 * set to 1 to panic kernel if can't successfully enable VT-d
 183 * (used when kernel is launched w/ TXT)
 184 */
 185static int force_on = 0;
 186int intel_iommu_tboot_noforce;
 187
 188/*
 189 * 0: Present
 190 * 1-11: Reserved
 191 * 12-63: Context Ptr (12 - (haw-1))
 192 * 64-127: Reserved
 193 */
 194struct root_entry {
 195        u64     lo;
 196        u64     hi;
 197};
 198#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
 199
 200/*
 201 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 202 * if marked present.
 203 */
 204static phys_addr_t root_entry_lctp(struct root_entry *re)
 205{
 206        if (!(re->lo & 1))
 207                return 0;
 208
 209        return re->lo & VTD_PAGE_MASK;
 210}
 211
 212/*
 213 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 214 * if marked present.
 215 */
 216static phys_addr_t root_entry_uctp(struct root_entry *re)
 217{
 218        if (!(re->hi & 1))
 219                return 0;
 220
 221        return re->hi & VTD_PAGE_MASK;
 222}
 223/*
 224 * low 64 bits:
 225 * 0: present
 226 * 1: fault processing disable
 227 * 2-3: translation type
 228 * 12-63: address space root
 229 * high 64 bits:
 230 * 0-2: address width
 231 * 3-6: aval
 232 * 8-23: domain id
 233 */
 234struct context_entry {
 235        u64 lo;
 236        u64 hi;
 237};
 238
 239static inline void context_clear_pasid_enable(struct context_entry *context)
 240{
 241        context->lo &= ~(1ULL << 11);
 242}
 243
 244static inline bool context_pasid_enabled(struct context_entry *context)
 245{
 246        return !!(context->lo & (1ULL << 11));
 247}
 248
 249static inline void context_set_copied(struct context_entry *context)
 250{
 251        context->hi |= (1ull << 3);
 252}
 253
 254static inline bool context_copied(struct context_entry *context)
 255{
 256        return !!(context->hi & (1ULL << 3));
 257}
 258
 259static inline bool __context_present(struct context_entry *context)
 260{
 261        return (context->lo & 1);
 262}
 263
 264static inline bool context_present(struct context_entry *context)
 265{
 266        return context_pasid_enabled(context) ?
 267             __context_present(context) :
 268             __context_present(context) && !context_copied(context);
 269}
 270
 271static inline void context_set_present(struct context_entry *context)
 272{
 273        context->lo |= 1;
 274}
 275
 276static inline void context_set_fault_enable(struct context_entry *context)
 277{
 278        context->lo &= (((u64)-1) << 2) | 1;
 279}
 280
 281static inline void context_set_translation_type(struct context_entry *context,
 282                                                unsigned long value)
 283{
 284        context->lo &= (((u64)-1) << 4) | 3;
 285        context->lo |= (value & 3) << 2;
 286}
 287
 288static inline void context_set_address_root(struct context_entry *context,
 289                                            unsigned long value)
 290{
 291        context->lo &= ~VTD_PAGE_MASK;
 292        context->lo |= value & VTD_PAGE_MASK;
 293}
 294
 295static inline void context_set_address_width(struct context_entry *context,
 296                                             unsigned long value)
 297{
 298        context->hi |= value & 7;
 299}
 300
 301static inline void context_set_domain_id(struct context_entry *context,
 302                                         unsigned long value)
 303{
 304        context->hi |= (value & ((1 << 16) - 1)) << 8;
 305}
 306
 307static inline int context_domain_id(struct context_entry *c)
 308{
 309        return((c->hi >> 8) & 0xffff);
 310}
 311
 312static inline void context_clear_entry(struct context_entry *context)
 313{
 314        context->lo = 0;
 315        context->hi = 0;
 316}
 317
 318/*
 319 * 0: readable
 320 * 1: writable
 321 * 2-6: reserved
 322 * 7: super page
 323 * 8-10: available
 324 * 11: snoop behavior
 325 * 12-63: Host physcial address
 326 */
 327struct dma_pte {
 328        u64 val;
 329};
 330
 331static inline void dma_clear_pte(struct dma_pte *pte)
 332{
 333        pte->val = 0;
 334}
 335
 336static inline u64 dma_pte_addr(struct dma_pte *pte)
 337{
 338#ifdef CONFIG_64BIT
 339        return pte->val & VTD_PAGE_MASK;
 340#else
 341        /* Must have a full atomic 64-bit read */
 342        return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
 343#endif
 344}
 345
 346static inline bool dma_pte_present(struct dma_pte *pte)
 347{
 348        return (pte->val & 3) != 0;
 349}
 350
 351static inline bool dma_pte_superpage(struct dma_pte *pte)
 352{
 353        return (pte->val & DMA_PTE_LARGE_PAGE);
 354}
 355
 356static inline int first_pte_in_page(struct dma_pte *pte)
 357{
 358        return !((unsigned long)pte & ~VTD_PAGE_MASK);
 359}
 360
 361/*
 362 * This domain is a statically identity mapping domain.
 363 *      1. This domain creats a static 1:1 mapping to all usable memory.
 364 *      2. It maps to each iommu if successful.
 365 *      3. Each iommu mapps to this domain if successful.
 366 */
 367static struct dmar_domain *si_domain;
 368static int hw_pass_through = 1;
 369
 370/*
 371 * Domain represents a virtual machine, more than one devices
 372 * across iommus may be owned in one domain, e.g. kvm guest.
 373 */
 374#define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
 375
 376/* si_domain contains mulitple devices */
 377#define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
 378
 379#define for_each_domain_iommu(idx, domain)                      \
 380        for (idx = 0; idx < g_num_of_iommus; idx++)             \
 381                if (domain->iommu_refcnt[idx])
 382
 383struct dmar_rmrr_unit {
 384        struct list_head list;          /* list of rmrr units   */
 385        struct acpi_dmar_header *hdr;   /* ACPI header          */
 386        u64     base_address;           /* reserved base address*/
 387        u64     end_address;            /* reserved end address */
 388        struct dmar_dev_scope *devices; /* target devices */
 389        int     devices_cnt;            /* target device count */
 390        struct iommu_resv_region *resv; /* reserved region handle */
 391};
 392
 393struct dmar_atsr_unit {
 394        struct list_head list;          /* list of ATSR units */
 395        struct acpi_dmar_header *hdr;   /* ACPI header */
 396        struct dmar_dev_scope *devices; /* target devices */
 397        int devices_cnt;                /* target device count */
 398        u8 include_all:1;               /* include all ports */
 399};
 400
 401static LIST_HEAD(dmar_atsr_units);
 402static LIST_HEAD(dmar_rmrr_units);
 403
 404#define for_each_rmrr_units(rmrr) \
 405        list_for_each_entry(rmrr, &dmar_rmrr_units, list)
 406
 407/* bitmap for indexing intel_iommus */
 408static int g_num_of_iommus;
 409
 410static void domain_exit(struct dmar_domain *domain);
 411static void domain_remove_dev_info(struct dmar_domain *domain);
 412static void dmar_remove_one_dev_info(struct dmar_domain *domain,
 413                                     struct device *dev);
 414static void __dmar_remove_one_dev_info(struct device_domain_info *info);
 415static void domain_context_clear(struct intel_iommu *iommu,
 416                                 struct device *dev);
 417static int domain_detach_iommu(struct dmar_domain *domain,
 418                               struct intel_iommu *iommu);
 419
 420#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
 421int dmar_disabled = 0;
 422#else
 423int dmar_disabled = 1;
 424#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
 425
 426int intel_iommu_enabled = 0;
 427EXPORT_SYMBOL_GPL(intel_iommu_enabled);
 428
 429static int dmar_map_gfx = 1;
 430static int dmar_forcedac;
 431static int intel_iommu_strict;
 432static int intel_iommu_superpage = 1;
 433static int intel_iommu_ecs = 1;
 434static int intel_iommu_pasid28;
 435static int iommu_identity_mapping;
 436
 437#define IDENTMAP_ALL            1
 438#define IDENTMAP_GFX            2
 439#define IDENTMAP_AZALIA         4
 440
 441/* Broadwell and Skylake have broken ECS support — normal so-called "second
 442 * level" translation of DMA requests-without-PASID doesn't actually happen
 443 * unless you also set the NESTE bit in an extended context-entry. Which of
 444 * course means that SVM doesn't work because it's trying to do nested
 445 * translation of the physical addresses it finds in the process page tables,
 446 * through the IOVA->phys mapping found in the "second level" page tables.
 447 *
 448 * The VT-d specification was retroactively changed to change the definition
 449 * of the capability bits and pretend that Broadwell/Skylake never happened...
 450 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
 451 * for some reason it was the PASID capability bit which was redefined (from
 452 * bit 28 on BDW/SKL to bit 40 in future).
 453 *
 454 * So our test for ECS needs to eschew those implementations which set the old
 455 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
 456 * Unless we are working around the 'pasid28' limitations, that is, by putting
 457 * the device into passthrough mode for normal DMA and thus masking the bug.
 458 */
 459#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
 460                            (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
 461/* PASID support is thus enabled if ECS is enabled and *either* of the old
 462 * or new capability bits are set. */
 463#define pasid_enabled(iommu) (ecs_enabled(iommu) &&                     \
 464                              (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
 465
 466int intel_iommu_gfx_mapped;
 467EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
 468
 469#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
 470static DEFINE_SPINLOCK(device_domain_lock);
 471static LIST_HEAD(device_domain_list);
 472
 473/*
 474 * Iterate over elements in device_domain_list and call the specified
 475 * callback @fn against each element. This helper should only be used
 476 * in the context where the device_domain_lock has already been holden.
 477 */
 478int for_each_device_domain(int (*fn)(struct device_domain_info *info,
 479                                     void *data), void *data)
 480{
 481        int ret = 0;
 482        struct device_domain_info *info;
 483
 484        assert_spin_locked(&device_domain_lock);
 485        list_for_each_entry(info, &device_domain_list, global) {
 486                ret = fn(info, data);
 487                if (ret)
 488                        return ret;
 489        }
 490
 491        return 0;
 492}
 493
 494const struct iommu_ops intel_iommu_ops;
 495
 496static bool translation_pre_enabled(struct intel_iommu *iommu)
 497{
 498        return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
 499}
 500
 501static void clear_translation_pre_enabled(struct intel_iommu *iommu)
 502{
 503        iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
 504}
 505
 506static void init_translation_status(struct intel_iommu *iommu)
 507{
 508        u32 gsts;
 509
 510        gsts = readl(iommu->reg + DMAR_GSTS_REG);
 511        if (gsts & DMA_GSTS_TES)
 512                iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
 513}
 514
 515/* Convert generic 'struct iommu_domain to private struct dmar_domain */
 516static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
 517{
 518        return container_of(dom, struct dmar_domain, domain);
 519}
 520
 521static int __init intel_iommu_setup(char *str)
 522{
 523        if (!str)
 524                return -EINVAL;
 525        while (*str) {
 526                if (!strncmp(str, "on", 2)) {
 527                        dmar_disabled = 0;
 528                        pr_info("IOMMU enabled\n");
 529                } else if (!strncmp(str, "off", 3)) {
 530                        dmar_disabled = 1;
 531                        pr_info("IOMMU disabled\n");
 532                } else if (!strncmp(str, "igfx_off", 8)) {
 533                        dmar_map_gfx = 0;
 534                        pr_info("Disable GFX device mapping\n");
 535                } else if (!strncmp(str, "forcedac", 8)) {
 536                        pr_info("Forcing DAC for PCI devices\n");
 537                        dmar_forcedac = 1;
 538                } else if (!strncmp(str, "strict", 6)) {
 539                        pr_info("Disable batched IOTLB flush\n");
 540                        intel_iommu_strict = 1;
 541                } else if (!strncmp(str, "sp_off", 6)) {
 542                        pr_info("Disable supported super page\n");
 543                        intel_iommu_superpage = 0;
 544                } else if (!strncmp(str, "ecs_off", 7)) {
 545                        printk(KERN_INFO
 546                                "Intel-IOMMU: disable extended context table support\n");
 547                        intel_iommu_ecs = 0;
 548                } else if (!strncmp(str, "pasid28", 7)) {
 549                        printk(KERN_INFO
 550                                "Intel-IOMMU: enable pre-production PASID support\n");
 551                        intel_iommu_pasid28 = 1;
 552                        iommu_identity_mapping |= IDENTMAP_GFX;
 553                } else if (!strncmp(str, "tboot_noforce", 13)) {
 554                        printk(KERN_INFO
 555                                "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
 556                        intel_iommu_tboot_noforce = 1;
 557                }
 558
 559                str += strcspn(str, ",");
 560                while (*str == ',')
 561                        str++;
 562        }
 563        return 0;
 564}
 565__setup("intel_iommu=", intel_iommu_setup);
 566
 567static struct kmem_cache *iommu_domain_cache;
 568static struct kmem_cache *iommu_devinfo_cache;
 569
 570static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
 571{
 572        struct dmar_domain **domains;
 573        int idx = did >> 8;
 574
 575        domains = iommu->domains[idx];
 576        if (!domains)
 577                return NULL;
 578
 579        return domains[did & 0xff];
 580}
 581
 582static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
 583                             struct dmar_domain *domain)
 584{
 585        struct dmar_domain **domains;
 586        int idx = did >> 8;
 587
 588        if (!iommu->domains[idx]) {
 589                size_t size = 256 * sizeof(struct dmar_domain *);
 590                iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
 591        }
 592
 593        domains = iommu->domains[idx];
 594        if (WARN_ON(!domains))
 595                return;
 596        else
 597                domains[did & 0xff] = domain;
 598}
 599
 600void *alloc_pgtable_page(int node)
 601{
 602        struct page *page;
 603        void *vaddr = NULL;
 604
 605        page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
 606        if (page)
 607                vaddr = page_address(page);
 608        return vaddr;
 609}
 610
 611void free_pgtable_page(void *vaddr)
 612{
 613        free_page((unsigned long)vaddr);
 614}
 615
 616static inline void *alloc_domain_mem(void)
 617{
 618        return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
 619}
 620
 621static void free_domain_mem(void *vaddr)
 622{
 623        kmem_cache_free(iommu_domain_cache, vaddr);
 624}
 625
 626static inline void * alloc_devinfo_mem(void)
 627{
 628        return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
 629}
 630
 631static inline void free_devinfo_mem(void *vaddr)
 632{
 633        kmem_cache_free(iommu_devinfo_cache, vaddr);
 634}
 635
 636static inline int domain_type_is_vm(struct dmar_domain *domain)
 637{
 638        return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
 639}
 640
 641static inline int domain_type_is_si(struct dmar_domain *domain)
 642{
 643        return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
 644}
 645
 646static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
 647{
 648        return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
 649                                DOMAIN_FLAG_STATIC_IDENTITY);
 650}
 651
 652static inline int domain_pfn_supported(struct dmar_domain *domain,
 653                                       unsigned long pfn)
 654{
 655        int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
 656
 657        return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
 658}
 659
 660static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
 661{
 662        unsigned long sagaw;
 663        int agaw = -1;
 664
 665        sagaw = cap_sagaw(iommu->cap);
 666        for (agaw = width_to_agaw(max_gaw);
 667             agaw >= 0; agaw--) {
 668                if (test_bit(agaw, &sagaw))
 669                        break;
 670        }
 671
 672        return agaw;
 673}
 674
 675/*
 676 * Calculate max SAGAW for each iommu.
 677 */
 678int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
 679{
 680        return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
 681}
 682
 683/*
 684 * calculate agaw for each iommu.
 685 * "SAGAW" may be different across iommus, use a default agaw, and
 686 * get a supported less agaw for iommus that don't support the default agaw.
 687 */
 688int iommu_calculate_agaw(struct intel_iommu *iommu)
 689{
 690        return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
 691}
 692
 693/* This functionin only returns single iommu in a domain */
 694struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
 695{
 696        int iommu_id;
 697
 698        /* si_domain and vm domain should not get here. */
 699        BUG_ON(domain_type_is_vm_or_si(domain));
 700        for_each_domain_iommu(iommu_id, domain)
 701                break;
 702
 703        if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
 704                return NULL;
 705
 706        return g_iommus[iommu_id];
 707}
 708
 709static void domain_update_iommu_coherency(struct dmar_domain *domain)
 710{
 711        struct dmar_drhd_unit *drhd;
 712        struct intel_iommu *iommu;
 713        bool found = false;
 714        int i;
 715
 716        domain->iommu_coherency = 1;
 717
 718        for_each_domain_iommu(i, domain) {
 719                found = true;
 720                if (!ecap_coherent(g_iommus[i]->ecap)) {
 721                        domain->iommu_coherency = 0;
 722                        break;
 723                }
 724        }
 725        if (found)
 726                return;
 727
 728        /* No hardware attached; use lowest common denominator */
 729        rcu_read_lock();
 730        for_each_active_iommu(iommu, drhd) {
 731                if (!ecap_coherent(iommu->ecap)) {
 732                        domain->iommu_coherency = 0;
 733                        break;
 734                }
 735        }
 736        rcu_read_unlock();
 737}
 738
 739static int domain_update_iommu_snooping(struct intel_iommu *skip)
 740{
 741        struct dmar_drhd_unit *drhd;
 742        struct intel_iommu *iommu;
 743        int ret = 1;
 744
 745        rcu_read_lock();
 746        for_each_active_iommu(iommu, drhd) {
 747                if (iommu != skip) {
 748                        if (!ecap_sc_support(iommu->ecap)) {
 749                                ret = 0;
 750                                break;
 751                        }
 752                }
 753        }
 754        rcu_read_unlock();
 755
 756        return ret;
 757}
 758
 759static int domain_update_iommu_superpage(struct intel_iommu *skip)
 760{
 761        struct dmar_drhd_unit *drhd;
 762        struct intel_iommu *iommu;
 763        int mask = 0xf;
 764
 765        if (!intel_iommu_superpage) {
 766                return 0;
 767        }
 768
 769        /* set iommu_superpage to the smallest common denominator */
 770        rcu_read_lock();
 771        for_each_active_iommu(iommu, drhd) {
 772                if (iommu != skip) {
 773                        mask &= cap_super_page_val(iommu->cap);
 774                        if (!mask)
 775                                break;
 776                }
 777        }
 778        rcu_read_unlock();
 779
 780        return fls(mask);
 781}
 782
 783/* Some capabilities may be different across iommus */
 784static void domain_update_iommu_cap(struct dmar_domain *domain)
 785{
 786        domain_update_iommu_coherency(domain);
 787        domain->iommu_snooping = domain_update_iommu_snooping(NULL);
 788        domain->iommu_superpage = domain_update_iommu_superpage(NULL);
 789}
 790
 791static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
 792                                                       u8 bus, u8 devfn, int alloc)
 793{
 794        struct root_entry *root = &iommu->root_entry[bus];
 795        struct context_entry *context;
 796        u64 *entry;
 797
 798        entry = &root->lo;
 799        if (ecs_enabled(iommu)) {
 800                if (devfn >= 0x80) {
 801                        devfn -= 0x80;
 802                        entry = &root->hi;
 803                }
 804                devfn *= 2;
 805        }
 806        if (*entry & 1)
 807                context = phys_to_virt(*entry & VTD_PAGE_MASK);
 808        else {
 809                unsigned long phy_addr;
 810                if (!alloc)
 811                        return NULL;
 812
 813                context = alloc_pgtable_page(iommu->node);
 814                if (!context)
 815                        return NULL;
 816
 817                __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
 818                phy_addr = virt_to_phys((void *)context);
 819                *entry = phy_addr | 1;
 820                __iommu_flush_cache(iommu, entry, sizeof(*entry));
 821        }
 822        return &context[devfn];
 823}
 824
 825static int iommu_dummy(struct device *dev)
 826{
 827        return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
 828}
 829
 830static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
 831{
 832        struct dmar_drhd_unit *drhd = NULL;
 833        struct intel_iommu *iommu;
 834        struct device *tmp;
 835        struct pci_dev *ptmp, *pdev = NULL;
 836        u16 segment = 0;
 837        int i;
 838
 839        if (iommu_dummy(dev))
 840                return NULL;
 841
 842        if (dev_is_pci(dev)) {
 843                struct pci_dev *pf_pdev;
 844
 845                pdev = to_pci_dev(dev);
 846
 847#ifdef CONFIG_X86
 848                /* VMD child devices currently cannot be handled individually */
 849                if (is_vmd(pdev->bus))
 850                        return NULL;
 851#endif
 852
 853                /* VFs aren't listed in scope tables; we need to look up
 854                 * the PF instead to find the IOMMU. */
 855                pf_pdev = pci_physfn(pdev);
 856                dev = &pf_pdev->dev;
 857                segment = pci_domain_nr(pdev->bus);
 858        } else if (has_acpi_companion(dev))
 859                dev = &ACPI_COMPANION(dev)->dev;
 860
 861        rcu_read_lock();
 862        for_each_active_iommu(iommu, drhd) {
 863                if (pdev && segment != drhd->segment)
 864                        continue;
 865
 866                for_each_active_dev_scope(drhd->devices,
 867                                          drhd->devices_cnt, i, tmp) {
 868                        if (tmp == dev) {
 869                                /* For a VF use its original BDF# not that of the PF
 870                                 * which we used for the IOMMU lookup. Strictly speaking
 871                                 * we could do this for all PCI devices; we only need to
 872                                 * get the BDF# from the scope table for ACPI matches. */
 873                                if (pdev && pdev->is_virtfn)
 874                                        goto got_pdev;
 875
 876                                *bus = drhd->devices[i].bus;
 877                                *devfn = drhd->devices[i].devfn;
 878                                goto out;
 879                        }
 880
 881                        if (!pdev || !dev_is_pci(tmp))
 882                                continue;
 883
 884                        ptmp = to_pci_dev(tmp);
 885                        if (ptmp->subordinate &&
 886                            ptmp->subordinate->number <= pdev->bus->number &&
 887                            ptmp->subordinate->busn_res.end >= pdev->bus->number)
 888                                goto got_pdev;
 889                }
 890
 891                if (pdev && drhd->include_all) {
 892                got_pdev:
 893                        *bus = pdev->bus->number;
 894                        *devfn = pdev->devfn;
 895                        goto out;
 896                }
 897        }
 898        iommu = NULL;
 899 out:
 900        rcu_read_unlock();
 901
 902        return iommu;
 903}
 904
 905static void domain_flush_cache(struct dmar_domain *domain,
 906                               void *addr, int size)
 907{
 908        if (!domain->iommu_coherency)
 909                clflush_cache_range(addr, size);
 910}
 911
 912static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
 913{
 914        struct context_entry *context;
 915        int ret = 0;
 916        unsigned long flags;
 917
 918        spin_lock_irqsave(&iommu->lock, flags);
 919        context = iommu_context_addr(iommu, bus, devfn, 0);
 920        if (context)
 921                ret = context_present(context);
 922        spin_unlock_irqrestore(&iommu->lock, flags);
 923        return ret;
 924}
 925
 926static void free_context_table(struct intel_iommu *iommu)
 927{
 928        int i;
 929        unsigned long flags;
 930        struct context_entry *context;
 931
 932        spin_lock_irqsave(&iommu->lock, flags);
 933        if (!iommu->root_entry) {
 934                goto out;
 935        }
 936        for (i = 0; i < ROOT_ENTRY_NR; i++) {
 937                context = iommu_context_addr(iommu, i, 0, 0);
 938                if (context)
 939                        free_pgtable_page(context);
 940
 941                if (!ecs_enabled(iommu))
 942                        continue;
 943
 944                context = iommu_context_addr(iommu, i, 0x80, 0);
 945                if (context)
 946                        free_pgtable_page(context);
 947
 948        }
 949        free_pgtable_page(iommu->root_entry);
 950        iommu->root_entry = NULL;
 951out:
 952        spin_unlock_irqrestore(&iommu->lock, flags);
 953}
 954
 955static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
 956                                      unsigned long pfn, int *target_level)
 957{
 958        struct dma_pte *parent, *pte = NULL;
 959        int level = agaw_to_level(domain->agaw);
 960        int offset;
 961
 962        BUG_ON(!domain->pgd);
 963
 964        if (!domain_pfn_supported(domain, pfn))
 965                /* Address beyond IOMMU's addressing capabilities. */
 966                return NULL;
 967
 968        parent = domain->pgd;
 969
 970        while (1) {
 971                void *tmp_page;
 972
 973                offset = pfn_level_offset(pfn, level);
 974                pte = &parent[offset];
 975                if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
 976                        break;
 977                if (level == *target_level)
 978                        break;
 979
 980                if (!dma_pte_present(pte)) {
 981                        uint64_t pteval;
 982
 983                        tmp_page = alloc_pgtable_page(domain->nid);
 984
 985                        if (!tmp_page)
 986                                return NULL;
 987
 988                        domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
 989                        pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
 990                        if (cmpxchg64(&pte->val, 0ULL, pteval))
 991                                /* Someone else set it while we were thinking; use theirs. */
 992                                free_pgtable_page(tmp_page);
 993                        else
 994                                domain_flush_cache(domain, pte, sizeof(*pte));
 995                }
 996                if (level == 1)
 997                        break;
 998
 999                parent = phys_to_virt(dma_pte_addr(pte));
1000                level--;
1001        }
1002
1003        if (!*target_level)
1004                *target_level = level;
1005
1006        return pte;
1007}
1008
1009
1010/* return address's pte at specific level */
1011static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1012                                         unsigned long pfn,
1013                                         int level, int *large_page)
1014{
1015        struct dma_pte *parent, *pte = NULL;
1016        int total = agaw_to_level(domain->agaw);
1017        int offset;
1018
1019        parent = domain->pgd;
1020        while (level <= total) {
1021                offset = pfn_level_offset(pfn, total);
1022                pte = &parent[offset];
1023                if (level == total)
1024                        return pte;
1025
1026                if (!dma_pte_present(pte)) {
1027                        *large_page = total;
1028                        break;
1029                }
1030
1031                if (dma_pte_superpage(pte)) {
1032                        *large_page = total;
1033                        return pte;
1034                }
1035
1036                parent = phys_to_virt(dma_pte_addr(pte));
1037                total--;
1038        }
1039        return NULL;
1040}
1041
1042/* clear last level pte, a tlb flush should be followed */
1043static void dma_pte_clear_range(struct dmar_domain *domain,
1044                                unsigned long start_pfn,
1045                                unsigned long last_pfn)
1046{
1047        unsigned int large_page = 1;
1048        struct dma_pte *first_pte, *pte;
1049
1050        BUG_ON(!domain_pfn_supported(domain, start_pfn));
1051        BUG_ON(!domain_pfn_supported(domain, last_pfn));
1052        BUG_ON(start_pfn > last_pfn);
1053
1054        /* we don't need lock here; nobody else touches the iova range */
1055        do {
1056                large_page = 1;
1057                first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1058                if (!pte) {
1059                        start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1060                        continue;
1061                }
1062                do {
1063                        dma_clear_pte(pte);
1064                        start_pfn += lvl_to_nr_pages(large_page);
1065                        pte++;
1066                } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1067
1068                domain_flush_cache(domain, first_pte,
1069                                   (void *)pte - (void *)first_pte);
1070
1071        } while (start_pfn && start_pfn <= last_pfn);
1072}
1073
1074static void dma_pte_free_level(struct dmar_domain *domain, int level,
1075                               int retain_level, struct dma_pte *pte,
1076                               unsigned long pfn, unsigned long start_pfn,
1077                               unsigned long last_pfn)
1078{
1079        pfn = max(start_pfn, pfn);
1080        pte = &pte[pfn_level_offset(pfn, level)];
1081
1082        do {
1083                unsigned long level_pfn;
1084                struct dma_pte *level_pte;
1085
1086                if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1087                        goto next;
1088
1089                level_pfn = pfn & level_mask(level);
1090                level_pte = phys_to_virt(dma_pte_addr(pte));
1091
1092                if (level > 2) {
1093                        dma_pte_free_level(domain, level - 1, retain_level,
1094                                           level_pte, level_pfn, start_pfn,
1095                                           last_pfn);
1096                }
1097
1098                /*
1099                 * Free the page table if we're below the level we want to
1100                 * retain and the range covers the entire table.
1101                 */
1102                if (level < retain_level && !(start_pfn > level_pfn ||
1103                      last_pfn < level_pfn + level_size(level) - 1)) {
1104                        dma_clear_pte(pte);
1105                        domain_flush_cache(domain, pte, sizeof(*pte));
1106                        free_pgtable_page(level_pte);
1107                }
1108next:
1109                pfn += level_size(level);
1110        } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1111}
1112
1113/*
1114 * clear last level (leaf) ptes and free page table pages below the
1115 * level we wish to keep intact.
1116 */
1117static void dma_pte_free_pagetable(struct dmar_domain *domain,
1118                                   unsigned long start_pfn,
1119                                   unsigned long last_pfn,
1120                                   int retain_level)
1121{
1122        BUG_ON(!domain_pfn_supported(domain, start_pfn));
1123        BUG_ON(!domain_pfn_supported(domain, last_pfn));
1124        BUG_ON(start_pfn > last_pfn);
1125
1126        dma_pte_clear_range(domain, start_pfn, last_pfn);
1127
1128        /* We don't need lock here; nobody else touches the iova range */
1129        dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1130                           domain->pgd, 0, start_pfn, last_pfn);
1131
1132        /* free pgd */
1133        if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1134                free_pgtable_page(domain->pgd);
1135                domain->pgd = NULL;
1136        }
1137}
1138
1139/* When a page at a given level is being unlinked from its parent, we don't
1140   need to *modify* it at all. All we need to do is make a list of all the
1141   pages which can be freed just as soon as we've flushed the IOTLB and we
1142   know the hardware page-walk will no longer touch them.
1143   The 'pte' argument is the *parent* PTE, pointing to the page that is to
1144   be freed. */
1145static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1146                                            int level, struct dma_pte *pte,
1147                                            struct page *freelist)
1148{
1149        struct page *pg;
1150
1151        pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1152        pg->freelist = freelist;
1153        freelist = pg;
1154
1155        if (level == 1)
1156                return freelist;
1157
1158        pte = page_address(pg);
1159        do {
1160                if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1161                        freelist = dma_pte_list_pagetables(domain, level - 1,
1162                                                           pte, freelist);
1163                pte++;
1164        } while (!first_pte_in_page(pte));
1165
1166        return freelist;
1167}
1168
1169static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1170                                        struct dma_pte *pte, unsigned long pfn,
1171                                        unsigned long start_pfn,
1172                                        unsigned long last_pfn,
1173                                        struct page *freelist)
1174{
1175        struct dma_pte *first_pte = NULL, *last_pte = NULL;
1176
1177        pfn = max(start_pfn, pfn);
1178        pte = &pte[pfn_level_offset(pfn, level)];
1179
1180        do {
1181                unsigned long level_pfn;
1182
1183                if (!dma_pte_present(pte))
1184                        goto next;
1185
1186                level_pfn = pfn & level_mask(level);
1187
1188                /* If range covers entire pagetable, free it */
1189                if (start_pfn <= level_pfn &&
1190                    last_pfn >= level_pfn + level_size(level) - 1) {
1191                        /* These suborbinate page tables are going away entirely. Don't
1192                           bother to clear them; we're just going to *free* them. */
1193                        if (level > 1 && !dma_pte_superpage(pte))
1194                                freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1195
1196                        dma_clear_pte(pte);
1197                        if (!first_pte)
1198                                first_pte = pte;
1199                        last_pte = pte;
1200                } else if (level > 1) {
1201                        /* Recurse down into a level that isn't *entirely* obsolete */
1202                        freelist = dma_pte_clear_level(domain, level - 1,
1203                                                       phys_to_virt(dma_pte_addr(pte)),
1204                                                       level_pfn, start_pfn, last_pfn,
1205                                                       freelist);
1206                }
1207next:
1208                pfn += level_size(level);
1209        } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1210
1211        if (first_pte)
1212                domain_flush_cache(domain, first_pte,
1213                                   (void *)++last_pte - (void *)first_pte);
1214
1215        return freelist;
1216}
1217
1218/* We can't just free the pages because the IOMMU may still be walking
1219   the page tables, and may have cached the intermediate levels. The
1220   pages can only be freed after the IOTLB flush has been done. */
1221static struct page *domain_unmap(struct dmar_domain *domain,
1222                                 unsigned long start_pfn,
1223                                 unsigned long last_pfn)
1224{
1225        struct page *freelist = NULL;
1226
1227        BUG_ON(!domain_pfn_supported(domain, start_pfn));
1228        BUG_ON(!domain_pfn_supported(domain, last_pfn));
1229        BUG_ON(start_pfn > last_pfn);
1230
1231        /* we don't need lock here; nobody else touches the iova range */
1232        freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1233                                       domain->pgd, 0, start_pfn, last_pfn, NULL);
1234
1235        /* free pgd */
1236        if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1237                struct page *pgd_page = virt_to_page(domain->pgd);
1238                pgd_page->freelist = freelist;
1239                freelist = pgd_page;
1240
1241                domain->pgd = NULL;
1242        }
1243
1244        return freelist;
1245}
1246
1247static void dma_free_pagelist(struct page *freelist)
1248{
1249        struct page *pg;
1250
1251        while ((pg = freelist)) {
1252                freelist = pg->freelist;
1253                free_pgtable_page(page_address(pg));
1254        }
1255}
1256
1257static void iova_entry_free(unsigned long data)
1258{
1259        struct page *freelist = (struct page *)data;
1260
1261        dma_free_pagelist(freelist);
1262}
1263
1264/* iommu handling */
1265static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1266{
1267        struct root_entry *root;
1268        unsigned long flags;
1269
1270        root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1271        if (!root) {
1272                pr_err("Allocating root entry for %s failed\n",
1273                        iommu->name);
1274                return -ENOMEM;
1275        }
1276
1277        __iommu_flush_cache(iommu, root, ROOT_SIZE);
1278
1279        spin_lock_irqsave(&iommu->lock, flags);
1280        iommu->root_entry = root;
1281        spin_unlock_irqrestore(&iommu->lock, flags);
1282
1283        return 0;
1284}
1285
1286static void iommu_set_root_entry(struct intel_iommu *iommu)
1287{
1288        u64 addr;
1289        u32 sts;
1290        unsigned long flag;
1291
1292        addr = virt_to_phys(iommu->root_entry);
1293        if (ecs_enabled(iommu))
1294                addr |= DMA_RTADDR_RTT;
1295
1296        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1297        dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1298
1299        writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1300
1301        /* Make sure hardware complete it */
1302        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1303                      readl, (sts & DMA_GSTS_RTPS), sts);
1304
1305        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1306}
1307
1308static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1309{
1310        u32 val;
1311        unsigned long flag;
1312
1313        if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1314                return;
1315
1316        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1317        writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1318
1319        /* Make sure hardware complete it */
1320        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1321                      readl, (!(val & DMA_GSTS_WBFS)), val);
1322
1323        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1324}
1325
1326/* return value determine if we need a write buffer flush */
1327static void __iommu_flush_context(struct intel_iommu *iommu,
1328                                  u16 did, u16 source_id, u8 function_mask,
1329                                  u64 type)
1330{
1331        u64 val = 0;
1332        unsigned long flag;
1333
1334        switch (type) {
1335        case DMA_CCMD_GLOBAL_INVL:
1336                val = DMA_CCMD_GLOBAL_INVL;
1337                break;
1338        case DMA_CCMD_DOMAIN_INVL:
1339                val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1340                break;
1341        case DMA_CCMD_DEVICE_INVL:
1342                val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1343                        | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1344                break;
1345        default:
1346                BUG();
1347        }
1348        val |= DMA_CCMD_ICC;
1349
1350        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1351        dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1352
1353        /* Make sure hardware complete it */
1354        IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1355                dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1356
1357        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1358}
1359
1360/* return value determine if we need a write buffer flush */
1361static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1362                                u64 addr, unsigned int size_order, u64 type)
1363{
1364        int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1365        u64 val = 0, val_iva = 0;
1366        unsigned long flag;
1367
1368        switch (type) {
1369        case DMA_TLB_GLOBAL_FLUSH:
1370                /* global flush doesn't need set IVA_REG */
1371                val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1372                break;
1373        case DMA_TLB_DSI_FLUSH:
1374                val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1375                break;
1376        case DMA_TLB_PSI_FLUSH:
1377                val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1378                /* IH bit is passed in as part of address */
1379                val_iva = size_order | addr;
1380                break;
1381        default:
1382                BUG();
1383        }
1384        /* Note: set drain read/write */
1385#if 0
1386        /*
1387         * This is probably to be super secure.. Looks like we can
1388         * ignore it without any impact.
1389         */
1390        if (cap_read_drain(iommu->cap))
1391                val |= DMA_TLB_READ_DRAIN;
1392#endif
1393        if (cap_write_drain(iommu->cap))
1394                val |= DMA_TLB_WRITE_DRAIN;
1395
1396        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1397        /* Note: Only uses first TLB reg currently */
1398        if (val_iva)
1399                dmar_writeq(iommu->reg + tlb_offset, val_iva);
1400        dmar_writeq(iommu->reg + tlb_offset + 8, val);
1401
1402        /* Make sure hardware complete it */
1403        IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1404                dmar_readq, (!(val & DMA_TLB_IVT)), val);
1405
1406        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1407
1408        /* check IOTLB invalidation granularity */
1409        if (DMA_TLB_IAIG(val) == 0)
1410                pr_err("Flush IOTLB failed\n");
1411        if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1412                pr_debug("TLB flush request %Lx, actual %Lx\n",
1413                        (unsigned long long)DMA_TLB_IIRG(type),
1414                        (unsigned long long)DMA_TLB_IAIG(val));
1415}
1416
1417static struct device_domain_info *
1418iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1419                         u8 bus, u8 devfn)
1420{
1421        struct device_domain_info *info;
1422
1423        assert_spin_locked(&device_domain_lock);
1424
1425        if (!iommu->qi)
1426                return NULL;
1427
1428        list_for_each_entry(info, &domain->devices, link)
1429                if (info->iommu == iommu && info->bus == bus &&
1430                    info->devfn == devfn) {
1431                        if (info->ats_supported && info->dev)
1432                                return info;
1433                        break;
1434                }
1435
1436        return NULL;
1437}
1438
1439static void domain_update_iotlb(struct dmar_domain *domain)
1440{
1441        struct device_domain_info *info;
1442        bool has_iotlb_device = false;
1443
1444        assert_spin_locked(&device_domain_lock);
1445
1446        list_for_each_entry(info, &domain->devices, link) {
1447                struct pci_dev *pdev;
1448
1449                if (!info->dev || !dev_is_pci(info->dev))
1450                        continue;
1451
1452                pdev = to_pci_dev(info->dev);
1453                if (pdev->ats_enabled) {
1454                        has_iotlb_device = true;
1455                        break;
1456                }
1457        }
1458
1459        domain->has_iotlb_device = has_iotlb_device;
1460}
1461
1462static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1463{
1464        struct pci_dev *pdev;
1465
1466        assert_spin_locked(&device_domain_lock);
1467
1468        if (!info || !dev_is_pci(info->dev))
1469                return;
1470
1471        pdev = to_pci_dev(info->dev);
1472        /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1473         * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1474         * queue depth at PF level. If DIT is not set, PFSID will be treated as
1475         * reserved, which should be set to 0.
1476         */
1477        if (!ecap_dit(info->iommu->ecap))
1478                info->pfsid = 0;
1479        else {
1480                struct pci_dev *pf_pdev;
1481
1482                /* pdev will be returned if device is not a vf */
1483                pf_pdev = pci_physfn(pdev);
1484                info->pfsid = PCI_DEVID(pf_pdev->bus->number, pf_pdev->devfn);
1485        }
1486
1487#ifdef CONFIG_INTEL_IOMMU_SVM
1488        /* The PCIe spec, in its wisdom, declares that the behaviour of
1489           the device if you enable PASID support after ATS support is
1490           undefined. So always enable PASID support on devices which
1491           have it, even if we can't yet know if we're ever going to
1492           use it. */
1493        if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1494                info->pasid_enabled = 1;
1495
1496        if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1497                info->pri_enabled = 1;
1498#endif
1499        if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1500                info->ats_enabled = 1;
1501                domain_update_iotlb(info->domain);
1502                info->ats_qdep = pci_ats_queue_depth(pdev);
1503        }
1504}
1505
1506static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1507{
1508        struct pci_dev *pdev;
1509
1510        assert_spin_locked(&device_domain_lock);
1511
1512        if (!dev_is_pci(info->dev))
1513                return;
1514
1515        pdev = to_pci_dev(info->dev);
1516
1517        if (info->ats_enabled) {
1518                pci_disable_ats(pdev);
1519                info->ats_enabled = 0;
1520                domain_update_iotlb(info->domain);
1521        }
1522#ifdef CONFIG_INTEL_IOMMU_SVM
1523        if (info->pri_enabled) {
1524                pci_disable_pri(pdev);
1525                info->pri_enabled = 0;
1526        }
1527        if (info->pasid_enabled) {
1528                pci_disable_pasid(pdev);
1529                info->pasid_enabled = 0;
1530        }
1531#endif
1532}
1533
1534static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1535                                  u64 addr, unsigned mask)
1536{
1537        u16 sid, qdep;
1538        unsigned long flags;
1539        struct device_domain_info *info;
1540
1541        if (!domain->has_iotlb_device)
1542                return;
1543
1544        spin_lock_irqsave(&device_domain_lock, flags);
1545        list_for_each_entry(info, &domain->devices, link) {
1546                if (!info->ats_enabled)
1547                        continue;
1548
1549                sid = info->bus << 8 | info->devfn;
1550                qdep = info->ats_qdep;
1551                qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1552                                qdep, addr, mask);
1553        }
1554        spin_unlock_irqrestore(&device_domain_lock, flags);
1555}
1556
1557static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1558                                  struct dmar_domain *domain,
1559                                  unsigned long pfn, unsigned int pages,
1560                                  int ih, int map)
1561{
1562        unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1563        uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1564        u16 did = domain->iommu_did[iommu->seq_id];
1565
1566        BUG_ON(pages == 0);
1567
1568        if (ih)
1569                ih = 1 << 6;
1570        /*
1571         * Fallback to domain selective flush if no PSI support or the size is
1572         * too big.
1573         * PSI requires page size to be 2 ^ x, and the base address is naturally
1574         * aligned to the size
1575         */
1576        if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1577                iommu->flush.flush_iotlb(iommu, did, 0, 0,
1578                                                DMA_TLB_DSI_FLUSH);
1579        else
1580                iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1581                                                DMA_TLB_PSI_FLUSH);
1582
1583        /*
1584         * In caching mode, changes of pages from non-present to present require
1585         * flush. However, device IOTLB doesn't need to be flushed in this case.
1586         */
1587        if (!cap_caching_mode(iommu->cap) || !map)
1588                iommu_flush_dev_iotlb(domain, addr, mask);
1589}
1590
1591/* Notification for newly created mappings */
1592static inline void __mapping_notify_one(struct intel_iommu *iommu,
1593                                        struct dmar_domain *domain,
1594                                        unsigned long pfn, unsigned int pages)
1595{
1596        /* It's a non-present to present mapping. Only flush if caching mode */
1597        if (cap_caching_mode(iommu->cap))
1598                iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1599        else
1600                iommu_flush_write_buffer(iommu);
1601}
1602
1603static void iommu_flush_iova(struct iova_domain *iovad)
1604{
1605        struct dmar_domain *domain;
1606        int idx;
1607
1608        domain = container_of(iovad, struct dmar_domain, iovad);
1609
1610        for_each_domain_iommu(idx, domain) {
1611                struct intel_iommu *iommu = g_iommus[idx];
1612                u16 did = domain->iommu_did[iommu->seq_id];
1613
1614                iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1615
1616                if (!cap_caching_mode(iommu->cap))
1617                        iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1618                                              0, MAX_AGAW_PFN_WIDTH);
1619        }
1620}
1621
1622static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1623{
1624        u32 pmen;
1625        unsigned long flags;
1626
1627        raw_spin_lock_irqsave(&iommu->register_lock, flags);
1628        pmen = readl(iommu->reg + DMAR_PMEN_REG);
1629        pmen &= ~DMA_PMEN_EPM;
1630        writel(pmen, iommu->reg + DMAR_PMEN_REG);
1631
1632        /* wait for the protected region status bit to clear */
1633        IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1634                readl, !(pmen & DMA_PMEN_PRS), pmen);
1635
1636        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1637}
1638
1639static void iommu_enable_translation(struct intel_iommu *iommu)
1640{
1641        u32 sts;
1642        unsigned long flags;
1643
1644        raw_spin_lock_irqsave(&iommu->register_lock, flags);
1645        iommu->gcmd |= DMA_GCMD_TE;
1646        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1647
1648        /* Make sure hardware complete it */
1649        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1650                      readl, (sts & DMA_GSTS_TES), sts);
1651
1652        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1653}
1654
1655static void iommu_disable_translation(struct intel_iommu *iommu)
1656{
1657        u32 sts;
1658        unsigned long flag;
1659
1660        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1661        iommu->gcmd &= ~DMA_GCMD_TE;
1662        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1663
1664        /* Make sure hardware complete it */
1665        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1666                      readl, (!(sts & DMA_GSTS_TES)), sts);
1667
1668        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1669}
1670
1671
1672static int iommu_init_domains(struct intel_iommu *iommu)
1673{
1674        u32 ndomains, nlongs;
1675        size_t size;
1676
1677        ndomains = cap_ndoms(iommu->cap);
1678        pr_debug("%s: Number of Domains supported <%d>\n",
1679                 iommu->name, ndomains);
1680        nlongs = BITS_TO_LONGS(ndomains);
1681
1682        spin_lock_init(&iommu->lock);
1683
1684        iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1685        if (!iommu->domain_ids) {
1686                pr_err("%s: Allocating domain id array failed\n",
1687                       iommu->name);
1688                return -ENOMEM;
1689        }
1690
1691        size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1692        iommu->domains = kzalloc(size, GFP_KERNEL);
1693
1694        if (iommu->domains) {
1695                size = 256 * sizeof(struct dmar_domain *);
1696                iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1697        }
1698
1699        if (!iommu->domains || !iommu->domains[0]) {
1700                pr_err("%s: Allocating domain array failed\n",
1701                       iommu->name);
1702                kfree(iommu->domain_ids);
1703                kfree(iommu->domains);
1704                iommu->domain_ids = NULL;
1705                iommu->domains    = NULL;
1706                return -ENOMEM;
1707        }
1708
1709
1710
1711        /*
1712         * If Caching mode is set, then invalid translations are tagged
1713         * with domain-id 0, hence we need to pre-allocate it. We also
1714         * use domain-id 0 as a marker for non-allocated domain-id, so
1715         * make sure it is not used for a real domain.
1716         */
1717        set_bit(0, iommu->domain_ids);
1718
1719        return 0;
1720}
1721
1722static void disable_dmar_iommu(struct intel_iommu *iommu)
1723{
1724        struct device_domain_info *info, *tmp;
1725        unsigned long flags;
1726
1727        if (!iommu->domains || !iommu->domain_ids)
1728                return;
1729
1730again:
1731        spin_lock_irqsave(&device_domain_lock, flags);
1732        list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1733                struct dmar_domain *domain;
1734
1735                if (info->iommu != iommu)
1736                        continue;
1737
1738                if (!info->dev || !info->domain)
1739                        continue;
1740
1741                domain = info->domain;
1742
1743                __dmar_remove_one_dev_info(info);
1744
1745                if (!domain_type_is_vm_or_si(domain)) {
1746                        /*
1747                         * The domain_exit() function  can't be called under
1748                         * device_domain_lock, as it takes this lock itself.
1749                         * So release the lock here and re-run the loop
1750                         * afterwards.
1751                         */
1752                        spin_unlock_irqrestore(&device_domain_lock, flags);
1753                        domain_exit(domain);
1754                        goto again;
1755                }
1756        }
1757        spin_unlock_irqrestore(&device_domain_lock, flags);
1758
1759        if (iommu->gcmd & DMA_GCMD_TE)
1760                iommu_disable_translation(iommu);
1761}
1762
1763static void free_dmar_iommu(struct intel_iommu *iommu)
1764{
1765        if ((iommu->domains) && (iommu->domain_ids)) {
1766                int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1767                int i;
1768
1769                for (i = 0; i < elems; i++)
1770                        kfree(iommu->domains[i]);
1771                kfree(iommu->domains);
1772                kfree(iommu->domain_ids);
1773                iommu->domains = NULL;
1774                iommu->domain_ids = NULL;
1775        }
1776
1777        g_iommus[iommu->seq_id] = NULL;
1778
1779        /* free context mapping */
1780        free_context_table(iommu);
1781
1782#ifdef CONFIG_INTEL_IOMMU_SVM
1783        if (pasid_enabled(iommu)) {
1784                if (ecap_prs(iommu->ecap))
1785                        intel_svm_finish_prq(iommu);
1786                intel_svm_exit(iommu);
1787        }
1788#endif
1789}
1790
1791static struct dmar_domain *alloc_domain(int flags)
1792{
1793        struct dmar_domain *domain;
1794
1795        domain = alloc_domain_mem();
1796        if (!domain)
1797                return NULL;
1798
1799        memset(domain, 0, sizeof(*domain));
1800        domain->nid = -1;
1801        domain->flags = flags;
1802        domain->has_iotlb_device = false;
1803        INIT_LIST_HEAD(&domain->devices);
1804
1805        return domain;
1806}
1807
1808/* Must be called with iommu->lock */
1809static int domain_attach_iommu(struct dmar_domain *domain,
1810                               struct intel_iommu *iommu)
1811{
1812        unsigned long ndomains;
1813        int num;
1814
1815        assert_spin_locked(&device_domain_lock);
1816        assert_spin_locked(&iommu->lock);
1817
1818        domain->iommu_refcnt[iommu->seq_id] += 1;
1819        domain->iommu_count += 1;
1820        if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1821                ndomains = cap_ndoms(iommu->cap);
1822                num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1823
1824                if (num >= ndomains) {
1825                        pr_err("%s: No free domain ids\n", iommu->name);
1826                        domain->iommu_refcnt[iommu->seq_id] -= 1;
1827                        domain->iommu_count -= 1;
1828                        return -ENOSPC;
1829                }
1830
1831                set_bit(num, iommu->domain_ids);
1832                set_iommu_domain(iommu, num, domain);
1833
1834                domain->iommu_did[iommu->seq_id] = num;
1835                domain->nid                      = iommu->node;
1836
1837                domain_update_iommu_cap(domain);
1838        }
1839
1840        return 0;
1841}
1842
1843static int domain_detach_iommu(struct dmar_domain *domain,
1844                               struct intel_iommu *iommu)
1845{
1846        int num, count = INT_MAX;
1847
1848        assert_spin_locked(&device_domain_lock);
1849        assert_spin_locked(&iommu->lock);
1850
1851        domain->iommu_refcnt[iommu->seq_id] -= 1;
1852        count = --domain->iommu_count;
1853        if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1854                num = domain->iommu_did[iommu->seq_id];
1855                clear_bit(num, iommu->domain_ids);
1856                set_iommu_domain(iommu, num, NULL);
1857
1858                domain_update_iommu_cap(domain);
1859                domain->iommu_did[iommu->seq_id] = 0;
1860        }
1861
1862        return count;
1863}
1864
1865static struct iova_domain reserved_iova_list;
1866static struct lock_class_key reserved_rbtree_key;
1867
1868static int dmar_init_reserved_ranges(void)
1869{
1870        struct pci_dev *pdev = NULL;
1871        struct iova *iova;
1872        int i;
1873
1874        init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1875
1876        lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1877                &reserved_rbtree_key);
1878
1879        /* IOAPIC ranges shouldn't be accessed by DMA */
1880        iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1881                IOVA_PFN(IOAPIC_RANGE_END));
1882        if (!iova) {
1883                pr_err("Reserve IOAPIC range failed\n");
1884                return -ENODEV;
1885        }
1886
1887        /* Reserve all PCI MMIO to avoid peer-to-peer access */
1888        for_each_pci_dev(pdev) {
1889                struct resource *r;
1890
1891                for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1892                        r = &pdev->resource[i];
1893                        if (!r->flags || !(r->flags & IORESOURCE_MEM))
1894                                continue;
1895                        iova = reserve_iova(&reserved_iova_list,
1896                                            IOVA_PFN(r->start),
1897                                            IOVA_PFN(r->end));
1898                        if (!iova) {
1899                                pr_err("Reserve iova failed\n");
1900                                return -ENODEV;
1901                        }
1902                }
1903        }
1904        return 0;
1905}
1906
1907static void domain_reserve_special_ranges(struct dmar_domain *domain)
1908{
1909        copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1910}
1911
1912static inline int guestwidth_to_adjustwidth(int gaw)
1913{
1914        int agaw;
1915        int r = (gaw - 12) % 9;
1916
1917        if (r == 0)
1918                agaw = gaw;
1919        else
1920                agaw = gaw + 9 - r;
1921        if (agaw > 64)
1922                agaw = 64;
1923        return agaw;
1924}
1925
1926static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1927                       int guest_width)
1928{
1929        int adjust_width, agaw;
1930        unsigned long sagaw;
1931        int err;
1932
1933        init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1934
1935        err = init_iova_flush_queue(&domain->iovad,
1936                                    iommu_flush_iova, iova_entry_free);
1937        if (err)
1938                return err;
1939
1940        domain_reserve_special_ranges(domain);
1941
1942        /* calculate AGAW */
1943        if (guest_width > cap_mgaw(iommu->cap))
1944                guest_width = cap_mgaw(iommu->cap);
1945        domain->gaw = guest_width;
1946        adjust_width = guestwidth_to_adjustwidth(guest_width);
1947        agaw = width_to_agaw(adjust_width);
1948        sagaw = cap_sagaw(iommu->cap);
1949        if (!test_bit(agaw, &sagaw)) {
1950                /* hardware doesn't support it, choose a bigger one */
1951                pr_debug("Hardware doesn't support agaw %d\n", agaw);
1952                agaw = find_next_bit(&sagaw, 5, agaw);
1953                if (agaw >= 5)
1954                        return -ENODEV;
1955        }
1956        domain->agaw = agaw;
1957
1958        if (ecap_coherent(iommu->ecap))
1959                domain->iommu_coherency = 1;
1960        else
1961                domain->iommu_coherency = 0;
1962
1963        if (ecap_sc_support(iommu->ecap))
1964                domain->iommu_snooping = 1;
1965        else
1966                domain->iommu_snooping = 0;
1967
1968        if (intel_iommu_superpage)
1969                domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1970        else
1971                domain->iommu_superpage = 0;
1972
1973        domain->nid = iommu->node;
1974
1975        /* always allocate the top pgd */
1976        domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1977        if (!domain->pgd)
1978                return -ENOMEM;
1979        __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1980        return 0;
1981}
1982
1983static void domain_exit(struct dmar_domain *domain)
1984{
1985        struct page *freelist = NULL;
1986
1987        /* Domain 0 is reserved, so dont process it */
1988        if (!domain)
1989                return;
1990
1991        /* Remove associated devices and clear attached or cached domains */
1992        rcu_read_lock();
1993        domain_remove_dev_info(domain);
1994        rcu_read_unlock();
1995
1996        /* destroy iovas */
1997        put_iova_domain(&domain->iovad);
1998
1999        freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2000
2001        dma_free_pagelist(freelist);
2002
2003        free_domain_mem(domain);
2004}
2005
2006static int domain_context_mapping_one(struct dmar_domain *domain,
2007                                      struct intel_iommu *iommu,
2008                                      u8 bus, u8 devfn)
2009{
2010        u16 did = domain->iommu_did[iommu->seq_id];
2011        int translation = CONTEXT_TT_MULTI_LEVEL;
2012        struct device_domain_info *info = NULL;
2013        struct context_entry *context;
2014        unsigned long flags;
2015        struct dma_pte *pgd;
2016        int ret, agaw;
2017
2018        WARN_ON(did == 0);
2019
2020        if (hw_pass_through && domain_type_is_si(domain))
2021                translation = CONTEXT_TT_PASS_THROUGH;
2022
2023        pr_debug("Set context mapping for %02x:%02x.%d\n",
2024                bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2025
2026        BUG_ON(!domain->pgd);
2027
2028        spin_lock_irqsave(&device_domain_lock, flags);
2029        spin_lock(&iommu->lock);
2030
2031        ret = -ENOMEM;
2032        context = iommu_context_addr(iommu, bus, devfn, 1);
2033        if (!context)
2034                goto out_unlock;
2035
2036        ret = 0;
2037        if (context_present(context))
2038                goto out_unlock;
2039
2040        /*
2041         * For kdump cases, old valid entries may be cached due to the
2042         * in-flight DMA and copied pgtable, but there is no unmapping
2043         * behaviour for them, thus we need an explicit cache flush for
2044         * the newly-mapped device. For kdump, at this point, the device
2045         * is supposed to finish reset at its driver probe stage, so no
2046         * in-flight DMA will exist, and we don't need to worry anymore
2047         * hereafter.
2048         */
2049        if (context_copied(context)) {
2050                u16 did_old = context_domain_id(context);
2051
2052                if (did_old < cap_ndoms(iommu->cap)) {
2053                        iommu->flush.flush_context(iommu, did_old,
2054                                                   (((u16)bus) << 8) | devfn,
2055                                                   DMA_CCMD_MASK_NOBIT,
2056                                                   DMA_CCMD_DEVICE_INVL);
2057                        iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2058                                                 DMA_TLB_DSI_FLUSH);
2059                }
2060        }
2061
2062        pgd = domain->pgd;
2063
2064        context_clear_entry(context);
2065        context_set_domain_id(context, did);
2066
2067        /*
2068         * Skip top levels of page tables for iommu which has less agaw
2069         * than default.  Unnecessary for PT mode.
2070         */
2071        if (translation != CONTEXT_TT_PASS_THROUGH) {
2072                for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2073                        ret = -ENOMEM;
2074                        pgd = phys_to_virt(dma_pte_addr(pgd));
2075                        if (!dma_pte_present(pgd))
2076                                goto out_unlock;
2077                }
2078
2079                info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2080                if (info && info->ats_supported)
2081                        translation = CONTEXT_TT_DEV_IOTLB;
2082                else
2083                        translation = CONTEXT_TT_MULTI_LEVEL;
2084
2085                context_set_address_root(context, virt_to_phys(pgd));
2086                context_set_address_width(context, iommu->agaw);
2087        } else {
2088                /*
2089                 * In pass through mode, AW must be programmed to
2090                 * indicate the largest AGAW value supported by
2091                 * hardware. And ASR is ignored by hardware.
2092                 */
2093                context_set_address_width(context, iommu->msagaw);
2094        }
2095
2096        context_set_translation_type(context, translation);
2097        context_set_fault_enable(context);
2098        context_set_present(context);
2099        domain_flush_cache(domain, context, sizeof(*context));
2100
2101        /*
2102         * It's a non-present to present mapping. If hardware doesn't cache
2103         * non-present entry we only need to flush the write-buffer. If the
2104         * _does_ cache non-present entries, then it does so in the special
2105         * domain #0, which we have to flush:
2106         */
2107        if (cap_caching_mode(iommu->cap)) {
2108                iommu->flush.flush_context(iommu, 0,
2109                                           (((u16)bus) << 8) | devfn,
2110                                           DMA_CCMD_MASK_NOBIT,
2111                                           DMA_CCMD_DEVICE_INVL);
2112                iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2113        } else {
2114                iommu_flush_write_buffer(iommu);
2115        }
2116        iommu_enable_dev_iotlb(info);
2117
2118        ret = 0;
2119
2120out_unlock:
2121        spin_unlock(&iommu->lock);
2122        spin_unlock_irqrestore(&device_domain_lock, flags);
2123
2124        return ret;
2125}
2126
2127struct domain_context_mapping_data {
2128        struct dmar_domain *domain;
2129        struct intel_iommu *iommu;
2130};
2131
2132static int domain_context_mapping_cb(struct pci_dev *pdev,
2133                                     u16 alias, void *opaque)
2134{
2135        struct domain_context_mapping_data *data = opaque;
2136
2137        return domain_context_mapping_one(data->domain, data->iommu,
2138                                          PCI_BUS_NUM(alias), alias & 0xff);
2139}
2140
2141static int
2142domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2143{
2144        struct intel_iommu *iommu;
2145        u8 bus, devfn;
2146        struct domain_context_mapping_data data;
2147
2148        iommu = device_to_iommu(dev, &bus, &devfn);
2149        if (!iommu)
2150                return -ENODEV;
2151
2152        if (!dev_is_pci(dev))
2153                return domain_context_mapping_one(domain, iommu, bus, devfn);
2154
2155        data.domain = domain;
2156        data.iommu = iommu;
2157
2158        return pci_for_each_dma_alias(to_pci_dev(dev),
2159                                      &domain_context_mapping_cb, &data);
2160}
2161
2162static int domain_context_mapped_cb(struct pci_dev *pdev,
2163                                    u16 alias, void *opaque)
2164{
2165        struct intel_iommu *iommu = opaque;
2166
2167        return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2168}
2169
2170static int domain_context_mapped(struct device *dev)
2171{
2172        struct intel_iommu *iommu;
2173        u8 bus, devfn;
2174
2175        iommu = device_to_iommu(dev, &bus, &devfn);
2176        if (!iommu)
2177                return -ENODEV;
2178
2179        if (!dev_is_pci(dev))
2180                return device_context_mapped(iommu, bus, devfn);
2181
2182        return !pci_for_each_dma_alias(to_pci_dev(dev),
2183                                       domain_context_mapped_cb, iommu);
2184}
2185
2186/* Returns a number of VTD pages, but aligned to MM page size */
2187static inline unsigned long aligned_nrpages(unsigned long host_addr,
2188                                            size_t size)
2189{
2190        host_addr &= ~PAGE_MASK;
2191        return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2192}
2193
2194/* Return largest possible superpage level for a given mapping */
2195static inline int hardware_largepage_caps(struct dmar_domain *domain,
2196                                          unsigned long iov_pfn,
2197                                          unsigned long phy_pfn,
2198                                          unsigned long pages)
2199{
2200        int support, level = 1;
2201        unsigned long pfnmerge;
2202
2203        support = domain->iommu_superpage;
2204
2205        /* To use a large page, the virtual *and* physical addresses
2206           must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2207           of them will mean we have to use smaller pages. So just
2208           merge them and check both at once. */
2209        pfnmerge = iov_pfn | phy_pfn;
2210
2211        while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2212                pages >>= VTD_STRIDE_SHIFT;
2213                if (!pages)
2214                        break;
2215                pfnmerge >>= VTD_STRIDE_SHIFT;
2216                level++;
2217                support--;
2218        }
2219        return level;
2220}
2221
2222static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2223                            struct scatterlist *sg, unsigned long phys_pfn,
2224                            unsigned long nr_pages, int prot)
2225{
2226        struct dma_pte *first_pte = NULL, *pte = NULL;
2227        phys_addr_t uninitialized_var(pteval);
2228        unsigned long sg_res = 0;
2229        unsigned int largepage_lvl = 0;
2230        unsigned long lvl_pages = 0;
2231
2232        BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2233
2234        if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2235                return -EINVAL;
2236
2237        prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2238
2239        if (!sg) {
2240                sg_res = nr_pages;
2241                pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2242        }
2243
2244        while (nr_pages > 0) {
2245                uint64_t tmp;
2246
2247                if (!sg_res) {
2248                        unsigned int pgoff = sg->offset & ~PAGE_MASK;
2249
2250                        sg_res = aligned_nrpages(sg->offset, sg->length);
2251                        sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2252                        sg->dma_length = sg->length;
2253                        pteval = (sg_phys(sg) - pgoff) | prot;
2254                        phys_pfn = pteval >> VTD_PAGE_SHIFT;
2255                }
2256
2257                if (!pte) {
2258                        largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2259
2260                        first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2261                        if (!pte)
2262                                return -ENOMEM;
2263                        /* It is large page*/
2264                        if (largepage_lvl > 1) {
2265                                unsigned long nr_superpages, end_pfn;
2266
2267                                pteval |= DMA_PTE_LARGE_PAGE;
2268                                lvl_pages = lvl_to_nr_pages(largepage_lvl);
2269
2270                                nr_superpages = sg_res / lvl_pages;
2271                                end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2272
2273                                /*
2274                                 * Ensure that old small page tables are
2275                                 * removed to make room for superpage(s).
2276                                 * We're adding new large pages, so make sure
2277                                 * we don't remove their parent tables.
2278                                 */
2279                                dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2280                                                       largepage_lvl + 1);
2281                        } else {
2282                                pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2283                        }
2284
2285                }
2286                /* We don't need lock here, nobody else
2287                 * touches the iova range
2288                 */
2289                tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2290                if (tmp) {
2291                        static int dumps = 5;
2292                        pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2293                                iov_pfn, tmp, (unsigned long long)pteval);
2294                        if (dumps) {
2295                                dumps--;
2296                                debug_dma_dump_mappings(NULL);
2297                        }
2298                        WARN_ON(1);
2299                }
2300
2301                lvl_pages = lvl_to_nr_pages(largepage_lvl);
2302
2303                BUG_ON(nr_pages < lvl_pages);
2304                BUG_ON(sg_res < lvl_pages);
2305
2306                nr_pages -= lvl_pages;
2307                iov_pfn += lvl_pages;
2308                phys_pfn += lvl_pages;
2309                pteval += lvl_pages * VTD_PAGE_SIZE;
2310                sg_res -= lvl_pages;
2311
2312                /* If the next PTE would be the first in a new page, then we
2313                   need to flush the cache on the entries we've just written.
2314                   And then we'll need to recalculate 'pte', so clear it and
2315                   let it get set again in the if (!pte) block above.
2316
2317                   If we're done (!nr_pages) we need to flush the cache too.
2318
2319                   Also if we've been setting superpages, we may need to
2320                   recalculate 'pte' and switch back to smaller pages for the
2321                   end of the mapping, if the trailing size is not enough to
2322                   use another superpage (i.e. sg_res < lvl_pages). */
2323                pte++;
2324                if (!nr_pages || first_pte_in_page(pte) ||
2325                    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2326                        domain_flush_cache(domain, first_pte,
2327                                           (void *)pte - (void *)first_pte);
2328                        pte = NULL;
2329                }
2330
2331                if (!sg_res && nr_pages)
2332                        sg = sg_next(sg);
2333        }
2334        return 0;
2335}
2336
2337static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2338                         struct scatterlist *sg, unsigned long phys_pfn,
2339                         unsigned long nr_pages, int prot)
2340{
2341       int ret;
2342       struct intel_iommu *iommu;
2343
2344       /* Do the real mapping first */
2345       ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2346       if (ret)
2347               return ret;
2348
2349       /* Notify about the new mapping */
2350       if (domain_type_is_vm(domain)) {
2351               /* VM typed domains can have more than one IOMMUs */
2352               int iommu_id;
2353               for_each_domain_iommu(iommu_id, domain) {
2354                       iommu = g_iommus[iommu_id];
2355                       __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2356               }
2357       } else {
2358               /* General domains only have one IOMMU */
2359               iommu = domain_get_iommu(domain);
2360               __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2361       }
2362
2363       return 0;
2364}
2365
2366static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2367                                    struct scatterlist *sg, unsigned long nr_pages,
2368                                    int prot)
2369{
2370        return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2371}
2372
2373static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2374                                     unsigned long phys_pfn, unsigned long nr_pages,
2375                                     int prot)
2376{
2377        return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2378}
2379
2380static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2381{
2382        unsigned long flags;
2383        struct context_entry *context;
2384        u16 did_old;
2385
2386        if (!iommu)
2387                return;
2388
2389        spin_lock_irqsave(&iommu->lock, flags);
2390        context = iommu_context_addr(iommu, bus, devfn, 0);
2391        if (!context) {
2392                spin_unlock_irqrestore(&iommu->lock, flags);
2393                return;
2394        }
2395        did_old = context_domain_id(context);
2396        context_clear_entry(context);
2397        __iommu_flush_cache(iommu, context, sizeof(*context));
2398        spin_unlock_irqrestore(&iommu->lock, flags);
2399        iommu->flush.flush_context(iommu,
2400                                   did_old,
2401                                   (((u16)bus) << 8) | devfn,
2402                                   DMA_CCMD_MASK_NOBIT,
2403                                   DMA_CCMD_DEVICE_INVL);
2404        iommu->flush.flush_iotlb(iommu,
2405                                 did_old,
2406                                 0,
2407                                 0,
2408                                 DMA_TLB_DSI_FLUSH);
2409}
2410
2411static inline void unlink_domain_info(struct device_domain_info *info)
2412{
2413        assert_spin_locked(&device_domain_lock);
2414        list_del(&info->link);
2415        list_del(&info->global);
2416        if (info->dev)
2417                info->dev->archdata.iommu = NULL;
2418}
2419
2420static void domain_remove_dev_info(struct dmar_domain *domain)
2421{
2422        struct device_domain_info *info, *tmp;
2423        unsigned long flags;
2424
2425        spin_lock_irqsave(&device_domain_lock, flags);
2426        list_for_each_entry_safe(info, tmp, &domain->devices, link)
2427                __dmar_remove_one_dev_info(info);
2428        spin_unlock_irqrestore(&device_domain_lock, flags);
2429}
2430
2431/*
2432 * find_domain
2433 * Note: we use struct device->archdata.iommu stores the info
2434 */
2435static struct dmar_domain *find_domain(struct device *dev)
2436{
2437        struct device_domain_info *info;
2438
2439        /* No lock here, assumes no domain exit in normal case */
2440        info = dev->archdata.iommu;
2441        if (likely(info))
2442                return info->domain;
2443        return NULL;
2444}
2445
2446static inline struct device_domain_info *
2447dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2448{
2449        struct device_domain_info *info;
2450
2451        list_for_each_entry(info, &device_domain_list, global)
2452                if (info->iommu->segment == segment && info->bus == bus &&
2453                    info->devfn == devfn)
2454                        return info;
2455
2456        return NULL;
2457}
2458
2459static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2460                                                    int bus, int devfn,
2461                                                    struct device *dev,
2462                                                    struct dmar_domain *domain)
2463{
2464        struct dmar_domain *found = NULL;
2465        struct device_domain_info *info;
2466        unsigned long flags;
2467        int ret;
2468
2469        info = alloc_devinfo_mem();
2470        if (!info)
2471                return NULL;
2472
2473        info->bus = bus;
2474        info->devfn = devfn;
2475        info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2476        info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2477        info->ats_qdep = 0;
2478        info->dev = dev;
2479        info->domain = domain;
2480        info->iommu = iommu;
2481        info->pasid_table = NULL;
2482
2483        if (dev && dev_is_pci(dev)) {
2484                struct pci_dev *pdev = to_pci_dev(info->dev);
2485
2486                if (!pci_ats_disabled() &&
2487                    ecap_dev_iotlb_support(iommu->ecap) &&
2488                    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2489                    dmar_find_matched_atsr_unit(pdev))
2490                        info->ats_supported = 1;
2491
2492                if (ecs_enabled(iommu)) {
2493                        if (pasid_enabled(iommu)) {
2494                                int features = pci_pasid_features(pdev);
2495                                if (features >= 0)
2496                                        info->pasid_supported = features | 1;
2497                        }
2498
2499                        if (info->ats_supported && ecap_prs(iommu->ecap) &&
2500                            pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2501                                info->pri_supported = 1;
2502                }
2503        }
2504
2505        spin_lock_irqsave(&device_domain_lock, flags);
2506        if (dev)
2507                found = find_domain(dev);
2508
2509        if (!found) {
2510                struct device_domain_info *info2;
2511                info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2512                if (info2) {
2513                        found      = info2->domain;
2514                        info2->dev = dev;
2515                }
2516        }
2517
2518        if (found) {
2519                spin_unlock_irqrestore(&device_domain_lock, flags);
2520                free_devinfo_mem(info);
2521                /* Caller must free the original domain */
2522                return found;
2523        }
2524
2525        spin_lock(&iommu->lock);
2526        ret = domain_attach_iommu(domain, iommu);
2527        spin_unlock(&iommu->lock);
2528
2529        if (ret) {
2530                spin_unlock_irqrestore(&device_domain_lock, flags);
2531                free_devinfo_mem(info);
2532                return NULL;
2533        }
2534
2535        list_add(&info->link, &domain->devices);
2536        list_add(&info->global, &device_domain_list);
2537        if (dev)
2538                dev->archdata.iommu = info;
2539
2540        if (dev && dev_is_pci(dev) && info->pasid_supported) {
2541                ret = intel_pasid_alloc_table(dev);
2542                if (ret) {
2543                        pr_warn("No pasid table for %s, pasid disabled\n",
2544                                dev_name(dev));
2545                        info->pasid_supported = 0;
2546                }
2547        }
2548        spin_unlock_irqrestore(&device_domain_lock, flags);
2549
2550        if (dev && domain_context_mapping(domain, dev)) {
2551                pr_err("Domain context map for %s failed\n", dev_name(dev));
2552                dmar_remove_one_dev_info(domain, dev);
2553                return NULL;
2554        }
2555
2556        return domain;
2557}
2558
2559static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2560{
2561        *(u16 *)opaque = alias;
2562        return 0;
2563}
2564
2565static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2566{
2567        struct device_domain_info *info = NULL;
2568        struct dmar_domain *domain = NULL;
2569        struct intel_iommu *iommu;
2570        u16 dma_alias;
2571        unsigned long flags;
2572        u8 bus, devfn;
2573
2574        iommu = device_to_iommu(dev, &bus, &devfn);
2575        if (!iommu)
2576                return NULL;
2577
2578        if (dev_is_pci(dev)) {
2579                struct pci_dev *pdev = to_pci_dev(dev);
2580
2581                pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2582
2583                spin_lock_irqsave(&device_domain_lock, flags);
2584                info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2585                                                      PCI_BUS_NUM(dma_alias),
2586                                                      dma_alias & 0xff);
2587                if (info) {
2588                        iommu = info->iommu;
2589                        domain = info->domain;
2590                }
2591                spin_unlock_irqrestore(&device_domain_lock, flags);
2592
2593                /* DMA alias already has a domain, use it */
2594                if (info)
2595                        goto out;
2596        }
2597
2598        /* Allocate and initialize new domain for the device */
2599        domain = alloc_domain(0);
2600        if (!domain)
2601                return NULL;
2602        if (domain_init(domain, iommu, gaw)) {
2603                domain_exit(domain);
2604                return NULL;
2605        }
2606
2607out:
2608
2609        return domain;
2610}
2611
2612static struct dmar_domain *set_domain_for_dev(struct device *dev,
2613                                              struct dmar_domain *domain)
2614{
2615        struct intel_iommu *iommu;
2616        struct dmar_domain *tmp;
2617        u16 req_id, dma_alias;
2618        u8 bus, devfn;
2619
2620        iommu = device_to_iommu(dev, &bus, &devfn);
2621        if (!iommu)
2622                return NULL;
2623
2624        req_id = ((u16)bus << 8) | devfn;
2625
2626        if (dev_is_pci(dev)) {
2627                struct pci_dev *pdev = to_pci_dev(dev);
2628
2629                pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2630
2631                /* register PCI DMA alias device */
2632                if (req_id != dma_alias) {
2633                        tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2634                                        dma_alias & 0xff, NULL, domain);
2635
2636                        if (!tmp || tmp != domain)
2637                                return tmp;
2638                }
2639        }
2640
2641        tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2642        if (!tmp || tmp != domain)
2643                return tmp;
2644
2645        return domain;
2646}
2647
2648static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2649{
2650        struct dmar_domain *domain, *tmp;
2651
2652        domain = find_domain(dev);
2653        if (domain)
2654                goto out;
2655
2656        domain = find_or_alloc_domain(dev, gaw);
2657        if (!domain)
2658                goto out;
2659
2660        tmp = set_domain_for_dev(dev, domain);
2661        if (!tmp || domain != tmp) {
2662                domain_exit(domain);
2663                domain = tmp;
2664        }
2665
2666out:
2667
2668        return domain;
2669}
2670
2671static int iommu_domain_identity_map(struct dmar_domain *domain,
2672                                     unsigned long long start,
2673                                     unsigned long long end)
2674{
2675        unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2676        unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2677
2678        if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2679                          dma_to_mm_pfn(last_vpfn))) {
2680                pr_err("Reserving iova failed\n");
2681                return -ENOMEM;
2682        }
2683
2684        pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2685        /*
2686         * RMRR range might have overlap with physical memory range,
2687         * clear it first
2688         */
2689        dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2690
2691        return __domain_mapping(domain, first_vpfn, NULL,
2692                                first_vpfn, last_vpfn - first_vpfn + 1,
2693                                DMA_PTE_READ|DMA_PTE_WRITE);
2694}
2695
2696static int domain_prepare_identity_map(struct device *dev,
2697                                       struct dmar_domain *domain,
2698                                       unsigned long long start,
2699                                       unsigned long long end)
2700{
2701        /* For _hardware_ passthrough, don't bother. But for software
2702           passthrough, we do it anyway -- it may indicate a memory
2703           range which is reserved in E820, so which didn't get set
2704           up to start with in si_domain */
2705        if (domain == si_domain && hw_pass_through) {
2706                pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2707                        dev_name(dev), start, end);
2708                return 0;
2709        }
2710
2711        pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2712                dev_name(dev), start, end);
2713
2714        if (end < start) {
2715                WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2716                        "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2717                        dmi_get_system_info(DMI_BIOS_VENDOR),
2718                        dmi_get_system_info(DMI_BIOS_VERSION),
2719                     dmi_get_system_info(DMI_PRODUCT_VERSION));
2720                return -EIO;
2721        }
2722
2723        if (end >> agaw_to_width(domain->agaw)) {
2724                WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2725                     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2726                     agaw_to_width(domain->agaw),
2727                     dmi_get_system_info(DMI_BIOS_VENDOR),
2728                     dmi_get_system_info(DMI_BIOS_VERSION),
2729                     dmi_get_system_info(DMI_PRODUCT_VERSION));
2730                return -EIO;
2731        }
2732
2733        return iommu_domain_identity_map(domain, start, end);
2734}
2735
2736static int iommu_prepare_identity_map(struct device *dev,
2737                                      unsigned long long start,
2738                                      unsigned long long end)
2739{
2740        struct dmar_domain *domain;
2741        int ret;
2742
2743        domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2744        if (!domain)
2745                return -ENOMEM;
2746
2747        ret = domain_prepare_identity_map(dev, domain, start, end);
2748        if (ret)
2749                domain_exit(domain);
2750
2751        return ret;
2752}
2753
2754static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2755                                         struct device *dev)
2756{
2757        if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2758                return 0;
2759        return iommu_prepare_identity_map(dev, rmrr->base_address,
2760                                          rmrr->end_address);
2761}
2762
2763#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2764static inline void iommu_prepare_isa(void)
2765{
2766        struct pci_dev *pdev;
2767        int ret;
2768
2769        pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2770        if (!pdev)
2771                return;
2772
2773        pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2774        ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2775
2776        if (ret)
2777                pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2778
2779        pci_dev_put(pdev);
2780}
2781#else
2782static inline void iommu_prepare_isa(void)
2783{
2784        return;
2785}
2786#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2787
2788static int md_domain_init(struct dmar_domain *domain, int guest_width);
2789
2790static int __init si_domain_init(int hw)
2791{
2792        int nid, ret = 0;
2793
2794        si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2795        if (!si_domain)
2796                return -EFAULT;
2797
2798        if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2799                domain_exit(si_domain);
2800                return -EFAULT;
2801        }
2802
2803        pr_debug("Identity mapping domain allocated\n");
2804
2805        if (hw)
2806                return 0;
2807
2808        for_each_online_node(nid) {
2809                unsigned long start_pfn, end_pfn;
2810                int i;
2811
2812                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2813                        ret = iommu_domain_identity_map(si_domain,
2814                                        PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2815                        if (ret)
2816                                return ret;
2817                }
2818        }
2819
2820        return 0;
2821}
2822
2823static int identity_mapping(struct device *dev)
2824{
2825        struct device_domain_info *info;
2826
2827        if (likely(!iommu_identity_mapping))
2828                return 0;
2829
2830        info = dev->archdata.iommu;
2831        if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2832                return (info->domain == si_domain);
2833
2834        return 0;
2835}
2836
2837static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2838{
2839        struct dmar_domain *ndomain;
2840        struct intel_iommu *iommu;
2841        u8 bus, devfn;
2842
2843        iommu = device_to_iommu(dev, &bus, &devfn);
2844        if (!iommu)
2845                return -ENODEV;
2846
2847        ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2848        if (ndomain != domain)
2849                return -EBUSY;
2850
2851        return 0;
2852}
2853
2854static bool device_has_rmrr(struct device *dev)
2855{
2856        struct dmar_rmrr_unit *rmrr;
2857        struct device *tmp;
2858        int i;
2859
2860        rcu_read_lock();
2861        for_each_rmrr_units(rmrr) {
2862                /*
2863                 * Return TRUE if this RMRR contains the device that
2864                 * is passed in.
2865                 */
2866                for_each_active_dev_scope(rmrr->devices,
2867                                          rmrr->devices_cnt, i, tmp)
2868                        if (tmp == dev) {
2869                                rcu_read_unlock();
2870                                return true;
2871                        }
2872        }
2873        rcu_read_unlock();
2874        return false;
2875}
2876
2877/*
2878 * There are a couple cases where we need to restrict the functionality of
2879 * devices associated with RMRRs.  The first is when evaluating a device for
2880 * identity mapping because problems exist when devices are moved in and out
2881 * of domains and their respective RMRR information is lost.  This means that
2882 * a device with associated RMRRs will never be in a "passthrough" domain.
2883 * The second is use of the device through the IOMMU API.  This interface
2884 * expects to have full control of the IOVA space for the device.  We cannot
2885 * satisfy both the requirement that RMRR access is maintained and have an
2886 * unencumbered IOVA space.  We also have no ability to quiesce the device's
2887 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2888 * We therefore prevent devices associated with an RMRR from participating in
2889 * the IOMMU API, which eliminates them from device assignment.
2890 *
2891 * In both cases we assume that PCI USB devices with RMRRs have them largely
2892 * for historical reasons and that the RMRR space is not actively used post
2893 * boot.  This exclusion may change if vendors begin to abuse it.
2894 *
2895 * The same exception is made for graphics devices, with the requirement that
2896 * any use of the RMRR regions will be torn down before assigning the device
2897 * to a guest.
2898 */
2899static bool device_is_rmrr_locked(struct device *dev)
2900{
2901        if (!device_has_rmrr(dev))
2902                return false;
2903
2904        if (dev_is_pci(dev)) {
2905                struct pci_dev *pdev = to_pci_dev(dev);
2906
2907                if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2908                        return false;
2909        }
2910
2911        return true;
2912}
2913
2914static int iommu_should_identity_map(struct device *dev, int startup)
2915{
2916
2917        if (dev_is_pci(dev)) {
2918                struct pci_dev *pdev = to_pci_dev(dev);
2919
2920                if (device_is_rmrr_locked(dev))
2921                        return 0;
2922
2923                if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2924                        return 1;
2925
2926                if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2927                        return 1;
2928
2929                if (!(iommu_identity_mapping & IDENTMAP_ALL))
2930                        return 0;
2931
2932                /*
2933                 * We want to start off with all devices in the 1:1 domain, and
2934                 * take them out later if we find they can't access all of memory.
2935                 *
2936                 * However, we can't do this for PCI devices behind bridges,
2937                 * because all PCI devices behind the same bridge will end up
2938                 * with the same source-id on their transactions.
2939                 *
2940                 * Practically speaking, we can't change things around for these
2941                 * devices at run-time, because we can't be sure there'll be no
2942                 * DMA transactions in flight for any of their siblings.
2943                 *
2944                 * So PCI devices (unless they're on the root bus) as well as
2945                 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2946                 * the 1:1 domain, just in _case_ one of their siblings turns out
2947                 * not to be able to map all of memory.
2948                 */
2949                if (!pci_is_pcie(pdev)) {
2950                        if (!pci_is_root_bus(pdev->bus))
2951                                return 0;
2952                        if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2953                                return 0;
2954                } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2955                        return 0;
2956        } else {
2957                if (device_has_rmrr(dev))
2958                        return 0;
2959        }
2960
2961        /*
2962         * At boot time, we don't yet know if devices will be 64-bit capable.
2963         * Assume that they will — if they turn out not to be, then we can
2964         * take them out of the 1:1 domain later.
2965         */
2966        if (!startup) {
2967                /*
2968                 * If the device's dma_mask is less than the system's memory
2969                 * size then this is not a candidate for identity mapping.
2970                 */
2971                u64 dma_mask = *dev->dma_mask;
2972
2973                if (dev->coherent_dma_mask &&
2974                    dev->coherent_dma_mask < dma_mask)
2975                        dma_mask = dev->coherent_dma_mask;
2976
2977                return dma_mask >= dma_get_required_mask(dev);
2978        }
2979
2980        return 1;
2981}
2982
2983static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2984{
2985        int ret;
2986
2987        if (!iommu_should_identity_map(dev, 1))
2988                return 0;
2989
2990        ret = domain_add_dev_info(si_domain, dev);
2991        if (!ret)
2992                pr_info("%s identity mapping for device %s\n",
2993                        hw ? "Hardware" : "Software", dev_name(dev));
2994        else if (ret == -ENODEV)
2995                /* device not associated with an iommu */
2996                ret = 0;
2997
2998        return ret;
2999}
3000
3001
3002static int __init iommu_prepare_static_identity_mapping(int hw)
3003{
3004        struct pci_dev *pdev = NULL;
3005        struct dmar_drhd_unit *drhd;
3006        struct intel_iommu *iommu;
3007        struct device *dev;
3008        int i;
3009        int ret = 0;
3010
3011        for_each_pci_dev(pdev) {
3012                ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
3013                if (ret)
3014                        return ret;
3015        }
3016
3017        for_each_active_iommu(iommu, drhd)
3018                for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
3019                        struct acpi_device_physical_node *pn;
3020                        struct acpi_device *adev;
3021
3022                        if (dev->bus != &acpi_bus_type)
3023                                continue;
3024
3025                        adev= to_acpi_device(dev);
3026                        mutex_lock(&adev->physical_node_lock);
3027                        list_for_each_entry(pn, &adev->physical_node_list, node) {
3028                                ret = dev_prepare_static_identity_mapping(pn->dev, hw);
3029                                if (ret)
3030                                        break;
3031                        }
3032                        mutex_unlock(&adev->physical_node_lock);
3033                        if (ret)
3034                                return ret;
3035                }
3036
3037        return 0;
3038}
3039
3040static void intel_iommu_init_qi(struct intel_iommu *iommu)
3041{
3042        /*
3043         * Start from the sane iommu hardware state.
3044         * If the queued invalidation is already initialized by us
3045         * (for example, while enabling interrupt-remapping) then
3046         * we got the things already rolling from a sane state.
3047         */
3048        if (!iommu->qi) {
3049                /*
3050                 * Clear any previous faults.
3051                 */
3052                dmar_fault(-1, iommu);
3053                /*
3054                 * Disable queued invalidation if supported and already enabled
3055                 * before OS handover.
3056                 */
3057                dmar_disable_qi(iommu);
3058        }
3059
3060        if (dmar_enable_qi(iommu)) {
3061                /*
3062                 * Queued Invalidate not enabled, use Register Based Invalidate
3063                 */
3064                iommu->flush.flush_context = __iommu_flush_context;
3065                iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3066                pr_info("%s: Using Register based invalidation\n",
3067                        iommu->name);
3068        } else {
3069                iommu->flush.flush_context = qi_flush_context;
3070                iommu->flush.flush_iotlb = qi_flush_iotlb;
3071                pr_info("%s: Using Queued invalidation\n", iommu->name);
3072        }
3073}
3074
3075static int copy_context_table(struct intel_iommu *iommu,
3076                              struct root_entry *old_re,
3077                              struct context_entry **tbl,
3078                              int bus, bool ext)
3079{
3080        int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3081        struct context_entry *new_ce = NULL, ce;
3082        struct context_entry *old_ce = NULL;
3083        struct root_entry re;
3084        phys_addr_t old_ce_phys;
3085
3086        tbl_idx = ext ? bus * 2 : bus;
3087        memcpy(&re, old_re, sizeof(re));
3088
3089        for (devfn = 0; devfn < 256; devfn++) {
3090                /* First calculate the correct index */
3091                idx = (ext ? devfn * 2 : devfn) % 256;
3092
3093                if (idx == 0) {
3094                        /* First save what we may have and clean up */
3095                        if (new_ce) {
3096                                tbl[tbl_idx] = new_ce;
3097                                __iommu_flush_cache(iommu, new_ce,
3098                                                    VTD_PAGE_SIZE);
3099                                pos = 1;
3100                        }
3101
3102                        if (old_ce)
3103                                iounmap(old_ce);
3104
3105                        ret = 0;
3106                        if (devfn < 0x80)
3107                                old_ce_phys = root_entry_lctp(&re);
3108                        else
3109                                old_ce_phys = root_entry_uctp(&re);
3110
3111                        if (!old_ce_phys) {
3112                                if (ext && devfn == 0) {
3113                                        /* No LCTP, try UCTP */
3114                                        devfn = 0x7f;
3115                                        continue;
3116                                } else {
3117                                        goto out;
3118                                }
3119                        }
3120
3121                        ret = -ENOMEM;
3122                        old_ce = memremap(old_ce_phys, PAGE_SIZE,
3123                                        MEMREMAP_WB);
3124                        if (!old_ce)
3125                                goto out;
3126
3127                        new_ce = alloc_pgtable_page(iommu->node);
3128                        if (!new_ce)
3129                                goto out_unmap;
3130
3131                        ret = 0;
3132                }
3133
3134                /* Now copy the context entry */
3135                memcpy(&ce, old_ce + idx, sizeof(ce));
3136
3137                if (!__context_present(&ce))
3138                        continue;
3139
3140                did = context_domain_id(&ce);
3141                if (did >= 0 && did < cap_ndoms(iommu->cap))
3142                        set_bit(did, iommu->domain_ids);
3143
3144                /*
3145                 * We need a marker for copied context entries. This
3146                 * marker needs to work for the old format as well as
3147                 * for extended context entries.
3148                 *
3149                 * Bit 67 of the context entry is used. In the old
3150                 * format this bit is available to software, in the
3151                 * extended format it is the PGE bit, but PGE is ignored
3152                 * by HW if PASIDs are disabled (and thus still
3153                 * available).
3154                 *
3155                 * So disable PASIDs first and then mark the entry
3156                 * copied. This means that we don't copy PASID
3157                 * translations from the old kernel, but this is fine as
3158                 * faults there are not fatal.
3159                 */
3160                context_clear_pasid_enable(&ce);
3161                context_set_copied(&ce);
3162
3163                new_ce[idx] = ce;
3164        }
3165
3166        tbl[tbl_idx + pos] = new_ce;
3167
3168        __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3169
3170out_unmap:
3171        memunmap(old_ce);
3172
3173out:
3174        return ret;
3175}
3176
3177static int copy_translation_tables(struct intel_iommu *iommu)
3178{
3179        struct context_entry **ctxt_tbls;
3180        struct root_entry *old_rt;
3181        phys_addr_t old_rt_phys;
3182        int ctxt_table_entries;
3183        unsigned long flags;
3184        u64 rtaddr_reg;
3185        int bus, ret;
3186        bool new_ext, ext;
3187
3188        rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3189        ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3190        new_ext    = !!ecap_ecs(iommu->ecap);
3191
3192        /*
3193         * The RTT bit can only be changed when translation is disabled,
3194         * but disabling translation means to open a window for data
3195         * corruption. So bail out and don't copy anything if we would
3196         * have to change the bit.
3197         */
3198        if (new_ext != ext)
3199                return -EINVAL;
3200
3201        old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3202        if (!old_rt_phys)
3203                return -EINVAL;
3204
3205        old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3206        if (!old_rt)
3207                return -ENOMEM;
3208
3209        /* This is too big for the stack - allocate it from slab */
3210        ctxt_table_entries = ext ? 512 : 256;
3211        ret = -ENOMEM;
3212        ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3213        if (!ctxt_tbls)
3214                goto out_unmap;
3215
3216        for (bus = 0; bus < 256; bus++) {
3217                ret = copy_context_table(iommu, &old_rt[bus],
3218                                         ctxt_tbls, bus, ext);
3219                if (ret) {
3220                        pr_err("%s: Failed to copy context table for bus %d\n",
3221                                iommu->name, bus);
3222                        continue;
3223                }
3224        }
3225
3226        spin_lock_irqsave(&iommu->lock, flags);
3227
3228        /* Context tables are copied, now write them to the root_entry table */
3229        for (bus = 0; bus < 256; bus++) {
3230                int idx = ext ? bus * 2 : bus;
3231                u64 val;
3232
3233                if (ctxt_tbls[idx]) {
3234                        val = virt_to_phys(ctxt_tbls[idx]) | 1;
3235                        iommu->root_entry[bus].lo = val;
3236                }
3237
3238                if (!ext || !ctxt_tbls[idx + 1])
3239                        continue;
3240
3241                val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3242                iommu->root_entry[bus].hi = val;
3243        }
3244
3245        spin_unlock_irqrestore(&iommu->lock, flags);
3246
3247        kfree(ctxt_tbls);
3248
3249        __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3250
3251        ret = 0;
3252
3253out_unmap:
3254        memunmap(old_rt);
3255
3256        return ret;
3257}
3258
3259static int __init init_dmars(void)
3260{
3261        struct dmar_drhd_unit *drhd;
3262        struct dmar_rmrr_unit *rmrr;
3263        bool copied_tables = false;
3264        struct device *dev;
3265        struct intel_iommu *iommu;
3266        int i, ret;
3267
3268        /*
3269         * for each drhd
3270         *    allocate root
3271         *    initialize and program root entry to not present
3272         * endfor
3273         */
3274        for_each_drhd_unit(drhd) {
3275                /*
3276                 * lock not needed as this is only incremented in the single
3277                 * threaded kernel __init code path all other access are read
3278                 * only
3279                 */
3280                if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3281                        g_num_of_iommus++;
3282                        continue;
3283                }
3284                pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3285        }
3286
3287        /* Preallocate enough resources for IOMMU hot-addition */
3288        if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3289                g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3290
3291        g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3292                        GFP_KERNEL);
3293        if (!g_iommus) {
3294                pr_err("Allocating global iommu array failed\n");
3295                ret = -ENOMEM;
3296                goto error;
3297        }
3298
3299        for_each_active_iommu(iommu, drhd) {
3300                /*
3301                 * Find the max pasid size of all IOMMU's in the system.
3302                 * We need to ensure the system pasid table is no bigger
3303                 * than the smallest supported.
3304                 */
3305                if (pasid_enabled(iommu)) {
3306                        u32 temp = 2 << ecap_pss(iommu->ecap);
3307
3308                        intel_pasid_max_id = min_t(u32, temp,
3309                                                   intel_pasid_max_id);
3310                }
3311
3312                g_iommus[iommu->seq_id] = iommu;
3313
3314                intel_iommu_init_qi(iommu);
3315
3316                ret = iommu_init_domains(iommu);
3317                if (ret)
3318                        goto free_iommu;
3319
3320                init_translation_status(iommu);
3321
3322                if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3323                        iommu_disable_translation(iommu);
3324                        clear_translation_pre_enabled(iommu);
3325                        pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3326                                iommu->name);
3327                }
3328
3329                /*
3330                 * TBD:
3331                 * we could share the same root & context tables
3332                 * among all IOMMU's. Need to Split it later.
3333                 */
3334                ret = iommu_alloc_root_entry(iommu);
3335                if (ret)
3336                        goto free_iommu;
3337
3338                if (translation_pre_enabled(iommu)) {
3339                        pr_info("Translation already enabled - trying to copy translation structures\n");
3340
3341                        ret = copy_translation_tables(iommu);
3342                        if (ret) {
3343                                /*
3344                                 * We found the IOMMU with translation
3345                                 * enabled - but failed to copy over the
3346                                 * old root-entry table. Try to proceed
3347                                 * by disabling translation now and
3348                                 * allocating a clean root-entry table.
3349                                 * This might cause DMAR faults, but
3350                                 * probably the dump will still succeed.
3351                                 */
3352                                pr_err("Failed to copy translation tables from previous kernel for %s\n",
3353                                       iommu->name);
3354                                iommu_disable_translation(iommu);
3355                                clear_translation_pre_enabled(iommu);
3356                        } else {
3357                                pr_info("Copied translation tables from previous kernel for %s\n",
3358                                        iommu->name);
3359                                copied_tables = true;
3360                        }
3361                }
3362
3363                if (!ecap_pass_through(iommu->ecap))
3364                        hw_pass_through = 0;
3365#ifdef CONFIG_INTEL_IOMMU_SVM
3366                if (pasid_enabled(iommu))
3367                        intel_svm_init(iommu);
3368#endif
3369        }
3370
3371        /*
3372         * Now that qi is enabled on all iommus, set the root entry and flush
3373         * caches. This is required on some Intel X58 chipsets, otherwise the
3374         * flush_context function will loop forever and the boot hangs.
3375         */
3376        for_each_active_iommu(iommu, drhd) {
3377                iommu_flush_write_buffer(iommu);
3378                iommu_set_root_entry(iommu);
3379                iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3380                iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3381        }
3382
3383        if (iommu_pass_through)
3384                iommu_identity_mapping |= IDENTMAP_ALL;
3385
3386#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3387        iommu_identity_mapping |= IDENTMAP_GFX;
3388#endif
3389
3390        check_tylersburg_isoch();
3391
3392        if (iommu_identity_mapping) {
3393                ret = si_domain_init(hw_pass_through);
3394                if (ret)
3395                        goto free_iommu;
3396        }
3397
3398
3399        /*
3400         * If we copied translations from a previous kernel in the kdump
3401         * case, we can not assign the devices to domains now, as that
3402         * would eliminate the old mappings. So skip this part and defer
3403         * the assignment to device driver initialization time.
3404         */
3405        if (copied_tables)
3406                goto domains_done;
3407
3408        /*
3409         * If pass through is not set or not enabled, setup context entries for
3410         * identity mappings for rmrr, gfx, and isa and may fall back to static
3411         * identity mapping if iommu_identity_mapping is set.
3412         */
3413        if (iommu_identity_mapping) {
3414                ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3415                if (ret) {
3416                        pr_crit("Failed to setup IOMMU pass-through\n");
3417                        goto free_iommu;
3418                }
3419        }
3420        /*
3421         * For each rmrr
3422         *   for each dev attached to rmrr
3423         *   do
3424         *     locate drhd for dev, alloc domain for dev
3425         *     allocate free domain
3426         *     allocate page table entries for rmrr
3427         *     if context not allocated for bus
3428         *           allocate and init context
3429         *           set present in root table for this bus
3430         *     init context with domain, translation etc
3431         *    endfor
3432         * endfor
3433         */
3434        pr_info("Setting RMRR:\n");
3435        for_each_rmrr_units(rmrr) {
3436                /* some BIOS lists non-exist devices in DMAR table. */
3437                for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3438                                          i, dev) {
3439                        ret = iommu_prepare_rmrr_dev(rmrr, dev);
3440                        if (ret)
3441                                pr_err("Mapping reserved region failed\n");
3442                }
3443        }
3444
3445        iommu_prepare_isa();
3446
3447domains_done:
3448
3449        /*
3450         * for each drhd
3451         *   enable fault log
3452         *   global invalidate context cache
3453         *   global invalidate iotlb
3454         *   enable translation
3455         */
3456        for_each_iommu(iommu, drhd) {
3457                if (drhd->ignored) {
3458                        /*
3459                         * we always have to disable PMRs or DMA may fail on
3460                         * this device
3461                         */
3462                        if (force_on)
3463                                iommu_disable_protect_mem_regions(iommu);
3464                        continue;
3465                }
3466
3467                iommu_flush_write_buffer(iommu);
3468
3469#ifdef CONFIG_INTEL_IOMMU_SVM
3470                if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3471                        ret = intel_svm_enable_prq(iommu);
3472                        if (ret)
3473                                goto free_iommu;
3474                }
3475#endif
3476                ret = dmar_set_interrupt(iommu);
3477                if (ret)
3478                        goto free_iommu;
3479
3480                if (!translation_pre_enabled(iommu))
3481                        iommu_enable_translation(iommu);
3482
3483                iommu_disable_protect_mem_regions(iommu);
3484        }
3485
3486        return 0;
3487
3488free_iommu:
3489        for_each_active_iommu(iommu, drhd) {
3490                disable_dmar_iommu(iommu);
3491                free_dmar_iommu(iommu);
3492        }
3493
3494        kfree(g_iommus);
3495
3496error:
3497        return ret;
3498}
3499
3500/* This takes a number of _MM_ pages, not VTD pages */
3501static unsigned long intel_alloc_iova(struct device *dev,
3502                                     struct dmar_domain *domain,
3503                                     unsigned long nrpages, uint64_t dma_mask)
3504{
3505        unsigned long iova_pfn = 0;
3506
3507        /* Restrict dma_mask to the width that the iommu can handle */
3508        dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3509        /* Ensure we reserve the whole size-aligned region */
3510        nrpages = __roundup_pow_of_two(nrpages);
3511
3512        if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3513                /*
3514                 * First try to allocate an io virtual address in
3515                 * DMA_BIT_MASK(32) and if that fails then try allocating
3516                 * from higher range
3517                 */
3518                iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3519                                           IOVA_PFN(DMA_BIT_MASK(32)), false);
3520                if (iova_pfn)
3521                        return iova_pfn;
3522        }
3523        iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3524                                   IOVA_PFN(dma_mask), true);
3525        if (unlikely(!iova_pfn)) {
3526                pr_err("Allocating %ld-page iova for %s failed",
3527                       nrpages, dev_name(dev));
3528                return 0;
3529        }
3530
3531        return iova_pfn;
3532}
3533
3534struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3535{
3536        struct dmar_domain *domain, *tmp;
3537        struct dmar_rmrr_unit *rmrr;
3538        struct device *i_dev;
3539        int i, ret;
3540
3541        domain = find_domain(dev);
3542        if (domain)
3543                goto out;
3544
3545        domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3546        if (!domain)
3547                goto out;
3548
3549        /* We have a new domain - setup possible RMRRs for the device */
3550        rcu_read_lock();
3551        for_each_rmrr_units(rmrr) {
3552                for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3553                                          i, i_dev) {
3554                        if (i_dev != dev)
3555                                continue;
3556
3557                        ret = domain_prepare_identity_map(dev, domain,
3558                                                          rmrr->base_address,
3559                                                          rmrr->end_address);
3560                        if (ret)
3561                                dev_err(dev, "Mapping reserved region failed\n");
3562                }
3563        }
3564        rcu_read_unlock();
3565
3566        tmp = set_domain_for_dev(dev, domain);
3567        if (!tmp || domain != tmp) {
3568                domain_exit(domain);
3569                domain = tmp;
3570        }
3571
3572out:
3573
3574        if (!domain)
3575                pr_err("Allocating domain for %s failed\n", dev_name(dev));
3576
3577
3578        return domain;
3579}
3580
3581/* Check if the dev needs to go through non-identity map and unmap process.*/
3582static int iommu_no_mapping(struct device *dev)
3583{
3584        int found;
3585
3586        if (iommu_dummy(dev))
3587                return 1;
3588
3589        if (!iommu_identity_mapping)
3590                return 0;
3591
3592        found = identity_mapping(dev);
3593        if (found) {
3594                if (iommu_should_identity_map(dev, 0))
3595                        return 1;
3596                else {
3597                        /*
3598                         * 32 bit DMA is removed from si_domain and fall back
3599                         * to non-identity mapping.
3600                         */
3601                        dmar_remove_one_dev_info(si_domain, dev);
3602                        pr_info("32bit %s uses non-identity mapping\n",
3603                                dev_name(dev));
3604                        return 0;
3605                }
3606        } else {
3607                /*
3608                 * In case of a detached 64 bit DMA device from vm, the device
3609                 * is put into si_domain for identity mapping.
3610                 */
3611                if (iommu_should_identity_map(dev, 0)) {
3612                        int ret;
3613                        ret = domain_add_dev_info(si_domain, dev);
3614                        if (!ret) {
3615                                pr_info("64bit %s uses identity mapping\n",
3616                                        dev_name(dev));
3617                                return 1;
3618                        }
3619                }
3620        }
3621
3622        return 0;
3623}
3624
3625static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3626                                     size_t size, int dir, u64 dma_mask)
3627{
3628        struct dmar_domain *domain;
3629        phys_addr_t start_paddr;
3630        unsigned long iova_pfn;
3631        int prot = 0;
3632        int ret;
3633        struct intel_iommu *iommu;
3634        unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3635
3636        BUG_ON(dir == DMA_NONE);
3637
3638        if (iommu_no_mapping(dev))
3639                return paddr;
3640
3641        domain = get_valid_domain_for_dev(dev);
3642        if (!domain)
3643                return 0;
3644
3645        iommu = domain_get_iommu(domain);
3646        size = aligned_nrpages(paddr, size);
3647
3648        iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3649        if (!iova_pfn)
3650                goto error;
3651
3652        /*
3653         * Check if DMAR supports zero-length reads on write only
3654         * mappings..
3655         */
3656        if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3657                        !cap_zlr(iommu->cap))
3658                prot |= DMA_PTE_READ;
3659        if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3660                prot |= DMA_PTE_WRITE;
3661        /*
3662         * paddr - (paddr + size) might be partial page, we should map the whole
3663         * page.  Note: if two part of one page are separately mapped, we
3664         * might have two guest_addr mapping to the same host paddr, but this
3665         * is not a big problem
3666         */
3667        ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3668                                 mm_to_dma_pfn(paddr_pfn), size, prot);
3669        if (ret)
3670                goto error;
3671
3672        start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3673        start_paddr += paddr & ~PAGE_MASK;
3674        return start_paddr;
3675
3676error:
3677        if (iova_pfn)
3678                free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3679        pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3680                dev_name(dev), size, (unsigned long long)paddr, dir);
3681        return 0;
3682}
3683
3684static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3685                                 unsigned long offset, size_t size,
3686                                 enum dma_data_direction dir,
3687                                 unsigned long attrs)
3688{
3689        return __intel_map_single(dev, page_to_phys(page) + offset, size,
3690                                  dir, *dev->dma_mask);
3691}
3692
3693static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3694{
3695        struct dmar_domain *domain;
3696        unsigned long start_pfn, last_pfn;
3697        unsigned long nrpages;
3698        unsigned long iova_pfn;
3699        struct intel_iommu *iommu;
3700        struct page *freelist;
3701
3702        if (iommu_no_mapping(dev))
3703                return;
3704
3705        domain = find_domain(dev);
3706        BUG_ON(!domain);
3707
3708        iommu = domain_get_iommu(domain);
3709
3710        iova_pfn = IOVA_PFN(dev_addr);
3711
3712        nrpages = aligned_nrpages(dev_addr, size);
3713        start_pfn = mm_to_dma_pfn(iova_pfn);
3714        last_pfn = start_pfn + nrpages - 1;
3715
3716        pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3717                 dev_name(dev), start_pfn, last_pfn);
3718
3719        freelist = domain_unmap(domain, start_pfn, last_pfn);
3720
3721        if (intel_iommu_strict) {
3722                iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3723                                      nrpages, !freelist, 0);
3724                /* free iova */
3725                free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3726                dma_free_pagelist(freelist);
3727        } else {
3728                queue_iova(&domain->iovad, iova_pfn, nrpages,
3729                           (unsigned long)freelist);
3730                /*
3731                 * queue up the release of the unmap to save the 1/6th of the
3732                 * cpu used up by the iotlb flush operation...
3733                 */
3734        }
3735}
3736
3737static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3738                             size_t size, enum dma_data_direction dir,
3739                             unsigned long attrs)
3740{
3741        intel_unmap(dev, dev_addr, size);
3742}
3743
3744static void *intel_alloc_coherent(struct device *dev, size_t size,
3745                                  dma_addr_t *dma_handle, gfp_t flags,
3746                                  unsigned long attrs)
3747{
3748        struct page *page = NULL;
3749        int order;
3750
3751        size = PAGE_ALIGN(size);
3752        order = get_order(size);
3753
3754        if (!iommu_no_mapping(dev))
3755                flags &= ~(GFP_DMA | GFP_DMA32);
3756        else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3757                if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3758                        flags |= GFP_DMA;
3759                else
3760                        flags |= GFP_DMA32;
3761        }
3762
3763        if (gfpflags_allow_blocking(flags)) {
3764                unsigned int count = size >> PAGE_SHIFT;
3765
3766                page = dma_alloc_from_contiguous(dev, count, order,
3767                                                 flags & __GFP_NOWARN);
3768                if (page && iommu_no_mapping(dev) &&
3769                    page_to_phys(page) + size > dev->coherent_dma_mask) {
3770                        dma_release_from_contiguous(dev, page, count);
3771                        page = NULL;
3772                }
3773        }
3774
3775        if (!page)
3776                page = alloc_pages(flags, order);
3777        if (!page)
3778                return NULL;
3779        memset(page_address(page), 0, size);
3780
3781        *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3782                                         DMA_BIDIRECTIONAL,
3783                                         dev->coherent_dma_mask);
3784        if (*dma_handle)
3785                return page_address(page);
3786        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3787                __free_pages(page, order);
3788
3789        return NULL;
3790}
3791
3792static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3793                                dma_addr_t dma_handle, unsigned long attrs)
3794{
3795        int order;
3796        struct page *page = virt_to_page(vaddr);
3797
3798        size = PAGE_ALIGN(size);
3799        order = get_order(size);
3800
3801        intel_unmap(dev, dma_handle, size);
3802        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3803                __free_pages(page, order);
3804}
3805
3806static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3807                           int nelems, enum dma_data_direction dir,
3808                           unsigned long attrs)
3809{
3810        dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3811        unsigned long nrpages = 0;
3812        struct scatterlist *sg;
3813        int i;
3814
3815        for_each_sg(sglist, sg, nelems, i) {
3816                nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3817        }
3818
3819        intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3820}
3821
3822static int intel_nontranslate_map_sg(struct device *hddev,
3823        struct scatterlist *sglist, int nelems, int dir)
3824{
3825        int i;
3826        struct scatterlist *sg;
3827
3828        for_each_sg(sglist, sg, nelems, i) {
3829                BUG_ON(!sg_page(sg));
3830                sg->dma_address = sg_phys(sg);
3831                sg->dma_length = sg->length;
3832        }
3833        return nelems;
3834}
3835
3836static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3837                        enum dma_data_direction dir, unsigned long attrs)
3838{
3839        int i;
3840        struct dmar_domain *domain;
3841        size_t size = 0;
3842        int prot = 0;
3843        unsigned long iova_pfn;
3844        int ret;
3845        struct scatterlist *sg;
3846        unsigned long start_vpfn;
3847        struct intel_iommu *iommu;
3848
3849        BUG_ON(dir == DMA_NONE);
3850        if (iommu_no_mapping(dev))
3851                return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3852
3853        domain = get_valid_domain_for_dev(dev);
3854        if (!domain)
3855                return 0;
3856
3857        iommu = domain_get_iommu(domain);
3858
3859        for_each_sg(sglist, sg, nelems, i)
3860                size += aligned_nrpages(sg->offset, sg->length);
3861
3862        iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3863                                *dev->dma_mask);
3864        if (!iova_pfn) {
3865                sglist->dma_length = 0;
3866                return 0;
3867        }
3868
3869        /*
3870         * Check if DMAR supports zero-length reads on write only
3871         * mappings..
3872         */
3873        if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3874                        !cap_zlr(iommu->cap))
3875                prot |= DMA_PTE_READ;
3876        if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3877                prot |= DMA_PTE_WRITE;
3878
3879        start_vpfn = mm_to_dma_pfn(iova_pfn);
3880
3881        ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3882        if (unlikely(ret)) {
3883                dma_pte_free_pagetable(domain, start_vpfn,
3884                                       start_vpfn + size - 1,
3885                                       agaw_to_level(domain->agaw) + 1);
3886                free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3887                return 0;
3888        }
3889
3890        return nelems;
3891}
3892
3893static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3894{
3895        return !dma_addr;
3896}
3897
3898const struct dma_map_ops intel_dma_ops = {
3899        .alloc = intel_alloc_coherent,
3900        .free = intel_free_coherent,
3901        .map_sg = intel_map_sg,
3902        .unmap_sg = intel_unmap_sg,
3903        .map_page = intel_map_page,
3904        .unmap_page = intel_unmap_page,
3905        .mapping_error = intel_mapping_error,
3906#ifdef CONFIG_X86
3907        .dma_supported = dma_direct_supported,
3908#endif
3909};
3910
3911static inline int iommu_domain_cache_init(void)
3912{
3913        int ret = 0;
3914
3915        iommu_domain_cache = kmem_cache_create("iommu_domain",
3916                                         sizeof(struct dmar_domain),
3917                                         0,
3918                                         SLAB_HWCACHE_ALIGN,
3919
3920                                         NULL);
3921        if (!iommu_domain_cache) {
3922                pr_err("Couldn't create iommu_domain cache\n");
3923                ret = -ENOMEM;
3924        }
3925
3926        return ret;
3927}
3928
3929static inline int iommu_devinfo_cache_init(void)
3930{
3931        int ret = 0;
3932
3933        iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3934                                         sizeof(struct device_domain_info),
3935                                         0,
3936                                         SLAB_HWCACHE_ALIGN,
3937                                         NULL);
3938        if (!iommu_devinfo_cache) {
3939                pr_err("Couldn't create devinfo cache\n");
3940                ret = -ENOMEM;
3941        }
3942
3943        return ret;
3944}
3945
3946static int __init iommu_init_mempool(void)
3947{
3948        int ret;
3949        ret = iova_cache_get();
3950        if (ret)
3951                return ret;
3952
3953        ret = iommu_domain_cache_init();
3954        if (ret)
3955                goto domain_error;
3956
3957        ret = iommu_devinfo_cache_init();
3958        if (!ret)
3959                return ret;
3960
3961        kmem_cache_destroy(iommu_domain_cache);
3962domain_error:
3963        iova_cache_put();
3964
3965        return -ENOMEM;
3966}
3967
3968static void __init iommu_exit_mempool(void)
3969{
3970        kmem_cache_destroy(iommu_devinfo_cache);
3971        kmem_cache_destroy(iommu_domain_cache);
3972        iova_cache_put();
3973}
3974
3975static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3976{
3977        struct dmar_drhd_unit *drhd;
3978        u32 vtbar;
3979        int rc;
3980
3981        /* We know that this device on this chipset has its own IOMMU.
3982         * If we find it under a different IOMMU, then the BIOS is lying
3983         * to us. Hope that the IOMMU for this device is actually
3984         * disabled, and it needs no translation...
3985         */
3986        rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3987        if (rc) {
3988                /* "can't" happen */
3989                dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3990                return;
3991        }
3992        vtbar &= 0xffff0000;
3993
3994        /* we know that the this iommu should be at offset 0xa000 from vtbar */
3995        drhd = dmar_find_matched_drhd_unit(pdev);
3996        if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3997                            TAINT_FIRMWARE_WORKAROUND,
3998                            "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3999                pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4000}
4001DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4002
4003static void __init init_no_remapping_devices(void)
4004{
4005        struct dmar_drhd_unit *drhd;
4006        struct device *dev;
4007        int i;
4008
4009        for_each_drhd_unit(drhd) {
4010                if (!drhd->include_all) {
4011                        for_each_active_dev_scope(drhd->devices,
4012                                                  drhd->devices_cnt, i, dev)
4013                                break;
4014                        /* ignore DMAR unit if no devices exist */
4015                        if (i == drhd->devices_cnt)
4016                                drhd->ignored = 1;
4017                }
4018        }
4019
4020        for_each_active_drhd_unit(drhd) {
4021                if (drhd->include_all)
4022                        continue;
4023
4024                for_each_active_dev_scope(drhd->devices,
4025                                          drhd->devices_cnt, i, dev)
4026                        if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4027                                break;
4028                if (i < drhd->devices_cnt)
4029                        continue;
4030
4031                /* This IOMMU has *only* gfx devices. Either bypass it or
4032                   set the gfx_mapped flag, as appropriate */
4033                if (dmar_map_gfx) {
4034                        intel_iommu_gfx_mapped = 1;
4035                } else {
4036                        drhd->ignored = 1;
4037                        for_each_active_dev_scope(drhd->devices,
4038                                                  drhd->devices_cnt, i, dev)
4039                                dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4040                }
4041        }
4042}
4043
4044#ifdef CONFIG_SUSPEND
4045static int init_iommu_hw(void)
4046{
4047        struct dmar_drhd_unit *drhd;
4048        struct intel_iommu *iommu = NULL;
4049
4050        for_each_active_iommu(iommu, drhd)
4051                if (iommu->qi)
4052                        dmar_reenable_qi(iommu);
4053
4054        for_each_iommu(iommu, drhd) {
4055                if (drhd->ignored) {
4056                        /*
4057                         * we always have to disable PMRs or DMA may fail on
4058                         * this device
4059                         */
4060                        if (force_on)
4061                                iommu_disable_protect_mem_regions(iommu);
4062                        continue;
4063                }
4064        
4065                iommu_flush_write_buffer(iommu);
4066
4067                iommu_set_root_entry(iommu);
4068
4069                iommu->flush.flush_context(iommu, 0, 0, 0,
4070                                           DMA_CCMD_GLOBAL_INVL);
4071                iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4072                iommu_enable_translation(iommu);
4073                iommu_disable_protect_mem_regions(iommu);
4074        }
4075
4076        return 0;
4077}
4078
4079static void iommu_flush_all(void)
4080{
4081        struct dmar_drhd_unit *drhd;
4082        struct intel_iommu *iommu;
4083
4084        for_each_active_iommu(iommu, drhd) {
4085                iommu->flush.flush_context(iommu, 0, 0, 0,
4086                                           DMA_CCMD_GLOBAL_INVL);
4087                iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4088                                         DMA_TLB_GLOBAL_FLUSH);
4089        }
4090}
4091
4092static int iommu_suspend(void)
4093{
4094        struct dmar_drhd_unit *drhd;
4095        struct intel_iommu *iommu = NULL;
4096        unsigned long flag;
4097
4098        for_each_active_iommu(iommu, drhd) {
4099                iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4100                                                 GFP_ATOMIC);
4101                if (!iommu->iommu_state)
4102                        goto nomem;
4103        }
4104
4105        iommu_flush_all();
4106
4107        for_each_active_iommu(iommu, drhd) {
4108                iommu_disable_translation(iommu);
4109
4110                raw_spin_lock_irqsave(&iommu->register_lock, flag);
4111
4112                iommu->iommu_state[SR_DMAR_FECTL_REG] =
4113                        readl(iommu->reg + DMAR_FECTL_REG);
4114                iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4115                        readl(iommu->reg + DMAR_FEDATA_REG);
4116                iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4117                        readl(iommu->reg + DMAR_FEADDR_REG);
4118                iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4119                        readl(iommu->reg + DMAR_FEUADDR_REG);
4120
4121                raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4122        }
4123        return 0;
4124
4125nomem:
4126        for_each_active_iommu(iommu, drhd)
4127                kfree(iommu->iommu_state);
4128
4129        return -ENOMEM;
4130}
4131
4132static void iommu_resume(void)
4133{
4134        struct dmar_drhd_unit *drhd;
4135        struct intel_iommu *iommu = NULL;
4136        unsigned long flag;
4137
4138        if (init_iommu_hw()) {
4139                if (force_on)
4140                        panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4141                else
4142                        WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4143                return;
4144        }
4145
4146        for_each_active_iommu(iommu, drhd) {
4147
4148                raw_spin_lock_irqsave(&iommu->register_lock, flag);
4149
4150                writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4151                        iommu->reg + DMAR_FECTL_REG);
4152                writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4153                        iommu->reg + DMAR_FEDATA_REG);
4154                writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4155                        iommu->reg + DMAR_FEADDR_REG);
4156                writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4157                        iommu->reg + DMAR_FEUADDR_REG);
4158
4159                raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4160        }
4161
4162        for_each_active_iommu(iommu, drhd)
4163                kfree(iommu->iommu_state);
4164}
4165
4166static struct syscore_ops iommu_syscore_ops = {
4167        .resume         = iommu_resume,
4168        .suspend        = iommu_suspend,
4169};
4170
4171static void __init init_iommu_pm_ops(void)
4172{
4173        register_syscore_ops(&iommu_syscore_ops);
4174}
4175
4176#else
4177static inline void init_iommu_pm_ops(void) {}
4178#endif  /* CONFIG_PM */
4179
4180
4181int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4182{
4183        struct acpi_dmar_reserved_memory *rmrr;
4184        int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4185        struct dmar_rmrr_unit *rmrru;
4186        size_t length;
4187
4188        rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4189        if (!rmrru)
4190                goto out;
4191
4192        rmrru->hdr = header;
4193        rmrr = (struct acpi_dmar_reserved_memory *)header;
4194        rmrru->base_address = rmrr->base_address;
4195        rmrru->end_address = rmrr->end_address;
4196
4197        length = rmrr->end_address - rmrr->base_address + 1;
4198        rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4199                                              IOMMU_RESV_DIRECT);
4200        if (!rmrru->resv)
4201                goto free_rmrru;
4202
4203        rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4204                                ((void *)rmrr) + rmrr->header.length,
4205                                &rmrru->devices_cnt);
4206        if (rmrru->devices_cnt && rmrru->devices == NULL)
4207                goto free_all;
4208
4209        list_add(&rmrru->list, &dmar_rmrr_units);
4210
4211        return 0;
4212free_all:
4213        kfree(rmrru->resv);
4214free_rmrru:
4215        kfree(rmrru);
4216out:
4217        return -ENOMEM;
4218}
4219
4220static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4221{
4222        struct dmar_atsr_unit *atsru;
4223        struct acpi_dmar_atsr *tmp;
4224
4225        list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4226                tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4227                if (atsr->segment != tmp->segment)
4228                        continue;
4229                if (atsr->header.length != tmp->header.length)
4230                        continue;
4231                if (memcmp(atsr, tmp, atsr->header.length) == 0)
4232                        return atsru;
4233        }
4234
4235        return NULL;
4236}
4237
4238int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4239{
4240        struct acpi_dmar_atsr *atsr;
4241        struct dmar_atsr_unit *atsru;
4242
4243        if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4244                return 0;
4245
4246        atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4247        atsru = dmar_find_atsr(atsr);
4248        if (atsru)
4249                return 0;
4250
4251        atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4252        if (!atsru)
4253                return -ENOMEM;
4254
4255        /*
4256         * If memory is allocated from slab by ACPI _DSM method, we need to
4257         * copy the memory content because the memory buffer will be freed
4258         * on return.
4259         */
4260        atsru->hdr = (void *)(atsru + 1);
4261        memcpy(atsru->hdr, hdr, hdr->length);
4262        atsru->include_all = atsr->flags & 0x1;
4263        if (!atsru->include_all) {
4264                atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4265                                (void *)atsr + atsr->header.length,
4266                                &atsru->devices_cnt);
4267                if (atsru->devices_cnt && atsru->devices == NULL) {
4268                        kfree(atsru);
4269                        return -ENOMEM;
4270                }
4271        }
4272
4273        list_add_rcu(&atsru->list, &dmar_atsr_units);
4274
4275        return 0;
4276}
4277
4278static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4279{
4280        dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4281        kfree(atsru);
4282}
4283
4284int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4285{
4286        struct acpi_dmar_atsr *atsr;
4287        struct dmar_atsr_unit *atsru;
4288
4289        atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4290        atsru = dmar_find_atsr(atsr);
4291        if (atsru) {
4292                list_del_rcu(&atsru->list);
4293                synchronize_rcu();
4294                intel_iommu_free_atsr(atsru);
4295        }
4296
4297        return 0;
4298}
4299
4300int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4301{
4302        int i;
4303        struct device *dev;
4304        struct acpi_dmar_atsr *atsr;
4305        struct dmar_atsr_unit *atsru;
4306
4307        atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4308        atsru = dmar_find_atsr(atsr);
4309        if (!atsru)
4310                return 0;
4311
4312        if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4313                for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4314                                          i, dev)
4315                        return -EBUSY;
4316        }
4317
4318        return 0;
4319}
4320
4321static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4322{
4323        int sp, ret = 0;
4324        struct intel_iommu *iommu = dmaru->iommu;
4325
4326        if (g_iommus[iommu->seq_id])
4327                return 0;
4328
4329        if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4330                pr_warn("%s: Doesn't support hardware pass through.\n",
4331                        iommu->name);
4332                return -ENXIO;
4333        }
4334        if (!ecap_sc_support(iommu->ecap) &&
4335            domain_update_iommu_snooping(iommu)) {
4336                pr_warn("%s: Doesn't support snooping.\n",
4337                        iommu->name);
4338                return -ENXIO;
4339        }
4340        sp = domain_update_iommu_superpage(iommu) - 1;
4341        if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4342                pr_warn("%s: Doesn't support large page.\n",
4343                        iommu->name);
4344                return -ENXIO;
4345        }
4346
4347        /*
4348         * Disable translation if already enabled prior to OS handover.
4349         */
4350        if (iommu->gcmd & DMA_GCMD_TE)
4351                iommu_disable_translation(iommu);
4352
4353        g_iommus[iommu->seq_id] = iommu;
4354        ret = iommu_init_domains(iommu);
4355        if (ret == 0)
4356                ret = iommu_alloc_root_entry(iommu);
4357        if (ret)
4358                goto out;
4359
4360#ifdef CONFIG_INTEL_IOMMU_SVM
4361        if (pasid_enabled(iommu))
4362                intel_svm_init(iommu);
4363#endif
4364
4365        if (dmaru->ignored) {
4366                /*
4367                 * we always have to disable PMRs or DMA may fail on this device
4368                 */
4369                if (force_on)
4370                        iommu_disable_protect_mem_regions(iommu);
4371                return 0;
4372        }
4373
4374        intel_iommu_init_qi(iommu);
4375        iommu_flush_write_buffer(iommu);
4376
4377#ifdef CONFIG_INTEL_IOMMU_SVM
4378        if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4379                ret = intel_svm_enable_prq(iommu);
4380                if (ret)
4381                        goto disable_iommu;
4382        }
4383#endif
4384        ret = dmar_set_interrupt(iommu);
4385        if (ret)
4386                goto disable_iommu;
4387
4388        iommu_set_root_entry(iommu);
4389        iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4390        iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4391        iommu_enable_translation(iommu);
4392
4393        iommu_disable_protect_mem_regions(iommu);
4394        return 0;
4395
4396disable_iommu:
4397        disable_dmar_iommu(iommu);
4398out:
4399        free_dmar_iommu(iommu);
4400        return ret;
4401}
4402
4403int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4404{
4405        int ret = 0;
4406        struct intel_iommu *iommu = dmaru->iommu;
4407
4408        if (!intel_iommu_enabled)
4409                return 0;
4410        if (iommu == NULL)
4411                return -EINVAL;
4412
4413        if (insert) {
4414                ret = intel_iommu_add(dmaru);
4415        } else {
4416                disable_dmar_iommu(iommu);
4417                free_dmar_iommu(iommu);
4418        }
4419
4420        return ret;
4421}
4422
4423static void intel_iommu_free_dmars(void)
4424{
4425        struct dmar_rmrr_unit *rmrru, *rmrr_n;
4426        struct dmar_atsr_unit *atsru, *atsr_n;
4427
4428        list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4429                list_del(&rmrru->list);
4430                dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4431                kfree(rmrru->resv);
4432                kfree(rmrru);
4433        }
4434
4435        list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4436                list_del(&atsru->list);
4437                intel_iommu_free_atsr(atsru);
4438        }
4439}
4440
4441int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4442{
4443        int i, ret = 1;
4444        struct pci_bus *bus;
4445        struct pci_dev *bridge = NULL;
4446        struct device *tmp;
4447        struct acpi_dmar_atsr *atsr;
4448        struct dmar_atsr_unit *atsru;
4449
4450        dev = pci_physfn(dev);
4451        for (bus = dev->bus; bus; bus = bus->parent) {
4452                bridge = bus->self;
4453                /* If it's an integrated device, allow ATS */
4454                if (!bridge)
4455                        return 1;
4456                /* Connected via non-PCIe: no ATS */
4457                if (!pci_is_pcie(bridge) ||
4458                    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4459                        return 0;
4460                /* If we found the root port, look it up in the ATSR */
4461                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4462                        break;
4463        }
4464
4465        rcu_read_lock();
4466        list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4467                atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4468                if (atsr->segment != pci_domain_nr(dev->bus))
4469                        continue;
4470
4471                for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4472                        if (tmp == &bridge->dev)
4473                                goto out;
4474
4475                if (atsru->include_all)
4476                        goto out;
4477        }
4478        ret = 0;
4479out:
4480        rcu_read_unlock();
4481
4482        return ret;
4483}
4484
4485int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4486{
4487        int ret = 0;
4488        struct dmar_rmrr_unit *rmrru;
4489        struct dmar_atsr_unit *atsru;
4490        struct acpi_dmar_atsr *atsr;
4491        struct acpi_dmar_reserved_memory *rmrr;
4492
4493        if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4494                return 0;
4495
4496        list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4497                rmrr = container_of(rmrru->hdr,
4498                                    struct acpi_dmar_reserved_memory, header);
4499                if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4500                        ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4501                                ((void *)rmrr) + rmrr->header.length,
4502                                rmrr->segment, rmrru->devices,
4503                                rmrru->devices_cnt);
4504                        if(ret < 0)
4505                                return ret;
4506                } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4507                        dmar_remove_dev_scope(info, rmrr->segment,
4508                                rmrru->devices, rmrru->devices_cnt);
4509                }
4510        }
4511
4512        list_for_each_entry(atsru, &dmar_atsr_units, list) {
4513                if (atsru->include_all)
4514                        continue;
4515
4516                atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4517                if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4518                        ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4519                                        (void *)atsr + atsr->header.length,
4520                                        atsr->segment, atsru->devices,
4521                                        atsru->devices_cnt);
4522                        if (ret > 0)
4523                                break;
4524                        else if(ret < 0)
4525                                return ret;
4526                } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4527                        if (dmar_remove_dev_scope(info, atsr->segment,
4528                                        atsru->devices, atsru->devices_cnt))
4529                                break;
4530                }
4531        }
4532
4533        return 0;
4534}
4535
4536/*
4537 * Here we only respond to action of unbound device from driver.
4538 *
4539 * Added device is not attached to its DMAR domain here yet. That will happen
4540 * when mapping the device to iova.
4541 */
4542static int device_notifier(struct notifier_block *nb,
4543                                  unsigned long action, void *data)
4544{
4545        struct device *dev = data;
4546        struct dmar_domain *domain;
4547
4548        if (iommu_dummy(dev))
4549                return 0;
4550
4551        if (action != BUS_NOTIFY_REMOVED_DEVICE)
4552                return 0;
4553
4554        domain = find_domain(dev);
4555        if (!domain)
4556                return 0;
4557
4558        dmar_remove_one_dev_info(domain, dev);
4559        if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4560                domain_exit(domain);
4561
4562        return 0;
4563}
4564
4565static struct notifier_block device_nb = {
4566        .notifier_call = device_notifier,
4567};
4568
4569static int intel_iommu_memory_notifier(struct notifier_block *nb,
4570                                       unsigned long val, void *v)
4571{
4572        struct memory_notify *mhp = v;
4573        unsigned long long start, end;
4574        unsigned long start_vpfn, last_vpfn;
4575
4576        switch (val) {
4577        case MEM_GOING_ONLINE:
4578                start = mhp->start_pfn << PAGE_SHIFT;
4579                end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4580                if (iommu_domain_identity_map(si_domain, start, end)) {
4581                        pr_warn("Failed to build identity map for [%llx-%llx]\n",
4582                                start, end);
4583                        return NOTIFY_BAD;
4584                }
4585                break;
4586
4587        case MEM_OFFLINE:
4588        case MEM_CANCEL_ONLINE:
4589                start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4590                last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4591                while (start_vpfn <= last_vpfn) {
4592                        struct iova *iova;
4593                        struct dmar_drhd_unit *drhd;
4594                        struct intel_iommu *iommu;
4595                        struct page *freelist;
4596
4597                        iova = find_iova(&si_domain->iovad, start_vpfn);
4598                        if (iova == NULL) {
4599                                pr_debug("Failed get IOVA for PFN %lx\n",
4600                                         start_vpfn);
4601                                break;
4602                        }
4603
4604                        iova = split_and_remove_iova(&si_domain->iovad, iova,
4605                                                     start_vpfn, last_vpfn);
4606                        if (iova == NULL) {
4607                                pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4608                                        start_vpfn, last_vpfn);
4609                                return NOTIFY_BAD;
4610                        }
4611
4612                        freelist = domain_unmap(si_domain, iova->pfn_lo,
4613                                               iova->pfn_hi);
4614
4615                        rcu_read_lock();
4616                        for_each_active_iommu(iommu, drhd)
4617                                iommu_flush_iotlb_psi(iommu, si_domain,
4618                                        iova->pfn_lo, iova_size(iova),
4619                                        !freelist, 0);
4620                        rcu_read_unlock();
4621                        dma_free_pagelist(freelist);
4622
4623                        start_vpfn = iova->pfn_hi + 1;
4624                        free_iova_mem(iova);
4625                }
4626                break;
4627        }
4628
4629        return NOTIFY_OK;
4630}
4631
4632static struct notifier_block intel_iommu_memory_nb = {
4633        .notifier_call = intel_iommu_memory_notifier,
4634        .priority = 0
4635};
4636
4637static void free_all_cpu_cached_iovas(unsigned int cpu)
4638{
4639        int i;
4640
4641        for (i = 0; i < g_num_of_iommus; i++) {
4642                struct intel_iommu *iommu = g_iommus[i];
4643                struct dmar_domain *domain;
4644                int did;
4645
4646                if (!iommu)
4647                        continue;
4648
4649                for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4650                        domain = get_iommu_domain(iommu, (u16)did);
4651
4652                        if (!domain)
4653                                continue;
4654                        free_cpu_cached_iovas(cpu, &domain->iovad);
4655                }
4656        }
4657}
4658
4659static int intel_iommu_cpu_dead(unsigned int cpu)
4660{
4661        free_all_cpu_cached_iovas(cpu);
4662        return 0;
4663}
4664
4665static void intel_disable_iommus(void)
4666{
4667        struct intel_iommu *iommu = NULL;
4668        struct dmar_drhd_unit *drhd;
4669
4670        for_each_iommu(iommu, drhd)
4671                iommu_disable_translation(iommu);
4672}
4673
4674static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4675{
4676        struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4677
4678        return container_of(iommu_dev, struct intel_iommu, iommu);
4679}
4680
4681static ssize_t intel_iommu_show_version(struct device *dev,
4682                                        struct device_attribute *attr,
4683                                        char *buf)
4684{
4685        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4686        u32 ver = readl(iommu->reg + DMAR_VER_REG);
4687        return sprintf(buf, "%d:%d\n",
4688                       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4689}
4690static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4691
4692static ssize_t intel_iommu_show_address(struct device *dev,
4693                                        struct device_attribute *attr,
4694                                        char *buf)
4695{
4696        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4697        return sprintf(buf, "%llx\n", iommu->reg_phys);
4698}
4699static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4700
4701static ssize_t intel_iommu_show_cap(struct device *dev,
4702                                    struct device_attribute *attr,
4703                                    char *buf)
4704{
4705        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4706        return sprintf(buf, "%llx\n", iommu->cap);
4707}
4708static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4709
4710static ssize_t intel_iommu_show_ecap(struct device *dev,
4711                                    struct device_attribute *attr,
4712                                    char *buf)
4713{
4714        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4715        return sprintf(buf, "%llx\n", iommu->ecap);
4716}
4717static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4718
4719static ssize_t intel_iommu_show_ndoms(struct device *dev,
4720                                      struct device_attribute *attr,
4721                                      char *buf)
4722{
4723        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4724        return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4725}
4726static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4727
4728static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4729                                           struct device_attribute *attr,
4730                                           char *buf)
4731{
4732        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4733        return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4734                                                  cap_ndoms(iommu->cap)));
4735}
4736static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4737
4738static struct attribute *intel_iommu_attrs[] = {
4739        &dev_attr_version.attr,
4740        &dev_attr_address.attr,
4741        &dev_attr_cap.attr,
4742        &dev_attr_ecap.attr,
4743        &dev_attr_domains_supported.attr,
4744        &dev_attr_domains_used.attr,
4745        NULL,
4746};
4747
4748static struct attribute_group intel_iommu_group = {
4749        .name = "intel-iommu",
4750        .attrs = intel_iommu_attrs,
4751};
4752
4753const struct attribute_group *intel_iommu_groups[] = {
4754        &intel_iommu_group,
4755        NULL,
4756};
4757
4758int __init intel_iommu_init(void)
4759{
4760        int ret = -ENODEV;
4761        struct dmar_drhd_unit *drhd;
4762        struct intel_iommu *iommu;
4763
4764        /* VT-d is required for a TXT/tboot launch, so enforce that */
4765        force_on = tboot_force_iommu();
4766
4767        if (iommu_init_mempool()) {
4768                if (force_on)
4769                        panic("tboot: Failed to initialize iommu memory\n");
4770                return -ENOMEM;
4771        }
4772
4773        down_write(&dmar_global_lock);
4774        if (dmar_table_init()) {
4775                if (force_on)
4776                        panic("tboot: Failed to initialize DMAR table\n");
4777                goto out_free_dmar;
4778        }
4779
4780        if (dmar_dev_scope_init() < 0) {
4781                if (force_on)
4782                        panic("tboot: Failed to initialize DMAR device scope\n");
4783                goto out_free_dmar;
4784        }
4785
4786        up_write(&dmar_global_lock);
4787
4788        /*
4789         * The bus notifier takes the dmar_global_lock, so lockdep will
4790         * complain later when we register it under the lock.
4791         */
4792        dmar_register_bus_notifier();
4793
4794        down_write(&dmar_global_lock);
4795
4796        if (no_iommu || dmar_disabled) {
4797                /*
4798                 * We exit the function here to ensure IOMMU's remapping and
4799                 * mempool aren't setup, which means that the IOMMU's PMRs
4800                 * won't be disabled via the call to init_dmars(). So disable
4801                 * it explicitly here. The PMRs were setup by tboot prior to
4802                 * calling SENTER, but the kernel is expected to reset/tear
4803                 * down the PMRs.
4804                 */
4805                if (intel_iommu_tboot_noforce) {
4806                        for_each_iommu(iommu, drhd)
4807                                iommu_disable_protect_mem_regions(iommu);
4808                }
4809
4810                /*
4811                 * Make sure the IOMMUs are switched off, even when we
4812                 * boot into a kexec kernel and the previous kernel left
4813                 * them enabled
4814                 */
4815                intel_disable_iommus();
4816                goto out_free_dmar;
4817        }
4818
4819        if (list_empty(&dmar_rmrr_units))
4820                pr_info("No RMRR found\n");
4821
4822        if (list_empty(&dmar_atsr_units))
4823                pr_info("No ATSR found\n");
4824
4825        if (dmar_init_reserved_ranges()) {
4826                if (force_on)
4827                        panic("tboot: Failed to reserve iommu ranges\n");
4828                goto out_free_reserved_range;
4829        }
4830
4831        init_no_remapping_devices();
4832
4833        ret = init_dmars();
4834        if (ret) {
4835                if (force_on)
4836                        panic("tboot: Failed to initialize DMARs\n");
4837                pr_err("Initialization failed\n");
4838                goto out_free_reserved_range;
4839        }
4840        up_write(&dmar_global_lock);
4841        pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4842
4843#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4844        swiotlb = 0;
4845#endif
4846        dma_ops = &intel_dma_ops;
4847
4848        init_iommu_pm_ops();
4849
4850        for_each_active_iommu(iommu, drhd) {
4851                iommu_device_sysfs_add(&iommu->iommu, NULL,
4852                                       intel_iommu_groups,
4853                                       "%s", iommu->name);
4854                iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4855                iommu_device_register(&iommu->iommu);
4856        }
4857
4858        bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4859        bus_register_notifier(&pci_bus_type, &device_nb);
4860        if (si_domain && !hw_pass_through)
4861                register_memory_notifier(&intel_iommu_memory_nb);
4862        cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4863                          intel_iommu_cpu_dead);
4864        intel_iommu_enabled = 1;
4865
4866        return 0;
4867
4868out_free_reserved_range:
4869        put_iova_domain(&reserved_iova_list);
4870out_free_dmar:
4871        intel_iommu_free_dmars();
4872        up_write(&dmar_global_lock);
4873        iommu_exit_mempool();
4874        return ret;
4875}
4876
4877static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4878{
4879        struct intel_iommu *iommu = opaque;
4880
4881        domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4882        return 0;
4883}
4884
4885/*
4886 * NB - intel-iommu lacks any sort of reference counting for the users of
4887 * dependent devices.  If multiple endpoints have intersecting dependent
4888 * devices, unbinding the driver from any one of them will possibly leave
4889 * the others unable to operate.
4890 */
4891static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4892{
4893        if (!iommu || !dev || !dev_is_pci(dev))
4894                return;
4895
4896        pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4897}
4898
4899static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4900{
4901        struct intel_iommu *iommu;
4902        unsigned long flags;
4903
4904        assert_spin_locked(&device_domain_lock);
4905
4906        if (WARN_ON(!info))
4907                return;
4908
4909        iommu = info->iommu;
4910
4911        if (info->dev) {
4912                iommu_disable_dev_iotlb(info);
4913                domain_context_clear(iommu, info->dev);
4914                intel_pasid_free_table(info->dev);
4915        }
4916
4917        unlink_domain_info(info);
4918
4919        spin_lock_irqsave(&iommu->lock, flags);
4920        domain_detach_iommu(info->domain, iommu);
4921        spin_unlock_irqrestore(&iommu->lock, flags);
4922
4923        free_devinfo_mem(info);
4924}
4925
4926static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4927                                     struct device *dev)
4928{
4929        struct device_domain_info *info;
4930        unsigned long flags;
4931
4932        spin_lock_irqsave(&device_domain_lock, flags);
4933        info = dev->archdata.iommu;
4934        __dmar_remove_one_dev_info(info);
4935        spin_unlock_irqrestore(&device_domain_lock, flags);
4936}
4937
4938static int md_domain_init(struct dmar_domain *domain, int guest_width)
4939{
4940        int adjust_width;
4941
4942        init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4943        domain_reserve_special_ranges(domain);
4944
4945        /* calculate AGAW */
4946        domain->gaw = guest_width;
4947        adjust_width = guestwidth_to_adjustwidth(guest_width);
4948        domain->agaw = width_to_agaw(adjust_width);
4949
4950        domain->iommu_coherency = 0;
4951        domain->iommu_snooping = 0;
4952        domain->iommu_superpage = 0;
4953        domain->max_addr = 0;
4954
4955        /* always allocate the top pgd */
4956        domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4957        if (!domain->pgd)
4958                return -ENOMEM;
4959        domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4960        return 0;
4961}
4962
4963static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4964{
4965        struct dmar_domain *dmar_domain;
4966        struct iommu_domain *domain;
4967
4968        if (type != IOMMU_DOMAIN_UNMANAGED)
4969                return NULL;
4970
4971        dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4972        if (!dmar_domain) {
4973                pr_err("Can't allocate dmar_domain\n");
4974                return NULL;
4975        }
4976        if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4977                pr_err("Domain initialization failed\n");
4978                domain_exit(dmar_domain);
4979                return NULL;
4980        }
4981        domain_update_iommu_cap(dmar_domain);
4982
4983        domain = &dmar_domain->domain;
4984        domain->geometry.aperture_start = 0;
4985        domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4986        domain->geometry.force_aperture = true;
4987
4988        return domain;
4989}
4990
4991static void intel_iommu_domain_free(struct iommu_domain *domain)
4992{
4993        domain_exit(to_dmar_domain(domain));
4994}
4995
4996static int intel_iommu_attach_device(struct iommu_domain *domain,
4997                                     struct device *dev)
4998{
4999        struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5000        struct intel_iommu *iommu;
5001        int addr_width;
5002        u8 bus, devfn;
5003
5004        if (device_is_rmrr_locked(dev)) {
5005                dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5006                return -EPERM;
5007        }
5008
5009        /* normally dev is not mapped */
5010        if (unlikely(domain_context_mapped(dev))) {
5011                struct dmar_domain *old_domain;
5012
5013                old_domain = find_domain(dev);
5014                if (old_domain) {
5015                        rcu_read_lock();
5016                        dmar_remove_one_dev_info(old_domain, dev);
5017                        rcu_read_unlock();
5018
5019                        if (!domain_type_is_vm_or_si(old_domain) &&
5020                             list_empty(&old_domain->devices))
5021                                domain_exit(old_domain);
5022                }
5023        }
5024
5025        iommu = device_to_iommu(dev, &bus, &devfn);
5026        if (!iommu)
5027                return -ENODEV;
5028
5029        /* check if this iommu agaw is sufficient for max mapped address */
5030        addr_width = agaw_to_width(iommu->agaw);
5031        if (addr_width > cap_mgaw(iommu->cap))
5032                addr_width = cap_mgaw(iommu->cap);
5033
5034        if (dmar_domain->max_addr > (1LL << addr_width)) {
5035                pr_err("%s: iommu width (%d) is not "
5036                       "sufficient for the mapped address (%llx)\n",
5037                       __func__, addr_width, dmar_domain->max_addr);
5038                return -EFAULT;
5039        }
5040        dmar_domain->gaw = addr_width;
5041
5042        /*
5043         * Knock out extra levels of page tables if necessary
5044         */
5045        while (iommu->agaw < dmar_domain->agaw) {
5046                struct dma_pte *pte;
5047
5048                pte = dmar_domain->pgd;
5049                if (dma_pte_present(pte)) {
5050                        dmar_domain->pgd = (struct dma_pte *)
5051                                phys_to_virt(dma_pte_addr(pte));
5052                        free_pgtable_page(pte);
5053                }
5054                dmar_domain->agaw--;
5055        }
5056
5057        return domain_add_dev_info(dmar_domain, dev);
5058}
5059
5060static void intel_iommu_detach_device(struct iommu_domain *domain,
5061                                      struct device *dev)
5062{
5063        dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5064}
5065
5066static int intel_iommu_map(struct iommu_domain *domain,
5067                           unsigned long iova, phys_addr_t hpa,
5068                           size_t size, int iommu_prot)
5069{
5070        struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5071        u64 max_addr;
5072        int prot = 0;
5073        int ret;
5074
5075        if (iommu_prot & IOMMU_READ)
5076                prot |= DMA_PTE_READ;
5077        if (iommu_prot & IOMMU_WRITE)
5078                prot |= DMA_PTE_WRITE;
5079        if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5080                prot |= DMA_PTE_SNP;
5081
5082        max_addr = iova + size;
5083        if (dmar_domain->max_addr < max_addr) {
5084                u64 end;
5085
5086                /* check if minimum agaw is sufficient for mapped address */
5087                end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5088                if (end < max_addr) {
5089                        pr_err("%s: iommu width (%d) is not "
5090                               "sufficient for the mapped address (%llx)\n",
5091                               __func__, dmar_domain->gaw, max_addr);
5092                        return -EFAULT;
5093                }
5094                dmar_domain->max_addr = max_addr;
5095        }
5096        /* Round up size to next multiple of PAGE_SIZE, if it and
5097           the low bits of hpa would take us onto the next page */
5098        size = aligned_nrpages(hpa, size);
5099        ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5100                                 hpa >> VTD_PAGE_SHIFT, size, prot);
5101        return ret;
5102}
5103
5104static size_t intel_iommu_unmap(struct iommu_domain *domain,
5105                                unsigned long iova, size_t size)
5106{
5107        struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5108        struct page *freelist = NULL;
5109        unsigned long start_pfn, last_pfn;
5110        unsigned int npages;
5111        int iommu_id, level = 0;
5112
5113        /* Cope with horrid API which requires us to unmap more than the
5114           size argument if it happens to be a large-page mapping. */
5115        BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5116
5117        if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5118                size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5119
5120        start_pfn = iova >> VTD_PAGE_SHIFT;
5121        last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5122
5123        freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5124
5125        npages = last_pfn - start_pfn + 1;
5126
5127        for_each_domain_iommu(iommu_id, dmar_domain)
5128                iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5129                                      start_pfn, npages, !freelist, 0);
5130
5131        dma_free_pagelist(freelist);
5132
5133        if (dmar_domain->max_addr == iova + size)
5134                dmar_domain->max_addr = iova;
5135
5136        return size;
5137}
5138
5139static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5140                                            dma_addr_t iova)
5141{
5142        struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5143        struct dma_pte *pte;
5144        int level = 0;
5145        u64 phys = 0;
5146
5147        pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5148        if (pte)
5149                phys = dma_pte_addr(pte);
5150
5151        return phys;
5152}
5153
5154static bool intel_iommu_capable(enum iommu_cap cap)
5155{
5156        if (cap == IOMMU_CAP_CACHE_COHERENCY)
5157                return domain_update_iommu_snooping(NULL) == 1;
5158        if (cap == IOMMU_CAP_INTR_REMAP)
5159                return irq_remapping_enabled == 1;
5160
5161        return false;
5162}
5163
5164static int intel_iommu_add_device(struct device *dev)
5165{
5166        struct intel_iommu *iommu;
5167        struct iommu_group *group;
5168        u8 bus, devfn;
5169
5170        iommu = device_to_iommu(dev, &bus, &devfn);
5171        if (!iommu)
5172                return -ENODEV;
5173
5174        iommu_device_link(&iommu->iommu, dev);
5175
5176        group = iommu_group_get_for_dev(dev);
5177
5178        if (IS_ERR(group))
5179                return PTR_ERR(group);
5180
5181        iommu_group_put(group);
5182        return 0;
5183}
5184
5185static void intel_iommu_remove_device(struct device *dev)
5186{
5187        struct intel_iommu *iommu;
5188        u8 bus, devfn;
5189
5190        iommu = device_to_iommu(dev, &bus, &devfn);
5191        if (!iommu)
5192                return;
5193
5194        iommu_group_remove_device(dev);
5195
5196        iommu_device_unlink(&iommu->iommu, dev);
5197}
5198
5199static void intel_iommu_get_resv_regions(struct device *device,
5200                                         struct list_head *head)
5201{
5202        struct iommu_resv_region *reg;
5203        struct dmar_rmrr_unit *rmrr;
5204        struct device *i_dev;
5205        int i;
5206
5207        rcu_read_lock();
5208        for_each_rmrr_units(rmrr) {
5209                for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5210                                          i, i_dev) {
5211                        if (i_dev != device)
5212                                continue;
5213
5214                        list_add_tail(&rmrr->resv->list, head);
5215                }
5216        }
5217        rcu_read_unlock();
5218
5219        reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5220                                      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5221                                      0, IOMMU_RESV_MSI);
5222        if (!reg)
5223                return;
5224        list_add_tail(&reg->list, head);
5225}
5226
5227static void intel_iommu_put_resv_regions(struct device *dev,
5228                                         struct list_head *head)
5229{
5230        struct iommu_resv_region *entry, *next;
5231
5232        list_for_each_entry_safe(entry, next, head, list) {
5233                if (entry->type == IOMMU_RESV_RESERVED)
5234                        kfree(entry);
5235        }
5236}
5237
5238#ifdef CONFIG_INTEL_IOMMU_SVM
5239#define MAX_NR_PASID_BITS (20)
5240static inline unsigned long intel_iommu_get_pts(struct device *dev)
5241{
5242        int pts, max_pasid;
5243
5244        max_pasid = intel_pasid_get_dev_max_id(dev);
5245        pts = find_first_bit((unsigned long *)&max_pasid, MAX_NR_PASID_BITS);
5246        if (pts < 5)
5247                return 0;
5248
5249        return pts - 5;
5250}
5251
5252int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5253{
5254        struct device_domain_info *info;
5255        struct context_entry *context;
5256        struct dmar_domain *domain;
5257        unsigned long flags;
5258        u64 ctx_lo;
5259        int ret;
5260
5261        domain = get_valid_domain_for_dev(sdev->dev);
5262        if (!domain)
5263                return -EINVAL;
5264
5265        spin_lock_irqsave(&device_domain_lock, flags);
5266        spin_lock(&iommu->lock);
5267
5268        ret = -EINVAL;
5269        info = sdev->dev->archdata.iommu;
5270        if (!info || !info->pasid_supported)
5271                goto out;
5272
5273        context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5274        if (WARN_ON(!context))
5275                goto out;
5276
5277        ctx_lo = context[0].lo;
5278
5279        sdev->did = domain->iommu_did[iommu->seq_id];
5280        sdev->sid = PCI_DEVID(info->bus, info->devfn);
5281
5282        if (!(ctx_lo & CONTEXT_PASIDE)) {
5283                if (iommu->pasid_state_table)
5284                        context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5285                context[1].lo = (u64)virt_to_phys(info->pasid_table->table) |
5286                        intel_iommu_get_pts(sdev->dev);
5287
5288                wmb();
5289                /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5290                 * extended to permit requests-with-PASID if the PASIDE bit
5291                 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5292                 * however, the PASIDE bit is ignored and requests-with-PASID
5293                 * are unconditionally blocked. Which makes less sense.
5294                 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5295                 * "guest mode" translation types depending on whether ATS
5296                 * is available or not. Annoyingly, we can't use the new
5297                 * modes *unless* PASIDE is set. */
5298                if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5299                        ctx_lo &= ~CONTEXT_TT_MASK;
5300                        if (info->ats_supported)
5301                                ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5302                        else
5303                                ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5304                }
5305                ctx_lo |= CONTEXT_PASIDE;
5306                if (iommu->pasid_state_table)
5307                        ctx_lo |= CONTEXT_DINVE;
5308                if (info->pri_supported)
5309                        ctx_lo |= CONTEXT_PRS;
5310                context[0].lo = ctx_lo;
5311                wmb();
5312                iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5313                                           DMA_CCMD_MASK_NOBIT,
5314                                           DMA_CCMD_DEVICE_INVL);
5315        }
5316
5317        /* Enable PASID support in the device, if it wasn't already */
5318        if (!info->pasid_enabled)
5319                iommu_enable_dev_iotlb(info);
5320
5321        if (info->ats_enabled) {
5322                sdev->dev_iotlb = 1;
5323                sdev->qdep = info->ats_qdep;
5324                if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5325                        sdev->qdep = 0;
5326        }
5327        ret = 0;
5328
5329 out:
5330        spin_unlock(&iommu->lock);
5331        spin_unlock_irqrestore(&device_domain_lock, flags);
5332
5333        return ret;
5334}
5335
5336struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5337{
5338        struct intel_iommu *iommu;
5339        u8 bus, devfn;
5340
5341        if (iommu_dummy(dev)) {
5342                dev_warn(dev,
5343                         "No IOMMU translation for device; cannot enable SVM\n");
5344                return NULL;
5345        }
5346
5347        iommu = device_to_iommu(dev, &bus, &devfn);
5348        if ((!iommu)) {
5349                dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5350                return NULL;
5351        }
5352
5353        return iommu;
5354}
5355#endif /* CONFIG_INTEL_IOMMU_SVM */
5356
5357const struct iommu_ops intel_iommu_ops = {
5358        .capable                = intel_iommu_capable,
5359        .domain_alloc           = intel_iommu_domain_alloc,
5360        .domain_free            = intel_iommu_domain_free,
5361        .attach_dev             = intel_iommu_attach_device,
5362        .detach_dev             = intel_iommu_detach_device,
5363        .map                    = intel_iommu_map,
5364        .unmap                  = intel_iommu_unmap,
5365        .iova_to_phys           = intel_iommu_iova_to_phys,
5366        .add_device             = intel_iommu_add_device,
5367        .remove_device          = intel_iommu_remove_device,
5368        .get_resv_regions       = intel_iommu_get_resv_regions,
5369        .put_resv_regions       = intel_iommu_put_resv_regions,
5370        .device_group           = pci_device_group,
5371        .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5372};
5373
5374static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5375{
5376        /* G4x/GM45 integrated gfx dmar support is totally busted. */
5377        pr_info("Disabling IOMMU for graphics on this chipset\n");
5378        dmar_map_gfx = 0;
5379}
5380
5381DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5382DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5383DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5384DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5385DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5386DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5387DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5388
5389static void quirk_iommu_rwbf(struct pci_dev *dev)
5390{
5391        /*
5392         * Mobile 4 Series Chipset neglects to set RWBF capability,
5393         * but needs it. Same seems to hold for the desktop versions.
5394         */
5395        pr_info("Forcing write-buffer flush capability\n");
5396        rwbf_quirk = 1;
5397}
5398
5399DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5400DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5401DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5402DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5403DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5404DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5405DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5406
5407#define GGC 0x52
5408#define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5409#define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5410#define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5411#define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5412#define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5413#define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5414#define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5415#define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5416
5417static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5418{
5419        unsigned short ggc;
5420
5421        if (pci_read_config_word(dev, GGC, &ggc))
5422                return;
5423
5424        if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5425                pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5426                dmar_map_gfx = 0;
5427        } else if (dmar_map_gfx) {
5428                /* we have to ensure the gfx device is idle before we flush */
5429                pr_info("Disabling batched IOTLB flush on Ironlake\n");
5430                intel_iommu_strict = 1;
5431       }
5432}
5433DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5434DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5435DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5436DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5437
5438/* On Tylersburg chipsets, some BIOSes have been known to enable the
5439   ISOCH DMAR unit for the Azalia sound device, but not give it any
5440   TLB entries, which causes it to deadlock. Check for that.  We do
5441   this in a function called from init_dmars(), instead of in a PCI
5442   quirk, because we don't want to print the obnoxious "BIOS broken"
5443   message if VT-d is actually disabled.
5444*/
5445static void __init check_tylersburg_isoch(void)
5446{
5447        struct pci_dev *pdev;
5448        uint32_t vtisochctrl;
5449
5450        /* If there's no Azalia in the system anyway, forget it. */
5451        pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5452        if (!pdev)
5453                return;
5454        pci_dev_put(pdev);
5455
5456        /* System Management Registers. Might be hidden, in which case
5457           we can't do the sanity check. But that's OK, because the
5458           known-broken BIOSes _don't_ actually hide it, so far. */
5459        pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5460        if (!pdev)
5461                return;
5462
5463        if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5464                pci_dev_put(pdev);
5465                return;
5466        }
5467
5468        pci_dev_put(pdev);
5469
5470        /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5471        if (vtisochctrl & 1)
5472                return;
5473
5474        /* Drop all bits other than the number of TLB entries */
5475        vtisochctrl &= 0x1c;
5476
5477        /* If we have the recommended number of TLB entries (16), fine. */
5478        if (vtisochctrl == 0x10)
5479                return;
5480
5481        /* Zero TLB entries? You get to ride the short bus to school. */
5482        if (!vtisochctrl) {
5483                WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5484                     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5485                     dmi_get_system_info(DMI_BIOS_VENDOR),
5486                     dmi_get_system_info(DMI_BIOS_VERSION),
5487                     dmi_get_system_info(DMI_PRODUCT_VERSION));
5488                iommu_identity_mapping |= IDENTMAP_AZALIA;
5489                return;
5490        }
5491
5492        pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5493               vtisochctrl);
5494}
5495