linux/drivers/md/raid5.c
<<
>>
Prefs
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *         Copyright (C) 1999, 2000 Ingo Molnar
   5 *         Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/module.h>
  51#include <linux/async.h>
  52#include <linux/seq_file.h>
  53#include <linux/cpu.h>
  54#include <linux/slab.h>
  55#include <linux/ratelimit.h>
  56#include <linux/nodemask.h>
  57#include <linux/flex_array.h>
  58
  59#include <trace/events/block.h>
  60#include <linux/list_sort.h>
  61
  62#include "md.h"
  63#include "raid5.h"
  64#include "raid0.h"
  65#include "md-bitmap.h"
  66#include "raid5-log.h"
  67
  68#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
  69
  70#define cpu_to_group(cpu) cpu_to_node(cpu)
  71#define ANY_GROUP NUMA_NO_NODE
  72
  73static bool devices_handle_discard_safely = false;
  74module_param(devices_handle_discard_safely, bool, 0644);
  75MODULE_PARM_DESC(devices_handle_discard_safely,
  76                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  77static struct workqueue_struct *raid5_wq;
  78
  79static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  80{
  81        int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  82        return &conf->stripe_hashtbl[hash];
  83}
  84
  85static inline int stripe_hash_locks_hash(sector_t sect)
  86{
  87        return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  88}
  89
  90static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  91{
  92        spin_lock_irq(conf->hash_locks + hash);
  93        spin_lock(&conf->device_lock);
  94}
  95
  96static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  97{
  98        spin_unlock(&conf->device_lock);
  99        spin_unlock_irq(conf->hash_locks + hash);
 100}
 101
 102static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
 103{
 104        int i;
 105        spin_lock_irq(conf->hash_locks);
 106        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
 107                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
 108        spin_lock(&conf->device_lock);
 109}
 110
 111static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 112{
 113        int i;
 114        spin_unlock(&conf->device_lock);
 115        for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 116                spin_unlock(conf->hash_locks + i);
 117        spin_unlock_irq(conf->hash_locks);
 118}
 119
 120/* Find first data disk in a raid6 stripe */
 121static inline int raid6_d0(struct stripe_head *sh)
 122{
 123        if (sh->ddf_layout)
 124                /* ddf always start from first device */
 125                return 0;
 126        /* md starts just after Q block */
 127        if (sh->qd_idx == sh->disks - 1)
 128                return 0;
 129        else
 130                return sh->qd_idx + 1;
 131}
 132static inline int raid6_next_disk(int disk, int raid_disks)
 133{
 134        disk++;
 135        return (disk < raid_disks) ? disk : 0;
 136}
 137
 138/* When walking through the disks in a raid5, starting at raid6_d0,
 139 * We need to map each disk to a 'slot', where the data disks are slot
 140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 141 * is raid_disks-1.  This help does that mapping.
 142 */
 143static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 144                             int *count, int syndrome_disks)
 145{
 146        int slot = *count;
 147
 148        if (sh->ddf_layout)
 149                (*count)++;
 150        if (idx == sh->pd_idx)
 151                return syndrome_disks;
 152        if (idx == sh->qd_idx)
 153                return syndrome_disks + 1;
 154        if (!sh->ddf_layout)
 155                (*count)++;
 156        return slot;
 157}
 158
 159static void print_raid5_conf (struct r5conf *conf);
 160
 161static int stripe_operations_active(struct stripe_head *sh)
 162{
 163        return sh->check_state || sh->reconstruct_state ||
 164               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 165               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 166}
 167
 168static bool stripe_is_lowprio(struct stripe_head *sh)
 169{
 170        return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 171                test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 172               !test_bit(STRIPE_R5C_CACHING, &sh->state);
 173}
 174
 175static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 176{
 177        struct r5conf *conf = sh->raid_conf;
 178        struct r5worker_group *group;
 179        int thread_cnt;
 180        int i, cpu = sh->cpu;
 181
 182        if (!cpu_online(cpu)) {
 183                cpu = cpumask_any(cpu_online_mask);
 184                sh->cpu = cpu;
 185        }
 186
 187        if (list_empty(&sh->lru)) {
 188                struct r5worker_group *group;
 189                group = conf->worker_groups + cpu_to_group(cpu);
 190                if (stripe_is_lowprio(sh))
 191                        list_add_tail(&sh->lru, &group->loprio_list);
 192                else
 193                        list_add_tail(&sh->lru, &group->handle_list);
 194                group->stripes_cnt++;
 195                sh->group = group;
 196        }
 197
 198        if (conf->worker_cnt_per_group == 0) {
 199                md_wakeup_thread(conf->mddev->thread);
 200                return;
 201        }
 202
 203        group = conf->worker_groups + cpu_to_group(sh->cpu);
 204
 205        group->workers[0].working = true;
 206        /* at least one worker should run to avoid race */
 207        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 208
 209        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 210        /* wakeup more workers */
 211        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 212                if (group->workers[i].working == false) {
 213                        group->workers[i].working = true;
 214                        queue_work_on(sh->cpu, raid5_wq,
 215                                      &group->workers[i].work);
 216                        thread_cnt--;
 217                }
 218        }
 219}
 220
 221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 222                              struct list_head *temp_inactive_list)
 223{
 224        int i;
 225        int injournal = 0;      /* number of date pages with R5_InJournal */
 226
 227        BUG_ON(!list_empty(&sh->lru));
 228        BUG_ON(atomic_read(&conf->active_stripes)==0);
 229
 230        if (r5c_is_writeback(conf->log))
 231                for (i = sh->disks; i--; )
 232                        if (test_bit(R5_InJournal, &sh->dev[i].flags))
 233                                injournal++;
 234        /*
 235         * In the following cases, the stripe cannot be released to cached
 236         * lists. Therefore, we make the stripe write out and set
 237         * STRIPE_HANDLE:
 238         *   1. when quiesce in r5c write back;
 239         *   2. when resync is requested fot the stripe.
 240         */
 241        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 242            (conf->quiesce && r5c_is_writeback(conf->log) &&
 243             !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 244                if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 245                        r5c_make_stripe_write_out(sh);
 246                set_bit(STRIPE_HANDLE, &sh->state);
 247        }
 248
 249        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 250                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 251                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 252                        list_add_tail(&sh->lru, &conf->delayed_list);
 253                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 254                           sh->bm_seq - conf->seq_write > 0)
 255                        list_add_tail(&sh->lru, &conf->bitmap_list);
 256                else {
 257                        clear_bit(STRIPE_DELAYED, &sh->state);
 258                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 259                        if (conf->worker_cnt_per_group == 0) {
 260                                if (stripe_is_lowprio(sh))
 261                                        list_add_tail(&sh->lru,
 262                                                        &conf->loprio_list);
 263                                else
 264                                        list_add_tail(&sh->lru,
 265                                                        &conf->handle_list);
 266                        } else {
 267                                raid5_wakeup_stripe_thread(sh);
 268                                return;
 269                        }
 270                }
 271                md_wakeup_thread(conf->mddev->thread);
 272        } else {
 273                BUG_ON(stripe_operations_active(sh));
 274                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 275                        if (atomic_dec_return(&conf->preread_active_stripes)
 276                            < IO_THRESHOLD)
 277                                md_wakeup_thread(conf->mddev->thread);
 278                atomic_dec(&conf->active_stripes);
 279                if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 280                        if (!r5c_is_writeback(conf->log))
 281                                list_add_tail(&sh->lru, temp_inactive_list);
 282                        else {
 283                                WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 284                                if (injournal == 0)
 285                                        list_add_tail(&sh->lru, temp_inactive_list);
 286                                else if (injournal == conf->raid_disks - conf->max_degraded) {
 287                                        /* full stripe */
 288                                        if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 289                                                atomic_inc(&conf->r5c_cached_full_stripes);
 290                                        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 291                                                atomic_dec(&conf->r5c_cached_partial_stripes);
 292                                        list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 293                                        r5c_check_cached_full_stripe(conf);
 294                                } else
 295                                        /*
 296                                         * STRIPE_R5C_PARTIAL_STRIPE is set in
 297                                         * r5c_try_caching_write(). No need to
 298                                         * set it again.
 299                                         */
 300                                        list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 301                        }
 302                }
 303        }
 304}
 305
 306static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 307                             struct list_head *temp_inactive_list)
 308{
 309        if (atomic_dec_and_test(&sh->count))
 310                do_release_stripe(conf, sh, temp_inactive_list);
 311}
 312
 313/*
 314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 315 *
 316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 317 * given time. Adding stripes only takes device lock, while deleting stripes
 318 * only takes hash lock.
 319 */
 320static void release_inactive_stripe_list(struct r5conf *conf,
 321                                         struct list_head *temp_inactive_list,
 322                                         int hash)
 323{
 324        int size;
 325        bool do_wakeup = false;
 326        unsigned long flags;
 327
 328        if (hash == NR_STRIPE_HASH_LOCKS) {
 329                size = NR_STRIPE_HASH_LOCKS;
 330                hash = NR_STRIPE_HASH_LOCKS - 1;
 331        } else
 332                size = 1;
 333        while (size) {
 334                struct list_head *list = &temp_inactive_list[size - 1];
 335
 336                /*
 337                 * We don't hold any lock here yet, raid5_get_active_stripe() might
 338                 * remove stripes from the list
 339                 */
 340                if (!list_empty_careful(list)) {
 341                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 342                        if (list_empty(conf->inactive_list + hash) &&
 343                            !list_empty(list))
 344                                atomic_dec(&conf->empty_inactive_list_nr);
 345                        list_splice_tail_init(list, conf->inactive_list + hash);
 346                        do_wakeup = true;
 347                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 348                }
 349                size--;
 350                hash--;
 351        }
 352
 353        if (do_wakeup) {
 354                wake_up(&conf->wait_for_stripe);
 355                if (atomic_read(&conf->active_stripes) == 0)
 356                        wake_up(&conf->wait_for_quiescent);
 357                if (conf->retry_read_aligned)
 358                        md_wakeup_thread(conf->mddev->thread);
 359        }
 360}
 361
 362/* should hold conf->device_lock already */
 363static int release_stripe_list(struct r5conf *conf,
 364                               struct list_head *temp_inactive_list)
 365{
 366        struct stripe_head *sh, *t;
 367        int count = 0;
 368        struct llist_node *head;
 369
 370        head = llist_del_all(&conf->released_stripes);
 371        head = llist_reverse_order(head);
 372        llist_for_each_entry_safe(sh, t, head, release_list) {
 373                int hash;
 374
 375                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 376                smp_mb();
 377                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 378                /*
 379                 * Don't worry the bit is set here, because if the bit is set
 380                 * again, the count is always > 1. This is true for
 381                 * STRIPE_ON_UNPLUG_LIST bit too.
 382                 */
 383                hash = sh->hash_lock_index;
 384                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 385                count++;
 386        }
 387
 388        return count;
 389}
 390
 391void raid5_release_stripe(struct stripe_head *sh)
 392{
 393        struct r5conf *conf = sh->raid_conf;
 394        unsigned long flags;
 395        struct list_head list;
 396        int hash;
 397        bool wakeup;
 398
 399        /* Avoid release_list until the last reference.
 400         */
 401        if (atomic_add_unless(&sh->count, -1, 1))
 402                return;
 403
 404        if (unlikely(!conf->mddev->thread) ||
 405                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 406                goto slow_path;
 407        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 408        if (wakeup)
 409                md_wakeup_thread(conf->mddev->thread);
 410        return;
 411slow_path:
 412        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 413        if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
 414                INIT_LIST_HEAD(&list);
 415                hash = sh->hash_lock_index;
 416                do_release_stripe(conf, sh, &list);
 417                spin_unlock_irqrestore(&conf->device_lock, flags);
 418                release_inactive_stripe_list(conf, &list, hash);
 419        }
 420}
 421
 422static inline void remove_hash(struct stripe_head *sh)
 423{
 424        pr_debug("remove_hash(), stripe %llu\n",
 425                (unsigned long long)sh->sector);
 426
 427        hlist_del_init(&sh->hash);
 428}
 429
 430static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 431{
 432        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 433
 434        pr_debug("insert_hash(), stripe %llu\n",
 435                (unsigned long long)sh->sector);
 436
 437        hlist_add_head(&sh->hash, hp);
 438}
 439
 440/* find an idle stripe, make sure it is unhashed, and return it. */
 441static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 442{
 443        struct stripe_head *sh = NULL;
 444        struct list_head *first;
 445
 446        if (list_empty(conf->inactive_list + hash))
 447                goto out;
 448        first = (conf->inactive_list + hash)->next;
 449        sh = list_entry(first, struct stripe_head, lru);
 450        list_del_init(first);
 451        remove_hash(sh);
 452        atomic_inc(&conf->active_stripes);
 453        BUG_ON(hash != sh->hash_lock_index);
 454        if (list_empty(conf->inactive_list + hash))
 455                atomic_inc(&conf->empty_inactive_list_nr);
 456out:
 457        return sh;
 458}
 459
 460static void shrink_buffers(struct stripe_head *sh)
 461{
 462        struct page *p;
 463        int i;
 464        int num = sh->raid_conf->pool_size;
 465
 466        for (i = 0; i < num ; i++) {
 467                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 468                p = sh->dev[i].page;
 469                if (!p)
 470                        continue;
 471                sh->dev[i].page = NULL;
 472                put_page(p);
 473        }
 474}
 475
 476static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 477{
 478        int i;
 479        int num = sh->raid_conf->pool_size;
 480
 481        for (i = 0; i < num; i++) {
 482                struct page *page;
 483
 484                if (!(page = alloc_page(gfp))) {
 485                        return 1;
 486                }
 487                sh->dev[i].page = page;
 488                sh->dev[i].orig_page = page;
 489        }
 490
 491        return 0;
 492}
 493
 494static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 495                            struct stripe_head *sh);
 496
 497static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 498{
 499        struct r5conf *conf = sh->raid_conf;
 500        int i, seq;
 501
 502        BUG_ON(atomic_read(&sh->count) != 0);
 503        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 504        BUG_ON(stripe_operations_active(sh));
 505        BUG_ON(sh->batch_head);
 506
 507        pr_debug("init_stripe called, stripe %llu\n",
 508                (unsigned long long)sector);
 509retry:
 510        seq = read_seqcount_begin(&conf->gen_lock);
 511        sh->generation = conf->generation - previous;
 512        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 513        sh->sector = sector;
 514        stripe_set_idx(sector, conf, previous, sh);
 515        sh->state = 0;
 516
 517        for (i = sh->disks; i--; ) {
 518                struct r5dev *dev = &sh->dev[i];
 519
 520                if (dev->toread || dev->read || dev->towrite || dev->written ||
 521                    test_bit(R5_LOCKED, &dev->flags)) {
 522                        pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 523                               (unsigned long long)sh->sector, i, dev->toread,
 524                               dev->read, dev->towrite, dev->written,
 525                               test_bit(R5_LOCKED, &dev->flags));
 526                        WARN_ON(1);
 527                }
 528                dev->flags = 0;
 529                dev->sector = raid5_compute_blocknr(sh, i, previous);
 530        }
 531        if (read_seqcount_retry(&conf->gen_lock, seq))
 532                goto retry;
 533        sh->overwrite_disks = 0;
 534        insert_hash(conf, sh);
 535        sh->cpu = smp_processor_id();
 536        set_bit(STRIPE_BATCH_READY, &sh->state);
 537}
 538
 539static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 540                                         short generation)
 541{
 542        struct stripe_head *sh;
 543
 544        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 545        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 546                if (sh->sector == sector && sh->generation == generation)
 547                        return sh;
 548        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 549        return NULL;
 550}
 551
 552/*
 553 * Need to check if array has failed when deciding whether to:
 554 *  - start an array
 555 *  - remove non-faulty devices
 556 *  - add a spare
 557 *  - allow a reshape
 558 * This determination is simple when no reshape is happening.
 559 * However if there is a reshape, we need to carefully check
 560 * both the before and after sections.
 561 * This is because some failed devices may only affect one
 562 * of the two sections, and some non-in_sync devices may
 563 * be insync in the section most affected by failed devices.
 564 */
 565int raid5_calc_degraded(struct r5conf *conf)
 566{
 567        int degraded, degraded2;
 568        int i;
 569
 570        rcu_read_lock();
 571        degraded = 0;
 572        for (i = 0; i < conf->previous_raid_disks; i++) {
 573                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 574                if (rdev && test_bit(Faulty, &rdev->flags))
 575                        rdev = rcu_dereference(conf->disks[i].replacement);
 576                if (!rdev || test_bit(Faulty, &rdev->flags))
 577                        degraded++;
 578                else if (test_bit(In_sync, &rdev->flags))
 579                        ;
 580                else
 581                        /* not in-sync or faulty.
 582                         * If the reshape increases the number of devices,
 583                         * this is being recovered by the reshape, so
 584                         * this 'previous' section is not in_sync.
 585                         * If the number of devices is being reduced however,
 586                         * the device can only be part of the array if
 587                         * we are reverting a reshape, so this section will
 588                         * be in-sync.
 589                         */
 590                        if (conf->raid_disks >= conf->previous_raid_disks)
 591                                degraded++;
 592        }
 593        rcu_read_unlock();
 594        if (conf->raid_disks == conf->previous_raid_disks)
 595                return degraded;
 596        rcu_read_lock();
 597        degraded2 = 0;
 598        for (i = 0; i < conf->raid_disks; i++) {
 599                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 600                if (rdev && test_bit(Faulty, &rdev->flags))
 601                        rdev = rcu_dereference(conf->disks[i].replacement);
 602                if (!rdev || test_bit(Faulty, &rdev->flags))
 603                        degraded2++;
 604                else if (test_bit(In_sync, &rdev->flags))
 605                        ;
 606                else
 607                        /* not in-sync or faulty.
 608                         * If reshape increases the number of devices, this
 609                         * section has already been recovered, else it
 610                         * almost certainly hasn't.
 611                         */
 612                        if (conf->raid_disks <= conf->previous_raid_disks)
 613                                degraded2++;
 614        }
 615        rcu_read_unlock();
 616        if (degraded2 > degraded)
 617                return degraded2;
 618        return degraded;
 619}
 620
 621static int has_failed(struct r5conf *conf)
 622{
 623        int degraded;
 624
 625        if (conf->mddev->reshape_position == MaxSector)
 626                return conf->mddev->degraded > conf->max_degraded;
 627
 628        degraded = raid5_calc_degraded(conf);
 629        if (degraded > conf->max_degraded)
 630                return 1;
 631        return 0;
 632}
 633
 634struct stripe_head *
 635raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 636                        int previous, int noblock, int noquiesce)
 637{
 638        struct stripe_head *sh;
 639        int hash = stripe_hash_locks_hash(sector);
 640        int inc_empty_inactive_list_flag;
 641
 642        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 643
 644        spin_lock_irq(conf->hash_locks + hash);
 645
 646        do {
 647                wait_event_lock_irq(conf->wait_for_quiescent,
 648                                    conf->quiesce == 0 || noquiesce,
 649                                    *(conf->hash_locks + hash));
 650                sh = __find_stripe(conf, sector, conf->generation - previous);
 651                if (!sh) {
 652                        if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 653                                sh = get_free_stripe(conf, hash);
 654                                if (!sh && !test_bit(R5_DID_ALLOC,
 655                                                     &conf->cache_state))
 656                                        set_bit(R5_ALLOC_MORE,
 657                                                &conf->cache_state);
 658                        }
 659                        if (noblock && sh == NULL)
 660                                break;
 661
 662                        r5c_check_stripe_cache_usage(conf);
 663                        if (!sh) {
 664                                set_bit(R5_INACTIVE_BLOCKED,
 665                                        &conf->cache_state);
 666                                r5l_wake_reclaim(conf->log, 0);
 667                                wait_event_lock_irq(
 668                                        conf->wait_for_stripe,
 669                                        !list_empty(conf->inactive_list + hash) &&
 670                                        (atomic_read(&conf->active_stripes)
 671                                         < (conf->max_nr_stripes * 3 / 4)
 672                                         || !test_bit(R5_INACTIVE_BLOCKED,
 673                                                      &conf->cache_state)),
 674                                        *(conf->hash_locks + hash));
 675                                clear_bit(R5_INACTIVE_BLOCKED,
 676                                          &conf->cache_state);
 677                        } else {
 678                                init_stripe(sh, sector, previous);
 679                                atomic_inc(&sh->count);
 680                        }
 681                } else if (!atomic_inc_not_zero(&sh->count)) {
 682                        spin_lock(&conf->device_lock);
 683                        if (!atomic_read(&sh->count)) {
 684                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 685                                        atomic_inc(&conf->active_stripes);
 686                                BUG_ON(list_empty(&sh->lru) &&
 687                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 688                                inc_empty_inactive_list_flag = 0;
 689                                if (!list_empty(conf->inactive_list + hash))
 690                                        inc_empty_inactive_list_flag = 1;
 691                                list_del_init(&sh->lru);
 692                                if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 693                                        atomic_inc(&conf->empty_inactive_list_nr);
 694                                if (sh->group) {
 695                                        sh->group->stripes_cnt--;
 696                                        sh->group = NULL;
 697                                }
 698                        }
 699                        atomic_inc(&sh->count);
 700                        spin_unlock(&conf->device_lock);
 701                }
 702        } while (sh == NULL);
 703
 704        spin_unlock_irq(conf->hash_locks + hash);
 705        return sh;
 706}
 707
 708static bool is_full_stripe_write(struct stripe_head *sh)
 709{
 710        BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 711        return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 712}
 713
 714static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 715{
 716        if (sh1 > sh2) {
 717                spin_lock_irq(&sh2->stripe_lock);
 718                spin_lock_nested(&sh1->stripe_lock, 1);
 719        } else {
 720                spin_lock_irq(&sh1->stripe_lock);
 721                spin_lock_nested(&sh2->stripe_lock, 1);
 722        }
 723}
 724
 725static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 726{
 727        spin_unlock(&sh1->stripe_lock);
 728        spin_unlock_irq(&sh2->stripe_lock);
 729}
 730
 731/* Only freshly new full stripe normal write stripe can be added to a batch list */
 732static bool stripe_can_batch(struct stripe_head *sh)
 733{
 734        struct r5conf *conf = sh->raid_conf;
 735
 736        if (raid5_has_log(conf) || raid5_has_ppl(conf))
 737                return false;
 738        return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 739                !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 740                is_full_stripe_write(sh);
 741}
 742
 743/* we only do back search */
 744static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 745{
 746        struct stripe_head *head;
 747        sector_t head_sector, tmp_sec;
 748        int hash;
 749        int dd_idx;
 750        int inc_empty_inactive_list_flag;
 751
 752        /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 753        tmp_sec = sh->sector;
 754        if (!sector_div(tmp_sec, conf->chunk_sectors))
 755                return;
 756        head_sector = sh->sector - STRIPE_SECTORS;
 757
 758        hash = stripe_hash_locks_hash(head_sector);
 759        spin_lock_irq(conf->hash_locks + hash);
 760        head = __find_stripe(conf, head_sector, conf->generation);
 761        if (head && !atomic_inc_not_zero(&head->count)) {
 762                spin_lock(&conf->device_lock);
 763                if (!atomic_read(&head->count)) {
 764                        if (!test_bit(STRIPE_HANDLE, &head->state))
 765                                atomic_inc(&conf->active_stripes);
 766                        BUG_ON(list_empty(&head->lru) &&
 767                               !test_bit(STRIPE_EXPANDING, &head->state));
 768                        inc_empty_inactive_list_flag = 0;
 769                        if (!list_empty(conf->inactive_list + hash))
 770                                inc_empty_inactive_list_flag = 1;
 771                        list_del_init(&head->lru);
 772                        if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 773                                atomic_inc(&conf->empty_inactive_list_nr);
 774                        if (head->group) {
 775                                head->group->stripes_cnt--;
 776                                head->group = NULL;
 777                        }
 778                }
 779                atomic_inc(&head->count);
 780                spin_unlock(&conf->device_lock);
 781        }
 782        spin_unlock_irq(conf->hash_locks + hash);
 783
 784        if (!head)
 785                return;
 786        if (!stripe_can_batch(head))
 787                goto out;
 788
 789        lock_two_stripes(head, sh);
 790        /* clear_batch_ready clear the flag */
 791        if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 792                goto unlock_out;
 793
 794        if (sh->batch_head)
 795                goto unlock_out;
 796
 797        dd_idx = 0;
 798        while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 799                dd_idx++;
 800        if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 801            bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 802                goto unlock_out;
 803
 804        if (head->batch_head) {
 805                spin_lock(&head->batch_head->batch_lock);
 806                /* This batch list is already running */
 807                if (!stripe_can_batch(head)) {
 808                        spin_unlock(&head->batch_head->batch_lock);
 809                        goto unlock_out;
 810                }
 811                /*
 812                 * We must assign batch_head of this stripe within the
 813                 * batch_lock, otherwise clear_batch_ready of batch head
 814                 * stripe could clear BATCH_READY bit of this stripe and
 815                 * this stripe->batch_head doesn't get assigned, which
 816                 * could confuse clear_batch_ready for this stripe
 817                 */
 818                sh->batch_head = head->batch_head;
 819
 820                /*
 821                 * at this point, head's BATCH_READY could be cleared, but we
 822                 * can still add the stripe to batch list
 823                 */
 824                list_add(&sh->batch_list, &head->batch_list);
 825                spin_unlock(&head->batch_head->batch_lock);
 826        } else {
 827                head->batch_head = head;
 828                sh->batch_head = head->batch_head;
 829                spin_lock(&head->batch_lock);
 830                list_add_tail(&sh->batch_list, &head->batch_list);
 831                spin_unlock(&head->batch_lock);
 832        }
 833
 834        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 835                if (atomic_dec_return(&conf->preread_active_stripes)
 836                    < IO_THRESHOLD)
 837                        md_wakeup_thread(conf->mddev->thread);
 838
 839        if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 840                int seq = sh->bm_seq;
 841                if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 842                    sh->batch_head->bm_seq > seq)
 843                        seq = sh->batch_head->bm_seq;
 844                set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 845                sh->batch_head->bm_seq = seq;
 846        }
 847
 848        atomic_inc(&sh->count);
 849unlock_out:
 850        unlock_two_stripes(head, sh);
 851out:
 852        raid5_release_stripe(head);
 853}
 854
 855/* Determine if 'data_offset' or 'new_data_offset' should be used
 856 * in this stripe_head.
 857 */
 858static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 859{
 860        sector_t progress = conf->reshape_progress;
 861        /* Need a memory barrier to make sure we see the value
 862         * of conf->generation, or ->data_offset that was set before
 863         * reshape_progress was updated.
 864         */
 865        smp_rmb();
 866        if (progress == MaxSector)
 867                return 0;
 868        if (sh->generation == conf->generation - 1)
 869                return 0;
 870        /* We are in a reshape, and this is a new-generation stripe,
 871         * so use new_data_offset.
 872         */
 873        return 1;
 874}
 875
 876static void dispatch_bio_list(struct bio_list *tmp)
 877{
 878        struct bio *bio;
 879
 880        while ((bio = bio_list_pop(tmp)))
 881                generic_make_request(bio);
 882}
 883
 884static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
 885{
 886        const struct r5pending_data *da = list_entry(a,
 887                                struct r5pending_data, sibling);
 888        const struct r5pending_data *db = list_entry(b,
 889                                struct r5pending_data, sibling);
 890        if (da->sector > db->sector)
 891                return 1;
 892        if (da->sector < db->sector)
 893                return -1;
 894        return 0;
 895}
 896
 897static void dispatch_defer_bios(struct r5conf *conf, int target,
 898                                struct bio_list *list)
 899{
 900        struct r5pending_data *data;
 901        struct list_head *first, *next = NULL;
 902        int cnt = 0;
 903
 904        if (conf->pending_data_cnt == 0)
 905                return;
 906
 907        list_sort(NULL, &conf->pending_list, cmp_stripe);
 908
 909        first = conf->pending_list.next;
 910
 911        /* temporarily move the head */
 912        if (conf->next_pending_data)
 913                list_move_tail(&conf->pending_list,
 914                                &conf->next_pending_data->sibling);
 915
 916        while (!list_empty(&conf->pending_list)) {
 917                data = list_first_entry(&conf->pending_list,
 918                        struct r5pending_data, sibling);
 919                if (&data->sibling == first)
 920                        first = data->sibling.next;
 921                next = data->sibling.next;
 922
 923                bio_list_merge(list, &data->bios);
 924                list_move(&data->sibling, &conf->free_list);
 925                cnt++;
 926                if (cnt >= target)
 927                        break;
 928        }
 929        conf->pending_data_cnt -= cnt;
 930        BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
 931
 932        if (next != &conf->pending_list)
 933                conf->next_pending_data = list_entry(next,
 934                                struct r5pending_data, sibling);
 935        else
 936                conf->next_pending_data = NULL;
 937        /* list isn't empty */
 938        if (first != &conf->pending_list)
 939                list_move_tail(&conf->pending_list, first);
 940}
 941
 942static void flush_deferred_bios(struct r5conf *conf)
 943{
 944        struct bio_list tmp = BIO_EMPTY_LIST;
 945
 946        if (conf->pending_data_cnt == 0)
 947                return;
 948
 949        spin_lock(&conf->pending_bios_lock);
 950        dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
 951        BUG_ON(conf->pending_data_cnt != 0);
 952        spin_unlock(&conf->pending_bios_lock);
 953
 954        dispatch_bio_list(&tmp);
 955}
 956
 957static void defer_issue_bios(struct r5conf *conf, sector_t sector,
 958                                struct bio_list *bios)
 959{
 960        struct bio_list tmp = BIO_EMPTY_LIST;
 961        struct r5pending_data *ent;
 962
 963        spin_lock(&conf->pending_bios_lock);
 964        ent = list_first_entry(&conf->free_list, struct r5pending_data,
 965                                                        sibling);
 966        list_move_tail(&ent->sibling, &conf->pending_list);
 967        ent->sector = sector;
 968        bio_list_init(&ent->bios);
 969        bio_list_merge(&ent->bios, bios);
 970        conf->pending_data_cnt++;
 971        if (conf->pending_data_cnt >= PENDING_IO_MAX)
 972                dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
 973
 974        spin_unlock(&conf->pending_bios_lock);
 975
 976        dispatch_bio_list(&tmp);
 977}
 978
 979static void
 980raid5_end_read_request(struct bio *bi);
 981static void
 982raid5_end_write_request(struct bio *bi);
 983
 984static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 985{
 986        struct r5conf *conf = sh->raid_conf;
 987        int i, disks = sh->disks;
 988        struct stripe_head *head_sh = sh;
 989        struct bio_list pending_bios = BIO_EMPTY_LIST;
 990        bool should_defer;
 991
 992        might_sleep();
 993
 994        if (log_stripe(sh, s) == 0)
 995                return;
 996
 997        should_defer = conf->batch_bio_dispatch && conf->group_cnt;
 998
 999        for (i = disks; i--; ) {
1000                int op, op_flags = 0;
1001                int replace_only = 0;
1002                struct bio *bi, *rbi;
1003                struct md_rdev *rdev, *rrdev = NULL;
1004
1005                sh = head_sh;
1006                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1007                        op = REQ_OP_WRITE;
1008                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1009                                op_flags = REQ_FUA;
1010                        if (test_bit(R5_Discard, &sh->dev[i].flags))
1011                                op = REQ_OP_DISCARD;
1012                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1013                        op = REQ_OP_READ;
1014                else if (test_and_clear_bit(R5_WantReplace,
1015                                            &sh->dev[i].flags)) {
1016                        op = REQ_OP_WRITE;
1017                        replace_only = 1;
1018                } else
1019                        continue;
1020                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1021                        op_flags |= REQ_SYNC;
1022
1023again:
1024                bi = &sh->dev[i].req;
1025                rbi = &sh->dev[i].rreq; /* For writing to replacement */
1026
1027                rcu_read_lock();
1028                rrdev = rcu_dereference(conf->disks[i].replacement);
1029                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030                rdev = rcu_dereference(conf->disks[i].rdev);
1031                if (!rdev) {
1032                        rdev = rrdev;
1033                        rrdev = NULL;
1034                }
1035                if (op_is_write(op)) {
1036                        if (replace_only)
1037                                rdev = NULL;
1038                        if (rdev == rrdev)
1039                                /* We raced and saw duplicates */
1040                                rrdev = NULL;
1041                } else {
1042                        if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1043                                rdev = rrdev;
1044                        rrdev = NULL;
1045                }
1046
1047                if (rdev && test_bit(Faulty, &rdev->flags))
1048                        rdev = NULL;
1049                if (rdev)
1050                        atomic_inc(&rdev->nr_pending);
1051                if (rrdev && test_bit(Faulty, &rrdev->flags))
1052                        rrdev = NULL;
1053                if (rrdev)
1054                        atomic_inc(&rrdev->nr_pending);
1055                rcu_read_unlock();
1056
1057                /* We have already checked bad blocks for reads.  Now
1058                 * need to check for writes.  We never accept write errors
1059                 * on the replacement, so we don't to check rrdev.
1060                 */
1061                while (op_is_write(op) && rdev &&
1062                       test_bit(WriteErrorSeen, &rdev->flags)) {
1063                        sector_t first_bad;
1064                        int bad_sectors;
1065                        int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1066                                              &first_bad, &bad_sectors);
1067                        if (!bad)
1068                                break;
1069
1070                        if (bad < 0) {
1071                                set_bit(BlockedBadBlocks, &rdev->flags);
1072                                if (!conf->mddev->external &&
1073                                    conf->mddev->sb_flags) {
1074                                        /* It is very unlikely, but we might
1075                                         * still need to write out the
1076                                         * bad block log - better give it
1077                                         * a chance*/
1078                                        md_check_recovery(conf->mddev);
1079                                }
1080                                /*
1081                                 * Because md_wait_for_blocked_rdev
1082                                 * will dec nr_pending, we must
1083                                 * increment it first.
1084                                 */
1085                                atomic_inc(&rdev->nr_pending);
1086                                md_wait_for_blocked_rdev(rdev, conf->mddev);
1087                        } else {
1088                                /* Acknowledged bad block - skip the write */
1089                                rdev_dec_pending(rdev, conf->mddev);
1090                                rdev = NULL;
1091                        }
1092                }
1093
1094                if (rdev) {
1095                        if (s->syncing || s->expanding || s->expanded
1096                            || s->replacing)
1097                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1098
1099                        set_bit(STRIPE_IO_STARTED, &sh->state);
1100
1101                        bio_set_dev(bi, rdev->bdev);
1102                        bio_set_op_attrs(bi, op, op_flags);
1103                        bi->bi_end_io = op_is_write(op)
1104                                ? raid5_end_write_request
1105                                : raid5_end_read_request;
1106                        bi->bi_private = sh;
1107
1108                        pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109                                __func__, (unsigned long long)sh->sector,
1110                                bi->bi_opf, i);
1111                        atomic_inc(&sh->count);
1112                        if (sh != head_sh)
1113                                atomic_inc(&head_sh->count);
1114                        if (use_new_offset(conf, sh))
1115                                bi->bi_iter.bi_sector = (sh->sector
1116                                                 + rdev->new_data_offset);
1117                        else
1118                                bi->bi_iter.bi_sector = (sh->sector
1119                                                 + rdev->data_offset);
1120                        if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1121                                bi->bi_opf |= REQ_NOMERGE;
1122
1123                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1124                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1125
1126                        if (!op_is_write(op) &&
1127                            test_bit(R5_InJournal, &sh->dev[i].flags))
1128                                /*
1129                                 * issuing read for a page in journal, this
1130                                 * must be preparing for prexor in rmw; read
1131                                 * the data into orig_page
1132                                 */
1133                                sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1134                        else
1135                                sh->dev[i].vec.bv_page = sh->dev[i].page;
1136                        bi->bi_vcnt = 1;
1137                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1138                        bi->bi_io_vec[0].bv_offset = 0;
1139                        bi->bi_iter.bi_size = STRIPE_SIZE;
1140                        bi->bi_write_hint = sh->dev[i].write_hint;
1141                        if (!rrdev)
1142                                sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1143                        /*
1144                         * If this is discard request, set bi_vcnt 0. We don't
1145                         * want to confuse SCSI because SCSI will replace payload
1146                         */
1147                        if (op == REQ_OP_DISCARD)
1148                                bi->bi_vcnt = 0;
1149                        if (rrdev)
1150                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1151
1152                        if (conf->mddev->gendisk)
1153                                trace_block_bio_remap(bi->bi_disk->queue,
1154                                                      bi, disk_devt(conf->mddev->gendisk),
1155                                                      sh->dev[i].sector);
1156                        if (should_defer && op_is_write(op))
1157                                bio_list_add(&pending_bios, bi);
1158                        else
1159                                generic_make_request(bi);
1160                }
1161                if (rrdev) {
1162                        if (s->syncing || s->expanding || s->expanded
1163                            || s->replacing)
1164                                md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1165
1166                        set_bit(STRIPE_IO_STARTED, &sh->state);
1167
1168                        bio_set_dev(rbi, rrdev->bdev);
1169                        bio_set_op_attrs(rbi, op, op_flags);
1170                        BUG_ON(!op_is_write(op));
1171                        rbi->bi_end_io = raid5_end_write_request;
1172                        rbi->bi_private = sh;
1173
1174                        pr_debug("%s: for %llu schedule op %d on "
1175                                 "replacement disc %d\n",
1176                                __func__, (unsigned long long)sh->sector,
1177                                rbi->bi_opf, i);
1178                        atomic_inc(&sh->count);
1179                        if (sh != head_sh)
1180                                atomic_inc(&head_sh->count);
1181                        if (use_new_offset(conf, sh))
1182                                rbi->bi_iter.bi_sector = (sh->sector
1183                                                  + rrdev->new_data_offset);
1184                        else
1185                                rbi->bi_iter.bi_sector = (sh->sector
1186                                                  + rrdev->data_offset);
1187                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
1190                        rbi->bi_vcnt = 1;
1191                        rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192                        rbi->bi_io_vec[0].bv_offset = 0;
1193                        rbi->bi_iter.bi_size = STRIPE_SIZE;
1194                        rbi->bi_write_hint = sh->dev[i].write_hint;
1195                        sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1196                        /*
1197                         * If this is discard request, set bi_vcnt 0. We don't
1198                         * want to confuse SCSI because SCSI will replace payload
1199                         */
1200                        if (op == REQ_OP_DISCARD)
1201                                rbi->bi_vcnt = 0;
1202                        if (conf->mddev->gendisk)
1203                                trace_block_bio_remap(rbi->bi_disk->queue,
1204                                                      rbi, disk_devt(conf->mddev->gendisk),
1205                                                      sh->dev[i].sector);
1206                        if (should_defer && op_is_write(op))
1207                                bio_list_add(&pending_bios, rbi);
1208                        else
1209                                generic_make_request(rbi);
1210                }
1211                if (!rdev && !rrdev) {
1212                        if (op_is_write(op))
1213                                set_bit(STRIPE_DEGRADED, &sh->state);
1214                        pr_debug("skip op %d on disc %d for sector %llu\n",
1215                                bi->bi_opf, i, (unsigned long long)sh->sector);
1216                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217                        set_bit(STRIPE_HANDLE, &sh->state);
1218                }
1219
1220                if (!head_sh->batch_head)
1221                        continue;
1222                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1223                                      batch_list);
1224                if (sh != head_sh)
1225                        goto again;
1226        }
1227
1228        if (should_defer && !bio_list_empty(&pending_bios))
1229                defer_issue_bios(conf, head_sh->sector, &pending_bios);
1230}
1231
1232static struct dma_async_tx_descriptor *
1233async_copy_data(int frombio, struct bio *bio, struct page **page,
1234        sector_t sector, struct dma_async_tx_descriptor *tx,
1235        struct stripe_head *sh, int no_skipcopy)
1236{
1237        struct bio_vec bvl;
1238        struct bvec_iter iter;
1239        struct page *bio_page;
1240        int page_offset;
1241        struct async_submit_ctl submit;
1242        enum async_tx_flags flags = 0;
1243
1244        if (bio->bi_iter.bi_sector >= sector)
1245                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1246        else
1247                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1248
1249        if (frombio)
1250                flags |= ASYNC_TX_FENCE;
1251        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1252
1253        bio_for_each_segment(bvl, bio, iter) {
1254                int len = bvl.bv_len;
1255                int clen;
1256                int b_offset = 0;
1257
1258                if (page_offset < 0) {
1259                        b_offset = -page_offset;
1260                        page_offset += b_offset;
1261                        len -= b_offset;
1262                }
1263
1264                if (len > 0 && page_offset + len > STRIPE_SIZE)
1265                        clen = STRIPE_SIZE - page_offset;
1266                else
1267                        clen = len;
1268
1269                if (clen > 0) {
1270                        b_offset += bvl.bv_offset;
1271                        bio_page = bvl.bv_page;
1272                        if (frombio) {
1273                                if (sh->raid_conf->skip_copy &&
1274                                    b_offset == 0 && page_offset == 0 &&
1275                                    clen == STRIPE_SIZE &&
1276                                    !no_skipcopy)
1277                                        *page = bio_page;
1278                                else
1279                                        tx = async_memcpy(*page, bio_page, page_offset,
1280                                                  b_offset, clen, &submit);
1281                        } else
1282                                tx = async_memcpy(bio_page, *page, b_offset,
1283                                                  page_offset, clen, &submit);
1284                }
1285                /* chain the operations */
1286                submit.depend_tx = tx;
1287
1288                if (clen < len) /* hit end of page */
1289                        break;
1290                page_offset +=  len;
1291        }
1292
1293        return tx;
1294}
1295
1296static void ops_complete_biofill(void *stripe_head_ref)
1297{
1298        struct stripe_head *sh = stripe_head_ref;
1299        int i;
1300
1301        pr_debug("%s: stripe %llu\n", __func__,
1302                (unsigned long long)sh->sector);
1303
1304        /* clear completed biofills */
1305        for (i = sh->disks; i--; ) {
1306                struct r5dev *dev = &sh->dev[i];
1307
1308                /* acknowledge completion of a biofill operation */
1309                /* and check if we need to reply to a read request,
1310                 * new R5_Wantfill requests are held off until
1311                 * !STRIPE_BIOFILL_RUN
1312                 */
1313                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1314                        struct bio *rbi, *rbi2;
1315
1316                        BUG_ON(!dev->read);
1317                        rbi = dev->read;
1318                        dev->read = NULL;
1319                        while (rbi && rbi->bi_iter.bi_sector <
1320                                dev->sector + STRIPE_SECTORS) {
1321                                rbi2 = r5_next_bio(rbi, dev->sector);
1322                                bio_endio(rbi);
1323                                rbi = rbi2;
1324                        }
1325                }
1326        }
1327        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1328
1329        set_bit(STRIPE_HANDLE, &sh->state);
1330        raid5_release_stripe(sh);
1331}
1332
1333static void ops_run_biofill(struct stripe_head *sh)
1334{
1335        struct dma_async_tx_descriptor *tx = NULL;
1336        struct async_submit_ctl submit;
1337        int i;
1338
1339        BUG_ON(sh->batch_head);
1340        pr_debug("%s: stripe %llu\n", __func__,
1341                (unsigned long long)sh->sector);
1342
1343        for (i = sh->disks; i--; ) {
1344                struct r5dev *dev = &sh->dev[i];
1345                if (test_bit(R5_Wantfill, &dev->flags)) {
1346                        struct bio *rbi;
1347                        spin_lock_irq(&sh->stripe_lock);
1348                        dev->read = rbi = dev->toread;
1349                        dev->toread = NULL;
1350                        spin_unlock_irq(&sh->stripe_lock);
1351                        while (rbi && rbi->bi_iter.bi_sector <
1352                                dev->sector + STRIPE_SECTORS) {
1353                                tx = async_copy_data(0, rbi, &dev->page,
1354                                                     dev->sector, tx, sh, 0);
1355                                rbi = r5_next_bio(rbi, dev->sector);
1356                        }
1357                }
1358        }
1359
1360        atomic_inc(&sh->count);
1361        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1362        async_trigger_callback(&submit);
1363}
1364
1365static void mark_target_uptodate(struct stripe_head *sh, int target)
1366{
1367        struct r5dev *tgt;
1368
1369        if (target < 0)
1370                return;
1371
1372        tgt = &sh->dev[target];
1373        set_bit(R5_UPTODATE, &tgt->flags);
1374        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1375        clear_bit(R5_Wantcompute, &tgt->flags);
1376}
1377
1378static void ops_complete_compute(void *stripe_head_ref)
1379{
1380        struct stripe_head *sh = stripe_head_ref;
1381
1382        pr_debug("%s: stripe %llu\n", __func__,
1383                (unsigned long long)sh->sector);
1384
1385        /* mark the computed target(s) as uptodate */
1386        mark_target_uptodate(sh, sh->ops.target);
1387        mark_target_uptodate(sh, sh->ops.target2);
1388
1389        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1390        if (sh->check_state == check_state_compute_run)
1391                sh->check_state = check_state_compute_result;
1392        set_bit(STRIPE_HANDLE, &sh->state);
1393        raid5_release_stripe(sh);
1394}
1395
1396/* return a pointer to the address conversion region of the scribble buffer */
1397static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1398                                 struct raid5_percpu *percpu, int i)
1399{
1400        void *addr;
1401
1402        addr = flex_array_get(percpu->scribble, i);
1403        return addr + sizeof(struct page *) * (sh->disks + 2);
1404}
1405
1406/* return a pointer to the address conversion region of the scribble buffer */
1407static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1408{
1409        void *addr;
1410
1411        addr = flex_array_get(percpu->scribble, i);
1412        return addr;
1413}
1414
1415static struct dma_async_tx_descriptor *
1416ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1417{
1418        int disks = sh->disks;
1419        struct page **xor_srcs = to_addr_page(percpu, 0);
1420        int target = sh->ops.target;
1421        struct r5dev *tgt = &sh->dev[target];
1422        struct page *xor_dest = tgt->page;
1423        int count = 0;
1424        struct dma_async_tx_descriptor *tx;
1425        struct async_submit_ctl submit;
1426        int i;
1427
1428        BUG_ON(sh->batch_head);
1429
1430        pr_debug("%s: stripe %llu block: %d\n",
1431                __func__, (unsigned long long)sh->sector, target);
1432        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1433
1434        for (i = disks; i--; )
1435                if (i != target)
1436                        xor_srcs[count++] = sh->dev[i].page;
1437
1438        atomic_inc(&sh->count);
1439
1440        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1441                          ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1442        if (unlikely(count == 1))
1443                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1444        else
1445                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1446
1447        return tx;
1448}
1449
1450/* set_syndrome_sources - populate source buffers for gen_syndrome
1451 * @srcs - (struct page *) array of size sh->disks
1452 * @sh - stripe_head to parse
1453 *
1454 * Populates srcs in proper layout order for the stripe and returns the
1455 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1456 * destination buffer is recorded in srcs[count] and the Q destination
1457 * is recorded in srcs[count+1]].
1458 */
1459static int set_syndrome_sources(struct page **srcs,
1460                                struct stripe_head *sh,
1461                                int srctype)
1462{
1463        int disks = sh->disks;
1464        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1465        int d0_idx = raid6_d0(sh);
1466        int count;
1467        int i;
1468
1469        for (i = 0; i < disks; i++)
1470                srcs[i] = NULL;
1471
1472        count = 0;
1473        i = d0_idx;
1474        do {
1475                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1476                struct r5dev *dev = &sh->dev[i];
1477
1478                if (i == sh->qd_idx || i == sh->pd_idx ||
1479                    (srctype == SYNDROME_SRC_ALL) ||
1480                    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1481                     (test_bit(R5_Wantdrain, &dev->flags) ||
1482                      test_bit(R5_InJournal, &dev->flags))) ||
1483                    (srctype == SYNDROME_SRC_WRITTEN &&
1484                     (dev->written ||
1485                      test_bit(R5_InJournal, &dev->flags)))) {
1486                        if (test_bit(R5_InJournal, &dev->flags))
1487                                srcs[slot] = sh->dev[i].orig_page;
1488                        else
1489                                srcs[slot] = sh->dev[i].page;
1490                }
1491                i = raid6_next_disk(i, disks);
1492        } while (i != d0_idx);
1493
1494        return syndrome_disks;
1495}
1496
1497static struct dma_async_tx_descriptor *
1498ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1499{
1500        int disks = sh->disks;
1501        struct page **blocks = to_addr_page(percpu, 0);
1502        int target;
1503        int qd_idx = sh->qd_idx;
1504        struct dma_async_tx_descriptor *tx;
1505        struct async_submit_ctl submit;
1506        struct r5dev *tgt;
1507        struct page *dest;
1508        int i;
1509        int count;
1510
1511        BUG_ON(sh->batch_head);
1512        if (sh->ops.target < 0)
1513                target = sh->ops.target2;
1514        else if (sh->ops.target2 < 0)
1515                target = sh->ops.target;
1516        else
1517                /* we should only have one valid target */
1518                BUG();
1519        BUG_ON(target < 0);
1520        pr_debug("%s: stripe %llu block: %d\n",
1521                __func__, (unsigned long long)sh->sector, target);
1522
1523        tgt = &sh->dev[target];
1524        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1525        dest = tgt->page;
1526
1527        atomic_inc(&sh->count);
1528
1529        if (target == qd_idx) {
1530                count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1531                blocks[count] = NULL; /* regenerating p is not necessary */
1532                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1533                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1534                                  ops_complete_compute, sh,
1535                                  to_addr_conv(sh, percpu, 0));
1536                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1537        } else {
1538                /* Compute any data- or p-drive using XOR */
1539                count = 0;
1540                for (i = disks; i-- ; ) {
1541                        if (i == target || i == qd_idx)
1542                                continue;
1543                        blocks[count++] = sh->dev[i].page;
1544                }
1545
1546                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1547                                  NULL, ops_complete_compute, sh,
1548                                  to_addr_conv(sh, percpu, 0));
1549                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1550        }
1551
1552        return tx;
1553}
1554
1555static struct dma_async_tx_descriptor *
1556ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1557{
1558        int i, count, disks = sh->disks;
1559        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1560        int d0_idx = raid6_d0(sh);
1561        int faila = -1, failb = -1;
1562        int target = sh->ops.target;
1563        int target2 = sh->ops.target2;
1564        struct r5dev *tgt = &sh->dev[target];
1565        struct r5dev *tgt2 = &sh->dev[target2];
1566        struct dma_async_tx_descriptor *tx;
1567        struct page **blocks = to_addr_page(percpu, 0);
1568        struct async_submit_ctl submit;
1569
1570        BUG_ON(sh->batch_head);
1571        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572                 __func__, (unsigned long long)sh->sector, target, target2);
1573        BUG_ON(target < 0 || target2 < 0);
1574        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1576
1577        /* we need to open-code set_syndrome_sources to handle the
1578         * slot number conversion for 'faila' and 'failb'
1579         */
1580        for (i = 0; i < disks ; i++)
1581                blocks[i] = NULL;
1582        count = 0;
1583        i = d0_idx;
1584        do {
1585                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1586
1587                blocks[slot] = sh->dev[i].page;
1588
1589                if (i == target)
1590                        faila = slot;
1591                if (i == target2)
1592                        failb = slot;
1593                i = raid6_next_disk(i, disks);
1594        } while (i != d0_idx);
1595
1596        BUG_ON(faila == failb);
1597        if (failb < faila)
1598                swap(faila, failb);
1599        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600                 __func__, (unsigned long long)sh->sector, faila, failb);
1601
1602        atomic_inc(&sh->count);
1603
1604        if (failb == syndrome_disks+1) {
1605                /* Q disk is one of the missing disks */
1606                if (faila == syndrome_disks) {
1607                        /* Missing P+Q, just recompute */
1608                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1609                                          ops_complete_compute, sh,
1610                                          to_addr_conv(sh, percpu, 0));
1611                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1612                                                  STRIPE_SIZE, &submit);
1613                } else {
1614                        struct page *dest;
1615                        int data_target;
1616                        int qd_idx = sh->qd_idx;
1617
1618                        /* Missing D+Q: recompute D from P, then recompute Q */
1619                        if (target == qd_idx)
1620                                data_target = target2;
1621                        else
1622                                data_target = target;
1623
1624                        count = 0;
1625                        for (i = disks; i-- ; ) {
1626                                if (i == data_target || i == qd_idx)
1627                                        continue;
1628                                blocks[count++] = sh->dev[i].page;
1629                        }
1630                        dest = sh->dev[data_target].page;
1631                        init_async_submit(&submit,
1632                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1633                                          NULL, NULL, NULL,
1634                                          to_addr_conv(sh, percpu, 0));
1635                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1636                                       &submit);
1637
1638                        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1639                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1640                                          ops_complete_compute, sh,
1641                                          to_addr_conv(sh, percpu, 0));
1642                        return async_gen_syndrome(blocks, 0, count+2,
1643                                                  STRIPE_SIZE, &submit);
1644                }
1645        } else {
1646                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1647                                  ops_complete_compute, sh,
1648                                  to_addr_conv(sh, percpu, 0));
1649                if (failb == syndrome_disks) {
1650                        /* We're missing D+P. */
1651                        return async_raid6_datap_recov(syndrome_disks+2,
1652                                                       STRIPE_SIZE, faila,
1653                                                       blocks, &submit);
1654                } else {
1655                        /* We're missing D+D. */
1656                        return async_raid6_2data_recov(syndrome_disks+2,
1657                                                       STRIPE_SIZE, faila, failb,
1658                                                       blocks, &submit);
1659                }
1660        }
1661}
1662
1663static void ops_complete_prexor(void *stripe_head_ref)
1664{
1665        struct stripe_head *sh = stripe_head_ref;
1666
1667        pr_debug("%s: stripe %llu\n", __func__,
1668                (unsigned long long)sh->sector);
1669
1670        if (r5c_is_writeback(sh->raid_conf->log))
1671                /*
1672                 * raid5-cache write back uses orig_page during prexor.
1673                 * After prexor, it is time to free orig_page
1674                 */
1675                r5c_release_extra_page(sh);
1676}
1677
1678static struct dma_async_tx_descriptor *
1679ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1680                struct dma_async_tx_descriptor *tx)
1681{
1682        int disks = sh->disks;
1683        struct page **xor_srcs = to_addr_page(percpu, 0);
1684        int count = 0, pd_idx = sh->pd_idx, i;
1685        struct async_submit_ctl submit;
1686
1687        /* existing parity data subtracted */
1688        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1689
1690        BUG_ON(sh->batch_head);
1691        pr_debug("%s: stripe %llu\n", __func__,
1692                (unsigned long long)sh->sector);
1693
1694        for (i = disks; i--; ) {
1695                struct r5dev *dev = &sh->dev[i];
1696                /* Only process blocks that are known to be uptodate */
1697                if (test_bit(R5_InJournal, &dev->flags))
1698                        xor_srcs[count++] = dev->orig_page;
1699                else if (test_bit(R5_Wantdrain, &dev->flags))
1700                        xor_srcs[count++] = dev->page;
1701        }
1702
1703        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1704                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1705        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1706
1707        return tx;
1708}
1709
1710static struct dma_async_tx_descriptor *
1711ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1712                struct dma_async_tx_descriptor *tx)
1713{
1714        struct page **blocks = to_addr_page(percpu, 0);
1715        int count;
1716        struct async_submit_ctl submit;
1717
1718        pr_debug("%s: stripe %llu\n", __func__,
1719                (unsigned long long)sh->sector);
1720
1721        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1722
1723        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1724                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1725        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1726
1727        return tx;
1728}
1729
1730static struct dma_async_tx_descriptor *
1731ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1732{
1733        struct r5conf *conf = sh->raid_conf;
1734        int disks = sh->disks;
1735        int i;
1736        struct stripe_head *head_sh = sh;
1737
1738        pr_debug("%s: stripe %llu\n", __func__,
1739                (unsigned long long)sh->sector);
1740
1741        for (i = disks; i--; ) {
1742                struct r5dev *dev;
1743                struct bio *chosen;
1744
1745                sh = head_sh;
1746                if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1747                        struct bio *wbi;
1748
1749again:
1750                        dev = &sh->dev[i];
1751                        /*
1752                         * clear R5_InJournal, so when rewriting a page in
1753                         * journal, it is not skipped by r5l_log_stripe()
1754                         */
1755                        clear_bit(R5_InJournal, &dev->flags);
1756                        spin_lock_irq(&sh->stripe_lock);
1757                        chosen = dev->towrite;
1758                        dev->towrite = NULL;
1759                        sh->overwrite_disks = 0;
1760                        BUG_ON(dev->written);
1761                        wbi = dev->written = chosen;
1762                        spin_unlock_irq(&sh->stripe_lock);
1763                        WARN_ON(dev->page != dev->orig_page);
1764
1765                        while (wbi && wbi->bi_iter.bi_sector <
1766                                dev->sector + STRIPE_SECTORS) {
1767                                if (wbi->bi_opf & REQ_FUA)
1768                                        set_bit(R5_WantFUA, &dev->flags);
1769                                if (wbi->bi_opf & REQ_SYNC)
1770                                        set_bit(R5_SyncIO, &dev->flags);
1771                                if (bio_op(wbi) == REQ_OP_DISCARD)
1772                                        set_bit(R5_Discard, &dev->flags);
1773                                else {
1774                                        tx = async_copy_data(1, wbi, &dev->page,
1775                                                             dev->sector, tx, sh,
1776                                                             r5c_is_writeback(conf->log));
1777                                        if (dev->page != dev->orig_page &&
1778                                            !r5c_is_writeback(conf->log)) {
1779                                                set_bit(R5_SkipCopy, &dev->flags);
1780                                                clear_bit(R5_UPTODATE, &dev->flags);
1781                                                clear_bit(R5_OVERWRITE, &dev->flags);
1782                                        }
1783                                }
1784                                wbi = r5_next_bio(wbi, dev->sector);
1785                        }
1786
1787                        if (head_sh->batch_head) {
1788                                sh = list_first_entry(&sh->batch_list,
1789                                                      struct stripe_head,
1790                                                      batch_list);
1791                                if (sh == head_sh)
1792                                        continue;
1793                                goto again;
1794                        }
1795                }
1796        }
1797
1798        return tx;
1799}
1800
1801static void ops_complete_reconstruct(void *stripe_head_ref)
1802{
1803        struct stripe_head *sh = stripe_head_ref;
1804        int disks = sh->disks;
1805        int pd_idx = sh->pd_idx;
1806        int qd_idx = sh->qd_idx;
1807        int i;
1808        bool fua = false, sync = false, discard = false;
1809
1810        pr_debug("%s: stripe %llu\n", __func__,
1811                (unsigned long long)sh->sector);
1812
1813        for (i = disks; i--; ) {
1814                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1815                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1816                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1817        }
1818
1819        for (i = disks; i--; ) {
1820                struct r5dev *dev = &sh->dev[i];
1821
1822                if (dev->written || i == pd_idx || i == qd_idx) {
1823                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1824                                set_bit(R5_UPTODATE, &dev->flags);
1825                                if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1826                                        set_bit(R5_Expanded, &dev->flags);
1827                        }
1828                        if (fua)
1829                                set_bit(R5_WantFUA, &dev->flags);
1830                        if (sync)
1831                                set_bit(R5_SyncIO, &dev->flags);
1832                }
1833        }
1834
1835        if (sh->reconstruct_state == reconstruct_state_drain_run)
1836                sh->reconstruct_state = reconstruct_state_drain_result;
1837        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839        else {
1840                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841                sh->reconstruct_state = reconstruct_state_result;
1842        }
1843
1844        set_bit(STRIPE_HANDLE, &sh->state);
1845        raid5_release_stripe(sh);
1846}
1847
1848static void
1849ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850                     struct dma_async_tx_descriptor *tx)
1851{
1852        int disks = sh->disks;
1853        struct page **xor_srcs;
1854        struct async_submit_ctl submit;
1855        int count, pd_idx = sh->pd_idx, i;
1856        struct page *xor_dest;
1857        int prexor = 0;
1858        unsigned long flags;
1859        int j = 0;
1860        struct stripe_head *head_sh = sh;
1861        int last_stripe;
1862
1863        pr_debug("%s: stripe %llu\n", __func__,
1864                (unsigned long long)sh->sector);
1865
1866        for (i = 0; i < sh->disks; i++) {
1867                if (pd_idx == i)
1868                        continue;
1869                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870                        break;
1871        }
1872        if (i >= sh->disks) {
1873                atomic_inc(&sh->count);
1874                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875                ops_complete_reconstruct(sh);
1876                return;
1877        }
1878again:
1879        count = 0;
1880        xor_srcs = to_addr_page(percpu, j);
1881        /* check if prexor is active which means only process blocks
1882         * that are part of a read-modify-write (written)
1883         */
1884        if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1885                prexor = 1;
1886                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887                for (i = disks; i--; ) {
1888                        struct r5dev *dev = &sh->dev[i];
1889                        if (head_sh->dev[i].written ||
1890                            test_bit(R5_InJournal, &head_sh->dev[i].flags))
1891                                xor_srcs[count++] = dev->page;
1892                }
1893        } else {
1894                xor_dest = sh->dev[pd_idx].page;
1895                for (i = disks; i--; ) {
1896                        struct r5dev *dev = &sh->dev[i];
1897                        if (i != pd_idx)
1898                                xor_srcs[count++] = dev->page;
1899                }
1900        }
1901
1902        /* 1/ if we prexor'd then the dest is reused as a source
1903         * 2/ if we did not prexor then we are redoing the parity
1904         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905         * for the synchronous xor case
1906         */
1907        last_stripe = !head_sh->batch_head ||
1908                list_first_entry(&sh->batch_list,
1909                                 struct stripe_head, batch_list) == head_sh;
1910        if (last_stripe) {
1911                flags = ASYNC_TX_ACK |
1912                        (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1913
1914                atomic_inc(&head_sh->count);
1915                init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916                                  to_addr_conv(sh, percpu, j));
1917        } else {
1918                flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919                init_async_submit(&submit, flags, tx, NULL, NULL,
1920                                  to_addr_conv(sh, percpu, j));
1921        }
1922
1923        if (unlikely(count == 1))
1924                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925        else
1926                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1927        if (!last_stripe) {
1928                j++;
1929                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930                                      batch_list);
1931                goto again;
1932        }
1933}
1934
1935static void
1936ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937                     struct dma_async_tx_descriptor *tx)
1938{
1939        struct async_submit_ctl submit;
1940        struct page **blocks;
1941        int count, i, j = 0;
1942        struct stripe_head *head_sh = sh;
1943        int last_stripe;
1944        int synflags;
1945        unsigned long txflags;
1946
1947        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1948
1949        for (i = 0; i < sh->disks; i++) {
1950                if (sh->pd_idx == i || sh->qd_idx == i)
1951                        continue;
1952                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953                        break;
1954        }
1955        if (i >= sh->disks) {
1956                atomic_inc(&sh->count);
1957                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959                ops_complete_reconstruct(sh);
1960                return;
1961        }
1962
1963again:
1964        blocks = to_addr_page(percpu, j);
1965
1966        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967                synflags = SYNDROME_SRC_WRITTEN;
1968                txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969        } else {
1970                synflags = SYNDROME_SRC_ALL;
1971                txflags = ASYNC_TX_ACK;
1972        }
1973
1974        count = set_syndrome_sources(blocks, sh, synflags);
1975        last_stripe = !head_sh->batch_head ||
1976                list_first_entry(&sh->batch_list,
1977                                 struct stripe_head, batch_list) == head_sh;
1978
1979        if (last_stripe) {
1980                atomic_inc(&head_sh->count);
1981                init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1982                                  head_sh, to_addr_conv(sh, percpu, j));
1983        } else
1984                init_async_submit(&submit, 0, tx, NULL, NULL,
1985                                  to_addr_conv(sh, percpu, j));
1986        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1987        if (!last_stripe) {
1988                j++;
1989                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990                                      batch_list);
1991                goto again;
1992        }
1993}
1994
1995static void ops_complete_check(void *stripe_head_ref)
1996{
1997        struct stripe_head *sh = stripe_head_ref;
1998
1999        pr_debug("%s: stripe %llu\n", __func__,
2000                (unsigned long long)sh->sector);
2001
2002        sh->check_state = check_state_check_result;
2003        set_bit(STRIPE_HANDLE, &sh->state);
2004        raid5_release_stripe(sh);
2005}
2006
2007static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2008{
2009        int disks = sh->disks;
2010        int pd_idx = sh->pd_idx;
2011        int qd_idx = sh->qd_idx;
2012        struct page *xor_dest;
2013        struct page **xor_srcs = to_addr_page(percpu, 0);
2014        struct dma_async_tx_descriptor *tx;
2015        struct async_submit_ctl submit;
2016        int count;
2017        int i;
2018
2019        pr_debug("%s: stripe %llu\n", __func__,
2020                (unsigned long long)sh->sector);
2021
2022        BUG_ON(sh->batch_head);
2023        count = 0;
2024        xor_dest = sh->dev[pd_idx].page;
2025        xor_srcs[count++] = xor_dest;
2026        for (i = disks; i--; ) {
2027                if (i == pd_idx || i == qd_idx)
2028                        continue;
2029                xor_srcs[count++] = sh->dev[i].page;
2030        }
2031
2032        init_async_submit(&submit, 0, NULL, NULL, NULL,
2033                          to_addr_conv(sh, percpu, 0));
2034        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2035                           &sh->ops.zero_sum_result, &submit);
2036
2037        atomic_inc(&sh->count);
2038        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039        tx = async_trigger_callback(&submit);
2040}
2041
2042static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2043{
2044        struct page **srcs = to_addr_page(percpu, 0);
2045        struct async_submit_ctl submit;
2046        int count;
2047
2048        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049                (unsigned long long)sh->sector, checkp);
2050
2051        BUG_ON(sh->batch_head);
2052        count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053        if (!checkp)
2054                srcs[count] = NULL;
2055
2056        atomic_inc(&sh->count);
2057        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2058                          sh, to_addr_conv(sh, percpu, 0));
2059        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2061}
2062
2063static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2064{
2065        int overlap_clear = 0, i, disks = sh->disks;
2066        struct dma_async_tx_descriptor *tx = NULL;
2067        struct r5conf *conf = sh->raid_conf;
2068        int level = conf->level;
2069        struct raid5_percpu *percpu;
2070        unsigned long cpu;
2071
2072        cpu = get_cpu();
2073        percpu = per_cpu_ptr(conf->percpu, cpu);
2074        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2075                ops_run_biofill(sh);
2076                overlap_clear++;
2077        }
2078
2079        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2080                if (level < 6)
2081                        tx = ops_run_compute5(sh, percpu);
2082                else {
2083                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084                                tx = ops_run_compute6_1(sh, percpu);
2085                        else
2086                                tx = ops_run_compute6_2(sh, percpu);
2087                }
2088                /* terminate the chain if reconstruct is not set to be run */
2089                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090                        async_tx_ack(tx);
2091        }
2092
2093        if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2094                if (level < 6)
2095                        tx = ops_run_prexor5(sh, percpu, tx);
2096                else
2097                        tx = ops_run_prexor6(sh, percpu, tx);
2098        }
2099
2100        if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2101                tx = ops_run_partial_parity(sh, percpu, tx);
2102
2103        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2104                tx = ops_run_biodrain(sh, tx);
2105                overlap_clear++;
2106        }
2107
2108        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109                if (level < 6)
2110                        ops_run_reconstruct5(sh, percpu, tx);
2111                else
2112                        ops_run_reconstruct6(sh, percpu, tx);
2113        }
2114
2115        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116                if (sh->check_state == check_state_run)
2117                        ops_run_check_p(sh, percpu);
2118                else if (sh->check_state == check_state_run_q)
2119                        ops_run_check_pq(sh, percpu, 0);
2120                else if (sh->check_state == check_state_run_pq)
2121                        ops_run_check_pq(sh, percpu, 1);
2122                else
2123                        BUG();
2124        }
2125
2126        if (overlap_clear && !sh->batch_head)
2127                for (i = disks; i--; ) {
2128                        struct r5dev *dev = &sh->dev[i];
2129                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130                                wake_up(&sh->raid_conf->wait_for_overlap);
2131                }
2132        put_cpu();
2133}
2134
2135static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2136{
2137        if (sh->ppl_page)
2138                __free_page(sh->ppl_page);
2139        kmem_cache_free(sc, sh);
2140}
2141
2142static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2143        int disks, struct r5conf *conf)
2144{
2145        struct stripe_head *sh;
2146        int i;
2147
2148        sh = kmem_cache_zalloc(sc, gfp);
2149        if (sh) {
2150                spin_lock_init(&sh->stripe_lock);
2151                spin_lock_init(&sh->batch_lock);
2152                INIT_LIST_HEAD(&sh->batch_list);
2153                INIT_LIST_HEAD(&sh->lru);
2154                INIT_LIST_HEAD(&sh->r5c);
2155                INIT_LIST_HEAD(&sh->log_list);
2156                atomic_set(&sh->count, 1);
2157                sh->raid_conf = conf;
2158                sh->log_start = MaxSector;
2159                for (i = 0; i < disks; i++) {
2160                        struct r5dev *dev = &sh->dev[i];
2161
2162                        bio_init(&dev->req, &dev->vec, 1);
2163                        bio_init(&dev->rreq, &dev->rvec, 1);
2164                }
2165
2166                if (raid5_has_ppl(conf)) {
2167                        sh->ppl_page = alloc_page(gfp);
2168                        if (!sh->ppl_page) {
2169                                free_stripe(sc, sh);
2170                                sh = NULL;
2171                        }
2172                }
2173        }
2174        return sh;
2175}
2176static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2177{
2178        struct stripe_head *sh;
2179
2180        sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2181        if (!sh)
2182                return 0;
2183
2184        if (grow_buffers(sh, gfp)) {
2185                shrink_buffers(sh);
2186                free_stripe(conf->slab_cache, sh);
2187                return 0;
2188        }
2189        sh->hash_lock_index =
2190                conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2191        /* we just created an active stripe so... */
2192        atomic_inc(&conf->active_stripes);
2193
2194        raid5_release_stripe(sh);
2195        conf->max_nr_stripes++;
2196        return 1;
2197}
2198
2199static int grow_stripes(struct r5conf *conf, int num)
2200{
2201        struct kmem_cache *sc;
2202        size_t namelen = sizeof(conf->cache_name[0]);
2203        int devs = max(conf->raid_disks, conf->previous_raid_disks);
2204
2205        if (conf->mddev->gendisk)
2206                snprintf(conf->cache_name[0], namelen,
2207                        "raid%d-%s", conf->level, mdname(conf->mddev));
2208        else
2209                snprintf(conf->cache_name[0], namelen,
2210                        "raid%d-%p", conf->level, conf->mddev);
2211        snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2212
2213        conf->active_name = 0;
2214        sc = kmem_cache_create(conf->cache_name[conf->active_name],
2215                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2216                               0, 0, NULL);
2217        if (!sc)
2218                return 1;
2219        conf->slab_cache = sc;
2220        conf->pool_size = devs;
2221        while (num--)
2222                if (!grow_one_stripe(conf, GFP_KERNEL))
2223                        return 1;
2224
2225        return 0;
2226}
2227
2228/**
2229 * scribble_len - return the required size of the scribble region
2230 * @num - total number of disks in the array
2231 *
2232 * The size must be enough to contain:
2233 * 1/ a struct page pointer for each device in the array +2
2234 * 2/ room to convert each entry in (1) to its corresponding dma
2235 *    (dma_map_page()) or page (page_address()) address.
2236 *
2237 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238 * calculate over all devices (not just the data blocks), using zeros in place
2239 * of the P and Q blocks.
2240 */
2241static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2242{
2243        struct flex_array *ret;
2244        size_t len;
2245
2246        len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2247        ret = flex_array_alloc(len, cnt, flags);
2248        if (!ret)
2249                return NULL;
2250        /* always prealloc all elements, so no locking is required */
2251        if (flex_array_prealloc(ret, 0, cnt, flags)) {
2252                flex_array_free(ret);
2253                return NULL;
2254        }
2255        return ret;
2256}
2257
2258static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2259{
2260        unsigned long cpu;
2261        int err = 0;
2262
2263        /*
2264         * Never shrink. And mddev_suspend() could deadlock if this is called
2265         * from raid5d. In that case, scribble_disks and scribble_sectors
2266         * should equal to new_disks and new_sectors
2267         */
2268        if (conf->scribble_disks >= new_disks &&
2269            conf->scribble_sectors >= new_sectors)
2270                return 0;
2271        mddev_suspend(conf->mddev);
2272        get_online_cpus();
2273        for_each_present_cpu(cpu) {
2274                struct raid5_percpu *percpu;
2275                struct flex_array *scribble;
2276
2277                percpu = per_cpu_ptr(conf->percpu, cpu);
2278                scribble = scribble_alloc(new_disks,
2279                                          new_sectors / STRIPE_SECTORS,
2280                                          GFP_NOIO);
2281
2282                if (scribble) {
2283                        flex_array_free(percpu->scribble);
2284                        percpu->scribble = scribble;
2285                } else {
2286                        err = -ENOMEM;
2287                        break;
2288                }
2289        }
2290        put_online_cpus();
2291        mddev_resume(conf->mddev);
2292        if (!err) {
2293                conf->scribble_disks = new_disks;
2294                conf->scribble_sectors = new_sectors;
2295        }
2296        return err;
2297}
2298
2299static int resize_stripes(struct r5conf *conf, int newsize)
2300{
2301        /* Make all the stripes able to hold 'newsize' devices.
2302         * New slots in each stripe get 'page' set to a new page.
2303         *
2304         * This happens in stages:
2305         * 1/ create a new kmem_cache and allocate the required number of
2306         *    stripe_heads.
2307         * 2/ gather all the old stripe_heads and transfer the pages across
2308         *    to the new stripe_heads.  This will have the side effect of
2309         *    freezing the array as once all stripe_heads have been collected,
2310         *    no IO will be possible.  Old stripe heads are freed once their
2311         *    pages have been transferred over, and the old kmem_cache is
2312         *    freed when all stripes are done.
2313         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2314         *    we simple return a failure status - no need to clean anything up.
2315         * 4/ allocate new pages for the new slots in the new stripe_heads.
2316         *    If this fails, we don't bother trying the shrink the
2317         *    stripe_heads down again, we just leave them as they are.
2318         *    As each stripe_head is processed the new one is released into
2319         *    active service.
2320         *
2321         * Once step2 is started, we cannot afford to wait for a write,
2322         * so we use GFP_NOIO allocations.
2323         */
2324        struct stripe_head *osh, *nsh;
2325        LIST_HEAD(newstripes);
2326        struct disk_info *ndisks;
2327        int err = 0;
2328        struct kmem_cache *sc;
2329        int i;
2330        int hash, cnt;
2331
2332        md_allow_write(conf->mddev);
2333
2334        /* Step 1 */
2335        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2336                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2337                               0, 0, NULL);
2338        if (!sc)
2339                return -ENOMEM;
2340
2341        /* Need to ensure auto-resizing doesn't interfere */
2342        mutex_lock(&conf->cache_size_mutex);
2343
2344        for (i = conf->max_nr_stripes; i; i--) {
2345                nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2346                if (!nsh)
2347                        break;
2348
2349                list_add(&nsh->lru, &newstripes);
2350        }
2351        if (i) {
2352                /* didn't get enough, give up */
2353                while (!list_empty(&newstripes)) {
2354                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
2355                        list_del(&nsh->lru);
2356                        free_stripe(sc, nsh);
2357                }
2358                kmem_cache_destroy(sc);
2359                mutex_unlock(&conf->cache_size_mutex);
2360                return -ENOMEM;
2361        }
2362        /* Step 2 - Must use GFP_NOIO now.
2363         * OK, we have enough stripes, start collecting inactive
2364         * stripes and copying them over
2365         */
2366        hash = 0;
2367        cnt = 0;
2368        list_for_each_entry(nsh, &newstripes, lru) {
2369                lock_device_hash_lock(conf, hash);
2370                wait_event_cmd(conf->wait_for_stripe,
2371                                    !list_empty(conf->inactive_list + hash),
2372                                    unlock_device_hash_lock(conf, hash),
2373                                    lock_device_hash_lock(conf, hash));
2374                osh = get_free_stripe(conf, hash);
2375                unlock_device_hash_lock(conf, hash);
2376
2377                for(i=0; i<conf->pool_size; i++) {
2378                        nsh->dev[i].page = osh->dev[i].page;
2379                        nsh->dev[i].orig_page = osh->dev[i].page;
2380                }
2381                nsh->hash_lock_index = hash;
2382                free_stripe(conf->slab_cache, osh);
2383                cnt++;
2384                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2385                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2386                        hash++;
2387                        cnt = 0;
2388                }
2389        }
2390        kmem_cache_destroy(conf->slab_cache);
2391
2392        /* Step 3.
2393         * At this point, we are holding all the stripes so the array
2394         * is completely stalled, so now is a good time to resize
2395         * conf->disks and the scribble region
2396         */
2397        ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2398        if (ndisks) {
2399                for (i = 0; i < conf->pool_size; i++)
2400                        ndisks[i] = conf->disks[i];
2401
2402                for (i = conf->pool_size; i < newsize; i++) {
2403                        ndisks[i].extra_page = alloc_page(GFP_NOIO);
2404                        if (!ndisks[i].extra_page)
2405                                err = -ENOMEM;
2406                }
2407
2408                if (err) {
2409                        for (i = conf->pool_size; i < newsize; i++)
2410                                if (ndisks[i].extra_page)
2411                                        put_page(ndisks[i].extra_page);
2412                        kfree(ndisks);
2413                } else {
2414                        kfree(conf->disks);
2415                        conf->disks = ndisks;
2416                }
2417        } else
2418                err = -ENOMEM;
2419
2420        mutex_unlock(&conf->cache_size_mutex);
2421
2422        conf->slab_cache = sc;
2423        conf->active_name = 1-conf->active_name;
2424
2425        /* Step 4, return new stripes to service */
2426        while(!list_empty(&newstripes)) {
2427                nsh = list_entry(newstripes.next, struct stripe_head, lru);
2428                list_del_init(&nsh->lru);
2429
2430                for (i=conf->raid_disks; i < newsize; i++)
2431                        if (nsh->dev[i].page == NULL) {
2432                                struct page *p = alloc_page(GFP_NOIO);
2433                                nsh->dev[i].page = p;
2434                                nsh->dev[i].orig_page = p;
2435                                if (!p)
2436                                        err = -ENOMEM;
2437                        }
2438                raid5_release_stripe(nsh);
2439        }
2440        /* critical section pass, GFP_NOIO no longer needed */
2441
2442        if (!err)
2443                conf->pool_size = newsize;
2444        return err;
2445}
2446
2447static int drop_one_stripe(struct r5conf *conf)
2448{
2449        struct stripe_head *sh;
2450        int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2451
2452        spin_lock_irq(conf->hash_locks + hash);
2453        sh = get_free_stripe(conf, hash);
2454        spin_unlock_irq(conf->hash_locks + hash);
2455        if (!sh)
2456                return 0;
2457        BUG_ON(atomic_read(&sh->count));
2458        shrink_buffers(sh);
2459        free_stripe(conf->slab_cache, sh);
2460        atomic_dec(&conf->active_stripes);
2461        conf->max_nr_stripes--;
2462        return 1;
2463}
2464
2465static void shrink_stripes(struct r5conf *conf)
2466{
2467        while (conf->max_nr_stripes &&
2468               drop_one_stripe(conf))
2469                ;
2470
2471        kmem_cache_destroy(conf->slab_cache);
2472        conf->slab_cache = NULL;
2473}
2474
2475static void raid5_end_read_request(struct bio * bi)
2476{
2477        struct stripe_head *sh = bi->bi_private;
2478        struct r5conf *conf = sh->raid_conf;
2479        int disks = sh->disks, i;
2480        char b[BDEVNAME_SIZE];
2481        struct md_rdev *rdev = NULL;
2482        sector_t s;
2483
2484        for (i=0 ; i<disks; i++)
2485                if (bi == &sh->dev[i].req)
2486                        break;
2487
2488        pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2490                bi->bi_status);
2491        if (i == disks) {
2492                bio_reset(bi);
2493                BUG();
2494                return;
2495        }
2496        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2497                /* If replacement finished while this request was outstanding,
2498                 * 'replacement' might be NULL already.
2499                 * In that case it moved down to 'rdev'.
2500                 * rdev is not removed until all requests are finished.
2501                 */
2502                rdev = conf->disks[i].replacement;
2503        if (!rdev)
2504                rdev = conf->disks[i].rdev;
2505
2506        if (use_new_offset(conf, sh))
2507                s = sh->sector + rdev->new_data_offset;
2508        else
2509                s = sh->sector + rdev->data_offset;
2510        if (!bi->bi_status) {
2511                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2512                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2513                        /* Note that this cannot happen on a
2514                         * replacement device.  We just fail those on
2515                         * any error
2516                         */
2517                        pr_info_ratelimited(
2518                                "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519                                mdname(conf->mddev), STRIPE_SECTORS,
2520                                (unsigned long long)s,
2521                                bdevname(rdev->bdev, b));
2522                        atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2523                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2524                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2525                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2526                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2527
2528                if (test_bit(R5_InJournal, &sh->dev[i].flags))
2529                        /*
2530                         * end read for a page in journal, this
2531                         * must be preparing for prexor in rmw
2532                         */
2533                        set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2534
2535                if (atomic_read(&rdev->read_errors))
2536                        atomic_set(&rdev->read_errors, 0);
2537        } else {
2538                const char *bdn = bdevname(rdev->bdev, b);
2539                int retry = 0;
2540                int set_bad = 0;
2541
2542                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2543                atomic_inc(&rdev->read_errors);
2544                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2545                        pr_warn_ratelimited(
2546                                "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2547                                mdname(conf->mddev),
2548                                (unsigned long long)s,
2549                                bdn);
2550                else if (conf->mddev->degraded >= conf->max_degraded) {
2551                        set_bad = 1;
2552                        pr_warn_ratelimited(
2553                                "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2554                                mdname(conf->mddev),
2555                                (unsigned long long)s,
2556                                bdn);
2557                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2558                        /* Oh, no!!! */
2559                        set_bad = 1;
2560                        pr_warn_ratelimited(
2561                                "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2562                                mdname(conf->mddev),
2563                                (unsigned long long)s,
2564                                bdn);
2565                } else if (atomic_read(&rdev->read_errors)
2566                         > conf->max_nr_stripes)
2567                        pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2568                               mdname(conf->mddev), bdn);
2569                else
2570                        retry = 1;
2571                if (set_bad && test_bit(In_sync, &rdev->flags)
2572                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2573                        retry = 1;
2574                if (retry)
2575                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2576                                set_bit(R5_ReadError, &sh->dev[i].flags);
2577                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2578                        } else
2579                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580                else {
2581                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2582                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2583                        if (!(set_bad
2584                              && test_bit(In_sync, &rdev->flags)
2585                              && rdev_set_badblocks(
2586                                      rdev, sh->sector, STRIPE_SECTORS, 0)))
2587                                md_error(conf->mddev, rdev);
2588                }
2589        }
2590        rdev_dec_pending(rdev, conf->mddev);
2591        bio_reset(bi);
2592        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2593        set_bit(STRIPE_HANDLE, &sh->state);
2594        raid5_release_stripe(sh);
2595}
2596
2597static void raid5_end_write_request(struct bio *bi)
2598{
2599        struct stripe_head *sh = bi->bi_private;
2600        struct r5conf *conf = sh->raid_conf;
2601        int disks = sh->disks, i;
2602        struct md_rdev *uninitialized_var(rdev);
2603        sector_t first_bad;
2604        int bad_sectors;
2605        int replacement = 0;
2606
2607        for (i = 0 ; i < disks; i++) {
2608                if (bi == &sh->dev[i].req) {
2609                        rdev = conf->disks[i].rdev;
2610                        break;
2611                }
2612                if (bi == &sh->dev[i].rreq) {
2613                        rdev = conf->disks[i].replacement;
2614                        if (rdev)
2615                                replacement = 1;
2616                        else
2617                                /* rdev was removed and 'replacement'
2618                                 * replaced it.  rdev is not removed
2619                                 * until all requests are finished.
2620                                 */
2621                                rdev = conf->disks[i].rdev;
2622                        break;
2623                }
2624        }
2625        pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2626                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2627                bi->bi_status);
2628        if (i == disks) {
2629                bio_reset(bi);
2630                BUG();
2631                return;
2632        }
2633
2634        if (replacement) {
2635                if (bi->bi_status)
2636                        md_error(conf->mddev, rdev);
2637                else if (is_badblock(rdev, sh->sector,
2638                                     STRIPE_SECTORS,
2639                                     &first_bad, &bad_sectors))
2640                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2641        } else {
2642                if (bi->bi_status) {
2643                        set_bit(STRIPE_DEGRADED, &sh->state);
2644                        set_bit(WriteErrorSeen, &rdev->flags);
2645                        set_bit(R5_WriteError, &sh->dev[i].flags);
2646                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2647                                set_bit(MD_RECOVERY_NEEDED,
2648                                        &rdev->mddev->recovery);
2649                } else if (is_badblock(rdev, sh->sector,
2650                                       STRIPE_SECTORS,
2651                                       &first_bad, &bad_sectors)) {
2652                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2653                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2654                                /* That was a successful write so make
2655                                 * sure it looks like we already did
2656                                 * a re-write.
2657                                 */
2658                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2659                }
2660        }
2661        rdev_dec_pending(rdev, conf->mddev);
2662
2663        if (sh->batch_head && bi->bi_status && !replacement)
2664                set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2665
2666        bio_reset(bi);
2667        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2668                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2669        set_bit(STRIPE_HANDLE, &sh->state);
2670        raid5_release_stripe(sh);
2671
2672        if (sh->batch_head && sh != sh->batch_head)
2673                raid5_release_stripe(sh->batch_head);
2674}
2675
2676static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2677{
2678        char b[BDEVNAME_SIZE];
2679        struct r5conf *conf = mddev->private;
2680        unsigned long flags;
2681        pr_debug("raid456: error called\n");
2682
2683        spin_lock_irqsave(&conf->device_lock, flags);
2684        set_bit(Faulty, &rdev->flags);
2685        clear_bit(In_sync, &rdev->flags);
2686        mddev->degraded = raid5_calc_degraded(conf);
2687        spin_unlock_irqrestore(&conf->device_lock, flags);
2688        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2689
2690        set_bit(Blocked, &rdev->flags);
2691        set_mask_bits(&mddev->sb_flags, 0,
2692                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2693        pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2694                "md/raid:%s: Operation continuing on %d devices.\n",
2695                mdname(mddev),
2696                bdevname(rdev->bdev, b),
2697                mdname(mddev),
2698                conf->raid_disks - mddev->degraded);
2699        r5c_update_on_rdev_error(mddev, rdev);
2700}
2701
2702/*
2703 * Input: a 'big' sector number,
2704 * Output: index of the data and parity disk, and the sector # in them.
2705 */
2706sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2707                              int previous, int *dd_idx,
2708                              struct stripe_head *sh)
2709{
2710        sector_t stripe, stripe2;
2711        sector_t chunk_number;
2712        unsigned int chunk_offset;
2713        int pd_idx, qd_idx;
2714        int ddf_layout = 0;
2715        sector_t new_sector;
2716        int algorithm = previous ? conf->prev_algo
2717                                 : conf->algorithm;
2718        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2719                                         : conf->chunk_sectors;
2720        int raid_disks = previous ? conf->previous_raid_disks
2721                                  : conf->raid_disks;
2722        int data_disks = raid_disks - conf->max_degraded;
2723
2724        /* First compute the information on this sector */
2725
2726        /*
2727         * Compute the chunk number and the sector offset inside the chunk
2728         */
2729        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2730        chunk_number = r_sector;
2731
2732        /*
2733         * Compute the stripe number
2734         */
2735        stripe = chunk_number;
2736        *dd_idx = sector_div(stripe, data_disks);
2737        stripe2 = stripe;
2738        /*
2739         * Select the parity disk based on the user selected algorithm.
2740         */
2741        pd_idx = qd_idx = -1;
2742        switch(conf->level) {
2743        case 4:
2744                pd_idx = data_disks;
2745                break;
2746        case 5:
2747                switch (algorithm) {
2748                case ALGORITHM_LEFT_ASYMMETRIC:
2749                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2750                        if (*dd_idx >= pd_idx)
2751                                (*dd_idx)++;
2752                        break;
2753                case ALGORITHM_RIGHT_ASYMMETRIC:
2754                        pd_idx = sector_div(stripe2, raid_disks);
2755                        if (*dd_idx >= pd_idx)
2756                                (*dd_idx)++;
2757                        break;
2758                case ALGORITHM_LEFT_SYMMETRIC:
2759                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2760                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2761                        break;
2762                case ALGORITHM_RIGHT_SYMMETRIC:
2763                        pd_idx = sector_div(stripe2, raid_disks);
2764                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2765                        break;
2766                case ALGORITHM_PARITY_0:
2767                        pd_idx = 0;
2768                        (*dd_idx)++;
2769                        break;
2770                case ALGORITHM_PARITY_N:
2771                        pd_idx = data_disks;
2772                        break;
2773                default:
2774                        BUG();
2775                }
2776                break;
2777        case 6:
2778
2779                switch (algorithm) {
2780                case ALGORITHM_LEFT_ASYMMETRIC:
2781                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2782                        qd_idx = pd_idx + 1;
2783                        if (pd_idx == raid_disks-1) {
2784                                (*dd_idx)++;    /* Q D D D P */
2785                                qd_idx = 0;
2786                        } else if (*dd_idx >= pd_idx)
2787                                (*dd_idx) += 2; /* D D P Q D */
2788                        break;
2789                case ALGORITHM_RIGHT_ASYMMETRIC:
2790                        pd_idx = sector_div(stripe2, raid_disks);
2791                        qd_idx = pd_idx + 1;
2792                        if (pd_idx == raid_disks-1) {
2793                                (*dd_idx)++;    /* Q D D D P */
2794                                qd_idx = 0;
2795                        } else if (*dd_idx >= pd_idx)
2796                                (*dd_idx) += 2; /* D D P Q D */
2797                        break;
2798                case ALGORITHM_LEFT_SYMMETRIC:
2799                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2800                        qd_idx = (pd_idx + 1) % raid_disks;
2801                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2802                        break;
2803                case ALGORITHM_RIGHT_SYMMETRIC:
2804                        pd_idx = sector_div(stripe2, raid_disks);
2805                        qd_idx = (pd_idx + 1) % raid_disks;
2806                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2807                        break;
2808
2809                case ALGORITHM_PARITY_0:
2810                        pd_idx = 0;
2811                        qd_idx = 1;
2812                        (*dd_idx) += 2;
2813                        break;
2814                case ALGORITHM_PARITY_N:
2815                        pd_idx = data_disks;
2816                        qd_idx = data_disks + 1;
2817                        break;
2818
2819                case ALGORITHM_ROTATING_ZERO_RESTART:
2820                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2821                         * of blocks for computing Q is different.
2822                         */
2823                        pd_idx = sector_div(stripe2, raid_disks);
2824                        qd_idx = pd_idx + 1;
2825                        if (pd_idx == raid_disks-1) {
2826                                (*dd_idx)++;    /* Q D D D P */
2827                                qd_idx = 0;
2828                        } else if (*dd_idx >= pd_idx)
2829                                (*dd_idx) += 2; /* D D P Q D */
2830                        ddf_layout = 1;
2831                        break;
2832
2833                case ALGORITHM_ROTATING_N_RESTART:
2834                        /* Same a left_asymmetric, by first stripe is
2835                         * D D D P Q  rather than
2836                         * Q D D D P
2837                         */
2838                        stripe2 += 1;
2839                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2840                        qd_idx = pd_idx + 1;
2841                        if (pd_idx == raid_disks-1) {
2842                                (*dd_idx)++;    /* Q D D D P */
2843                                qd_idx = 0;
2844                        } else if (*dd_idx >= pd_idx)
2845                                (*dd_idx) += 2; /* D D P Q D */
2846                        ddf_layout = 1;
2847                        break;
2848
2849                case ALGORITHM_ROTATING_N_CONTINUE:
2850                        /* Same as left_symmetric but Q is before P */
2851                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2852                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2853                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2854                        ddf_layout = 1;
2855                        break;
2856
2857                case ALGORITHM_LEFT_ASYMMETRIC_6:
2858                        /* RAID5 left_asymmetric, with Q on last device */
2859                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2860                        if (*dd_idx >= pd_idx)
2861                                (*dd_idx)++;
2862                        qd_idx = raid_disks - 1;
2863                        break;
2864
2865                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2866                        pd_idx = sector_div(stripe2, raid_disks-1);
2867                        if (*dd_idx >= pd_idx)
2868                                (*dd_idx)++;
2869                        qd_idx = raid_disks - 1;
2870                        break;
2871
2872                case ALGORITHM_LEFT_SYMMETRIC_6:
2873                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2874                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2875                        qd_idx = raid_disks - 1;
2876                        break;
2877
2878                case ALGORITHM_RIGHT_SYMMETRIC_6:
2879                        pd_idx = sector_div(stripe2, raid_disks-1);
2880                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2881                        qd_idx = raid_disks - 1;
2882                        break;
2883
2884                case ALGORITHM_PARITY_0_6:
2885                        pd_idx = 0;
2886                        (*dd_idx)++;
2887                        qd_idx = raid_disks - 1;
2888                        break;
2889
2890                default:
2891                        BUG();
2892                }
2893                break;
2894        }
2895
2896        if (sh) {
2897                sh->pd_idx = pd_idx;
2898                sh->qd_idx = qd_idx;
2899                sh->ddf_layout = ddf_layout;
2900        }
2901        /*
2902         * Finally, compute the new sector number
2903         */
2904        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2905        return new_sector;
2906}
2907
2908sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2909{
2910        struct r5conf *conf = sh->raid_conf;
2911        int raid_disks = sh->disks;
2912        int data_disks = raid_disks - conf->max_degraded;
2913        sector_t new_sector = sh->sector, check;
2914        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2915                                         : conf->chunk_sectors;
2916        int algorithm = previous ? conf->prev_algo
2917                                 : conf->algorithm;
2918        sector_t stripe;
2919        int chunk_offset;
2920        sector_t chunk_number;
2921        int dummy1, dd_idx = i;
2922        sector_t r_sector;
2923        struct stripe_head sh2;
2924
2925        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2926        stripe = new_sector;
2927
2928        if (i == sh->pd_idx)
2929                return 0;
2930        switch(conf->level) {
2931        case 4: break;
2932        case 5:
2933                switch (algorithm) {
2934                case ALGORITHM_LEFT_ASYMMETRIC:
2935                case ALGORITHM_RIGHT_ASYMMETRIC:
2936                        if (i > sh->pd_idx)
2937                                i--;
2938                        break;
2939                case ALGORITHM_LEFT_SYMMETRIC:
2940                case ALGORITHM_RIGHT_SYMMETRIC:
2941                        if (i < sh->pd_idx)
2942                                i += raid_disks;
2943                        i -= (sh->pd_idx + 1);
2944                        break;
2945                case ALGORITHM_PARITY_0:
2946                        i -= 1;
2947                        break;
2948                case ALGORITHM_PARITY_N:
2949                        break;
2950                default:
2951                        BUG();
2952                }
2953                break;
2954        case 6:
2955                if (i == sh->qd_idx)
2956                        return 0; /* It is the Q disk */
2957                switch (algorithm) {
2958                case ALGORITHM_LEFT_ASYMMETRIC:
2959                case ALGORITHM_RIGHT_ASYMMETRIC:
2960                case ALGORITHM_ROTATING_ZERO_RESTART:
2961                case ALGORITHM_ROTATING_N_RESTART:
2962                        if (sh->pd_idx == raid_disks-1)
2963                                i--;    /* Q D D D P */
2964                        else if (i > sh->pd_idx)
2965                                i -= 2; /* D D P Q D */
2966                        break;
2967                case ALGORITHM_LEFT_SYMMETRIC:
2968                case ALGORITHM_RIGHT_SYMMETRIC:
2969                        if (sh->pd_idx == raid_disks-1)
2970                                i--; /* Q D D D P */
2971                        else {
2972                                /* D D P Q D */
2973                                if (i < sh->pd_idx)
2974                                        i += raid_disks;
2975                                i -= (sh->pd_idx + 2);
2976                        }
2977                        break;
2978                case ALGORITHM_PARITY_0:
2979                        i -= 2;
2980                        break;
2981                case ALGORITHM_PARITY_N:
2982                        break;
2983                case ALGORITHM_ROTATING_N_CONTINUE:
2984                        /* Like left_symmetric, but P is before Q */
2985                        if (sh->pd_idx == 0)
2986                                i--;    /* P D D D Q */
2987                        else {
2988                                /* D D Q P D */
2989                                if (i < sh->pd_idx)
2990                                        i += raid_disks;
2991                                i -= (sh->pd_idx + 1);
2992                        }
2993                        break;
2994                case ALGORITHM_LEFT_ASYMMETRIC_6:
2995                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2996                        if (i > sh->pd_idx)
2997                                i--;
2998                        break;
2999                case ALGORITHM_LEFT_SYMMETRIC_6:
3000                case ALGORITHM_RIGHT_SYMMETRIC_6:
3001                        if (i < sh->pd_idx)
3002                                i += data_disks + 1;
3003                        i -= (sh->pd_idx + 1);
3004                        break;
3005                case ALGORITHM_PARITY_0_6:
3006                        i -= 1;
3007                        break;
3008                default:
3009                        BUG();
3010                }
3011                break;
3012        }
3013
3014        chunk_number = stripe * data_disks + i;
3015        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3016
3017        check = raid5_compute_sector(conf, r_sector,
3018                                     previous, &dummy1, &sh2);
3019        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3020                || sh2.qd_idx != sh->qd_idx) {
3021                pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3022                        mdname(conf->mddev));
3023                return 0;
3024        }
3025        return r_sector;
3026}
3027
3028/*
3029 * There are cases where we want handle_stripe_dirtying() and
3030 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3031 *
3032 * This function checks whether we want to delay the towrite. Specifically,
3033 * we delay the towrite when:
3034 *
3035 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3036 *      stripe has data in journal (for other devices).
3037 *
3038 *      In this case, when reading data for the non-overwrite dev, it is
3039 *      necessary to handle complex rmw of write back cache (prexor with
3040 *      orig_page, and xor with page). To keep read path simple, we would
3041 *      like to flush data in journal to RAID disks first, so complex rmw
3042 *      is handled in the write patch (handle_stripe_dirtying).
3043 *
3044 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3045 *
3046 *      It is important to be able to flush all stripes in raid5-cache.
3047 *      Therefore, we need reserve some space on the journal device for
3048 *      these flushes. If flush operation includes pending writes to the
3049 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3050 *      for the flush out. If we exclude these pending writes from flush
3051 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3052 *      Therefore, excluding pending writes in these cases enables more
3053 *      efficient use of the journal device.
3054 *
3055 *      Note: To make sure the stripe makes progress, we only delay
3056 *      towrite for stripes with data already in journal (injournal > 0).
3057 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3058 *      no_space_stripes list.
3059 *
3060 *   3. during journal failure
3061 *      In journal failure, we try to flush all cached data to raid disks
3062 *      based on data in stripe cache. The array is read-only to upper
3063 *      layers, so we would skip all pending writes.
3064 *
3065 */
3066static inline bool delay_towrite(struct r5conf *conf,
3067                                 struct r5dev *dev,
3068                                 struct stripe_head_state *s)
3069{
3070        /* case 1 above */
3071        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3072            !test_bit(R5_Insync, &dev->flags) && s->injournal)
3073                return true;
3074        /* case 2 above */
3075        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3076            s->injournal > 0)
3077                return true;
3078        /* case 3 above */
3079        if (s->log_failed && s->injournal)
3080                return true;
3081        return false;
3082}
3083
3084static void
3085schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3086                         int rcw, int expand)
3087{
3088        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3089        struct r5conf *conf = sh->raid_conf;
3090        int level = conf->level;
3091
3092        if (rcw) {
3093                /*
3094                 * In some cases, handle_stripe_dirtying initially decided to
3095                 * run rmw and allocates extra page for prexor. However, rcw is
3096                 * cheaper later on. We need to free the extra page now,
3097                 * because we won't be able to do that in ops_complete_prexor().
3098                 */
3099                r5c_release_extra_page(sh);
3100
3101                for (i = disks; i--; ) {
3102                        struct r5dev *dev = &sh->dev[i];
3103
3104                        if (dev->towrite && !delay_towrite(conf, dev, s)) {
3105                                set_bit(R5_LOCKED, &dev->flags);
3106                                set_bit(R5_Wantdrain, &dev->flags);
3107                                if (!expand)
3108                                        clear_bit(R5_UPTODATE, &dev->flags);
3109                                s->locked++;
3110                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3111                                set_bit(R5_LOCKED, &dev->flags);
3112                                s->locked++;
3113                        }
3114                }
3115                /* if we are not expanding this is a proper write request, and
3116                 * there will be bios with new data to be drained into the
3117                 * stripe cache
3118                 */
3119                if (!expand) {
3120                        if (!s->locked)
3121                                /* False alarm, nothing to do */
3122                                return;
3123                        sh->reconstruct_state = reconstruct_state_drain_run;
3124                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3125                } else
3126                        sh->reconstruct_state = reconstruct_state_run;
3127
3128                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3129
3130                if (s->locked + conf->max_degraded == disks)
3131                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3132                                atomic_inc(&conf->pending_full_writes);
3133        } else {
3134                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3135                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3136                BUG_ON(level == 6 &&
3137                        (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3138                           test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3139
3140                for (i = disks; i--; ) {
3141                        struct r5dev *dev = &sh->dev[i];
3142                        if (i == pd_idx || i == qd_idx)
3143                                continue;
3144
3145                        if (dev->towrite &&
3146                            (test_bit(R5_UPTODATE, &dev->flags) ||
3147                             test_bit(R5_Wantcompute, &dev->flags))) {
3148                                set_bit(R5_Wantdrain, &dev->flags);
3149                                set_bit(R5_LOCKED, &dev->flags);
3150                                clear_bit(R5_UPTODATE, &dev->flags);
3151                                s->locked++;
3152                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3153                                set_bit(R5_LOCKED, &dev->flags);
3154                                s->locked++;
3155                        }
3156                }
3157                if (!s->locked)
3158                        /* False alarm - nothing to do */
3159                        return;
3160                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3161                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3162                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3163                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3164        }
3165
3166        /* keep the parity disk(s) locked while asynchronous operations
3167         * are in flight
3168         */
3169        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3170        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3171        s->locked++;
3172
3173        if (level == 6) {
3174                int qd_idx = sh->qd_idx;
3175                struct r5dev *dev = &sh->dev[qd_idx];
3176
3177                set_bit(R5_LOCKED, &dev->flags);
3178                clear_bit(R5_UPTODATE, &dev->flags);
3179                s->locked++;
3180        }
3181
3182        if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3183            test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3184            !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3185            test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3186                set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3187
3188        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3189                __func__, (unsigned long long)sh->sector,
3190                s->locked, s->ops_request);
3191}
3192
3193/*
3194 * Each stripe/dev can have one or more bion attached.
3195 * toread/towrite point to the first in a chain.
3196 * The bi_next chain must be in order.
3197 */
3198static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3199                          int forwrite, int previous)
3200{
3201        struct bio **bip;
3202        struct r5conf *conf = sh->raid_conf;
3203        int firstwrite=0;
3204
3205        pr_debug("adding bi b#%llu to stripe s#%llu\n",
3206                (unsigned long long)bi->bi_iter.bi_sector,
3207                (unsigned long long)sh->sector);
3208
3209        spin_lock_irq(&sh->stripe_lock);
3210        sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3211        /* Don't allow new IO added to stripes in batch list */
3212        if (sh->batch_head)
3213                goto overlap;
3214        if (forwrite) {
3215                bip = &sh->dev[dd_idx].towrite;
3216                if (*bip == NULL)
3217                        firstwrite = 1;
3218        } else
3219                bip = &sh->dev[dd_idx].toread;
3220        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3221                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3222                        goto overlap;
3223                bip = & (*bip)->bi_next;
3224        }
3225        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3226                goto overlap;
3227
3228        if (forwrite && raid5_has_ppl(conf)) {
3229                /*
3230                 * With PPL only writes to consecutive data chunks within a
3231                 * stripe are allowed because for a single stripe_head we can
3232                 * only have one PPL entry at a time, which describes one data
3233                 * range. Not really an overlap, but wait_for_overlap can be
3234                 * used to handle this.
3235                 */
3236                sector_t sector;
3237                sector_t first = 0;
3238                sector_t last = 0;
3239                int count = 0;
3240                int i;
3241
3242                for (i = 0; i < sh->disks; i++) {
3243                        if (i != sh->pd_idx &&
3244                            (i == dd_idx || sh->dev[i].towrite)) {
3245                                sector = sh->dev[i].sector;
3246                                if (count == 0 || sector < first)
3247                                        first = sector;
3248                                if (sector > last)
3249                                        last = sector;
3250                                count++;
3251                        }
3252                }
3253
3254                if (first + conf->chunk_sectors * (count - 1) != last)
3255                        goto overlap;
3256        }
3257
3258        if (!forwrite || previous)
3259                clear_bit(STRIPE_BATCH_READY, &sh->state);
3260
3261        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3262        if (*bip)
3263                bi->bi_next = *bip;
3264        *bip = bi;
3265        bio_inc_remaining(bi);
3266        md_write_inc(conf->mddev, bi);
3267
3268        if (forwrite) {
3269                /* check if page is covered */
3270                sector_t sector = sh->dev[dd_idx].sector;
3271                for (bi=sh->dev[dd_idx].towrite;
3272                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3273                             bi && bi->bi_iter.bi_sector <= sector;
3274                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3275                        if (bio_end_sector(bi) >= sector)
3276                                sector = bio_end_sector(bi);
3277                }
3278                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3279                        if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3280                                sh->overwrite_disks++;
3281        }
3282
3283        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3284                (unsigned long long)(*bip)->bi_iter.bi_sector,
3285                (unsigned long long)sh->sector, dd_idx);
3286
3287        if (conf->mddev->bitmap && firstwrite) {
3288                /* Cannot hold spinlock over bitmap_startwrite,
3289                 * but must ensure this isn't added to a batch until
3290                 * we have added to the bitmap and set bm_seq.
3291                 * So set STRIPE_BITMAP_PENDING to prevent
3292                 * batching.
3293                 * If multiple add_stripe_bio() calls race here they
3294                 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3295                 * to complete "bitmap_startwrite" gets to set
3296                 * STRIPE_BIT_DELAY.  This is important as once a stripe
3297                 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3298                 * any more.
3299                 */
3300                set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3301                spin_unlock_irq(&sh->stripe_lock);
3302                md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3303                                     STRIPE_SECTORS, 0);
3304                spin_lock_irq(&sh->stripe_lock);
3305                clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3306                if (!sh->batch_head) {
3307                        sh->bm_seq = conf->seq_flush+1;
3308                        set_bit(STRIPE_BIT_DELAY, &sh->state);
3309                }
3310        }
3311        spin_unlock_irq(&sh->stripe_lock);
3312
3313        if (stripe_can_batch(sh))
3314                stripe_add_to_batch_list(conf, sh);
3315        return 1;
3316
3317 overlap:
3318        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3319        spin_unlock_irq(&sh->stripe_lock);
3320        return 0;
3321}
3322
3323static void end_reshape(struct r5conf *conf);
3324
3325static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3326                            struct stripe_head *sh)
3327{
3328        int sectors_per_chunk =
3329                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3330        int dd_idx;
3331        int chunk_offset = sector_div(stripe, sectors_per_chunk);
3332        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3333
3334        raid5_compute_sector(conf,
3335                             stripe * (disks - conf->max_degraded)
3336                             *sectors_per_chunk + chunk_offset,
3337                             previous,
3338                             &dd_idx, sh);
3339}
3340
3341static void
3342handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3343                     struct stripe_head_state *s, int disks)
3344{
3345        int i;
3346        BUG_ON(sh->batch_head);
3347        for (i = disks; i--; ) {
3348                struct bio *bi;
3349                int bitmap_end = 0;
3350
3351                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3352                        struct md_rdev *rdev;
3353                        rcu_read_lock();
3354                        rdev = rcu_dereference(conf->disks[i].rdev);
3355                        if (rdev && test_bit(In_sync, &rdev->flags) &&
3356                            !test_bit(Faulty, &rdev->flags))
3357                                atomic_inc(&rdev->nr_pending);
3358                        else
3359                                rdev = NULL;
3360                        rcu_read_unlock();
3361                        if (rdev) {
3362                                if (!rdev_set_badblocks(
3363                                            rdev,
3364                                            sh->sector,
3365                                            STRIPE_SECTORS, 0))
3366                                        md_error(conf->mddev, rdev);
3367                                rdev_dec_pending(rdev, conf->mddev);
3368                        }
3369                }
3370                spin_lock_irq(&sh->stripe_lock);
3371                /* fail all writes first */
3372                bi = sh->dev[i].towrite;
3373                sh->dev[i].towrite = NULL;
3374                sh->overwrite_disks = 0;
3375                spin_unlock_irq(&sh->stripe_lock);
3376                if (bi)
3377                        bitmap_end = 1;
3378
3379                log_stripe_write_finished(sh);
3380
3381                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3382                        wake_up(&conf->wait_for_overlap);
3383
3384                while (bi && bi->bi_iter.bi_sector <
3385                        sh->dev[i].sector + STRIPE_SECTORS) {
3386                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3387
3388                        md_write_end(conf->mddev);
3389                        bio_io_error(bi);
3390                        bi = nextbi;
3391                }
3392                if (bitmap_end)
3393                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3394                                           STRIPE_SECTORS, 0, 0);
3395                bitmap_end = 0;
3396                /* and fail all 'written' */
3397                bi = sh->dev[i].written;
3398                sh->dev[i].written = NULL;
3399                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3400                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3401                        sh->dev[i].page = sh->dev[i].orig_page;
3402                }
3403
3404                if (bi) bitmap_end = 1;
3405                while (bi && bi->bi_iter.bi_sector <
3406                       sh->dev[i].sector + STRIPE_SECTORS) {
3407                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3408
3409                        md_write_end(conf->mddev);
3410                        bio_io_error(bi);
3411                        bi = bi2;
3412                }
3413
3414                /* fail any reads if this device is non-operational and
3415                 * the data has not reached the cache yet.
3416                 */
3417                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3418                    s->failed > conf->max_degraded &&
3419                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3420                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3421                        spin_lock_irq(&sh->stripe_lock);
3422                        bi = sh->dev[i].toread;
3423                        sh->dev[i].toread = NULL;
3424                        spin_unlock_irq(&sh->stripe_lock);
3425                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3426                                wake_up(&conf->wait_for_overlap);
3427                        if (bi)
3428                                s->to_read--;
3429                        while (bi && bi->bi_iter.bi_sector <
3430                               sh->dev[i].sector + STRIPE_SECTORS) {
3431                                struct bio *nextbi =
3432                                        r5_next_bio(bi, sh->dev[i].sector);
3433
3434                                bio_io_error(bi);
3435                                bi = nextbi;
3436                        }
3437                }
3438                if (bitmap_end)
3439                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3440                                           STRIPE_SECTORS, 0, 0);
3441                /* If we were in the middle of a write the parity block might
3442                 * still be locked - so just clear all R5_LOCKED flags
3443                 */
3444                clear_bit(R5_LOCKED, &sh->dev[i].flags);
3445        }
3446        s->to_write = 0;
3447        s->written = 0;
3448
3449        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3450                if (atomic_dec_and_test(&conf->pending_full_writes))
3451                        md_wakeup_thread(conf->mddev->thread);
3452}
3453
3454static void
3455handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3456                   struct stripe_head_state *s)
3457{
3458        int abort = 0;
3459        int i;
3460
3461        BUG_ON(sh->batch_head);
3462        clear_bit(STRIPE_SYNCING, &sh->state);
3463        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3464                wake_up(&conf->wait_for_overlap);
3465        s->syncing = 0;
3466        s->replacing = 0;
3467        /* There is nothing more to do for sync/check/repair.
3468         * Don't even need to abort as that is handled elsewhere
3469         * if needed, and not always wanted e.g. if there is a known
3470         * bad block here.
3471         * For recover/replace we need to record a bad block on all
3472         * non-sync devices, or abort the recovery
3473         */
3474        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3475                /* During recovery devices cannot be removed, so
3476                 * locking and refcounting of rdevs is not needed
3477                 */
3478                rcu_read_lock();
3479                for (i = 0; i < conf->raid_disks; i++) {
3480                        struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3481                        if (rdev
3482                            && !test_bit(Faulty, &rdev->flags)
3483                            && !test_bit(In_sync, &rdev->flags)
3484                            && !rdev_set_badblocks(rdev, sh->sector,
3485                                                   STRIPE_SECTORS, 0))
3486                                abort = 1;
3487                        rdev = rcu_dereference(conf->disks[i].replacement);
3488                        if (rdev
3489                            && !test_bit(Faulty, &rdev->flags)
3490                            && !test_bit(In_sync, &rdev->flags)
3491                            && !rdev_set_badblocks(rdev, sh->sector,
3492                                                   STRIPE_SECTORS, 0))
3493                                abort = 1;
3494                }
3495                rcu_read_unlock();
3496                if (abort)
3497                        conf->recovery_disabled =
3498                                conf->mddev->recovery_disabled;
3499        }
3500        md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3501}
3502
3503static int want_replace(struct stripe_head *sh, int disk_idx)
3504{
3505        struct md_rdev *rdev;
3506        int rv = 0;
3507
3508        rcu_read_lock();
3509        rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3510        if (rdev
3511            && !test_bit(Faulty, &rdev->flags)
3512            && !test_bit(In_sync, &rdev->flags)
3513            && (rdev->recovery_offset <= sh->sector
3514                || rdev->mddev->recovery_cp <= sh->sector))
3515                rv = 1;
3516        rcu_read_unlock();
3517        return rv;
3518}
3519
3520static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3521                           int disk_idx, int disks)
3522{
3523        struct r5dev *dev = &sh->dev[disk_idx];
3524        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3525                                  &sh->dev[s->failed_num[1]] };
3526        int i;
3527
3528
3529        if (test_bit(R5_LOCKED, &dev->flags) ||
3530            test_bit(R5_UPTODATE, &dev->flags))
3531                /* No point reading this as we already have it or have
3532                 * decided to get it.
3533                 */
3534                return 0;
3535
3536        if (dev->toread ||
3537            (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3538                /* We need this block to directly satisfy a request */
3539                return 1;
3540
3541        if (s->syncing || s->expanding ||
3542            (s->replacing && want_replace(sh, disk_idx)))
3543                /* When syncing, or expanding we read everything.
3544                 * When replacing, we need the replaced block.
3545                 */
3546                return 1;
3547
3548        if ((s->failed >= 1 && fdev[0]->toread) ||
3549            (s->failed >= 2 && fdev[1]->toread))
3550                /* If we want to read from a failed device, then
3551                 * we need to actually read every other device.
3552                 */
3553                return 1;
3554
3555        /* Sometimes neither read-modify-write nor reconstruct-write
3556         * cycles can work.  In those cases we read every block we
3557         * can.  Then the parity-update is certain to have enough to
3558         * work with.
3559         * This can only be a problem when we need to write something,
3560         * and some device has failed.  If either of those tests
3561         * fail we need look no further.
3562         */
3563        if (!s->failed || !s->to_write)
3564                return 0;
3565
3566        if (test_bit(R5_Insync, &dev->flags) &&
3567            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3568                /* Pre-reads at not permitted until after short delay
3569                 * to gather multiple requests.  However if this
3570                 * device is no Insync, the block could only be computed
3571                 * and there is no need to delay that.
3572                 */
3573                return 0;
3574
3575        for (i = 0; i < s->failed && i < 2; i++) {
3576                if (fdev[i]->towrite &&
3577                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3578                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3579                        /* If we have a partial write to a failed
3580                         * device, then we will need to reconstruct
3581                         * the content of that device, so all other
3582                         * devices must be read.
3583                         */
3584                        return 1;
3585        }
3586
3587        /* If we are forced to do a reconstruct-write, either because
3588         * the current RAID6 implementation only supports that, or
3589         * because parity cannot be trusted and we are currently
3590         * recovering it, there is extra need to be careful.
3591         * If one of the devices that we would need to read, because
3592         * it is not being overwritten (and maybe not written at all)
3593         * is missing/faulty, then we need to read everything we can.
3594         */
3595        if (sh->raid_conf->level != 6 &&
3596            sh->sector < sh->raid_conf->mddev->recovery_cp)
3597                /* reconstruct-write isn't being forced */
3598                return 0;
3599        for (i = 0; i < s->failed && i < 2; i++) {
3600                if (s->failed_num[i] != sh->pd_idx &&
3601                    s->failed_num[i] != sh->qd_idx &&
3602                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3603                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3604                        return 1;
3605        }
3606
3607        return 0;
3608}
3609
3610/* fetch_block - checks the given member device to see if its data needs
3611 * to be read or computed to satisfy a request.
3612 *
3613 * Returns 1 when no more member devices need to be checked, otherwise returns
3614 * 0 to tell the loop in handle_stripe_fill to continue
3615 */
3616static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3617                       int disk_idx, int disks)
3618{
3619        struct r5dev *dev = &sh->dev[disk_idx];
3620
3621        /* is the data in this block needed, and can we get it? */
3622        if (need_this_block(sh, s, disk_idx, disks)) {
3623                /* we would like to get this block, possibly by computing it,
3624                 * otherwise read it if the backing disk is insync
3625                 */
3626                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3627                BUG_ON(test_bit(R5_Wantread, &dev->flags));
3628                BUG_ON(sh->batch_head);
3629
3630                /*
3631                 * In the raid6 case if the only non-uptodate disk is P
3632                 * then we already trusted P to compute the other failed
3633                 * drives. It is safe to compute rather than re-read P.
3634                 * In other cases we only compute blocks from failed
3635                 * devices, otherwise check/repair might fail to detect
3636                 * a real inconsistency.
3637                 */
3638
3639                if ((s->uptodate == disks - 1) &&
3640                    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3641                    (s->failed && (disk_idx == s->failed_num[0] ||
3642                                   disk_idx == s->failed_num[1])))) {
3643                        /* have disk failed, and we're requested to fetch it;
3644                         * do compute it
3645                         */
3646                        pr_debug("Computing stripe %llu block %d\n",
3647                               (unsigned long long)sh->sector, disk_idx);
3648                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3649                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3650                        set_bit(R5_Wantcompute, &dev->flags);
3651                        sh->ops.target = disk_idx;
3652                        sh->ops.target2 = -1; /* no 2nd target */
3653                        s->req_compute = 1;
3654                        /* Careful: from this point on 'uptodate' is in the eye
3655                         * of raid_run_ops which services 'compute' operations
3656                         * before writes. R5_Wantcompute flags a block that will
3657                         * be R5_UPTODATE by the time it is needed for a
3658                         * subsequent operation.
3659                         */
3660                        s->uptodate++;
3661                        return 1;
3662                } else if (s->uptodate == disks-2 && s->failed >= 2) {
3663                        /* Computing 2-failure is *very* expensive; only
3664                         * do it if failed >= 2
3665                         */
3666                        int other;
3667                        for (other = disks; other--; ) {
3668                                if (other == disk_idx)
3669                                        continue;
3670                                if (!test_bit(R5_UPTODATE,
3671                                      &sh->dev[other].flags))
3672                                        break;
3673                        }
3674                        BUG_ON(other < 0);
3675                        pr_debug("Computing stripe %llu blocks %d,%d\n",
3676                               (unsigned long long)sh->sector,
3677                               disk_idx, other);
3678                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3679                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3680                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3681                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
3682                        sh->ops.target = disk_idx;
3683                        sh->ops.target2 = other;
3684                        s->uptodate += 2;
3685                        s->req_compute = 1;
3686                        return 1;
3687                } else if (test_bit(R5_Insync, &dev->flags)) {
3688                        set_bit(R5_LOCKED, &dev->flags);
3689                        set_bit(R5_Wantread, &dev->flags);
3690                        s->locked++;
3691                        pr_debug("Reading block %d (sync=%d)\n",
3692                                disk_idx, s->syncing);
3693                }
3694        }
3695
3696        return 0;
3697}
3698
3699/**
3700 * handle_stripe_fill - read or compute data to satisfy pending requests.
3701 */
3702static void handle_stripe_fill(struct stripe_head *sh,
3703                               struct stripe_head_state *s,
3704                               int disks)
3705{
3706        int i;
3707
3708        /* look for blocks to read/compute, skip this if a compute
3709         * is already in flight, or if the stripe contents are in the
3710         * midst of changing due to a write
3711         */
3712        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3713            !sh->reconstruct_state) {
3714
3715                /*
3716                 * For degraded stripe with data in journal, do not handle
3717                 * read requests yet, instead, flush the stripe to raid
3718                 * disks first, this avoids handling complex rmw of write
3719                 * back cache (prexor with orig_page, and then xor with
3720                 * page) in the read path
3721                 */
3722                if (s->injournal && s->failed) {
3723                        if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3724                                r5c_make_stripe_write_out(sh);
3725                        goto out;
3726                }
3727
3728                for (i = disks; i--; )
3729                        if (fetch_block(sh, s, i, disks))
3730                                break;
3731        }
3732out:
3733        set_bit(STRIPE_HANDLE, &sh->state);
3734}
3735
3736static void break_stripe_batch_list(struct stripe_head *head_sh,
3737                                    unsigned long handle_flags);
3738/* handle_stripe_clean_event
3739 * any written block on an uptodate or failed drive can be returned.
3740 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3741 * never LOCKED, so we don't need to test 'failed' directly.
3742 */
3743static void handle_stripe_clean_event(struct r5conf *conf,
3744        struct stripe_head *sh, int disks)
3745{
3746        int i;
3747        struct r5dev *dev;
3748        int discard_pending = 0;
3749        struct stripe_head *head_sh = sh;
3750        bool do_endio = false;
3751
3752        for (i = disks; i--; )
3753                if (sh->dev[i].written) {
3754                        dev = &sh->dev[i];
3755                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3756                            (test_bit(R5_UPTODATE, &dev->flags) ||
3757                             test_bit(R5_Discard, &dev->flags) ||
3758                             test_bit(R5_SkipCopy, &dev->flags))) {
3759                                /* We can return any write requests */
3760                                struct bio *wbi, *wbi2;
3761                                pr_debug("Return write for disc %d\n", i);
3762                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3763                                        clear_bit(R5_UPTODATE, &dev->flags);
3764                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3765                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3766                                }
3767                                do_endio = true;
3768
3769returnbi:
3770                                dev->page = dev->orig_page;
3771                                wbi = dev->written;
3772                                dev->written = NULL;
3773                                while (wbi && wbi->bi_iter.bi_sector <
3774                                        dev->sector + STRIPE_SECTORS) {
3775                                        wbi2 = r5_next_bio(wbi, dev->sector);
3776                                        md_write_end(conf->mddev);
3777                                        bio_endio(wbi);
3778                                        wbi = wbi2;
3779                                }
3780                                md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3781                                                   STRIPE_SECTORS,
3782                                                   !test_bit(STRIPE_DEGRADED, &sh->state),
3783                                                   0);
3784                                if (head_sh->batch_head) {
3785                                        sh = list_first_entry(&sh->batch_list,
3786                                                              struct stripe_head,
3787                                                              batch_list);
3788                                        if (sh != head_sh) {
3789                                                dev = &sh->dev[i];
3790                                                goto returnbi;
3791                                        }
3792                                }
3793                                sh = head_sh;
3794                                dev = &sh->dev[i];
3795                        } else if (test_bit(R5_Discard, &dev->flags))
3796                                discard_pending = 1;
3797                }
3798
3799        log_stripe_write_finished(sh);
3800
3801        if (!discard_pending &&
3802            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3803                int hash;
3804                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3805                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3806                if (sh->qd_idx >= 0) {
3807                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3808                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3809                }
3810                /* now that discard is done we can proceed with any sync */
3811                clear_bit(STRIPE_DISCARD, &sh->state);
3812                /*
3813                 * SCSI discard will change some bio fields and the stripe has
3814                 * no updated data, so remove it from hash list and the stripe
3815                 * will be reinitialized
3816                 */
3817unhash:
3818                hash = sh->hash_lock_index;
3819                spin_lock_irq(conf->hash_locks + hash);
3820                remove_hash(sh);
3821                spin_unlock_irq(conf->hash_locks + hash);
3822                if (head_sh->batch_head) {
3823                        sh = list_first_entry(&sh->batch_list,
3824                                              struct stripe_head, batch_list);
3825                        if (sh != head_sh)
3826                                        goto unhash;
3827                }
3828                sh = head_sh;
3829
3830                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3831                        set_bit(STRIPE_HANDLE, &sh->state);
3832
3833        }
3834
3835        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3836                if (atomic_dec_and_test(&conf->pending_full_writes))
3837                        md_wakeup_thread(conf->mddev->thread);
3838
3839        if (head_sh->batch_head && do_endio)
3840                break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3841}
3842
3843/*
3844 * For RMW in write back cache, we need extra page in prexor to store the
3845 * old data. This page is stored in dev->orig_page.
3846 *
3847 * This function checks whether we have data for prexor. The exact logic
3848 * is:
3849 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3850 */
3851static inline bool uptodate_for_rmw(struct r5dev *dev)
3852{
3853        return (test_bit(R5_UPTODATE, &dev->flags)) &&
3854                (!test_bit(R5_InJournal, &dev->flags) ||
3855                 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3856}
3857
3858static int handle_stripe_dirtying(struct r5conf *conf,
3859                                  struct stripe_head *sh,
3860                                  struct stripe_head_state *s,
3861                                  int disks)
3862{
3863        int rmw = 0, rcw = 0, i;
3864        sector_t recovery_cp = conf->mddev->recovery_cp;
3865
3866        /* Check whether resync is now happening or should start.
3867         * If yes, then the array is dirty (after unclean shutdown or
3868         * initial creation), so parity in some stripes might be inconsistent.
3869         * In this case, we need to always do reconstruct-write, to ensure
3870         * that in case of drive failure or read-error correction, we
3871         * generate correct data from the parity.
3872         */
3873        if (conf->rmw_level == PARITY_DISABLE_RMW ||
3874            (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3875             s->failed == 0)) {
3876                /* Calculate the real rcw later - for now make it
3877                 * look like rcw is cheaper
3878                 */
3879                rcw = 1; rmw = 2;
3880                pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3881                         conf->rmw_level, (unsigned long long)recovery_cp,
3882                         (unsigned long long)sh->sector);
3883        } else for (i = disks; i--; ) {
3884                /* would I have to read this buffer for read_modify_write */
3885                struct r5dev *dev = &sh->dev[i];
3886                if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3887                     i == sh->pd_idx || i == sh->qd_idx ||
3888                     test_bit(R5_InJournal, &dev->flags)) &&
3889                    !test_bit(R5_LOCKED, &dev->flags) &&
3890                    !(uptodate_for_rmw(dev) ||
3891                      test_bit(R5_Wantcompute, &dev->flags))) {
3892                        if (test_bit(R5_Insync, &dev->flags))
3893                                rmw++;
3894                        else
3895                                rmw += 2*disks;  /* cannot read it */
3896                }
3897                /* Would I have to read this buffer for reconstruct_write */
3898                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3899                    i != sh->pd_idx && i != sh->qd_idx &&
3900                    !test_bit(R5_LOCKED, &dev->flags) &&
3901                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3902                      test_bit(R5_Wantcompute, &dev->flags))) {
3903                        if (test_bit(R5_Insync, &dev->flags))
3904                                rcw++;
3905                        else
3906                                rcw += 2*disks;
3907                }
3908        }
3909
3910        pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3911                 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3912        set_bit(STRIPE_HANDLE, &sh->state);
3913        if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3914                /* prefer read-modify-write, but need to get some data */
3915                if (conf->mddev->queue)
3916                        blk_add_trace_msg(conf->mddev->queue,
3917                                          "raid5 rmw %llu %d",
3918                                          (unsigned long long)sh->sector, rmw);
3919                for (i = disks; i--; ) {
3920                        struct r5dev *dev = &sh->dev[i];
3921                        if (test_bit(R5_InJournal, &dev->flags) &&
3922                            dev->page == dev->orig_page &&
3923                            !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3924                                /* alloc page for prexor */
3925                                struct page *p = alloc_page(GFP_NOIO);
3926
3927                                if (p) {
3928                                        dev->orig_page = p;
3929                                        continue;
3930                                }
3931
3932                                /*
3933                                 * alloc_page() failed, try use
3934                                 * disk_info->extra_page
3935                                 */
3936                                if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3937                                                      &conf->cache_state)) {
3938                                        r5c_use_extra_page(sh);
3939                                        break;
3940                                }
3941
3942                                /* extra_page in use, add to delayed_list */
3943                                set_bit(STRIPE_DELAYED, &sh->state);
3944                                s->waiting_extra_page = 1;
3945                                return -EAGAIN;
3946                        }
3947                }
3948
3949                for (i = disks; i--; ) {
3950                        struct r5dev *dev = &sh->dev[i];
3951                        if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3952                             i == sh->pd_idx || i == sh->qd_idx ||
3953                             test_bit(R5_InJournal, &dev->flags)) &&
3954                            !test_bit(R5_LOCKED, &dev->flags) &&
3955                            !(uptodate_for_rmw(dev) ||
3956                              test_bit(R5_Wantcompute, &dev->flags)) &&
3957                            test_bit(R5_Insync, &dev->flags)) {
3958                                if (test_bit(STRIPE_PREREAD_ACTIVE,
3959                                             &sh->state)) {
3960                                        pr_debug("Read_old block %d for r-m-w\n",
3961                                                 i);
3962                                        set_bit(R5_LOCKED, &dev->flags);
3963                                        set_bit(R5_Wantread, &dev->flags);
3964                                        s->locked++;
3965                                } else {
3966                                        set_bit(STRIPE_DELAYED, &sh->state);
3967                                        set_bit(STRIPE_HANDLE, &sh->state);
3968                                }
3969                        }
3970                }
3971        }
3972        if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3973                /* want reconstruct write, but need to get some data */
3974                int qread =0;
3975                rcw = 0;
3976                for (i = disks; i--; ) {
3977                        struct r5dev *dev = &sh->dev[i];
3978                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3979                            i != sh->pd_idx && i != sh->qd_idx &&
3980                            !test_bit(R5_LOCKED, &dev->flags) &&
3981                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3982                              test_bit(R5_Wantcompute, &dev->flags))) {
3983                                rcw++;
3984                                if (test_bit(R5_Insync, &dev->flags) &&
3985                                    test_bit(STRIPE_PREREAD_ACTIVE,
3986                                             &sh->state)) {
3987                                        pr_debug("Read_old block "
3988                                                "%d for Reconstruct\n", i);
3989                                        set_bit(R5_LOCKED, &dev->flags);
3990                                        set_bit(R5_Wantread, &dev->flags);
3991                                        s->locked++;
3992                                        qread++;
3993                                } else {
3994                                        set_bit(STRIPE_DELAYED, &sh->state);
3995                                        set_bit(STRIPE_HANDLE, &sh->state);
3996                                }
3997                        }
3998                }
3999                if (rcw && conf->mddev->queue)
4000                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4001                                          (unsigned long long)sh->sector,
4002                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4003        }
4004
4005        if (rcw > disks && rmw > disks &&
4006            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4007                set_bit(STRIPE_DELAYED, &sh->state);
4008
4009        /* now if nothing is locked, and if we have enough data,
4010         * we can start a write request
4011         */
4012        /* since handle_stripe can be called at any time we need to handle the
4013         * case where a compute block operation has been submitted and then a
4014         * subsequent call wants to start a write request.  raid_run_ops only
4015         * handles the case where compute block and reconstruct are requested
4016         * simultaneously.  If this is not the case then new writes need to be
4017         * held off until the compute completes.
4018         */
4019        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4020            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4021             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4022                schedule_reconstruction(sh, s, rcw == 0, 0);
4023        return 0;
4024}
4025
4026static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4027                                struct stripe_head_state *s, int disks)
4028{
4029        struct r5dev *dev = NULL;
4030
4031        BUG_ON(sh->batch_head);
4032        set_bit(STRIPE_HANDLE, &sh->state);
4033
4034        switch (sh->check_state) {
4035        case check_state_idle:
4036                /* start a new check operation if there are no failures */
4037                if (s->failed == 0) {
4038                        BUG_ON(s->uptodate != disks);
4039                        sh->check_state = check_state_run;
4040                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4041                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4042                        s->uptodate--;
4043                        break;
4044                }
4045                dev = &sh->dev[s->failed_num[0]];
4046                /* fall through */
4047        case check_state_compute_result:
4048                sh->check_state = check_state_idle;
4049                if (!dev)
4050                        dev = &sh->dev[sh->pd_idx];
4051
4052                /* check that a write has not made the stripe insync */
4053                if (test_bit(STRIPE_INSYNC, &sh->state))
4054                        break;
4055
4056                /* either failed parity check, or recovery is happening */
4057                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4058                BUG_ON(s->uptodate != disks);
4059
4060                set_bit(R5_LOCKED, &dev->flags);
4061                s->locked++;
4062                set_bit(R5_Wantwrite, &dev->flags);
4063
4064                clear_bit(STRIPE_DEGRADED, &sh->state);
4065                set_bit(STRIPE_INSYNC, &sh->state);
4066                break;
4067        case check_state_run:
4068                break; /* we will be called again upon completion */
4069        case check_state_check_result:
4070                sh->check_state = check_state_idle;
4071
4072                /* if a failure occurred during the check operation, leave
4073                 * STRIPE_INSYNC not set and let the stripe be handled again
4074                 */
4075                if (s->failed)
4076                        break;
4077
4078                /* handle a successful check operation, if parity is correct
4079                 * we are done.  Otherwise update the mismatch count and repair
4080                 * parity if !MD_RECOVERY_CHECK
4081                 */
4082                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4083                        /* parity is correct (on disc,
4084                         * not in buffer any more)
4085                         */
4086                        set_bit(STRIPE_INSYNC, &sh->state);
4087                else {
4088                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4089                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4090                                /* don't try to repair!! */
4091                                set_bit(STRIPE_INSYNC, &sh->state);
4092                                pr_warn_ratelimited("%s: mismatch sector in range "
4093                                                    "%llu-%llu\n", mdname(conf->mddev),
4094                                                    (unsigned long long) sh->sector,
4095                                                    (unsigned long long) sh->sector +
4096                                                    STRIPE_SECTORS);
4097                        } else {
4098                                sh->check_state = check_state_compute_run;
4099                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4100                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4101                                set_bit(R5_Wantcompute,
4102                                        &sh->dev[sh->pd_idx].flags);
4103                                sh->ops.target = sh->pd_idx;
4104                                sh->ops.target2 = -1;
4105                                s->uptodate++;
4106                        }
4107                }
4108                break;
4109        case check_state_compute_run:
4110                break;
4111        default:
4112                pr_err("%s: unknown check_state: %d sector: %llu\n",
4113                       __func__, sh->check_state,
4114                       (unsigned long long) sh->sector);
4115                BUG();
4116        }
4117}
4118
4119static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4120                                  struct stripe_head_state *s,
4121                                  int disks)
4122{
4123        int pd_idx = sh->pd_idx;
4124        int qd_idx = sh->qd_idx;
4125        struct r5dev *dev;
4126
4127        BUG_ON(sh->batch_head);
4128        set_bit(STRIPE_HANDLE, &sh->state);
4129
4130        BUG_ON(s->failed > 2);
4131
4132        /* Want to check and possibly repair P and Q.
4133         * However there could be one 'failed' device, in which
4134         * case we can only check one of them, possibly using the
4135         * other to generate missing data
4136         */
4137
4138        switch (sh->check_state) {
4139        case check_state_idle:
4140                /* start a new check operation if there are < 2 failures */
4141                if (s->failed == s->q_failed) {
4142                        /* The only possible failed device holds Q, so it
4143                         * makes sense to check P (If anything else were failed,
4144                         * we would have used P to recreate it).
4145                         */
4146                        sh->check_state = check_state_run;
4147                }
4148                if (!s->q_failed && s->failed < 2) {
4149                        /* Q is not failed, and we didn't use it to generate
4150                         * anything, so it makes sense to check it
4151                         */
4152                        if (sh->check_state == check_state_run)
4153                                sh->check_state = check_state_run_pq;
4154                        else
4155                                sh->check_state = check_state_run_q;
4156                }
4157
4158                /* discard potentially stale zero_sum_result */
4159                sh->ops.zero_sum_result = 0;
4160
4161                if (sh->check_state == check_state_run) {
4162                        /* async_xor_zero_sum destroys the contents of P */
4163                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4164                        s->uptodate--;
4165                }
4166                if (sh->check_state >= check_state_run &&
4167                    sh->check_state <= check_state_run_pq) {
4168                        /* async_syndrome_zero_sum preserves P and Q, so
4169                         * no need to mark them !uptodate here
4170                         */
4171                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4172                        break;
4173                }
4174
4175                /* we have 2-disk failure */
4176                BUG_ON(s->failed != 2);
4177                /* fall through */
4178        case check_state_compute_result:
4179                sh->check_state = check_state_idle;
4180
4181                /* check that a write has not made the stripe insync */
4182                if (test_bit(STRIPE_INSYNC, &sh->state))
4183                        break;
4184
4185                /* now write out any block on a failed drive,
4186                 * or P or Q if they were recomputed
4187                 */
4188                BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4189                if (s->failed == 2) {
4190                        dev = &sh->dev[s->failed_num[1]];
4191                        s->locked++;
4192                        set_bit(R5_LOCKED, &dev->flags);
4193                        set_bit(R5_Wantwrite, &dev->flags);
4194                }
4195                if (s->failed >= 1) {
4196                        dev = &sh->dev[s->failed_num[0]];
4197                        s->locked++;
4198                        set_bit(R5_LOCKED, &dev->flags);
4199                        set_bit(R5_Wantwrite, &dev->flags);
4200                }
4201                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4202                        dev = &sh->dev[pd_idx];
4203                        s->locked++;
4204                        set_bit(R5_LOCKED, &dev->flags);
4205                        set_bit(R5_Wantwrite, &dev->flags);
4206                }
4207                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4208                        dev = &sh->dev[qd_idx];
4209                        s->locked++;
4210                        set_bit(R5_LOCKED, &dev->flags);
4211                        set_bit(R5_Wantwrite, &dev->flags);
4212                }
4213                clear_bit(STRIPE_DEGRADED, &sh->state);
4214
4215                set_bit(STRIPE_INSYNC, &sh->state);
4216                break;
4217        case check_state_run:
4218        case check_state_run_q:
4219        case check_state_run_pq:
4220                break; /* we will be called again upon completion */
4221        case check_state_check_result:
4222                sh->check_state = check_state_idle;
4223
4224                /* handle a successful check operation, if parity is correct
4225                 * we are done.  Otherwise update the mismatch count and repair
4226                 * parity if !MD_RECOVERY_CHECK
4227                 */
4228                if (sh->ops.zero_sum_result == 0) {
4229                        /* both parities are correct */
4230                        if (!s->failed)
4231                                set_bit(STRIPE_INSYNC, &sh->state);
4232                        else {
4233                                /* in contrast to the raid5 case we can validate
4234                                 * parity, but still have a failure to write
4235                                 * back
4236                                 */
4237                                sh->check_state = check_state_compute_result;
4238                                /* Returning at this point means that we may go
4239                                 * off and bring p and/or q uptodate again so
4240                                 * we make sure to check zero_sum_result again
4241                                 * to verify if p or q need writeback
4242                                 */
4243                        }
4244                } else {
4245                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4246                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4247                                /* don't try to repair!! */
4248                                set_bit(STRIPE_INSYNC, &sh->state);
4249                                pr_warn_ratelimited("%s: mismatch sector in range "
4250                                                    "%llu-%llu\n", mdname(conf->mddev),
4251                                                    (unsigned long long) sh->sector,
4252                                                    (unsigned long long) sh->sector +
4253                                                    STRIPE_SECTORS);
4254                        } else {
4255                                int *target = &sh->ops.target;
4256
4257                                sh->ops.target = -1;
4258                                sh->ops.target2 = -1;
4259                                sh->check_state = check_state_compute_run;
4260                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4261                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4262                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4263                                        set_bit(R5_Wantcompute,
4264                                                &sh->dev[pd_idx].flags);
4265                                        *target = pd_idx;
4266                                        target = &sh->ops.target2;
4267                                        s->uptodate++;
4268                                }
4269                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4270                                        set_bit(R5_Wantcompute,
4271                                                &sh->dev[qd_idx].flags);
4272                                        *target = qd_idx;
4273                                        s->uptodate++;
4274                                }
4275                        }
4276                }
4277                break;
4278        case check_state_compute_run:
4279                break;
4280        default:
4281                pr_warn("%s: unknown check_state: %d sector: %llu\n",
4282                        __func__, sh->check_state,
4283                        (unsigned long long) sh->sector);
4284                BUG();
4285        }
4286}
4287
4288static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4289{
4290        int i;
4291
4292        /* We have read all the blocks in this stripe and now we need to
4293         * copy some of them into a target stripe for expand.
4294         */
4295        struct dma_async_tx_descriptor *tx = NULL;
4296        BUG_ON(sh->batch_head);
4297        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4298        for (i = 0; i < sh->disks; i++)
4299                if (i != sh->pd_idx && i != sh->qd_idx) {
4300                        int dd_idx, j;
4301                        struct stripe_head *sh2;
4302                        struct async_submit_ctl submit;
4303
4304                        sector_t bn = raid5_compute_blocknr(sh, i, 1);
4305                        sector_t s = raid5_compute_sector(conf, bn, 0,
4306                                                          &dd_idx, NULL);
4307                        sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4308                        if (sh2 == NULL)
4309                                /* so far only the early blocks of this stripe
4310                                 * have been requested.  When later blocks
4311                                 * get requested, we will try again
4312                                 */
4313                                continue;
4314                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4315                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4316                                /* must have already done this block */
4317                                raid5_release_stripe(sh2);
4318                                continue;
4319                        }
4320
4321                        /* place all the copies on one channel */
4322                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4323                        tx = async_memcpy(sh2->dev[dd_idx].page,
4324                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
4325                                          &submit);
4326
4327                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4328                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4329                        for (j = 0; j < conf->raid_disks; j++)
4330                                if (j != sh2->pd_idx &&
4331                                    j != sh2->qd_idx &&
4332                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4333                                        break;
4334                        if (j == conf->raid_disks) {
4335                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
4336                                set_bit(STRIPE_HANDLE, &sh2->state);
4337                        }
4338                        raid5_release_stripe(sh2);
4339
4340                }
4341        /* done submitting copies, wait for them to complete */
4342        async_tx_quiesce(&tx);
4343}
4344
4345/*
4346 * handle_stripe - do things to a stripe.
4347 *
4348 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4349 * state of various bits to see what needs to be done.
4350 * Possible results:
4351 *    return some read requests which now have data
4352 *    return some write requests which are safely on storage
4353 *    schedule a read on some buffers
4354 *    schedule a write of some buffers
4355 *    return confirmation of parity correctness
4356 *
4357 */
4358
4359static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4360{
4361        struct r5conf *conf = sh->raid_conf;
4362        int disks = sh->disks;
4363        struct r5dev *dev;
4364        int i;
4365        int do_recovery = 0;
4366
4367        memset(s, 0, sizeof(*s));
4368
4369        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4370        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4371        s->failed_num[0] = -1;
4372        s->failed_num[1] = -1;
4373        s->log_failed = r5l_log_disk_error(conf);
4374
4375        /* Now to look around and see what can be done */
4376        rcu_read_lock();
4377        for (i=disks; i--; ) {
4378                struct md_rdev *rdev;
4379                sector_t first_bad;
4380                int bad_sectors;
4381                int is_bad = 0;
4382
4383                dev = &sh->dev[i];
4384
4385                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4386                         i, dev->flags,
4387                         dev->toread, dev->towrite, dev->written);
4388                /* maybe we can reply to a read
4389                 *
4390                 * new wantfill requests are only permitted while
4391                 * ops_complete_biofill is guaranteed to be inactive
4392                 */
4393                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4394                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4395                        set_bit(R5_Wantfill, &dev->flags);
4396
4397                /* now count some things */
4398                if (test_bit(R5_LOCKED, &dev->flags))
4399                        s->locked++;
4400                if (test_bit(R5_UPTODATE, &dev->flags))
4401                        s->uptodate++;
4402                if (test_bit(R5_Wantcompute, &dev->flags)) {
4403                        s->compute++;
4404                        BUG_ON(s->compute > 2);
4405                }
4406
4407                if (test_bit(R5_Wantfill, &dev->flags))
4408                        s->to_fill++;
4409                else if (dev->toread)
4410                        s->to_read++;
4411                if (dev->towrite) {
4412                        s->to_write++;
4413                        if (!test_bit(R5_OVERWRITE, &dev->flags))
4414                                s->non_overwrite++;
4415                }
4416                if (dev->written)
4417                        s->written++;
4418                /* Prefer to use the replacement for reads, but only
4419                 * if it is recovered enough and has no bad blocks.
4420                 */
4421                rdev = rcu_dereference(conf->disks[i].replacement);
4422                if (rdev && !test_bit(Faulty, &rdev->flags) &&
4423                    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4424                    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4425                                 &first_bad, &bad_sectors))
4426                        set_bit(R5_ReadRepl, &dev->flags);
4427                else {
4428                        if (rdev && !test_bit(Faulty, &rdev->flags))
4429                                set_bit(R5_NeedReplace, &dev->flags);
4430                        else
4431                                clear_bit(R5_NeedReplace, &dev->flags);
4432                        rdev = rcu_dereference(conf->disks[i].rdev);
4433                        clear_bit(R5_ReadRepl, &dev->flags);
4434                }
4435                if (rdev && test_bit(Faulty, &rdev->flags))
4436                        rdev = NULL;
4437                if (rdev) {
4438                        is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4439                                             &first_bad, &bad_sectors);
4440                        if (s->blocked_rdev == NULL
4441                            && (test_bit(Blocked, &rdev->flags)
4442                                || is_bad < 0)) {
4443                                if (is_bad < 0)
4444                                        set_bit(BlockedBadBlocks,
4445                                                &rdev->flags);
4446                                s->blocked_rdev = rdev;
4447                                atomic_inc(&rdev->nr_pending);
4448                        }
4449                }
4450                clear_bit(R5_Insync, &dev->flags);
4451                if (!rdev)
4452                        /* Not in-sync */;
4453                else if (is_bad) {
4454                        /* also not in-sync */
4455                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4456                            test_bit(R5_UPTODATE, &dev->flags)) {
4457                                /* treat as in-sync, but with a read error
4458                                 * which we can now try to correct
4459                                 */
4460                                set_bit(R5_Insync, &dev->flags);
4461                                set_bit(R5_ReadError, &dev->flags);
4462                        }
4463                } else if (test_bit(In_sync, &rdev->flags))
4464                        set_bit(R5_Insync, &dev->flags);
4465                else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4466                        /* in sync if before recovery_offset */
4467                        set_bit(R5_Insync, &dev->flags);
4468                else if (test_bit(R5_UPTODATE, &dev->flags) &&
4469                         test_bit(R5_Expanded, &dev->flags))
4470                        /* If we've reshaped into here, we assume it is Insync.
4471                         * We will shortly update recovery_offset to make
4472                         * it official.
4473                         */
4474                        set_bit(R5_Insync, &dev->flags);
4475
4476                if (test_bit(R5_WriteError, &dev->flags)) {
4477                        /* This flag does not apply to '.replacement'
4478                         * only to .rdev, so make sure to check that*/
4479                        struct md_rdev *rdev2 = rcu_dereference(
4480                                conf->disks[i].rdev);
4481                        if (rdev2 == rdev)
4482                                clear_bit(R5_Insync, &dev->flags);
4483                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4484                                s->handle_bad_blocks = 1;
4485                                atomic_inc(&rdev2->nr_pending);
4486                        } else
4487                                clear_bit(R5_WriteError, &dev->flags);
4488                }
4489                if (test_bit(R5_MadeGood, &dev->flags)) {
4490                        /* This flag does not apply to '.replacement'
4491                         * only to .rdev, so make sure to check that*/
4492                        struct md_rdev *rdev2 = rcu_dereference(
4493                                conf->disks[i].rdev);
4494                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4495                                s->handle_bad_blocks = 1;
4496                                atomic_inc(&rdev2->nr_pending);
4497                        } else
4498                                clear_bit(R5_MadeGood, &dev->flags);
4499                }
4500                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4501                        struct md_rdev *rdev2 = rcu_dereference(
4502                                conf->disks[i].replacement);
4503                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4504                                s->handle_bad_blocks = 1;
4505                                atomic_inc(&rdev2->nr_pending);
4506                        } else
4507                                clear_bit(R5_MadeGoodRepl, &dev->flags);
4508                }
4509                if (!test_bit(R5_Insync, &dev->flags)) {
4510                        /* The ReadError flag will just be confusing now */
4511                        clear_bit(R5_ReadError, &dev->flags);
4512                        clear_bit(R5_ReWrite, &dev->flags);
4513                }
4514                if (test_bit(R5_ReadError, &dev->flags))
4515                        clear_bit(R5_Insync, &dev->flags);
4516                if (!test_bit(R5_Insync, &dev->flags)) {
4517                        if (s->failed < 2)
4518                                s->failed_num[s->failed] = i;
4519                        s->failed++;
4520                        if (rdev && !test_bit(Faulty, &rdev->flags))
4521                                do_recovery = 1;
4522                        else if (!rdev) {
4523                                rdev = rcu_dereference(
4524                                    conf->disks[i].replacement);
4525                                if (rdev && !test_bit(Faulty, &rdev->flags))
4526                                        do_recovery = 1;
4527                        }
4528                }
4529
4530                if (test_bit(R5_InJournal, &dev->flags))
4531                        s->injournal++;
4532                if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4533                        s->just_cached++;
4534        }
4535        if (test_bit(STRIPE_SYNCING, &sh->state)) {
4536                /* If there is a failed device being replaced,
4537                 *     we must be recovering.
4538                 * else if we are after recovery_cp, we must be syncing
4539                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4540                 * else we can only be replacing
4541                 * sync and recovery both need to read all devices, and so
4542                 * use the same flag.
4543                 */
4544                if (do_recovery ||
4545                    sh->sector >= conf->mddev->recovery_cp ||
4546                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4547                        s->syncing = 1;
4548                else
4549                        s->replacing = 1;
4550        }
4551        rcu_read_unlock();
4552}
4553
4554static int clear_batch_ready(struct stripe_head *sh)
4555{
4556        /* Return '1' if this is a member of batch, or
4557         * '0' if it is a lone stripe or a head which can now be
4558         * handled.
4559         */
4560        struct stripe_head *tmp;
4561        if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4562                return (sh->batch_head && sh->batch_head != sh);
4563        spin_lock(&sh->stripe_lock);
4564        if (!sh->batch_head) {
4565                spin_unlock(&sh->stripe_lock);
4566                return 0;
4567        }
4568
4569        /*
4570         * this stripe could be added to a batch list before we check
4571         * BATCH_READY, skips it
4572         */
4573        if (sh->batch_head != sh) {
4574                spin_unlock(&sh->stripe_lock);
4575                return 1;
4576        }
4577        spin_lock(&sh->batch_lock);
4578        list_for_each_entry(tmp, &sh->batch_list, batch_list)
4579                clear_bit(STRIPE_BATCH_READY, &tmp->state);
4580        spin_unlock(&sh->batch_lock);
4581        spin_unlock(&sh->stripe_lock);
4582
4583        /*
4584         * BATCH_READY is cleared, no new stripes can be added.
4585         * batch_list can be accessed without lock
4586         */
4587        return 0;
4588}
4589
4590static void break_stripe_batch_list(struct stripe_head *head_sh,
4591                                    unsigned long handle_flags)
4592{
4593        struct stripe_head *sh, *next;
4594        int i;
4595        int do_wakeup = 0;
4596
4597        list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4598
4599                list_del_init(&sh->batch_list);
4600
4601                WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4602                                          (1 << STRIPE_SYNCING) |
4603                                          (1 << STRIPE_REPLACED) |
4604                                          (1 << STRIPE_DELAYED) |
4605                                          (1 << STRIPE_BIT_DELAY) |
4606                                          (1 << STRIPE_FULL_WRITE) |
4607                                          (1 << STRIPE_BIOFILL_RUN) |
4608                                          (1 << STRIPE_COMPUTE_RUN)  |
4609                                          (1 << STRIPE_OPS_REQ_PENDING) |
4610                                          (1 << STRIPE_DISCARD) |
4611                                          (1 << STRIPE_BATCH_READY) |
4612                                          (1 << STRIPE_BATCH_ERR) |
4613                                          (1 << STRIPE_BITMAP_PENDING)),
4614                        "stripe state: %lx\n", sh->state);
4615                WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4616                                              (1 << STRIPE_REPLACED)),
4617                        "head stripe state: %lx\n", head_sh->state);
4618
4619                set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4620                                            (1 << STRIPE_PREREAD_ACTIVE) |
4621                                            (1 << STRIPE_DEGRADED) |
4622                                            (1 << STRIPE_ON_UNPLUG_LIST)),
4623                              head_sh->state & (1 << STRIPE_INSYNC));
4624
4625                sh->check_state = head_sh->check_state;
4626                sh->reconstruct_state = head_sh->reconstruct_state;
4627                spin_lock_irq(&sh->stripe_lock);
4628                sh->batch_head = NULL;
4629                spin_unlock_irq(&sh->stripe_lock);
4630                for (i = 0; i < sh->disks; i++) {
4631                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4632                                do_wakeup = 1;
4633                        sh->dev[i].flags = head_sh->dev[i].flags &
4634                                (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4635                }
4636                if (handle_flags == 0 ||
4637                    sh->state & handle_flags)
4638                        set_bit(STRIPE_HANDLE, &sh->state);
4639                raid5_release_stripe(sh);
4640        }
4641        spin_lock_irq(&head_sh->stripe_lock);
4642        head_sh->batch_head = NULL;
4643        spin_unlock_irq(&head_sh->stripe_lock);
4644        for (i = 0; i < head_sh->disks; i++)
4645                if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4646                        do_wakeup = 1;
4647        if (head_sh->state & handle_flags)
4648                set_bit(STRIPE_HANDLE, &head_sh->state);
4649
4650        if (do_wakeup)
4651                wake_up(&head_sh->raid_conf->wait_for_overlap);
4652}
4653
4654static void handle_stripe(struct stripe_head *sh)
4655{
4656        struct stripe_head_state s;
4657        struct r5conf *conf = sh->raid_conf;
4658        int i;
4659        int prexor;
4660        int disks = sh->disks;
4661        struct r5dev *pdev, *qdev;
4662
4663        clear_bit(STRIPE_HANDLE, &sh->state);
4664        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4665                /* already being handled, ensure it gets handled
4666                 * again when current action finishes */
4667                set_bit(STRIPE_HANDLE, &sh->state);
4668                return;
4669        }
4670
4671        if (clear_batch_ready(sh) ) {
4672                clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4673                return;
4674        }
4675
4676        if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4677                break_stripe_batch_list(sh, 0);
4678
4679        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4680                spin_lock(&sh->stripe_lock);
4681                /*
4682                 * Cannot process 'sync' concurrently with 'discard'.
4683                 * Flush data in r5cache before 'sync'.
4684                 */
4685                if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4686                    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4687                    !test_bit(STRIPE_DISCARD, &sh->state) &&
4688                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4689                        set_bit(STRIPE_SYNCING, &sh->state);
4690                        clear_bit(STRIPE_INSYNC, &sh->state);
4691                        clear_bit(STRIPE_REPLACED, &sh->state);
4692                }
4693                spin_unlock(&sh->stripe_lock);
4694        }
4695        clear_bit(STRIPE_DELAYED, &sh->state);
4696
4697        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4698                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4699               (unsigned long long)sh->sector, sh->state,
4700               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4701               sh->check_state, sh->reconstruct_state);
4702
4703        analyse_stripe(sh, &s);
4704
4705        if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4706                goto finish;
4707
4708        if (s.handle_bad_blocks ||
4709            test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4710                set_bit(STRIPE_HANDLE, &sh->state);
4711                goto finish;
4712        }
4713
4714        if (unlikely(s.blocked_rdev)) {
4715                if (s.syncing || s.expanding || s.expanded ||
4716                    s.replacing || s.to_write || s.written) {
4717                        set_bit(STRIPE_HANDLE, &sh->state);
4718                        goto finish;
4719                }
4720                /* There is nothing for the blocked_rdev to block */
4721                rdev_dec_pending(s.blocked_rdev, conf->mddev);
4722                s.blocked_rdev = NULL;
4723        }
4724
4725        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4726                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4727                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4728        }
4729
4730        pr_debug("locked=%d uptodate=%d to_read=%d"
4731               " to_write=%d failed=%d failed_num=%d,%d\n",
4732               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4733               s.failed_num[0], s.failed_num[1]);
4734        /*
4735         * check if the array has lost more than max_degraded devices and,
4736         * if so, some requests might need to be failed.
4737         *
4738         * When journal device failed (log_failed), we will only process
4739         * the stripe if there is data need write to raid disks
4740         */
4741        if (s.failed > conf->max_degraded ||
4742            (s.log_failed && s.injournal == 0)) {
4743                sh->check_state = 0;
4744                sh->reconstruct_state = 0;
4745                break_stripe_batch_list(sh, 0);
4746                if (s.to_read+s.to_write+s.written)
4747                        handle_failed_stripe(conf, sh, &s, disks);
4748                if (s.syncing + s.replacing)
4749                        handle_failed_sync(conf, sh, &s);
4750        }
4751
4752        /* Now we check to see if any write operations have recently
4753         * completed
4754         */
4755        prexor = 0;
4756        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4757                prexor = 1;
4758        if (sh->reconstruct_state == reconstruct_state_drain_result ||
4759            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4760                sh->reconstruct_state = reconstruct_state_idle;
4761
4762                /* All the 'written' buffers and the parity block are ready to
4763                 * be written back to disk
4764                 */
4765                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4766                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4767                BUG_ON(sh->qd_idx >= 0 &&
4768                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4769                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4770                for (i = disks; i--; ) {
4771                        struct r5dev *dev = &sh->dev[i];
4772                        if (test_bit(R5_LOCKED, &dev->flags) &&
4773                                (i == sh->pd_idx || i == sh->qd_idx ||
4774                                 dev->written || test_bit(R5_InJournal,
4775                                                          &dev->flags))) {
4776                                pr_debug("Writing block %d\n", i);
4777                                set_bit(R5_Wantwrite, &dev->flags);
4778                                if (prexor)
4779                                        continue;
4780                                if (s.failed > 1)
4781                                        continue;
4782                                if (!test_bit(R5_Insync, &dev->flags) ||
4783                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4784                                     s.failed == 0))
4785                                        set_bit(STRIPE_INSYNC, &sh->state);
4786                        }
4787                }
4788                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4789                        s.dec_preread_active = 1;
4790        }
4791
4792        /*
4793         * might be able to return some write requests if the parity blocks
4794         * are safe, or on a failed drive
4795         */
4796        pdev = &sh->dev[sh->pd_idx];
4797        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4798                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4799        qdev = &sh->dev[sh->qd_idx];
4800        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4801                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4802                || conf->level < 6;
4803
4804        if (s.written &&
4805            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4806                             && !test_bit(R5_LOCKED, &pdev->flags)
4807                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
4808                                 test_bit(R5_Discard, &pdev->flags))))) &&
4809            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4810                             && !test_bit(R5_LOCKED, &qdev->flags)
4811                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
4812                                 test_bit(R5_Discard, &qdev->flags))))))
4813                handle_stripe_clean_event(conf, sh, disks);
4814
4815        if (s.just_cached)
4816                r5c_handle_cached_data_endio(conf, sh, disks);
4817        log_stripe_write_finished(sh);
4818
4819        /* Now we might consider reading some blocks, either to check/generate
4820         * parity, or to satisfy requests
4821         * or to load a block that is being partially written.
4822         */
4823        if (s.to_read || s.non_overwrite
4824            || (conf->level == 6 && s.to_write && s.failed)
4825            || (s.syncing && (s.uptodate + s.compute < disks))
4826            || s.replacing
4827            || s.expanding)
4828                handle_stripe_fill(sh, &s, disks);
4829
4830        /*
4831         * When the stripe finishes full journal write cycle (write to journal
4832         * and raid disk), this is the clean up procedure so it is ready for
4833         * next operation.
4834         */
4835        r5c_finish_stripe_write_out(conf, sh, &s);
4836
4837        /*
4838         * Now to consider new write requests, cache write back and what else,
4839         * if anything should be read.  We do not handle new writes when:
4840         * 1/ A 'write' operation (copy+xor) is already in flight.
4841         * 2/ A 'check' operation is in flight, as it may clobber the parity
4842         *    block.
4843         * 3/ A r5c cache log write is in flight.
4844         */
4845
4846        if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4847                if (!r5c_is_writeback(conf->log)) {
4848                        if (s.to_write)
4849                                handle_stripe_dirtying(conf, sh, &s, disks);
4850                } else { /* write back cache */
4851                        int ret = 0;
4852
4853                        /* First, try handle writes in caching phase */
4854                        if (s.to_write)
4855                                ret = r5c_try_caching_write(conf, sh, &s,
4856                                                            disks);
4857                        /*
4858                         * If caching phase failed: ret == -EAGAIN
4859                         *    OR
4860                         * stripe under reclaim: !caching && injournal
4861                         *
4862                         * fall back to handle_stripe_dirtying()
4863                         */
4864                        if (ret == -EAGAIN ||
4865                            /* stripe under reclaim: !caching && injournal */
4866                            (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4867                             s.injournal > 0)) {
4868                                ret = handle_stripe_dirtying(conf, sh, &s,
4869                                                             disks);
4870                                if (ret == -EAGAIN)
4871                                        goto finish;
4872                        }
4873                }
4874        }
4875
4876        /* maybe we need to check and possibly fix the parity for this stripe
4877         * Any reads will already have been scheduled, so we just see if enough
4878         * data is available.  The parity check is held off while parity
4879         * dependent operations are in flight.
4880         */
4881        if (sh->check_state ||
4882            (s.syncing && s.locked == 0 &&
4883             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4884             !test_bit(STRIPE_INSYNC, &sh->state))) {
4885                if (conf->level == 6)
4886                        handle_parity_checks6(conf, sh, &s, disks);
4887                else
4888                        handle_parity_checks5(conf, sh, &s, disks);
4889        }
4890
4891        if ((s.replacing || s.syncing) && s.locked == 0
4892            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4893            && !test_bit(STRIPE_REPLACED, &sh->state)) {
4894                /* Write out to replacement devices where possible */
4895                for (i = 0; i < conf->raid_disks; i++)
4896                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4897                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4898                                set_bit(R5_WantReplace, &sh->dev[i].flags);
4899                                set_bit(R5_LOCKED, &sh->dev[i].flags);
4900                                s.locked++;
4901                        }
4902                if (s.replacing)
4903                        set_bit(STRIPE_INSYNC, &sh->state);
4904                set_bit(STRIPE_REPLACED, &sh->state);
4905        }
4906        if ((s.syncing || s.replacing) && s.locked == 0 &&
4907            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4908            test_bit(STRIPE_INSYNC, &sh->state)) {
4909                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4910                clear_bit(STRIPE_SYNCING, &sh->state);
4911                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4912                        wake_up(&conf->wait_for_overlap);
4913        }
4914
4915        /* If the failed drives are just a ReadError, then we might need
4916         * to progress the repair/check process
4917         */
4918        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4919                for (i = 0; i < s.failed; i++) {
4920                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
4921                        if (test_bit(R5_ReadError, &dev->flags)
4922                            && !test_bit(R5_LOCKED, &dev->flags)
4923                            && test_bit(R5_UPTODATE, &dev->flags)
4924                                ) {
4925                                if (!test_bit(R5_ReWrite, &dev->flags)) {
4926                                        set_bit(R5_Wantwrite, &dev->flags);
4927                                        set_bit(R5_ReWrite, &dev->flags);
4928                                        set_bit(R5_LOCKED, &dev->flags);
4929                                        s.locked++;
4930                                } else {
4931                                        /* let's read it back */
4932                                        set_bit(R5_Wantread, &dev->flags);
4933                                        set_bit(R5_LOCKED, &dev->flags);
4934                                        s.locked++;
4935                                }
4936                        }
4937                }
4938
4939        /* Finish reconstruct operations initiated by the expansion process */
4940        if (sh->reconstruct_state == reconstruct_state_result) {
4941                struct stripe_head *sh_src
4942                        = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4943                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4944                        /* sh cannot be written until sh_src has been read.
4945                         * so arrange for sh to be delayed a little
4946                         */
4947                        set_bit(STRIPE_DELAYED, &sh->state);
4948                        set_bit(STRIPE_HANDLE, &sh->state);
4949                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4950                                              &sh_src->state))
4951                                atomic_inc(&conf->preread_active_stripes);
4952                        raid5_release_stripe(sh_src);
4953                        goto finish;
4954                }
4955                if (sh_src)
4956                        raid5_release_stripe(sh_src);
4957
4958                sh->reconstruct_state = reconstruct_state_idle;
4959                clear_bit(STRIPE_EXPANDING, &sh->state);
4960                for (i = conf->raid_disks; i--; ) {
4961                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
4962                        set_bit(R5_LOCKED, &sh->dev[i].flags);
4963                        s.locked++;
4964                }
4965        }
4966
4967        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4968            !sh->reconstruct_state) {
4969                /* Need to write out all blocks after computing parity */
4970                sh->disks = conf->raid_disks;
4971                stripe_set_idx(sh->sector, conf, 0, sh);
4972                schedule_reconstruction(sh, &s, 1, 1);
4973        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4974                clear_bit(STRIPE_EXPAND_READY, &sh->state);
4975                atomic_dec(&conf->reshape_stripes);
4976                wake_up(&conf->wait_for_overlap);
4977                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4978        }
4979
4980        if (s.expanding && s.locked == 0 &&
4981            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4982                handle_stripe_expansion(conf, sh);
4983
4984finish:
4985        /* wait for this device to become unblocked */
4986        if (unlikely(s.blocked_rdev)) {
4987                if (conf->mddev->external)
4988                        md_wait_for_blocked_rdev(s.blocked_rdev,
4989                                                 conf->mddev);
4990                else
4991                        /* Internal metadata will immediately
4992                         * be written by raid5d, so we don't
4993                         * need to wait here.
4994                         */
4995                        rdev_dec_pending(s.blocked_rdev,
4996                                         conf->mddev);
4997        }
4998
4999        if (s.handle_bad_blocks)
5000                for (i = disks; i--; ) {
5001                        struct md_rdev *rdev;
5002                        struct r5dev *dev = &sh->dev[i];
5003                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5004                                /* We own a safe reference to the rdev */
5005                                rdev = conf->disks[i].rdev;
5006                                if (!rdev_set_badblocks(rdev, sh->sector,
5007                                                        STRIPE_SECTORS, 0))
5008                                        md_error(conf->mddev, rdev);
5009                                rdev_dec_pending(rdev, conf->mddev);
5010                        }
5011                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5012                                rdev = conf->disks[i].rdev;
5013                                rdev_clear_badblocks(rdev, sh->sector,
5014                                                     STRIPE_SECTORS, 0);
5015                                rdev_dec_pending(rdev, conf->mddev);
5016                        }
5017                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5018                                rdev = conf->disks[i].replacement;
5019                                if (!rdev)
5020                                        /* rdev have been moved down */
5021                                        rdev = conf->disks[i].rdev;
5022                                rdev_clear_badblocks(rdev, sh->sector,
5023                                                     STRIPE_SECTORS, 0);
5024                                rdev_dec_pending(rdev, conf->mddev);
5025                        }
5026                }
5027
5028        if (s.ops_request)
5029                raid_run_ops(sh, s.ops_request);
5030
5031        ops_run_io(sh, &s);
5032
5033        if (s.dec_preread_active) {
5034                /* We delay this until after ops_run_io so that if make_request
5035                 * is waiting on a flush, it won't continue until the writes
5036                 * have actually been submitted.
5037                 */
5038                atomic_dec(&conf->preread_active_stripes);
5039                if (atomic_read(&conf->preread_active_stripes) <
5040                    IO_THRESHOLD)
5041                        md_wakeup_thread(conf->mddev->thread);
5042        }
5043
5044        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5045}
5046
5047static void raid5_activate_delayed(struct r5conf *conf)
5048{
5049        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5050                while (!list_empty(&conf->delayed_list)) {
5051                        struct list_head *l = conf->delayed_list.next;
5052                        struct stripe_head *sh;
5053                        sh = list_entry(l, struct stripe_head, lru);
5054                        list_del_init(l);
5055                        clear_bit(STRIPE_DELAYED, &sh->state);
5056                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5057                                atomic_inc(&conf->preread_active_stripes);
5058                        list_add_tail(&sh->lru, &conf->hold_list);
5059                        raid5_wakeup_stripe_thread(sh);
5060                }
5061        }
5062}
5063
5064static void activate_bit_delay(struct r5conf *conf,
5065        struct list_head *temp_inactive_list)
5066{
5067        /* device_lock is held */
5068        struct list_head head;
5069        list_add(&head, &conf->bitmap_list);
5070        list_del_init(&conf->bitmap_list);
5071        while (!list_empty(&head)) {
5072                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5073                int hash;
5074                list_del_init(&sh->lru);
5075                atomic_inc(&sh->count);
5076                hash = sh->hash_lock_index;
5077                __release_stripe(conf, sh, &temp_inactive_list[hash]);
5078        }
5079}
5080
5081static int raid5_congested(struct mddev *mddev, int bits)
5082{
5083        struct r5conf *conf = mddev->private;
5084
5085        /* No difference between reads and writes.  Just check
5086         * how busy the stripe_cache is
5087         */
5088
5089        if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5090                return 1;
5091
5092        /* Also checks whether there is pressure on r5cache log space */
5093        if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5094                return 1;
5095        if (conf->quiesce)
5096                return 1;
5097        if (atomic_read(&conf->empty_inactive_list_nr))
5098                return 1;
5099
5100        return 0;
5101}
5102
5103static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5104{
5105        struct r5conf *conf = mddev->private;
5106        sector_t sector = bio->bi_iter.bi_sector;
5107        unsigned int chunk_sectors;
5108        unsigned int bio_sectors = bio_sectors(bio);
5109
5110        WARN_ON_ONCE(bio->bi_partno);
5111
5112        chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5113        return  chunk_sectors >=
5114                ((sector & (chunk_sectors - 1)) + bio_sectors);
5115}
5116
5117/*
5118 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5119 *  later sampled by raid5d.
5120 */
5121static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5122{
5123        unsigned long flags;
5124
5125        spin_lock_irqsave(&conf->device_lock, flags);
5126
5127        bi->bi_next = conf->retry_read_aligned_list;
5128        conf->retry_read_aligned_list = bi;
5129
5130        spin_unlock_irqrestore(&conf->device_lock, flags);
5131        md_wakeup_thread(conf->mddev->thread);
5132}
5133
5134static struct bio *remove_bio_from_retry(struct r5conf *conf,
5135                                         unsigned int *offset)
5136{
5137        struct bio *bi;
5138
5139        bi = conf->retry_read_aligned;
5140        if (bi) {
5141                *offset = conf->retry_read_offset;
5142                conf->retry_read_aligned = NULL;
5143                return bi;
5144        }
5145        bi = conf->retry_read_aligned_list;
5146        if(bi) {
5147                conf->retry_read_aligned_list = bi->bi_next;
5148                bi->bi_next = NULL;
5149                *offset = 0;
5150        }
5151
5152        return bi;
5153}
5154
5155/*
5156 *  The "raid5_align_endio" should check if the read succeeded and if it
5157 *  did, call bio_endio on the original bio (having bio_put the new bio
5158 *  first).
5159 *  If the read failed..
5160 */
5161static void raid5_align_endio(struct bio *bi)
5162{
5163        struct bio* raid_bi  = bi->bi_private;
5164        struct mddev *mddev;
5165        struct r5conf *conf;
5166        struct md_rdev *rdev;
5167        blk_status_t error = bi->bi_status;
5168
5169        bio_put(bi);
5170
5171        rdev = (void*)raid_bi->bi_next;
5172        raid_bi->bi_next = NULL;
5173        mddev = rdev->mddev;
5174        conf = mddev->private;
5175
5176        rdev_dec_pending(rdev, conf->mddev);
5177
5178        if (!error) {
5179                bio_endio(raid_bi);
5180                if (atomic_dec_and_test(&conf->active_aligned_reads))
5181                        wake_up(&conf->wait_for_quiescent);
5182                return;
5183        }
5184
5185        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5186
5187        add_bio_to_retry(raid_bi, conf);
5188}
5189
5190static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5191{
5192        struct r5conf *conf = mddev->private;
5193        int dd_idx;
5194        struct bio* align_bi;
5195        struct md_rdev *rdev;
5196        sector_t end_sector;
5197
5198        if (!in_chunk_boundary(mddev, raid_bio)) {
5199                pr_debug("%s: non aligned\n", __func__);
5200                return 0;
5201        }
5202        /*
5203         * use bio_clone_fast to make a copy of the bio
5204         */
5205        align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5206        if (!align_bi)
5207                return 0;
5208        /*
5209         *   set bi_end_io to a new function, and set bi_private to the
5210         *     original bio.
5211         */
5212        align_bi->bi_end_io  = raid5_align_endio;
5213        align_bi->bi_private = raid_bio;
5214        /*
5215         *      compute position
5216         */
5217        align_bi->bi_iter.bi_sector =
5218                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5219                                     0, &dd_idx, NULL);
5220
5221        end_sector = bio_end_sector(align_bi);
5222        rcu_read_lock();
5223        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5224        if (!rdev || test_bit(Faulty, &rdev->flags) ||
5225            rdev->recovery_offset < end_sector) {
5226                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5227                if (rdev &&
5228                    (test_bit(Faulty, &rdev->flags) ||
5229                    !(test_bit(In_sync, &rdev->flags) ||
5230                      rdev->recovery_offset >= end_sector)))
5231                        rdev = NULL;
5232        }
5233
5234        if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5235                rcu_read_unlock();
5236                bio_put(align_bi);
5237                return 0;
5238        }
5239
5240        if (rdev) {
5241                sector_t first_bad;
5242                int bad_sectors;
5243
5244                atomic_inc(&rdev->nr_pending);
5245                rcu_read_unlock();
5246                raid_bio->bi_next = (void*)rdev;
5247                bio_set_dev(align_bi, rdev->bdev);
5248                bio_clear_flag(align_bi, BIO_SEG_VALID);
5249
5250                if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5251                                bio_sectors(align_bi),
5252                                &first_bad, &bad_sectors)) {
5253                        bio_put(align_bi);
5254                        rdev_dec_pending(rdev, mddev);
5255                        return 0;
5256                }
5257
5258                /* No reshape active, so we can trust rdev->data_offset */
5259                align_bi->bi_iter.bi_sector += rdev->data_offset;
5260
5261                spin_lock_irq(&conf->device_lock);
5262                wait_event_lock_irq(conf->wait_for_quiescent,
5263                                    conf->quiesce == 0,
5264                                    conf->device_lock);
5265                atomic_inc(&conf->active_aligned_reads);
5266                spin_unlock_irq(&conf->device_lock);
5267
5268                if (mddev->gendisk)
5269                        trace_block_bio_remap(align_bi->bi_disk->queue,
5270                                              align_bi, disk_devt(mddev->gendisk),
5271                                              raid_bio->bi_iter.bi_sector);
5272                generic_make_request(align_bi);
5273                return 1;
5274        } else {
5275                rcu_read_unlock();
5276                bio_put(align_bi);
5277                return 0;
5278        }
5279}
5280
5281static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5282{
5283        struct bio *split;
5284        sector_t sector = raid_bio->bi_iter.bi_sector;
5285        unsigned chunk_sects = mddev->chunk_sectors;
5286        unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5287
5288        if (sectors < bio_sectors(raid_bio)) {
5289                struct r5conf *conf = mddev->private;
5290                split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5291                bio_chain(split, raid_bio);
5292                generic_make_request(raid_bio);
5293                raid_bio = split;
5294        }
5295
5296        if (!raid5_read_one_chunk(mddev, raid_bio))
5297                return raid_bio;
5298
5299        return NULL;
5300}
5301
5302/* __get_priority_stripe - get the next stripe to process
5303 *
5304 * Full stripe writes are allowed to pass preread active stripes up until
5305 * the bypass_threshold is exceeded.  In general the bypass_count
5306 * increments when the handle_list is handled before the hold_list; however, it
5307 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5308 * stripe with in flight i/o.  The bypass_count will be reset when the
5309 * head of the hold_list has changed, i.e. the head was promoted to the
5310 * handle_list.
5311 */
5312static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5313{
5314        struct stripe_head *sh, *tmp;
5315        struct list_head *handle_list = NULL;
5316        struct r5worker_group *wg;
5317        bool second_try = !r5c_is_writeback(conf->log) &&
5318                !r5l_log_disk_error(conf);
5319        bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5320                r5l_log_disk_error(conf);
5321
5322again:
5323        wg = NULL;
5324        sh = NULL;
5325        if (conf->worker_cnt_per_group == 0) {
5326                handle_list = try_loprio ? &conf->loprio_list :
5327                                        &conf->handle_list;
5328        } else if (group != ANY_GROUP) {
5329                handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5330                                &conf->worker_groups[group].handle_list;
5331                wg = &conf->worker_groups[group];
5332        } else {
5333                int i;
5334                for (i = 0; i < conf->group_cnt; i++) {
5335                        handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5336                                &conf->worker_groups[i].handle_list;
5337                        wg = &conf->worker_groups[i];
5338                        if (!list_empty(handle_list))
5339                                break;
5340                }
5341        }
5342
5343        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5344                  __func__,
5345                  list_empty(handle_list) ? "empty" : "busy",
5346                  list_empty(&conf->hold_list) ? "empty" : "busy",
5347                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5348
5349        if (!list_empty(handle_list)) {
5350                sh = list_entry(handle_list->next, typeof(*sh), lru);
5351
5352                if (list_empty(&conf->hold_list))
5353                        conf->bypass_count = 0;
5354                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5355                        if (conf->hold_list.next == conf->last_hold)
5356                                conf->bypass_count++;
5357                        else {
5358                                conf->last_hold = conf->hold_list.next;
5359                                conf->bypass_count -= conf->bypass_threshold;
5360                                if (conf->bypass_count < 0)
5361                                        conf->bypass_count = 0;
5362                        }
5363                }
5364        } else if (!list_empty(&conf->hold_list) &&
5365                   ((conf->bypass_threshold &&
5366                     conf->bypass_count > conf->bypass_threshold) ||
5367                    atomic_read(&conf->pending_full_writes) == 0)) {
5368
5369                list_for_each_entry(tmp, &conf->hold_list,  lru) {
5370                        if (conf->worker_cnt_per_group == 0 ||
5371                            group == ANY_GROUP ||
5372                            !cpu_online(tmp->cpu) ||
5373                            cpu_to_group(tmp->cpu) == group) {
5374                                sh = tmp;
5375                                break;
5376                        }
5377                }
5378
5379                if (sh) {
5380                        conf->bypass_count -= conf->bypass_threshold;
5381                        if (conf->bypass_count < 0)
5382                                conf->bypass_count = 0;
5383                }
5384                wg = NULL;
5385        }
5386
5387        if (!sh) {
5388                if (second_try)
5389                        return NULL;
5390                second_try = true;
5391                try_loprio = !try_loprio;
5392                goto again;
5393        }
5394
5395        if (wg) {
5396                wg->stripes_cnt--;
5397                sh->group = NULL;
5398        }
5399        list_del_init(&sh->lru);
5400        BUG_ON(atomic_inc_return(&sh->count) != 1);
5401        return sh;
5402}
5403
5404struct raid5_plug_cb {
5405        struct blk_plug_cb      cb;
5406        struct list_head        list;
5407        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5408};
5409
5410static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5411{
5412        struct raid5_plug_cb *cb = container_of(
5413                blk_cb, struct raid5_plug_cb, cb);
5414        struct stripe_head *sh;
5415        struct mddev *mddev = cb->cb.data;
5416        struct r5conf *conf = mddev->private;
5417        int cnt = 0;
5418        int hash;
5419
5420        if (cb->list.next && !list_empty(&cb->list)) {
5421                spin_lock_irq(&conf->device_lock);
5422                while (!list_empty(&cb->list)) {
5423                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
5424                        list_del_init(&sh->lru);
5425                        /*
5426                         * avoid race release_stripe_plug() sees
5427                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
5428                         * is still in our list
5429                         */
5430                        smp_mb__before_atomic();
5431                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5432                        /*
5433                         * STRIPE_ON_RELEASE_LIST could be set here. In that
5434                         * case, the count is always > 1 here
5435                         */
5436                        hash = sh->hash_lock_index;
5437                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5438                        cnt++;
5439                }
5440                spin_unlock_irq(&conf->device_lock);
5441        }
5442        release_inactive_stripe_list(conf, cb->temp_inactive_list,
5443                                     NR_STRIPE_HASH_LOCKS);
5444        if (mddev->queue)
5445                trace_block_unplug(mddev->queue, cnt, !from_schedule);
5446        kfree(cb);
5447}
5448
5449static void release_stripe_plug(struct mddev *mddev,
5450                                struct stripe_head *sh)
5451{
5452        struct blk_plug_cb *blk_cb = blk_check_plugged(
5453                raid5_unplug, mddev,
5454                sizeof(struct raid5_plug_cb));
5455        struct raid5_plug_cb *cb;
5456
5457        if (!blk_cb) {
5458                raid5_release_stripe(sh);
5459                return;
5460        }
5461
5462        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5463
5464        if (cb->list.next == NULL) {
5465                int i;
5466                INIT_LIST_HEAD(&cb->list);
5467                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5468                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
5469        }
5470
5471        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5472                list_add_tail(&sh->lru, &cb->list);
5473        else
5474                raid5_release_stripe(sh);
5475}
5476
5477static void make_discard_request(struct mddev *mddev, struct bio *bi)
5478{
5479        struct r5conf *conf = mddev->private;
5480        sector_t logical_sector, last_sector;
5481        struct stripe_head *sh;
5482        int stripe_sectors;
5483
5484        if (mddev->reshape_position != MaxSector)
5485                /* Skip discard while reshape is happening */
5486                return;
5487
5488        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5489        last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5490
5491        bi->bi_next = NULL;
5492
5493        stripe_sectors = conf->chunk_sectors *
5494                (conf->raid_disks - conf->max_degraded);
5495        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5496                                               stripe_sectors);
5497        sector_div(last_sector, stripe_sectors);
5498
5499        logical_sector *= conf->chunk_sectors;
5500        last_sector *= conf->chunk_sectors;
5501
5502        for (; logical_sector < last_sector;
5503             logical_sector += STRIPE_SECTORS) {
5504                DEFINE_WAIT(w);
5505                int d;
5506        again:
5507                sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5508                prepare_to_wait(&conf->wait_for_overlap, &w,
5509                                TASK_UNINTERRUPTIBLE);
5510                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5511                if (test_bit(STRIPE_SYNCING, &sh->state)) {
5512                        raid5_release_stripe(sh);
5513                        schedule();
5514                        goto again;
5515                }
5516                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5517                spin_lock_irq(&sh->stripe_lock);
5518                for (d = 0; d < conf->raid_disks; d++) {
5519                        if (d == sh->pd_idx || d == sh->qd_idx)
5520                                continue;
5521                        if (sh->dev[d].towrite || sh->dev[d].toread) {
5522                                set_bit(R5_Overlap, &sh->dev[d].flags);
5523                                spin_unlock_irq(&sh->stripe_lock);
5524                                raid5_release_stripe(sh);
5525                                schedule();
5526                                goto again;
5527                        }
5528                }
5529                set_bit(STRIPE_DISCARD, &sh->state);
5530                finish_wait(&conf->wait_for_overlap, &w);
5531                sh->overwrite_disks = 0;
5532                for (d = 0; d < conf->raid_disks; d++) {
5533                        if (d == sh->pd_idx || d == sh->qd_idx)
5534                                continue;
5535                        sh->dev[d].towrite = bi;
5536                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5537                        bio_inc_remaining(bi);
5538                        md_write_inc(mddev, bi);
5539                        sh->overwrite_disks++;
5540                }
5541                spin_unlock_irq(&sh->stripe_lock);
5542                if (conf->mddev->bitmap) {
5543                        for (d = 0;
5544                             d < conf->raid_disks - conf->max_degraded;
5545                             d++)
5546                                md_bitmap_startwrite(mddev->bitmap,
5547                                                     sh->sector,
5548                                                     STRIPE_SECTORS,
5549                                                     0);
5550                        sh->bm_seq = conf->seq_flush + 1;
5551                        set_bit(STRIPE_BIT_DELAY, &sh->state);
5552                }
5553
5554                set_bit(STRIPE_HANDLE, &sh->state);
5555                clear_bit(STRIPE_DELAYED, &sh->state);
5556                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5557                        atomic_inc(&conf->preread_active_stripes);
5558                release_stripe_plug(mddev, sh);
5559        }
5560
5561        bio_endio(bi);
5562}
5563
5564static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5565{
5566        struct r5conf *conf = mddev->private;
5567        int dd_idx;
5568        sector_t new_sector;
5569        sector_t logical_sector, last_sector;
5570        struct stripe_head *sh;
5571        const int rw = bio_data_dir(bi);
5572        DEFINE_WAIT(w);
5573        bool do_prepare;
5574        bool do_flush = false;
5575
5576        if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5577                int ret = log_handle_flush_request(conf, bi);
5578
5579                if (ret == 0)
5580                        return true;
5581                if (ret == -ENODEV) {
5582                        md_flush_request(mddev, bi);
5583                        return true;
5584                }
5585                /* ret == -EAGAIN, fallback */
5586                /*
5587                 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5588                 * we need to flush journal device
5589                 */
5590                do_flush = bi->bi_opf & REQ_PREFLUSH;
5591        }
5592
5593        if (!md_write_start(mddev, bi))
5594                return false;
5595        /*
5596         * If array is degraded, better not do chunk aligned read because
5597         * later we might have to read it again in order to reconstruct
5598         * data on failed drives.
5599         */
5600        if (rw == READ && mddev->degraded == 0 &&
5601            mddev->reshape_position == MaxSector) {
5602                bi = chunk_aligned_read(mddev, bi);
5603                if (!bi)
5604                        return true;
5605        }
5606
5607        if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5608                make_discard_request(mddev, bi);
5609                md_write_end(mddev);
5610                return true;
5611        }
5612
5613        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5614        last_sector = bio_end_sector(bi);
5615        bi->bi_next = NULL;
5616
5617        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5618        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5619                int previous;
5620                int seq;
5621
5622                do_prepare = false;
5623        retry:
5624                seq = read_seqcount_begin(&conf->gen_lock);
5625                previous = 0;
5626                if (do_prepare)
5627                        prepare_to_wait(&conf->wait_for_overlap, &w,
5628                                TASK_UNINTERRUPTIBLE);
5629                if (unlikely(conf->reshape_progress != MaxSector)) {
5630                        /* spinlock is needed as reshape_progress may be
5631                         * 64bit on a 32bit platform, and so it might be
5632                         * possible to see a half-updated value
5633                         * Of course reshape_progress could change after
5634                         * the lock is dropped, so once we get a reference
5635                         * to the stripe that we think it is, we will have
5636                         * to check again.
5637                         */
5638                        spin_lock_irq(&conf->device_lock);
5639                        if (mddev->reshape_backwards
5640                            ? logical_sector < conf->reshape_progress
5641                            : logical_sector >= conf->reshape_progress) {
5642                                previous = 1;
5643                        } else {
5644                                if (mddev->reshape_backwards
5645                                    ? logical_sector < conf->reshape_safe
5646                                    : logical_sector >= conf->reshape_safe) {
5647                                        spin_unlock_irq(&conf->device_lock);
5648                                        schedule();
5649                                        do_prepare = true;
5650                                        goto retry;
5651                                }
5652                        }
5653                        spin_unlock_irq(&conf->device_lock);
5654                }
5655
5656                new_sector = raid5_compute_sector(conf, logical_sector,
5657                                                  previous,
5658                                                  &dd_idx, NULL);
5659                pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5660                        (unsigned long long)new_sector,
5661                        (unsigned long long)logical_sector);
5662
5663                sh = raid5_get_active_stripe(conf, new_sector, previous,
5664                                       (bi->bi_opf & REQ_RAHEAD), 0);
5665                if (sh) {
5666                        if (unlikely(previous)) {
5667                                /* expansion might have moved on while waiting for a
5668                                 * stripe, so we must do the range check again.
5669                                 * Expansion could still move past after this
5670                                 * test, but as we are holding a reference to
5671                                 * 'sh', we know that if that happens,
5672                                 *  STRIPE_EXPANDING will get set and the expansion
5673                                 * won't proceed until we finish with the stripe.
5674                                 */
5675                                int must_retry = 0;
5676                                spin_lock_irq(&conf->device_lock);
5677                                if (mddev->reshape_backwards
5678                                    ? logical_sector >= conf->reshape_progress
5679                                    : logical_sector < conf->reshape_progress)
5680                                        /* mismatch, need to try again */
5681                                        must_retry = 1;
5682                                spin_unlock_irq(&conf->device_lock);
5683                                if (must_retry) {
5684                                        raid5_release_stripe(sh);
5685                                        schedule();
5686                                        do_prepare = true;
5687                                        goto retry;
5688                                }
5689                        }
5690                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
5691                                /* Might have got the wrong stripe_head
5692                                 * by accident
5693                                 */
5694                                raid5_release_stripe(sh);
5695                                goto retry;
5696                        }
5697
5698                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5699                            !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5700                                /* Stripe is busy expanding or
5701                                 * add failed due to overlap.  Flush everything
5702                                 * and wait a while
5703                                 */
5704                                md_wakeup_thread(mddev->thread);
5705                                raid5_release_stripe(sh);
5706                                schedule();
5707                                do_prepare = true;
5708                                goto retry;
5709                        }
5710                        if (do_flush) {
5711                                set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5712                                /* we only need flush for one stripe */
5713                                do_flush = false;
5714                        }
5715
5716                        set_bit(STRIPE_HANDLE, &sh->state);
5717                        clear_bit(STRIPE_DELAYED, &sh->state);
5718                        if ((!sh->batch_head || sh == sh->batch_head) &&
5719                            (bi->bi_opf & REQ_SYNC) &&
5720                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5721                                atomic_inc(&conf->preread_active_stripes);
5722                        release_stripe_plug(mddev, sh);
5723                } else {
5724                        /* cannot get stripe for read-ahead, just give-up */
5725                        bi->bi_status = BLK_STS_IOERR;
5726                        break;
5727                }
5728        }
5729        finish_wait(&conf->wait_for_overlap, &w);
5730
5731        if (rw == WRITE)
5732                md_write_end(mddev);
5733        bio_endio(bi);
5734        return true;
5735}
5736
5737static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5738
5739static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5740{
5741        /* reshaping is quite different to recovery/resync so it is
5742         * handled quite separately ... here.
5743         *
5744         * On each call to sync_request, we gather one chunk worth of
5745         * destination stripes and flag them as expanding.
5746         * Then we find all the source stripes and request reads.
5747         * As the reads complete, handle_stripe will copy the data
5748         * into the destination stripe and release that stripe.
5749         */
5750        struct r5conf *conf = mddev->private;
5751        struct stripe_head *sh;
5752        struct md_rdev *rdev;
5753        sector_t first_sector, last_sector;
5754        int raid_disks = conf->previous_raid_disks;
5755        int data_disks = raid_disks - conf->max_degraded;
5756        int new_data_disks = conf->raid_disks - conf->max_degraded;
5757        int i;
5758        int dd_idx;
5759        sector_t writepos, readpos, safepos;
5760        sector_t stripe_addr;
5761        int reshape_sectors;
5762        struct list_head stripes;
5763        sector_t retn;
5764
5765        if (sector_nr == 0) {
5766                /* If restarting in the middle, skip the initial sectors */
5767                if (mddev->reshape_backwards &&
5768                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5769                        sector_nr = raid5_size(mddev, 0, 0)
5770                                - conf->reshape_progress;
5771                } else if (mddev->reshape_backwards &&
5772                           conf->reshape_progress == MaxSector) {
5773                        /* shouldn't happen, but just in case, finish up.*/
5774                        sector_nr = MaxSector;
5775                } else if (!mddev->reshape_backwards &&
5776                           conf->reshape_progress > 0)
5777                        sector_nr = conf->reshape_progress;
5778                sector_div(sector_nr, new_data_disks);
5779                if (sector_nr) {
5780                        mddev->curr_resync_completed = sector_nr;
5781                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5782                        *skipped = 1;
5783                        retn = sector_nr;
5784                        goto finish;
5785                }
5786        }
5787
5788        /* We need to process a full chunk at a time.
5789         * If old and new chunk sizes differ, we need to process the
5790         * largest of these
5791         */
5792
5793        reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5794
5795        /* We update the metadata at least every 10 seconds, or when
5796         * the data about to be copied would over-write the source of
5797         * the data at the front of the range.  i.e. one new_stripe
5798         * along from reshape_progress new_maps to after where
5799         * reshape_safe old_maps to
5800         */
5801        writepos = conf->reshape_progress;
5802        sector_div(writepos, new_data_disks);
5803        readpos = conf->reshape_progress;
5804        sector_div(readpos, data_disks);
5805        safepos = conf->reshape_safe;
5806        sector_div(safepos, data_disks);
5807        if (mddev->reshape_backwards) {
5808                BUG_ON(writepos < reshape_sectors);
5809                writepos -= reshape_sectors;
5810                readpos += reshape_sectors;
5811                safepos += reshape_sectors;
5812        } else {
5813                writepos += reshape_sectors;
5814                /* readpos and safepos are worst-case calculations.
5815                 * A negative number is overly pessimistic, and causes
5816                 * obvious problems for unsigned storage.  So clip to 0.
5817                 */
5818                readpos -= min_t(sector_t, reshape_sectors, readpos);
5819                safepos -= min_t(sector_t, reshape_sectors, safepos);
5820        }
5821
5822        /* Having calculated the 'writepos' possibly use it
5823         * to set 'stripe_addr' which is where we will write to.
5824         */
5825        if (mddev->reshape_backwards) {
5826                BUG_ON(conf->reshape_progress == 0);
5827                stripe_addr = writepos;
5828                BUG_ON((mddev->dev_sectors &
5829                        ~((sector_t)reshape_sectors - 1))
5830                       - reshape_sectors - stripe_addr
5831                       != sector_nr);
5832        } else {
5833                BUG_ON(writepos != sector_nr + reshape_sectors);
5834                stripe_addr = sector_nr;
5835        }
5836
5837        /* 'writepos' is the most advanced device address we might write.
5838         * 'readpos' is the least advanced device address we might read.
5839         * 'safepos' is the least address recorded in the metadata as having
5840         *     been reshaped.
5841         * If there is a min_offset_diff, these are adjusted either by
5842         * increasing the safepos/readpos if diff is negative, or
5843         * increasing writepos if diff is positive.
5844         * If 'readpos' is then behind 'writepos', there is no way that we can
5845         * ensure safety in the face of a crash - that must be done by userspace
5846         * making a backup of the data.  So in that case there is no particular
5847         * rush to update metadata.
5848         * Otherwise if 'safepos' is behind 'writepos', then we really need to
5849         * update the metadata to advance 'safepos' to match 'readpos' so that
5850         * we can be safe in the event of a crash.
5851         * So we insist on updating metadata if safepos is behind writepos and
5852         * readpos is beyond writepos.
5853         * In any case, update the metadata every 10 seconds.
5854         * Maybe that number should be configurable, but I'm not sure it is
5855         * worth it.... maybe it could be a multiple of safemode_delay???
5856         */
5857        if (conf->min_offset_diff < 0) {
5858                safepos += -conf->min_offset_diff;
5859                readpos += -conf->min_offset_diff;
5860        } else
5861                writepos += conf->min_offset_diff;
5862
5863        if ((mddev->reshape_backwards
5864             ? (safepos > writepos && readpos < writepos)
5865             : (safepos < writepos && readpos > writepos)) ||
5866            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5867                /* Cannot proceed until we've updated the superblock... */
5868                wait_event(conf->wait_for_overlap,
5869                           atomic_read(&conf->reshape_stripes)==0
5870                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5871                if (atomic_read(&conf->reshape_stripes) != 0)
5872                        return 0;
5873                mddev->reshape_position = conf->reshape_progress;
5874                mddev->curr_resync_completed = sector_nr;
5875                if (!mddev->reshape_backwards)
5876                        /* Can update recovery_offset */
5877                        rdev_for_each(rdev, mddev)
5878                                if (rdev->raid_disk >= 0 &&
5879                                    !test_bit(Journal, &rdev->flags) &&
5880                                    !test_bit(In_sync, &rdev->flags) &&
5881                                    rdev->recovery_offset < sector_nr)
5882                                        rdev->recovery_offset = sector_nr;
5883
5884                conf->reshape_checkpoint = jiffies;
5885                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5886                md_wakeup_thread(mddev->thread);
5887                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5888                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5889                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5890                        return 0;
5891                spin_lock_irq(&conf->device_lock);
5892                conf->reshape_safe = mddev->reshape_position;
5893                spin_unlock_irq(&conf->device_lock);
5894                wake_up(&conf->wait_for_overlap);
5895                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5896        }
5897
5898        INIT_LIST_HEAD(&stripes);
5899        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5900                int j;
5901                int skipped_disk = 0;
5902                sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5903                set_bit(STRIPE_EXPANDING, &sh->state);
5904                atomic_inc(&conf->reshape_stripes);
5905                /* If any of this stripe is beyond the end of the old
5906                 * array, then we need to zero those blocks
5907                 */
5908                for (j=sh->disks; j--;) {
5909                        sector_t s;
5910                        if (j == sh->pd_idx)
5911                                continue;
5912                        if (conf->level == 6 &&
5913                            j == sh->qd_idx)
5914                                continue;
5915                        s = raid5_compute_blocknr(sh, j, 0);
5916                        if (s < raid5_size(mddev, 0, 0)) {
5917                                skipped_disk = 1;
5918                                continue;
5919                        }
5920                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5921                        set_bit(R5_Expanded, &sh->dev[j].flags);
5922                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
5923                }
5924                if (!skipped_disk) {
5925                        set_bit(STRIPE_EXPAND_READY, &sh->state);
5926                        set_bit(STRIPE_HANDLE, &sh->state);
5927                }
5928                list_add(&sh->lru, &stripes);
5929        }
5930        spin_lock_irq(&conf->device_lock);
5931        if (mddev->reshape_backwards)
5932                conf->reshape_progress -= reshape_sectors * new_data_disks;
5933        else
5934                conf->reshape_progress += reshape_sectors * new_data_disks;
5935        spin_unlock_irq(&conf->device_lock);
5936        /* Ok, those stripe are ready. We can start scheduling
5937         * reads on the source stripes.
5938         * The source stripes are determined by mapping the first and last
5939         * block on the destination stripes.
5940         */
5941        first_sector =
5942                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5943                                     1, &dd_idx, NULL);
5944        last_sector =
5945                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5946                                            * new_data_disks - 1),
5947                                     1, &dd_idx, NULL);
5948        if (last_sector >= mddev->dev_sectors)
5949                last_sector = mddev->dev_sectors - 1;
5950        while (first_sector <= last_sector) {
5951                sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5952                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5953                set_bit(STRIPE_HANDLE, &sh->state);
5954                raid5_release_stripe(sh);
5955                first_sector += STRIPE_SECTORS;
5956        }
5957        /* Now that the sources are clearly marked, we can release
5958         * the destination stripes
5959         */
5960        while (!list_empty(&stripes)) {
5961                sh = list_entry(stripes.next, struct stripe_head, lru);
5962                list_del_init(&sh->lru);
5963                raid5_release_stripe(sh);
5964        }
5965        /* If this takes us to the resync_max point where we have to pause,
5966         * then we need to write out the superblock.
5967         */
5968        sector_nr += reshape_sectors;
5969        retn = reshape_sectors;
5970finish:
5971        if (mddev->curr_resync_completed > mddev->resync_max ||
5972            (sector_nr - mddev->curr_resync_completed) * 2
5973            >= mddev->resync_max - mddev->curr_resync_completed) {
5974                /* Cannot proceed until we've updated the superblock... */
5975                wait_event(conf->wait_for_overlap,
5976                           atomic_read(&conf->reshape_stripes) == 0
5977                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5978                if (atomic_read(&conf->reshape_stripes) != 0)
5979                        goto ret;
5980                mddev->reshape_position = conf->reshape_progress;
5981                mddev->curr_resync_completed = sector_nr;
5982                if (!mddev->reshape_backwards)
5983                        /* Can update recovery_offset */
5984                        rdev_for_each(rdev, mddev)
5985                                if (rdev->raid_disk >= 0 &&
5986                                    !test_bit(Journal, &rdev->flags) &&
5987                                    !test_bit(In_sync, &rdev->flags) &&
5988                                    rdev->recovery_offset < sector_nr)
5989                                        rdev->recovery_offset = sector_nr;
5990                conf->reshape_checkpoint = jiffies;
5991                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5992                md_wakeup_thread(mddev->thread);
5993                wait_event(mddev->sb_wait,
5994                           !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5995                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5996                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5997                        goto ret;
5998                spin_lock_irq(&conf->device_lock);
5999                conf->reshape_safe = mddev->reshape_position;
6000                spin_unlock_irq(&conf->device_lock);
6001                wake_up(&conf->wait_for_overlap);
6002                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6003        }
6004ret:
6005        return retn;
6006}
6007
6008static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6009                                          int *skipped)
6010{
6011        struct r5conf *conf = mddev->private;
6012        struct stripe_head *sh;
6013        sector_t max_sector = mddev->dev_sectors;
6014        sector_t sync_blocks;
6015        int still_degraded = 0;
6016        int i;
6017
6018        if (sector_nr >= max_sector) {
6019                /* just being told to finish up .. nothing much to do */
6020
6021                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6022                        end_reshape(conf);
6023                        return 0;
6024                }
6025
6026                if (mddev->curr_resync < max_sector) /* aborted */
6027                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6028                                           &sync_blocks, 1);
6029                else /* completed sync */
6030                        conf->fullsync = 0;
6031                md_bitmap_close_sync(mddev->bitmap);
6032
6033                return 0;
6034        }
6035
6036        /* Allow raid5_quiesce to complete */
6037        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6038
6039        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6040                return reshape_request(mddev, sector_nr, skipped);
6041
6042        /* No need to check resync_max as we never do more than one
6043         * stripe, and as resync_max will always be on a chunk boundary,
6044         * if the check in md_do_sync didn't fire, there is no chance
6045         * of overstepping resync_max here
6046         */
6047
6048        /* if there is too many failed drives and we are trying
6049         * to resync, then assert that we are finished, because there is
6050         * nothing we can do.
6051         */
6052        if (mddev->degraded >= conf->max_degraded &&
6053            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6054                sector_t rv = mddev->dev_sectors - sector_nr;
6055                *skipped = 1;
6056                return rv;
6057        }
6058        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6059            !conf->fullsync &&
6060            !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6061            sync_blocks >= STRIPE_SECTORS) {
6062                /* we can skip this block, and probably more */
6063                sync_blocks /= STRIPE_SECTORS;
6064                *skipped = 1;
6065                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6066        }
6067
6068        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6069
6070        sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6071        if (sh == NULL) {
6072                sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6073                /* make sure we don't swamp the stripe cache if someone else
6074                 * is trying to get access
6075                 */
6076                schedule_timeout_uninterruptible(1);
6077        }
6078        /* Need to check if array will still be degraded after recovery/resync
6079         * Note in case of > 1 drive failures it's possible we're rebuilding
6080         * one drive while leaving another faulty drive in array.
6081         */
6082        rcu_read_lock();
6083        for (i = 0; i < conf->raid_disks; i++) {
6084                struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6085
6086                if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6087                        still_degraded = 1;
6088        }
6089        rcu_read_unlock();
6090
6091        md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6092
6093        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6094        set_bit(STRIPE_HANDLE, &sh->state);
6095
6096        raid5_release_stripe(sh);
6097
6098        return STRIPE_SECTORS;
6099}
6100
6101static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6102                               unsigned int offset)
6103{
6104        /* We may not be able to submit a whole bio at once as there
6105         * may not be enough stripe_heads available.
6106         * We cannot pre-allocate enough stripe_heads as we may need
6107         * more than exist in the cache (if we allow ever large chunks).
6108         * So we do one stripe head at a time and record in
6109         * ->bi_hw_segments how many have been done.
6110         *
6111         * We *know* that this entire raid_bio is in one chunk, so
6112         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6113         */
6114        struct stripe_head *sh;
6115        int dd_idx;
6116        sector_t sector, logical_sector, last_sector;
6117        int scnt = 0;
6118        int handled = 0;
6119
6120        logical_sector = raid_bio->bi_iter.bi_sector &
6121                ~((sector_t)STRIPE_SECTORS-1);
6122        sector = raid5_compute_sector(conf, logical_sector,
6123                                      0, &dd_idx, NULL);
6124        last_sector = bio_end_sector(raid_bio);
6125
6126        for (; logical_sector < last_sector;
6127             logical_sector += STRIPE_SECTORS,
6128                     sector += STRIPE_SECTORS,
6129                     scnt++) {
6130
6131                if (scnt < offset)
6132                        /* already done this stripe */
6133                        continue;
6134
6135                sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6136
6137                if (!sh) {
6138                        /* failed to get a stripe - must wait */
6139                        conf->retry_read_aligned = raid_bio;
6140                        conf->retry_read_offset = scnt;
6141                        return handled;
6142                }
6143
6144                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6145                        raid5_release_stripe(sh);
6146                        conf->retry_read_aligned = raid_bio;
6147                        conf->retry_read_offset = scnt;
6148                        return handled;
6149                }
6150
6151                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6152                handle_stripe(sh);
6153                raid5_release_stripe(sh);
6154                handled++;
6155        }
6156
6157        bio_endio(raid_bio);
6158
6159        if (atomic_dec_and_test(&conf->active_aligned_reads))
6160                wake_up(&conf->wait_for_quiescent);
6161        return handled;
6162}
6163
6164static int handle_active_stripes(struct r5conf *conf, int group,
6165                                 struct r5worker *worker,
6166                                 struct list_head *temp_inactive_list)
6167{
6168        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6169        int i, batch_size = 0, hash;
6170        bool release_inactive = false;
6171
6172        while (batch_size < MAX_STRIPE_BATCH &&
6173                        (sh = __get_priority_stripe(conf, group)) != NULL)
6174                batch[batch_size++] = sh;
6175
6176        if (batch_size == 0) {
6177                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6178                        if (!list_empty(temp_inactive_list + i))
6179                                break;
6180                if (i == NR_STRIPE_HASH_LOCKS) {
6181                        spin_unlock_irq(&conf->device_lock);
6182                        log_flush_stripe_to_raid(conf);
6183                        spin_lock_irq(&conf->device_lock);
6184                        return batch_size;
6185                }
6186                release_inactive = true;
6187        }
6188        spin_unlock_irq(&conf->device_lock);
6189
6190        release_inactive_stripe_list(conf, temp_inactive_list,
6191                                     NR_STRIPE_HASH_LOCKS);
6192
6193        r5l_flush_stripe_to_raid(conf->log);
6194        if (release_inactive) {
6195                spin_lock_irq(&conf->device_lock);
6196                return 0;
6197        }
6198
6199        for (i = 0; i < batch_size; i++)
6200                handle_stripe(batch[i]);
6201        log_write_stripe_run(conf);
6202
6203        cond_resched();
6204
6205        spin_lock_irq(&conf->device_lock);
6206        for (i = 0; i < batch_size; i++) {
6207                hash = batch[i]->hash_lock_index;
6208                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6209        }
6210        return batch_size;
6211}
6212
6213static void raid5_do_work(struct work_struct *work)
6214{
6215        struct r5worker *worker = container_of(work, struct r5worker, work);
6216        struct r5worker_group *group = worker->group;
6217        struct r5conf *conf = group->conf;
6218        struct mddev *mddev = conf->mddev;
6219        int group_id = group - conf->worker_groups;
6220        int handled;
6221        struct blk_plug plug;
6222
6223        pr_debug("+++ raid5worker active\n");
6224
6225        blk_start_plug(&plug);
6226        handled = 0;
6227        spin_lock_irq(&conf->device_lock);
6228        while (1) {
6229                int batch_size, released;
6230
6231                released = release_stripe_list(conf, worker->temp_inactive_list);
6232
6233                batch_size = handle_active_stripes(conf, group_id, worker,
6234                                                   worker->temp_inactive_list);
6235                worker->working = false;
6236                if (!batch_size && !released)
6237                        break;
6238                handled += batch_size;
6239                wait_event_lock_irq(mddev->sb_wait,
6240                        !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6241                        conf->device_lock);
6242        }
6243        pr_debug("%d stripes handled\n", handled);
6244
6245        spin_unlock_irq(&conf->device_lock);
6246
6247        flush_deferred_bios(conf);
6248
6249        r5l_flush_stripe_to_raid(conf->log);
6250
6251        async_tx_issue_pending_all();
6252        blk_finish_plug(&plug);
6253
6254        pr_debug("--- raid5worker inactive\n");
6255}
6256
6257/*
6258 * This is our raid5 kernel thread.
6259 *
6260 * We scan the hash table for stripes which can be handled now.
6261 * During the scan, completed stripes are saved for us by the interrupt
6262 * handler, so that they will not have to wait for our next wakeup.
6263 */
6264static void raid5d(struct md_thread *thread)
6265{
6266        struct mddev *mddev = thread->mddev;
6267        struct r5conf *conf = mddev->private;
6268        int handled;
6269        struct blk_plug plug;
6270
6271        pr_debug("+++ raid5d active\n");
6272
6273        md_check_recovery(mddev);
6274
6275        blk_start_plug(&plug);
6276        handled = 0;
6277        spin_lock_irq(&conf->device_lock);
6278        while (1) {
6279                struct bio *bio;
6280                int batch_size, released;
6281                unsigned int offset;
6282
6283                released = release_stripe_list(conf, conf->temp_inactive_list);
6284                if (released)
6285                        clear_bit(R5_DID_ALLOC, &conf->cache_state);
6286
6287                if (
6288                    !list_empty(&conf->bitmap_list)) {
6289                        /* Now is a good time to flush some bitmap updates */
6290                        conf->seq_flush++;
6291                        spin_unlock_irq(&conf->device_lock);
6292                        md_bitmap_unplug(mddev->bitmap);
6293                        spin_lock_irq(&conf->device_lock);
6294                        conf->seq_write = conf->seq_flush;
6295                        activate_bit_delay(conf, conf->temp_inactive_list);
6296                }
6297                raid5_activate_delayed(conf);
6298
6299                while ((bio = remove_bio_from_retry(conf, &offset))) {
6300                        int ok;
6301                        spin_unlock_irq(&conf->device_lock);
6302                        ok = retry_aligned_read(conf, bio, offset);
6303                        spin_lock_irq(&conf->device_lock);
6304                        if (!ok)
6305                                break;
6306                        handled++;
6307                }
6308
6309                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6310                                                   conf->temp_inactive_list);
6311                if (!batch_size && !released)
6312                        break;
6313                handled += batch_size;
6314
6315                if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6316                        spin_unlock_irq(&conf->device_lock);
6317                        md_check_recovery(mddev);
6318                        spin_lock_irq(&conf->device_lock);
6319                }
6320        }
6321        pr_debug("%d stripes handled\n", handled);
6322
6323        spin_unlock_irq(&conf->device_lock);
6324        if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6325            mutex_trylock(&conf->cache_size_mutex)) {
6326                grow_one_stripe(conf, __GFP_NOWARN);
6327                /* Set flag even if allocation failed.  This helps
6328                 * slow down allocation requests when mem is short
6329                 */
6330                set_bit(R5_DID_ALLOC, &conf->cache_state);
6331                mutex_unlock(&conf->cache_size_mutex);
6332        }
6333
6334        flush_deferred_bios(conf);
6335
6336        r5l_flush_stripe_to_raid(conf->log);
6337
6338        async_tx_issue_pending_all();
6339        blk_finish_plug(&plug);
6340
6341        pr_debug("--- raid5d inactive\n");
6342}
6343
6344static ssize_t
6345raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6346{
6347        struct r5conf *conf;
6348        int ret = 0;
6349        spin_lock(&mddev->lock);
6350        conf = mddev->private;
6351        if (conf)
6352                ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6353        spin_unlock(&mddev->lock);
6354        return ret;
6355}
6356
6357int
6358raid5_set_cache_size(struct mddev *mddev, int size)
6359{
6360        struct r5conf *conf = mddev->private;
6361
6362        if (size <= 16 || size > 32768)
6363                return -EINVAL;
6364
6365        conf->min_nr_stripes = size;
6366        mutex_lock(&conf->cache_size_mutex);
6367        while (size < conf->max_nr_stripes &&
6368               drop_one_stripe(conf))
6369                ;
6370        mutex_unlock(&conf->cache_size_mutex);
6371
6372        md_allow_write(mddev);
6373
6374        mutex_lock(&conf->cache_size_mutex);
6375        while (size > conf->max_nr_stripes)
6376                if (!grow_one_stripe(conf, GFP_KERNEL))
6377                        break;
6378        mutex_unlock(&conf->cache_size_mutex);
6379
6380        return 0;
6381}
6382EXPORT_SYMBOL(raid5_set_cache_size);
6383
6384static ssize_t
6385raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6386{
6387        struct r5conf *conf;
6388        unsigned long new;
6389        int err;
6390
6391        if (len >= PAGE_SIZE)
6392                return -EINVAL;
6393        if (kstrtoul(page, 10, &new))
6394                return -EINVAL;
6395        err = mddev_lock(mddev);
6396        if (err)
6397                return err;
6398        conf = mddev->private;
6399        if (!conf)
6400                err = -ENODEV;
6401        else
6402                err = raid5_set_cache_size(mddev, new);
6403        mddev_unlock(mddev);
6404
6405        return err ?: len;
6406}
6407
6408static struct md_sysfs_entry
6409raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6410                                raid5_show_stripe_cache_size,
6411                                raid5_store_stripe_cache_size);
6412
6413static ssize_t
6414raid5_show_rmw_level(struct mddev  *mddev, char *page)
6415{
6416        struct r5conf *conf = mddev->private;
6417        if (conf)
6418                return sprintf(page, "%d\n", conf->rmw_level);
6419        else
6420                return 0;
6421}
6422
6423static ssize_t
6424raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6425{
6426        struct r5conf *conf = mddev->private;
6427        unsigned long new;
6428
6429        if (!conf)
6430                return -ENODEV;
6431
6432        if (len >= PAGE_SIZE)
6433                return -EINVAL;
6434
6435        if (kstrtoul(page, 10, &new))
6436                return -EINVAL;
6437
6438        if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6439                return -EINVAL;
6440
6441        if (new != PARITY_DISABLE_RMW &&
6442            new != PARITY_ENABLE_RMW &&
6443            new != PARITY_PREFER_RMW)
6444                return -EINVAL;
6445
6446        conf->rmw_level = new;
6447        return len;
6448}
6449
6450static struct md_sysfs_entry
6451raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6452                         raid5_show_rmw_level,
6453                         raid5_store_rmw_level);
6454
6455
6456static ssize_t
6457raid5_show_preread_threshold(struct mddev *mddev, char *page)
6458{
6459        struct r5conf *conf;
6460        int ret = 0;
6461        spin_lock(&mddev->lock);
6462        conf = mddev->private;
6463        if (conf)
6464                ret = sprintf(page, "%d\n", conf->bypass_threshold);
6465        spin_unlock(&mddev->lock);
6466        return ret;
6467}
6468
6469static ssize_t
6470raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6471{
6472        struct r5conf *conf;
6473        unsigned long new;
6474        int err;
6475
6476        if (len >= PAGE_SIZE)
6477                return -EINVAL;
6478        if (kstrtoul(page, 10, &new))
6479                return -EINVAL;
6480
6481        err = mddev_lock(mddev);
6482        if (err)
6483                return err;
6484        conf = mddev->private;
6485        if (!conf)
6486                err = -ENODEV;
6487        else if (new > conf->min_nr_stripes)
6488                err = -EINVAL;
6489        else
6490                conf->bypass_threshold = new;
6491        mddev_unlock(mddev);
6492        return err ?: len;
6493}
6494
6495static struct md_sysfs_entry
6496raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6497                                        S_IRUGO | S_IWUSR,
6498                                        raid5_show_preread_threshold,
6499                                        raid5_store_preread_threshold);
6500
6501static ssize_t
6502raid5_show_skip_copy(struct mddev *mddev, char *page)
6503{
6504        struct r5conf *conf;
6505        int ret = 0;
6506        spin_lock(&mddev->lock);
6507        conf = mddev->private;
6508        if (conf)
6509                ret = sprintf(page, "%d\n", conf->skip_copy);
6510        spin_unlock(&mddev->lock);
6511        return ret;
6512}
6513
6514static ssize_t
6515raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6516{
6517        struct r5conf *conf;
6518        unsigned long new;
6519        int err;
6520
6521        if (len >= PAGE_SIZE)
6522                return -EINVAL;
6523        if (kstrtoul(page, 10, &new))
6524                return -EINVAL;
6525        new = !!new;
6526
6527        err = mddev_lock(mddev);
6528        if (err)
6529                return err;
6530        conf = mddev->private;
6531        if (!conf)
6532                err = -ENODEV;
6533        else if (new != conf->skip_copy) {
6534                mddev_suspend(mddev);
6535                conf->skip_copy = new;
6536                if (new)
6537                        mddev->queue->backing_dev_info->capabilities |=
6538                                BDI_CAP_STABLE_WRITES;
6539                else
6540                        mddev->queue->backing_dev_info->capabilities &=
6541                                ~BDI_CAP_STABLE_WRITES;
6542                mddev_resume(mddev);
6543        }
6544        mddev_unlock(mddev);
6545        return err ?: len;
6546}
6547
6548static struct md_sysfs_entry
6549raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6550                                        raid5_show_skip_copy,
6551                                        raid5_store_skip_copy);
6552
6553static ssize_t
6554stripe_cache_active_show(struct mddev *mddev, char *page)
6555{
6556        struct r5conf *conf = mddev->private;
6557        if (conf)
6558                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6559        else
6560                return 0;
6561}
6562
6563static struct md_sysfs_entry
6564raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6565
6566static ssize_t
6567raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6568{
6569        struct r5conf *conf;
6570        int ret = 0;
6571        spin_lock(&mddev->lock);
6572        conf = mddev->private;
6573        if (conf)
6574                ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6575        spin_unlock(&mddev->lock);
6576        return ret;
6577}
6578
6579static int alloc_thread_groups(struct r5conf *conf, int cnt,
6580                               int *group_cnt,
6581                               int *worker_cnt_per_group,
6582                               struct r5worker_group **worker_groups);
6583static ssize_t
6584raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6585{
6586        struct r5conf *conf;
6587        unsigned int new;
6588        int err;
6589        struct r5worker_group *new_groups, *old_groups;
6590        int group_cnt, worker_cnt_per_group;
6591
6592        if (len >= PAGE_SIZE)
6593                return -EINVAL;
6594        if (kstrtouint(page, 10, &new))
6595                return -EINVAL;
6596        /* 8192 should be big enough */
6597        if (new > 8192)
6598                return -EINVAL;
6599
6600        err = mddev_lock(mddev);
6601        if (err)
6602                return err;
6603        conf = mddev->private;
6604        if (!conf)
6605                err = -ENODEV;
6606        else if (new != conf->worker_cnt_per_group) {
6607                mddev_suspend(mddev);
6608
6609                old_groups = conf->worker_groups;
6610                if (old_groups)
6611                        flush_workqueue(raid5_wq);
6612
6613                err = alloc_thread_groups(conf, new,
6614                                          &group_cnt, &worker_cnt_per_group,
6615                                          &new_groups);
6616                if (!err) {
6617                        spin_lock_irq(&conf->device_lock);
6618                        conf->group_cnt = group_cnt;
6619                        conf->worker_cnt_per_group = worker_cnt_per_group;
6620                        conf->worker_groups = new_groups;
6621                        spin_unlock_irq(&conf->device_lock);
6622
6623                        if (old_groups)
6624                                kfree(old_groups[0].workers);
6625                        kfree(old_groups);
6626                }
6627                mddev_resume(mddev);
6628        }
6629        mddev_unlock(mddev);
6630
6631        return err ?: len;
6632}
6633
6634static struct md_sysfs_entry
6635raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6636                                raid5_show_group_thread_cnt,
6637                                raid5_store_group_thread_cnt);
6638
6639static struct attribute *raid5_attrs[] =  {
6640        &raid5_stripecache_size.attr,
6641        &raid5_stripecache_active.attr,
6642        &raid5_preread_bypass_threshold.attr,
6643        &raid5_group_thread_cnt.attr,
6644        &raid5_skip_copy.attr,
6645        &raid5_rmw_level.attr,
6646        &r5c_journal_mode.attr,
6647        NULL,
6648};
6649static struct attribute_group raid5_attrs_group = {
6650        .name = NULL,
6651        .attrs = raid5_attrs,
6652};
6653
6654static int alloc_thread_groups(struct r5conf *conf, int cnt,
6655                               int *group_cnt,
6656                               int *worker_cnt_per_group,
6657                               struct r5worker_group **worker_groups)
6658{
6659        int i, j, k;
6660        ssize_t size;
6661        struct r5worker *workers;
6662
6663        *worker_cnt_per_group = cnt;
6664        if (cnt == 0) {
6665                *group_cnt = 0;
6666                *worker_groups = NULL;
6667                return 0;
6668        }
6669        *group_cnt = num_possible_nodes();
6670        size = sizeof(struct r5worker) * cnt;
6671        workers = kcalloc(size, *group_cnt, GFP_NOIO);
6672        *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6673                                 GFP_NOIO);
6674        if (!*worker_groups || !workers) {
6675                kfree(workers);
6676                kfree(*worker_groups);
6677                return -ENOMEM;
6678        }
6679
6680        for (i = 0; i < *group_cnt; i++) {
6681                struct r5worker_group *group;
6682
6683                group = &(*worker_groups)[i];
6684                INIT_LIST_HEAD(&group->handle_list);
6685                INIT_LIST_HEAD(&group->loprio_list);
6686                group->conf = conf;
6687                group->workers = workers + i * cnt;
6688
6689                for (j = 0; j < cnt; j++) {
6690                        struct r5worker *worker = group->workers + j;
6691                        worker->group = group;
6692                        INIT_WORK(&worker->work, raid5_do_work);
6693
6694                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6695                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
6696                }
6697        }
6698
6699        return 0;
6700}
6701
6702static void free_thread_groups(struct r5conf *conf)
6703{
6704        if (conf->worker_groups)
6705                kfree(conf->worker_groups[0].workers);
6706        kfree(conf->worker_groups);
6707        conf->worker_groups = NULL;
6708}
6709
6710static sector_t
6711raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6712{
6713        struct r5conf *conf = mddev->private;
6714
6715        if (!sectors)
6716                sectors = mddev->dev_sectors;
6717        if (!raid_disks)
6718                /* size is defined by the smallest of previous and new size */
6719                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6720
6721        sectors &= ~((sector_t)conf->chunk_sectors - 1);
6722        sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6723        return sectors * (raid_disks - conf->max_degraded);
6724}
6725
6726static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6727{
6728        safe_put_page(percpu->spare_page);
6729        if (percpu->scribble)
6730                flex_array_free(percpu->scribble);
6731        percpu->spare_page = NULL;
6732        percpu->scribble = NULL;
6733}
6734
6735static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6736{
6737        if (conf->level == 6 && !percpu->spare_page)
6738                percpu->spare_page = alloc_page(GFP_KERNEL);
6739        if (!percpu->scribble)
6740                percpu->scribble = scribble_alloc(max(conf->raid_disks,
6741                                                      conf->previous_raid_disks),
6742                                                  max(conf->chunk_sectors,
6743                                                      conf->prev_chunk_sectors)
6744                                                   / STRIPE_SECTORS,
6745                                                  GFP_KERNEL);
6746
6747        if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6748                free_scratch_buffer(conf, percpu);
6749                return -ENOMEM;
6750        }
6751
6752        return 0;
6753}
6754
6755static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6756{
6757        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6758
6759        free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6760        return 0;
6761}
6762
6763static void raid5_free_percpu(struct r5conf *conf)
6764{
6765        if (!conf->percpu)
6766                return;
6767
6768        cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6769        free_percpu(conf->percpu);
6770}
6771
6772static void free_conf(struct r5conf *conf)
6773{
6774        int i;
6775
6776        log_exit(conf);
6777
6778        unregister_shrinker(&conf->shrinker);
6779        free_thread_groups(conf);
6780        shrink_stripes(conf);
6781        raid5_free_percpu(conf);
6782        for (i = 0; i < conf->pool_size; i++)
6783                if (conf->disks[i].extra_page)
6784                        put_page(conf->disks[i].extra_page);
6785        kfree(conf->disks);
6786        bioset_exit(&conf->bio_split);
6787        kfree(conf->stripe_hashtbl);
6788        kfree(conf->pending_data);
6789        kfree(conf);
6790}
6791
6792static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6793{
6794        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6795        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6796
6797        if (alloc_scratch_buffer(conf, percpu)) {
6798                pr_warn("%s: failed memory allocation for cpu%u\n",
6799                        __func__, cpu);
6800                return -ENOMEM;
6801        }
6802        return 0;
6803}
6804
6805static int raid5_alloc_percpu(struct r5conf *conf)
6806{
6807        int err = 0;
6808
6809        conf->percpu = alloc_percpu(struct raid5_percpu);
6810        if (!conf->percpu)
6811                return -ENOMEM;
6812
6813        err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6814        if (!err) {
6815                conf->scribble_disks = max(conf->raid_disks,
6816                        conf->previous_raid_disks);
6817                conf->scribble_sectors = max(conf->chunk_sectors,
6818                        conf->prev_chunk_sectors);
6819        }
6820        return err;
6821}
6822
6823static unsigned long raid5_cache_scan(struct shrinker *shrink,
6824                                      struct shrink_control *sc)
6825{
6826        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6827        unsigned long ret = SHRINK_STOP;
6828
6829        if (mutex_trylock(&conf->cache_size_mutex)) {
6830                ret= 0;
6831                while (ret < sc->nr_to_scan &&
6832                       conf->max_nr_stripes > conf->min_nr_stripes) {
6833                        if (drop_one_stripe(conf) == 0) {
6834                                ret = SHRINK_STOP;
6835                                break;
6836                        }
6837                        ret++;
6838                }
6839                mutex_unlock(&conf->cache_size_mutex);
6840        }
6841        return ret;
6842}
6843
6844static unsigned long raid5_cache_count(struct shrinker *shrink,
6845                                       struct shrink_control *sc)
6846{
6847        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6848
6849        if (conf->max_nr_stripes < conf->min_nr_stripes)
6850                /* unlikely, but not impossible */
6851                return 0;
6852        return conf->max_nr_stripes - conf->min_nr_stripes;
6853}
6854
6855static struct r5conf *setup_conf(struct mddev *mddev)
6856{
6857        struct r5conf *conf;
6858        int raid_disk, memory, max_disks;
6859        struct md_rdev *rdev;
6860        struct disk_info *disk;
6861        char pers_name[6];
6862        int i;
6863        int group_cnt, worker_cnt_per_group;
6864        struct r5worker_group *new_group;
6865        int ret;
6866
6867        if (mddev->new_level != 5
6868            && mddev->new_level != 4
6869            && mddev->new_level != 6) {
6870                pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6871                        mdname(mddev), mddev->new_level);
6872                return ERR_PTR(-EIO);
6873        }
6874        if ((mddev->new_level == 5
6875             && !algorithm_valid_raid5(mddev->new_layout)) ||
6876            (mddev->new_level == 6
6877             && !algorithm_valid_raid6(mddev->new_layout))) {
6878                pr_warn("md/raid:%s: layout %d not supported\n",
6879                        mdname(mddev), mddev->new_layout);
6880                return ERR_PTR(-EIO);
6881        }
6882        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6883                pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6884                        mdname(mddev), mddev->raid_disks);
6885                return ERR_PTR(-EINVAL);
6886        }
6887
6888        if (!mddev->new_chunk_sectors ||
6889            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6890            !is_power_of_2(mddev->new_chunk_sectors)) {
6891                pr_warn("md/raid:%s: invalid chunk size %d\n",
6892                        mdname(mddev), mddev->new_chunk_sectors << 9);
6893                return ERR_PTR(-EINVAL);
6894        }
6895
6896        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6897        if (conf == NULL)
6898                goto abort;
6899        INIT_LIST_HEAD(&conf->free_list);
6900        INIT_LIST_HEAD(&conf->pending_list);
6901        conf->pending_data = kcalloc(PENDING_IO_MAX,
6902                                     sizeof(struct r5pending_data),
6903                                     GFP_KERNEL);
6904        if (!conf->pending_data)
6905                goto abort;
6906        for (i = 0; i < PENDING_IO_MAX; i++)
6907                list_add(&conf->pending_data[i].sibling, &conf->free_list);
6908        /* Don't enable multi-threading by default*/
6909        if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6910                                 &new_group)) {
6911                conf->group_cnt = group_cnt;
6912                conf->worker_cnt_per_group = worker_cnt_per_group;
6913                conf->worker_groups = new_group;
6914        } else
6915                goto abort;
6916        spin_lock_init(&conf->device_lock);
6917        seqcount_init(&conf->gen_lock);
6918        mutex_init(&conf->cache_size_mutex);
6919        init_waitqueue_head(&conf->wait_for_quiescent);
6920        init_waitqueue_head(&conf->wait_for_stripe);
6921        init_waitqueue_head(&conf->wait_for_overlap);
6922        INIT_LIST_HEAD(&conf->handle_list);
6923        INIT_LIST_HEAD(&conf->loprio_list);
6924        INIT_LIST_HEAD(&conf->hold_list);
6925        INIT_LIST_HEAD(&conf->delayed_list);
6926        INIT_LIST_HEAD(&conf->bitmap_list);
6927        init_llist_head(&conf->released_stripes);
6928        atomic_set(&conf->active_stripes, 0);
6929        atomic_set(&conf->preread_active_stripes, 0);
6930        atomic_set(&conf->active_aligned_reads, 0);
6931        spin_lock_init(&conf->pending_bios_lock);
6932        conf->batch_bio_dispatch = true;
6933        rdev_for_each(rdev, mddev) {
6934                if (test_bit(Journal, &rdev->flags))
6935                        continue;
6936                if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6937                        conf->batch_bio_dispatch = false;
6938                        break;
6939                }
6940        }
6941
6942        conf->bypass_threshold = BYPASS_THRESHOLD;
6943        conf->recovery_disabled = mddev->recovery_disabled - 1;
6944
6945        conf->raid_disks = mddev->raid_disks;
6946        if (mddev->reshape_position == MaxSector)
6947                conf->previous_raid_disks = mddev->raid_disks;
6948        else
6949                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6950        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6951
6952        conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6953                              GFP_KERNEL);
6954
6955        if (!conf->disks)
6956                goto abort;
6957
6958        for (i = 0; i < max_disks; i++) {
6959                conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6960                if (!conf->disks[i].extra_page)
6961                        goto abort;
6962        }
6963
6964        ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6965        if (ret)
6966                goto abort;
6967        conf->mddev = mddev;
6968
6969        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6970                goto abort;
6971
6972        /* We init hash_locks[0] separately to that it can be used
6973         * as the reference lock in the spin_lock_nest_lock() call
6974         * in lock_all_device_hash_locks_irq in order to convince
6975         * lockdep that we know what we are doing.
6976         */
6977        spin_lock_init(conf->hash_locks);
6978        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6979                spin_lock_init(conf->hash_locks + i);
6980
6981        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6982                INIT_LIST_HEAD(conf->inactive_list + i);
6983
6984        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6985                INIT_LIST_HEAD(conf->temp_inactive_list + i);
6986
6987        atomic_set(&conf->r5c_cached_full_stripes, 0);
6988        INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6989        atomic_set(&conf->r5c_cached_partial_stripes, 0);
6990        INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6991        atomic_set(&conf->r5c_flushing_full_stripes, 0);
6992        atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6993
6994        conf->level = mddev->new_level;
6995        conf->chunk_sectors = mddev->new_chunk_sectors;
6996        if (raid5_alloc_percpu(conf) != 0)
6997                goto abort;
6998
6999        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7000
7001        rdev_for_each(rdev, mddev) {
7002                raid_disk = rdev->raid_disk;
7003                if (raid_disk >= max_disks
7004                    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7005                        continue;
7006                disk = conf->disks + raid_disk;
7007
7008                if (test_bit(Replacement, &rdev->flags)) {
7009                        if (disk->replacement)
7010                                goto abort;
7011                        disk->replacement = rdev;
7012                } else {
7013                        if (disk->rdev)
7014                                goto abort;
7015                        disk->rdev = rdev;
7016                }
7017
7018                if (test_bit(In_sync, &rdev->flags)) {
7019                        char b[BDEVNAME_SIZE];
7020                        pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7021                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7022                } else if (rdev->saved_raid_disk != raid_disk)
7023                        /* Cannot rely on bitmap to complete recovery */
7024                        conf->fullsync = 1;
7025        }
7026
7027        conf->level = mddev->new_level;
7028        if (conf->level == 6) {
7029                conf->max_degraded = 2;
7030                if (raid6_call.xor_syndrome)
7031                        conf->rmw_level = PARITY_ENABLE_RMW;
7032                else
7033                        conf->rmw_level = PARITY_DISABLE_RMW;
7034        } else {
7035                conf->max_degraded = 1;
7036                conf->rmw_level = PARITY_ENABLE_RMW;
7037        }
7038        conf->algorithm = mddev->new_layout;
7039        conf->reshape_progress = mddev->reshape_position;
7040        if (conf->reshape_progress != MaxSector) {
7041                conf->prev_chunk_sectors = mddev->chunk_sectors;
7042                conf->prev_algo = mddev->layout;
7043        } else {
7044                conf->prev_chunk_sectors = conf->chunk_sectors;
7045                conf->prev_algo = conf->algorithm;
7046        }
7047
7048        conf->min_nr_stripes = NR_STRIPES;
7049        if (mddev->reshape_position != MaxSector) {
7050                int stripes = max_t(int,
7051                        ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7052                        ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7053                conf->min_nr_stripes = max(NR_STRIPES, stripes);
7054                if (conf->min_nr_stripes != NR_STRIPES)
7055                        pr_info("md/raid:%s: force stripe size %d for reshape\n",
7056                                mdname(mddev), conf->min_nr_stripes);
7057        }
7058        memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7059                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7060        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7061        if (grow_stripes(conf, conf->min_nr_stripes)) {
7062                pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7063                        mdname(mddev), memory);
7064                goto abort;
7065        } else
7066                pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7067        /*
7068         * Losing a stripe head costs more than the time to refill it,
7069         * it reduces the queue depth and so can hurt throughput.
7070         * So set it rather large, scaled by number of devices.
7071         */
7072        conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7073        conf->shrinker.scan_objects = raid5_cache_scan;
7074        conf->shrinker.count_objects = raid5_cache_count;
7075        conf->shrinker.batch = 128;
7076        conf->shrinker.flags = 0;
7077        if (register_shrinker(&conf->shrinker)) {
7078                pr_warn("md/raid:%s: couldn't register shrinker.\n",
7079                        mdname(mddev));
7080                goto abort;
7081        }
7082
7083        sprintf(pers_name, "raid%d", mddev->new_level);
7084        conf->thread = md_register_thread(raid5d, mddev, pers_name);
7085        if (!conf->thread) {
7086                pr_warn("md/raid:%s: couldn't allocate thread.\n",
7087                        mdname(mddev));
7088                goto abort;
7089        }
7090
7091        return conf;
7092
7093 abort:
7094        if (conf) {
7095                free_conf(conf);
7096                return ERR_PTR(-EIO);
7097        } else
7098                return ERR_PTR(-ENOMEM);
7099}
7100
7101static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7102{
7103        switch (algo) {
7104        case ALGORITHM_PARITY_0:
7105                if (raid_disk < max_degraded)
7106                        return 1;
7107                break;
7108        case ALGORITHM_PARITY_N:
7109                if (raid_disk >= raid_disks - max_degraded)
7110                        return 1;
7111                break;
7112        case ALGORITHM_PARITY_0_6:
7113                if (raid_disk == 0 ||
7114                    raid_disk == raid_disks - 1)
7115                        return 1;
7116                break;
7117        case ALGORITHM_LEFT_ASYMMETRIC_6:
7118        case ALGORITHM_RIGHT_ASYMMETRIC_6:
7119        case ALGORITHM_LEFT_SYMMETRIC_6:
7120        case ALGORITHM_RIGHT_SYMMETRIC_6:
7121                if (raid_disk == raid_disks - 1)
7122                        return 1;
7123        }
7124        return 0;
7125}
7126
7127static int raid5_run(struct mddev *mddev)
7128{
7129        struct r5conf *conf;
7130        int working_disks = 0;
7131        int dirty_parity_disks = 0;
7132        struct md_rdev *rdev;
7133        struct md_rdev *journal_dev = NULL;
7134        sector_t reshape_offset = 0;
7135        int i;
7136        long long min_offset_diff = 0;
7137        int first = 1;
7138
7139        if (mddev_init_writes_pending(mddev) < 0)
7140                return -ENOMEM;
7141
7142        if (mddev->recovery_cp != MaxSector)
7143                pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7144                          mdname(mddev));
7145
7146        rdev_for_each(rdev, mddev) {
7147                long long diff;
7148
7149                if (test_bit(Journal, &rdev->flags)) {
7150                        journal_dev = rdev;
7151                        continue;
7152                }
7153                if (rdev->raid_disk < 0)
7154                        continue;
7155                diff = (rdev->new_data_offset - rdev->data_offset);
7156                if (first) {
7157                        min_offset_diff = diff;
7158                        first = 0;
7159                } else if (mddev->reshape_backwards &&
7160                         diff < min_offset_diff)
7161                        min_offset_diff = diff;
7162                else if (!mddev->reshape_backwards &&
7163                         diff > min_offset_diff)
7164                        min_offset_diff = diff;
7165        }
7166
7167        if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7168            (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7169                pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7170                          mdname(mddev));
7171                return -EINVAL;
7172        }
7173
7174        if (mddev->reshape_position != MaxSector) {
7175                /* Check that we can continue the reshape.
7176                 * Difficulties arise if the stripe we would write to
7177                 * next is at or after the stripe we would read from next.
7178                 * For a reshape that changes the number of devices, this
7179                 * is only possible for a very short time, and mdadm makes
7180                 * sure that time appears to have past before assembling
7181                 * the array.  So we fail if that time hasn't passed.
7182                 * For a reshape that keeps the number of devices the same
7183                 * mdadm must be monitoring the reshape can keeping the
7184                 * critical areas read-only and backed up.  It will start
7185                 * the array in read-only mode, so we check for that.
7186                 */
7187                sector_t here_new, here_old;
7188                int old_disks;
7189                int max_degraded = (mddev->level == 6 ? 2 : 1);
7190                int chunk_sectors;
7191                int new_data_disks;
7192
7193                if (journal_dev) {
7194                        pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7195                                mdname(mddev));
7196                        return -EINVAL;
7197                }
7198
7199                if (mddev->new_level != mddev->level) {
7200                        pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7201                                mdname(mddev));
7202                        return -EINVAL;
7203                }
7204                old_disks = mddev->raid_disks - mddev->delta_disks;
7205                /* reshape_position must be on a new-stripe boundary, and one
7206                 * further up in new geometry must map after here in old
7207                 * geometry.
7208                 * If the chunk sizes are different, then as we perform reshape
7209                 * in units of the largest of the two, reshape_position needs
7210                 * be a multiple of the largest chunk size times new data disks.
7211                 */
7212                here_new = mddev->reshape_position;
7213                chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7214                new_data_disks = mddev->raid_disks - max_degraded;
7215                if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7216                        pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7217                                mdname(mddev));
7218                        return -EINVAL;
7219                }
7220                reshape_offset = here_new * chunk_sectors;
7221                /* here_new is the stripe we will write to */
7222                here_old = mddev->reshape_position;
7223                sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7224                /* here_old is the first stripe that we might need to read
7225                 * from */
7226                if (mddev->delta_disks == 0) {
7227                        /* We cannot be sure it is safe to start an in-place
7228                         * reshape.  It is only safe if user-space is monitoring
7229                         * and taking constant backups.
7230                         * mdadm always starts a situation like this in
7231                         * readonly mode so it can take control before
7232                         * allowing any writes.  So just check for that.
7233                         */
7234                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7235                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
7236                                /* not really in-place - so OK */;
7237                        else if (mddev->ro == 0) {
7238                                pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7239                                        mdname(mddev));
7240                                return -EINVAL;
7241                        }
7242                } else if (mddev->reshape_backwards
7243                    ? (here_new * chunk_sectors + min_offset_diff <=
7244                       here_old * chunk_sectors)
7245                    : (here_new * chunk_sectors >=
7246                       here_old * chunk_sectors + (-min_offset_diff))) {
7247                        /* Reading from the same stripe as writing to - bad */
7248                        pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7249                                mdname(mddev));
7250                        return -EINVAL;
7251                }
7252                pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7253                /* OK, we should be able to continue; */
7254        } else {
7255                BUG_ON(mddev->level != mddev->new_level);
7256                BUG_ON(mddev->layout != mddev->new_layout);
7257                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7258                BUG_ON(mddev->delta_disks != 0);
7259        }
7260
7261        if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7262            test_bit(MD_HAS_PPL, &mddev->flags)) {
7263                pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7264                        mdname(mddev));
7265                clear_bit(MD_HAS_PPL, &mddev->flags);
7266                clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7267        }
7268
7269        if (mddev->private == NULL)
7270                conf = setup_conf(mddev);
7271        else
7272                conf = mddev->private;
7273
7274        if (IS_ERR(conf))
7275                return PTR_ERR(conf);
7276
7277        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7278                if (!journal_dev) {
7279                        pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7280                                mdname(mddev));
7281                        mddev->ro = 1;
7282                        set_disk_ro(mddev->gendisk, 1);
7283                } else if (mddev->recovery_cp == MaxSector)
7284                        set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7285        }
7286
7287        conf->min_offset_diff = min_offset_diff;
7288        mddev->thread = conf->thread;
7289        conf->thread = NULL;
7290        mddev->private = conf;
7291
7292        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7293             i++) {
7294                rdev = conf->disks[i].rdev;
7295                if (!rdev && conf->disks[i].replacement) {
7296                        /* The replacement is all we have yet */
7297                        rdev = conf->disks[i].replacement;
7298                        conf->disks[i].replacement = NULL;
7299                        clear_bit(Replacement, &rdev->flags);
7300                        conf->disks[i].rdev = rdev;
7301                }
7302                if (!rdev)
7303                        continue;
7304                if (conf->disks[i].replacement &&
7305                    conf->reshape_progress != MaxSector) {
7306                        /* replacements and reshape simply do not mix. */
7307                        pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7308                        goto abort;
7309                }
7310                if (test_bit(In_sync, &rdev->flags)) {
7311                        working_disks++;
7312                        continue;
7313                }
7314                /* This disc is not fully in-sync.  However if it
7315                 * just stored parity (beyond the recovery_offset),
7316                 * when we don't need to be concerned about the
7317                 * array being dirty.
7318                 * When reshape goes 'backwards', we never have
7319                 * partially completed devices, so we only need
7320                 * to worry about reshape going forwards.
7321                 */
7322                /* Hack because v0.91 doesn't store recovery_offset properly. */
7323                if (mddev->major_version == 0 &&
7324                    mddev->minor_version > 90)
7325                        rdev->recovery_offset = reshape_offset;
7326
7327                if (rdev->recovery_offset < reshape_offset) {
7328                        /* We need to check old and new layout */
7329                        if (!only_parity(rdev->raid_disk,
7330                                         conf->algorithm,
7331                                         conf->raid_disks,
7332                                         conf->max_degraded))
7333                                continue;
7334                }
7335                if (!only_parity(rdev->raid_disk,
7336                                 conf->prev_algo,
7337                                 conf->previous_raid_disks,
7338                                 conf->max_degraded))
7339                        continue;
7340                dirty_parity_disks++;
7341        }
7342
7343        /*
7344         * 0 for a fully functional array, 1 or 2 for a degraded array.
7345         */
7346        mddev->degraded = raid5_calc_degraded(conf);
7347
7348        if (has_failed(conf)) {
7349                pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7350                        mdname(mddev), mddev->degraded, conf->raid_disks);
7351                goto abort;
7352        }
7353
7354        /* device size must be a multiple of chunk size */
7355        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7356        mddev->resync_max_sectors = mddev->dev_sectors;
7357
7358        if (mddev->degraded > dirty_parity_disks &&
7359            mddev->recovery_cp != MaxSector) {
7360                if (test_bit(MD_HAS_PPL, &mddev->flags))
7361                        pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7362                                mdname(mddev));
7363                else if (mddev->ok_start_degraded)
7364                        pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7365                                mdname(mddev));
7366                else {
7367                        pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7368                                mdname(mddev));
7369                        goto abort;
7370                }
7371        }
7372
7373        pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7374                mdname(mddev), conf->level,
7375                mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7376                mddev->new_layout);
7377
7378        print_raid5_conf(conf);
7379
7380        if (conf->reshape_progress != MaxSector) {
7381                conf->reshape_safe = conf->reshape_progress;
7382                atomic_set(&conf->reshape_stripes, 0);
7383                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7384                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7385                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7386                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7387                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7388                                                        "reshape");
7389        }
7390
7391        /* Ok, everything is just fine now */
7392        if (mddev->to_remove == &raid5_attrs_group)
7393                mddev->to_remove = NULL;
7394        else if (mddev->kobj.sd &&
7395            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7396                pr_warn("raid5: failed to create sysfs attributes for %s\n",
7397                        mdname(mddev));
7398        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7399
7400        if (mddev->queue) {
7401                int chunk_size;
7402                /* read-ahead size must cover two whole stripes, which
7403                 * is 2 * (datadisks) * chunksize where 'n' is the
7404                 * number of raid devices
7405                 */
7406                int data_disks = conf->previous_raid_disks - conf->max_degraded;
7407                int stripe = data_disks *
7408                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7409                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7410                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7411
7412                chunk_size = mddev->chunk_sectors << 9;
7413                blk_queue_io_min(mddev->queue, chunk_size);
7414                blk_queue_io_opt(mddev->queue, chunk_size *
7415                                 (conf->raid_disks - conf->max_degraded));
7416                mddev->queue->limits.raid_partial_stripes_expensive = 1;
7417                /*
7418                 * We can only discard a whole stripe. It doesn't make sense to
7419                 * discard data disk but write parity disk
7420                 */
7421                stripe = stripe * PAGE_SIZE;
7422                /* Round up to power of 2, as discard handling
7423                 * currently assumes that */
7424                while ((stripe-1) & stripe)
7425                        stripe = (stripe | (stripe-1)) + 1;
7426                mddev->queue->limits.discard_alignment = stripe;
7427                mddev->queue->limits.discard_granularity = stripe;
7428
7429                blk_queue_max_write_same_sectors(mddev->queue, 0);
7430                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7431
7432                rdev_for_each(rdev, mddev) {
7433                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7434                                          rdev->data_offset << 9);
7435                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7436                                          rdev->new_data_offset << 9);
7437                }
7438
7439                /*
7440                 * zeroing is required, otherwise data
7441                 * could be lost. Consider a scenario: discard a stripe
7442                 * (the stripe could be inconsistent if
7443                 * discard_zeroes_data is 0); write one disk of the
7444                 * stripe (the stripe could be inconsistent again
7445                 * depending on which disks are used to calculate
7446                 * parity); the disk is broken; The stripe data of this
7447                 * disk is lost.
7448                 *
7449                 * We only allow DISCARD if the sysadmin has confirmed that
7450                 * only safe devices are in use by setting a module parameter.
7451                 * A better idea might be to turn DISCARD into WRITE_ZEROES
7452                 * requests, as that is required to be safe.
7453                 */
7454                if (devices_handle_discard_safely &&
7455                    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7456                    mddev->queue->limits.discard_granularity >= stripe)
7457                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7458                                                mddev->queue);
7459                else
7460                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7461                                                mddev->queue);
7462
7463                blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7464        }
7465
7466        if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7467                goto abort;
7468
7469        return 0;
7470abort:
7471        md_unregister_thread(&mddev->thread);
7472        print_raid5_conf(conf);
7473        free_conf(conf);
7474        mddev->private = NULL;
7475        pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7476        return -EIO;
7477}
7478
7479static void raid5_free(struct mddev *mddev, void *priv)
7480{
7481        struct r5conf *conf = priv;
7482
7483        free_conf(conf);
7484        mddev->to_remove = &raid5_attrs_group;
7485}
7486
7487static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7488{
7489        struct r5conf *conf = mddev->private;
7490        int i;
7491
7492        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7493                conf->chunk_sectors / 2, mddev->layout);
7494        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7495        rcu_read_lock();
7496        for (i = 0; i < conf->raid_disks; i++) {
7497                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7498                seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7499        }
7500        rcu_read_unlock();
7501        seq_printf (seq, "]");
7502}
7503
7504static void print_raid5_conf (struct r5conf *conf)
7505{
7506        int i;
7507        struct disk_info *tmp;
7508
7509        pr_debug("RAID conf printout:\n");
7510        if (!conf) {
7511                pr_debug("(conf==NULL)\n");
7512                return;
7513        }
7514        pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7515               conf->raid_disks,
7516               conf->raid_disks - conf->mddev->degraded);
7517
7518        for (i = 0; i < conf->raid_disks; i++) {
7519                char b[BDEVNAME_SIZE];
7520                tmp = conf->disks + i;
7521                if (tmp->rdev)
7522                        pr_debug(" disk %d, o:%d, dev:%s\n",
7523                               i, !test_bit(Faulty, &tmp->rdev->flags),
7524                               bdevname(tmp->rdev->bdev, b));
7525        }
7526}
7527
7528static int raid5_spare_active(struct mddev *mddev)
7529{
7530        int i;
7531        struct r5conf *conf = mddev->private;
7532        struct disk_info *tmp;
7533        int count = 0;
7534        unsigned long flags;
7535
7536        for (i = 0; i < conf->raid_disks; i++) {
7537                tmp = conf->disks + i;
7538                if (tmp->replacement
7539                    && tmp->replacement->recovery_offset == MaxSector
7540                    && !test_bit(Faulty, &tmp->replacement->flags)
7541                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7542                        /* Replacement has just become active. */
7543                        if (!tmp->rdev
7544                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7545                                count++;
7546                        if (tmp->rdev) {
7547                                /* Replaced device not technically faulty,
7548                                 * but we need to be sure it gets removed
7549                                 * and never re-added.
7550                                 */
7551                                set_bit(Faulty, &tmp->rdev->flags);
7552                                sysfs_notify_dirent_safe(
7553                                        tmp->rdev->sysfs_state);
7554                        }
7555                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7556                } else if (tmp->rdev
7557                    && tmp->rdev->recovery_offset == MaxSector
7558                    && !test_bit(Faulty, &tmp->rdev->flags)
7559                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7560                        count++;
7561                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7562                }
7563        }
7564        spin_lock_irqsave(&conf->device_lock, flags);
7565        mddev->degraded = raid5_calc_degraded(conf);
7566        spin_unlock_irqrestore(&conf->device_lock, flags);
7567        print_raid5_conf(conf);
7568        return count;
7569}
7570
7571static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7572{
7573        struct r5conf *conf = mddev->private;
7574        int err = 0;
7575        int number = rdev->raid_disk;
7576        struct md_rdev **rdevp;
7577        struct disk_info *p = conf->disks + number;
7578
7579        print_raid5_conf(conf);
7580        if (test_bit(Journal, &rdev->flags) && conf->log) {
7581                /*
7582                 * we can't wait pending write here, as this is called in
7583                 * raid5d, wait will deadlock.
7584                 * neilb: there is no locking about new writes here,
7585                 * so this cannot be safe.
7586                 */
7587                if (atomic_read(&conf->active_stripes) ||
7588                    atomic_read(&conf->r5c_cached_full_stripes) ||
7589                    atomic_read(&conf->r5c_cached_partial_stripes)) {
7590                        return -EBUSY;
7591                }
7592                log_exit(conf);
7593                return 0;
7594        }
7595        if (rdev == p->rdev)
7596                rdevp = &p->rdev;
7597        else if (rdev == p->replacement)
7598                rdevp = &p->replacement;
7599        else
7600                return 0;
7601
7602        if (number >= conf->raid_disks &&
7603            conf->reshape_progress == MaxSector)
7604                clear_bit(In_sync, &rdev->flags);
7605
7606        if (test_bit(In_sync, &rdev->flags) ||
7607            atomic_read(&rdev->nr_pending)) {
7608                err = -EBUSY;
7609                goto abort;
7610        }
7611        /* Only remove non-faulty devices if recovery
7612         * isn't possible.
7613         */
7614        if (!test_bit(Faulty, &rdev->flags) &&
7615            mddev->recovery_disabled != conf->recovery_disabled &&
7616            !has_failed(conf) &&
7617            (!p->replacement || p->replacement == rdev) &&
7618            number < conf->raid_disks) {
7619                err = -EBUSY;
7620                goto abort;
7621        }
7622        *rdevp = NULL;
7623        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7624                synchronize_rcu();
7625                if (atomic_read(&rdev->nr_pending)) {
7626                        /* lost the race, try later */
7627                        err = -EBUSY;
7628                        *rdevp = rdev;
7629                }
7630        }
7631        if (!err) {
7632                err = log_modify(conf, rdev, false);
7633                if (err)
7634                        goto abort;
7635        }
7636        if (p->replacement) {
7637                /* We must have just cleared 'rdev' */
7638                p->rdev = p->replacement;
7639                clear_bit(Replacement, &p->replacement->flags);
7640                smp_mb(); /* Make sure other CPUs may see both as identical
7641                           * but will never see neither - if they are careful
7642                           */
7643                p->replacement = NULL;
7644
7645                if (!err)
7646                        err = log_modify(conf, p->rdev, true);
7647        }
7648
7649        clear_bit(WantReplacement, &rdev->flags);
7650abort:
7651
7652        print_raid5_conf(conf);
7653        return err;
7654}
7655
7656static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7657{
7658        struct r5conf *conf = mddev->private;
7659        int err = -EEXIST;
7660        int disk;
7661        struct disk_info *p;
7662        int first = 0;
7663        int last = conf->raid_disks - 1;
7664
7665        if (test_bit(Journal, &rdev->flags)) {
7666                if (conf->log)
7667                        return -EBUSY;
7668
7669                rdev->raid_disk = 0;
7670                /*
7671                 * The array is in readonly mode if journal is missing, so no
7672                 * write requests running. We should be safe
7673                 */
7674                log_init(conf, rdev, false);
7675                return 0;
7676        }
7677        if (mddev->recovery_disabled == conf->recovery_disabled)
7678                return -EBUSY;
7679
7680        if (rdev->saved_raid_disk < 0 && has_failed(conf))
7681                /* no point adding a device */
7682                return -EINVAL;
7683
7684        if (rdev->raid_disk >= 0)
7685                first = last = rdev->raid_disk;
7686
7687        /*
7688         * find the disk ... but prefer rdev->saved_raid_disk
7689         * if possible.
7690         */
7691        if (rdev->saved_raid_disk >= 0 &&
7692            rdev->saved_raid_disk >= first &&
7693            conf->disks[rdev->saved_raid_disk].rdev == NULL)
7694                first = rdev->saved_raid_disk;
7695
7696        for (disk = first; disk <= last; disk++) {
7697                p = conf->disks + disk;
7698                if (p->rdev == NULL) {
7699                        clear_bit(In_sync, &rdev->flags);
7700                        rdev->raid_disk = disk;
7701                        if (rdev->saved_raid_disk != disk)
7702                                conf->fullsync = 1;
7703                        rcu_assign_pointer(p->rdev, rdev);
7704
7705                        err = log_modify(conf, rdev, true);
7706
7707                        goto out;
7708                }
7709        }
7710        for (disk = first; disk <= last; disk++) {
7711                p = conf->disks + disk;
7712                if (test_bit(WantReplacement, &p->rdev->flags) &&
7713                    p->replacement == NULL) {
7714                        clear_bit(In_sync, &rdev->flags);
7715                        set_bit(Replacement, &rdev->flags);
7716                        rdev->raid_disk = disk;
7717                        err = 0;
7718                        conf->fullsync = 1;
7719                        rcu_assign_pointer(p->replacement, rdev);
7720                        break;
7721                }
7722        }
7723out:
7724        print_raid5_conf(conf);
7725        return err;
7726}
7727
7728static int raid5_resize(struct mddev *mddev, sector_t sectors)
7729{
7730        /* no resync is happening, and there is enough space
7731         * on all devices, so we can resize.
7732         * We need to make sure resync covers any new space.
7733         * If the array is shrinking we should possibly wait until
7734         * any io in the removed space completes, but it hardly seems
7735         * worth it.
7736         */
7737        sector_t newsize;
7738        struct r5conf *conf = mddev->private;
7739
7740        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7741                return -EINVAL;
7742        sectors &= ~((sector_t)conf->chunk_sectors - 1);
7743        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7744        if (mddev->external_size &&
7745            mddev->array_sectors > newsize)
7746                return -EINVAL;
7747        if (mddev->bitmap) {
7748                int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7749                if (ret)
7750                        return ret;
7751        }
7752        md_set_array_sectors(mddev, newsize);
7753        if (sectors > mddev->dev_sectors &&
7754            mddev->recovery_cp > mddev->dev_sectors) {
7755                mddev->recovery_cp = mddev->dev_sectors;
7756                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7757        }
7758        mddev->dev_sectors = sectors;
7759        mddev->resync_max_sectors = sectors;
7760        return 0;
7761}
7762
7763static int check_stripe_cache(struct mddev *mddev)
7764{
7765        /* Can only proceed if there are plenty of stripe_heads.
7766         * We need a minimum of one full stripe,, and for sensible progress
7767         * it is best to have about 4 times that.
7768         * If we require 4 times, then the default 256 4K stripe_heads will
7769         * allow for chunk sizes up to 256K, which is probably OK.
7770         * If the chunk size is greater, user-space should request more
7771         * stripe_heads first.
7772         */
7773        struct r5conf *conf = mddev->private;
7774        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7775            > conf->min_nr_stripes ||
7776            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7777            > conf->min_nr_stripes) {
7778                pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7779                        mdname(mddev),
7780                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7781                         / STRIPE_SIZE)*4);
7782                return 0;
7783        }
7784        return 1;
7785}
7786
7787static int check_reshape(struct mddev *mddev)
7788{
7789        struct r5conf *conf = mddev->private;
7790
7791        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7792                return -EINVAL;
7793        if (mddev->delta_disks == 0 &&
7794            mddev->new_layout == mddev->layout &&
7795            mddev->new_chunk_sectors == mddev->chunk_sectors)
7796                return 0; /* nothing to do */
7797        if (has_failed(conf))
7798                return -EINVAL;
7799        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7800                /* We might be able to shrink, but the devices must
7801                 * be made bigger first.
7802                 * For raid6, 4 is the minimum size.
7803                 * Otherwise 2 is the minimum
7804                 */
7805                int min = 2;
7806                if (mddev->level == 6)
7807                        min = 4;
7808                if (mddev->raid_disks + mddev->delta_disks < min)
7809                        return -EINVAL;
7810        }
7811
7812        if (!check_stripe_cache(mddev))
7813                return -ENOSPC;
7814
7815        if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7816            mddev->delta_disks > 0)
7817                if (resize_chunks(conf,
7818                                  conf->previous_raid_disks
7819                                  + max(0, mddev->delta_disks),
7820                                  max(mddev->new_chunk_sectors,
7821                                      mddev->chunk_sectors)
7822                            ) < 0)
7823                        return -ENOMEM;
7824
7825        if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7826                return 0; /* never bother to shrink */
7827        return resize_stripes(conf, (conf->previous_raid_disks
7828                                     + mddev->delta_disks));
7829}
7830
7831static int raid5_start_reshape(struct mddev *mddev)
7832{
7833        struct r5conf *conf = mddev->private;
7834        struct md_rdev *rdev;
7835        int spares = 0;
7836        unsigned long flags;
7837
7838        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7839                return -EBUSY;
7840
7841        if (!check_stripe_cache(mddev))
7842                return -ENOSPC;
7843
7844        if (has_failed(conf))
7845                return -EINVAL;
7846
7847        rdev_for_each(rdev, mddev) {
7848                if (!test_bit(In_sync, &rdev->flags)
7849                    && !test_bit(Faulty, &rdev->flags))
7850                        spares++;
7851        }
7852
7853        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7854                /* Not enough devices even to make a degraded array
7855                 * of that size
7856                 */
7857                return -EINVAL;
7858
7859        /* Refuse to reduce size of the array.  Any reductions in
7860         * array size must be through explicit setting of array_size
7861         * attribute.
7862         */
7863        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7864            < mddev->array_sectors) {
7865                pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7866                        mdname(mddev));
7867                return -EINVAL;
7868        }
7869
7870        atomic_set(&conf->reshape_stripes, 0);
7871        spin_lock_irq(&conf->device_lock);
7872        write_seqcount_begin(&conf->gen_lock);
7873        conf->previous_raid_disks = conf->raid_disks;
7874        conf->raid_disks += mddev->delta_disks;
7875        conf->prev_chunk_sectors = conf->chunk_sectors;
7876        conf->chunk_sectors = mddev->new_chunk_sectors;
7877        conf->prev_algo = conf->algorithm;
7878        conf->algorithm = mddev->new_layout;
7879        conf->generation++;
7880        /* Code that selects data_offset needs to see the generation update
7881         * if reshape_progress has been set - so a memory barrier needed.
7882         */
7883        smp_mb();
7884        if (mddev->reshape_backwards)
7885                conf->reshape_progress = raid5_size(mddev, 0, 0);
7886        else
7887                conf->reshape_progress = 0;
7888        conf->reshape_safe = conf->reshape_progress;
7889        write_seqcount_end(&conf->gen_lock);
7890        spin_unlock_irq(&conf->device_lock);
7891
7892        /* Now make sure any requests that proceeded on the assumption
7893         * the reshape wasn't running - like Discard or Read - have
7894         * completed.
7895         */
7896        mddev_suspend(mddev);
7897        mddev_resume(mddev);
7898
7899        /* Add some new drives, as many as will fit.
7900         * We know there are enough to make the newly sized array work.
7901         * Don't add devices if we are reducing the number of
7902         * devices in the array.  This is because it is not possible
7903         * to correctly record the "partially reconstructed" state of
7904         * such devices during the reshape and confusion could result.
7905         */
7906        if (mddev->delta_disks >= 0) {
7907                rdev_for_each(rdev, mddev)
7908                        if (rdev->raid_disk < 0 &&
7909                            !test_bit(Faulty, &rdev->flags)) {
7910                                if (raid5_add_disk(mddev, rdev) == 0) {
7911                                        if (rdev->raid_disk
7912                                            >= conf->previous_raid_disks)
7913                                                set_bit(In_sync, &rdev->flags);
7914                                        else
7915                                                rdev->recovery_offset = 0;
7916
7917                                        if (sysfs_link_rdev(mddev, rdev))
7918                                                /* Failure here is OK */;
7919                                }
7920                        } else if (rdev->raid_disk >= conf->previous_raid_disks
7921                                   && !test_bit(Faulty, &rdev->flags)) {
7922                                /* This is a spare that was manually added */
7923                                set_bit(In_sync, &rdev->flags);
7924                        }
7925
7926                /* When a reshape changes the number of devices,
7927                 * ->degraded is measured against the larger of the
7928                 * pre and post number of devices.
7929                 */
7930                spin_lock_irqsave(&conf->device_lock, flags);
7931                mddev->degraded = raid5_calc_degraded(conf);
7932                spin_unlock_irqrestore(&conf->device_lock, flags);
7933        }
7934        mddev->raid_disks = conf->raid_disks;
7935        mddev->reshape_position = conf->reshape_progress;
7936        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7937
7938        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7939        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7940        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7941        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7942        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7943        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7944                                                "reshape");
7945        if (!mddev->sync_thread) {
7946                mddev->recovery = 0;
7947                spin_lock_irq(&conf->device_lock);
7948                write_seqcount_begin(&conf->gen_lock);
7949                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7950                mddev->new_chunk_sectors =
7951                        conf->chunk_sectors = conf->prev_chunk_sectors;
7952                mddev->new_layout = conf->algorithm = conf->prev_algo;
7953                rdev_for_each(rdev, mddev)
7954                        rdev->new_data_offset = rdev->data_offset;
7955                smp_wmb();
7956                conf->generation --;
7957                conf->reshape_progress = MaxSector;
7958                mddev->reshape_position = MaxSector;
7959                write_seqcount_end(&conf->gen_lock);
7960                spin_unlock_irq(&conf->device_lock);
7961                return -EAGAIN;
7962        }
7963        conf->reshape_checkpoint = jiffies;
7964        md_wakeup_thread(mddev->sync_thread);
7965        md_new_event(mddev);
7966        return 0;
7967}
7968
7969/* This is called from the reshape thread and should make any
7970 * changes needed in 'conf'
7971 */
7972static void end_reshape(struct r5conf *conf)
7973{
7974
7975        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7976                struct md_rdev *rdev;
7977
7978                spin_lock_irq(&conf->device_lock);
7979                conf->previous_raid_disks = conf->raid_disks;
7980                md_finish_reshape(conf->mddev);
7981                smp_wmb();
7982                conf->reshape_progress = MaxSector;
7983                conf->mddev->reshape_position = MaxSector;
7984                rdev_for_each(rdev, conf->mddev)
7985                        if (rdev->raid_disk >= 0 &&
7986                            !test_bit(Journal, &rdev->flags) &&
7987                            !test_bit(In_sync, &rdev->flags))
7988                                rdev->recovery_offset = MaxSector;
7989                spin_unlock_irq(&conf->device_lock);
7990                wake_up(&conf->wait_for_overlap);
7991
7992                /* read-ahead size must cover two whole stripes, which is
7993                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7994                 */
7995                if (conf->mddev->queue) {
7996                        int data_disks = conf->raid_disks - conf->max_degraded;
7997                        int stripe = data_disks * ((conf->chunk_sectors << 9)
7998                                                   / PAGE_SIZE);
7999                        if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8000                                conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8001                }
8002        }
8003}
8004
8005/* This is called from the raid5d thread with mddev_lock held.
8006 * It makes config changes to the device.
8007 */
8008static void raid5_finish_reshape(struct mddev *mddev)
8009{
8010        struct r5conf *conf = mddev->private;
8011
8012        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8013
8014                if (mddev->delta_disks <= 0) {
8015                        int d;
8016                        spin_lock_irq(&conf->device_lock);
8017                        mddev->degraded = raid5_calc_degraded(conf);
8018                        spin_unlock_irq(&conf->device_lock);
8019                        for (d = conf->raid_disks ;
8020                             d < conf->raid_disks - mddev->delta_disks;
8021                             d++) {
8022                                struct md_rdev *rdev = conf->disks[d].rdev;
8023                                if (rdev)
8024                                        clear_bit(In_sync, &rdev->flags);
8025                                rdev = conf->disks[d].replacement;
8026                                if (rdev)
8027                                        clear_bit(In_sync, &rdev->flags);
8028                        }
8029                }
8030                mddev->layout = conf->algorithm;
8031                mddev->chunk_sectors = conf->chunk_sectors;
8032                mddev->reshape_position = MaxSector;
8033                mddev->delta_disks = 0;
8034                mddev->reshape_backwards = 0;
8035        }
8036}
8037
8038static void raid5_quiesce(struct mddev *mddev, int quiesce)
8039{
8040        struct r5conf *conf = mddev->private;
8041
8042        if (quiesce) {
8043                /* stop all writes */
8044                lock_all_device_hash_locks_irq(conf);
8045                /* '2' tells resync/reshape to pause so that all
8046                 * active stripes can drain
8047                 */
8048                r5c_flush_cache(conf, INT_MAX);
8049                conf->quiesce = 2;
8050                wait_event_cmd(conf->wait_for_quiescent,
8051                                    atomic_read(&conf->active_stripes) == 0 &&
8052                                    atomic_read(&conf->active_aligned_reads) == 0,
8053                                    unlock_all_device_hash_locks_irq(conf),
8054                                    lock_all_device_hash_locks_irq(conf));
8055                conf->quiesce = 1;
8056                unlock_all_device_hash_locks_irq(conf);
8057                /* allow reshape to continue */
8058                wake_up(&conf->wait_for_overlap);
8059        } else {
8060                /* re-enable writes */
8061                lock_all_device_hash_locks_irq(conf);
8062                conf->quiesce = 0;
8063                wake_up(&conf->wait_for_quiescent);
8064                wake_up(&conf->wait_for_overlap);
8065                unlock_all_device_hash_locks_irq(conf);
8066        }
8067        log_quiesce(conf, quiesce);
8068}
8069
8070static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8071{
8072        struct r0conf *raid0_conf = mddev->private;
8073        sector_t sectors;
8074
8075        /* for raid0 takeover only one zone is supported */
8076        if (raid0_conf->nr_strip_zones > 1) {
8077                pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8078                        mdname(mddev));
8079                return ERR_PTR(-EINVAL);
8080        }
8081
8082        sectors = raid0_conf->strip_zone[0].zone_end;
8083        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8084        mddev->dev_sectors = sectors;
8085        mddev->new_level = level;
8086        mddev->new_layout = ALGORITHM_PARITY_N;
8087        mddev->new_chunk_sectors = mddev->chunk_sectors;
8088        mddev->raid_disks += 1;
8089        mddev->delta_disks = 1;
8090        /* make sure it will be not marked as dirty */
8091        mddev->recovery_cp = MaxSector;
8092
8093        return setup_conf(mddev);
8094}
8095
8096static void *raid5_takeover_raid1(struct mddev *mddev)
8097{
8098        int chunksect;
8099        void *ret;
8100
8101        if (mddev->raid_disks != 2 ||
8102            mddev->degraded > 1)
8103                return ERR_PTR(-EINVAL);
8104
8105        /* Should check if there are write-behind devices? */
8106
8107        chunksect = 64*2; /* 64K by default */
8108
8109        /* The array must be an exact multiple of chunksize */
8110        while (chunksect && (mddev->array_sectors & (chunksect-1)))
8111                chunksect >>= 1;
8112
8113        if ((chunksect<<9) < STRIPE_SIZE)
8114                /* array size does not allow a suitable chunk size */
8115                return ERR_PTR(-EINVAL);
8116
8117        mddev->new_level = 5;
8118        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8119        mddev->new_chunk_sectors = chunksect;
8120
8121        ret = setup_conf(mddev);
8122        if (!IS_ERR(ret))
8123                mddev_clear_unsupported_flags(mddev,
8124                        UNSUPPORTED_MDDEV_FLAGS);
8125        return ret;
8126}
8127
8128static void *raid5_takeover_raid6(struct mddev *mddev)
8129{
8130        int new_layout;
8131
8132        switch (mddev->layout) {
8133        case ALGORITHM_LEFT_ASYMMETRIC_6:
8134                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8135                break;
8136        case ALGORITHM_RIGHT_ASYMMETRIC_6:
8137                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8138                break;
8139        case ALGORITHM_LEFT_SYMMETRIC_6:
8140                new_layout = ALGORITHM_LEFT_SYMMETRIC;
8141                break;
8142        case ALGORITHM_RIGHT_SYMMETRIC_6:
8143                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8144                break;
8145        case ALGORITHM_PARITY_0_6:
8146                new_layout = ALGORITHM_PARITY_0;
8147                break;
8148        case ALGORITHM_PARITY_N:
8149                new_layout = ALGORITHM_PARITY_N;
8150                break;
8151        default:
8152                return ERR_PTR(-EINVAL);
8153        }
8154        mddev->new_level = 5;
8155        mddev->new_layout = new_layout;
8156        mddev->delta_disks = -1;
8157        mddev->raid_disks -= 1;
8158        return setup_conf(mddev);
8159}
8160
8161static int raid5_check_reshape(struct mddev *mddev)
8162{
8163        /* For a 2-drive array, the layout and chunk size can be changed
8164         * immediately as not restriping is needed.
8165         * For larger arrays we record the new value - after validation
8166         * to be used by a reshape pass.
8167         */
8168        struct r5conf *conf = mddev->private;
8169        int new_chunk = mddev->new_chunk_sectors;
8170
8171        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8172                return -EINVAL;
8173        if (new_chunk > 0) {
8174                if (!is_power_of_2(new_chunk))
8175                        return -EINVAL;
8176                if (new_chunk < (PAGE_SIZE>>9))
8177                        return -EINVAL;
8178                if (mddev->array_sectors & (new_chunk-1))
8179                        /* not factor of array size */
8180                        return -EINVAL;
8181        }
8182
8183        /* They look valid */
8184
8185        if (mddev->raid_disks == 2) {
8186                /* can make the change immediately */
8187                if (mddev->new_layout >= 0) {
8188                        conf->algorithm = mddev->new_layout;
8189                        mddev->layout = mddev->new_layout;
8190                }
8191                if (new_chunk > 0) {
8192                        conf->chunk_sectors = new_chunk ;
8193                        mddev->chunk_sectors = new_chunk;
8194                }
8195                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8196                md_wakeup_thread(mddev->thread);
8197        }
8198        return check_reshape(mddev);
8199}
8200
8201static int raid6_check_reshape(struct mddev *mddev)
8202{
8203        int new_chunk = mddev->new_chunk_sectors;
8204
8205        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8206                return -EINVAL;
8207        if (new_chunk > 0) {
8208                if (!is_power_of_2(new_chunk))
8209                        return -EINVAL;
8210                if (new_chunk < (PAGE_SIZE >> 9))
8211                        return -EINVAL;
8212                if (mddev->array_sectors & (new_chunk-1))
8213                        /* not factor of array size */
8214                        return -EINVAL;
8215        }
8216
8217        /* They look valid */
8218        return check_reshape(mddev);
8219}
8220
8221static void *raid5_takeover(struct mddev *mddev)
8222{
8223        /* raid5 can take over:
8224         *  raid0 - if there is only one strip zone - make it a raid4 layout
8225         *  raid1 - if there are two drives.  We need to know the chunk size
8226         *  raid4 - trivial - just use a raid4 layout.
8227         *  raid6 - Providing it is a *_6 layout
8228         */
8229        if (mddev->level == 0)
8230                return raid45_takeover_raid0(mddev, 5);
8231        if (mddev->level == 1)
8232                return raid5_takeover_raid1(mddev);
8233        if (mddev->level == 4) {
8234                mddev->new_layout = ALGORITHM_PARITY_N;
8235                mddev->new_level = 5;
8236                return setup_conf(mddev);
8237        }
8238        if (mddev->level == 6)
8239                return raid5_takeover_raid6(mddev);
8240
8241        return ERR_PTR(-EINVAL);
8242}
8243
8244static void *raid4_takeover(struct mddev *mddev)
8245{
8246        /* raid4 can take over:
8247         *  raid0 - if there is only one strip zone
8248         *  raid5 - if layout is right
8249         */
8250        if (mddev->level == 0)
8251                return raid45_takeover_raid0(mddev, 4);
8252        if (mddev->level == 5 &&
8253            mddev->layout == ALGORITHM_PARITY_N) {
8254                mddev->new_layout = 0;
8255                mddev->new_level = 4;
8256                return setup_conf(mddev);
8257        }
8258        return ERR_PTR(-EINVAL);
8259}
8260
8261static struct md_personality raid5_personality;
8262
8263static void *raid6_takeover(struct mddev *mddev)
8264{
8265        /* Currently can only take over a raid5.  We map the
8266         * personality to an equivalent raid6 personality
8267         * with the Q block at the end.
8268         */
8269        int new_layout;
8270
8271        if (mddev->pers != &raid5_personality)
8272                return ERR_PTR(-EINVAL);
8273        if (mddev->degraded > 1)
8274                return ERR_PTR(-EINVAL);
8275        if (mddev->raid_disks > 253)
8276                return ERR_PTR(-EINVAL);
8277        if (mddev->raid_disks < 3)
8278                return ERR_PTR(-EINVAL);
8279
8280        switch (mddev->layout) {
8281        case ALGORITHM_LEFT_ASYMMETRIC:
8282                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8283                break;
8284        case ALGORITHM_RIGHT_ASYMMETRIC:
8285                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8286                break;
8287        case ALGORITHM_LEFT_SYMMETRIC:
8288                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8289                break;
8290        case ALGORITHM_RIGHT_SYMMETRIC:
8291                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8292                break;
8293        case ALGORITHM_PARITY_0:
8294                new_layout = ALGORITHM_PARITY_0_6;
8295                break;
8296        case ALGORITHM_PARITY_N:
8297                new_layout = ALGORITHM_PARITY_N;
8298                break;
8299        default:
8300                return ERR_PTR(-EINVAL);
8301        }
8302        mddev->new_level = 6;
8303        mddev->new_layout = new_layout;
8304        mddev->delta_disks = 1;
8305        mddev->raid_disks += 1;
8306        return setup_conf(mddev);
8307}
8308
8309static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8310{
8311        struct r5conf *conf;
8312        int err;
8313
8314        err = mddev_lock(mddev);
8315        if (err)
8316                return err;
8317        conf = mddev->private;
8318        if (!conf) {
8319                mddev_unlock(mddev);
8320                return -ENODEV;
8321        }
8322
8323        if (strncmp(buf, "ppl", 3) == 0) {
8324                /* ppl only works with RAID 5 */
8325                if (!raid5_has_ppl(conf) && conf->level == 5) {
8326                        err = log_init(conf, NULL, true);
8327                        if (!err) {
8328                                err = resize_stripes(conf, conf->pool_size);
8329                                if (err)
8330                                        log_exit(conf);
8331                        }
8332                } else
8333                        err = -EINVAL;
8334        } else if (strncmp(buf, "resync", 6) == 0) {
8335                if (raid5_has_ppl(conf)) {
8336                        mddev_suspend(mddev);
8337                        log_exit(conf);
8338                        mddev_resume(mddev);
8339                        err = resize_stripes(conf, conf->pool_size);
8340                } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8341                           r5l_log_disk_error(conf)) {
8342                        bool journal_dev_exists = false;
8343                        struct md_rdev *rdev;
8344
8345                        rdev_for_each(rdev, mddev)
8346                                if (test_bit(Journal, &rdev->flags)) {
8347                                        journal_dev_exists = true;
8348                                        break;
8349                                }
8350
8351                        if (!journal_dev_exists) {
8352                                mddev_suspend(mddev);
8353                                clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8354                                mddev_resume(mddev);
8355                        } else  /* need remove journal device first */
8356                                err = -EBUSY;
8357                } else
8358                        err = -EINVAL;
8359        } else {
8360                err = -EINVAL;
8361        }
8362
8363        if (!err)
8364                md_update_sb(mddev, 1);
8365
8366        mddev_unlock(mddev);
8367
8368        return err;
8369}
8370
8371static int raid5_start(struct mddev *mddev)
8372{
8373        struct r5conf *conf = mddev->private;
8374
8375        return r5l_start(conf->log);
8376}
8377
8378static struct md_personality raid6_personality =
8379{
8380        .name           = "raid6",
8381        .level          = 6,
8382        .owner          = THIS_MODULE,
8383        .make_request   = raid5_make_request,
8384        .run            = raid5_run,
8385        .start          = raid5_start,
8386        .free           = raid5_free,
8387        .status         = raid5_status,
8388        .error_handler  = raid5_error,
8389        .hot_add_disk   = raid5_add_disk,
8390        .hot_remove_disk= raid5_remove_disk,
8391        .spare_active   = raid5_spare_active,
8392        .sync_request   = raid5_sync_request,
8393        .resize         = raid5_resize,
8394        .size           = raid5_size,
8395        .check_reshape  = raid6_check_reshape,
8396        .start_reshape  = raid5_start_reshape,
8397        .finish_reshape = raid5_finish_reshape,
8398        .quiesce        = raid5_quiesce,
8399        .takeover       = raid6_takeover,
8400        .congested      = raid5_congested,
8401        .change_consistency_policy = raid5_change_consistency_policy,
8402};
8403static struct md_personality raid5_personality =
8404{
8405        .name           = "raid5",
8406        .level          = 5,
8407        .owner          = THIS_MODULE,
8408        .make_request   = raid5_make_request,
8409        .run            = raid5_run,
8410        .start          = raid5_start,
8411        .free           = raid5_free,
8412        .status         = raid5_status,
8413        .error_handler  = raid5_error,
8414        .hot_add_disk   = raid5_add_disk,
8415        .hot_remove_disk= raid5_remove_disk,
8416        .spare_active   = raid5_spare_active,
8417        .sync_request   = raid5_sync_request,
8418        .resize         = raid5_resize,
8419        .size           = raid5_size,
8420        .check_reshape  = raid5_check_reshape,
8421        .start_reshape  = raid5_start_reshape,
8422        .finish_reshape = raid5_finish_reshape,
8423        .quiesce        = raid5_quiesce,
8424        .takeover       = raid5_takeover,
8425        .congested      = raid5_congested,
8426        .change_consistency_policy = raid5_change_consistency_policy,
8427};
8428
8429static struct md_personality raid4_personality =
8430{
8431        .name           = "raid4",
8432        .level          = 4,
8433        .owner          = THIS_MODULE,
8434        .make_request   = raid5_make_request,
8435        .run            = raid5_run,
8436        .start          = raid5_start,
8437        .free           = raid5_free,
8438        .status         = raid5_status,
8439        .error_handler  = raid5_error,
8440        .hot_add_disk   = raid5_add_disk,
8441        .hot_remove_disk= raid5_remove_disk,
8442        .spare_active   = raid5_spare_active,
8443        .sync_request   = raid5_sync_request,
8444        .resize         = raid5_resize,
8445        .size           = raid5_size,
8446        .check_reshape  = raid5_check_reshape,
8447        .start_reshape  = raid5_start_reshape,
8448        .finish_reshape = raid5_finish_reshape,
8449        .quiesce        = raid5_quiesce,
8450        .takeover       = raid4_takeover,
8451        .congested      = raid5_congested,
8452        .change_consistency_policy = raid5_change_consistency_policy,
8453};
8454
8455static int __init raid5_init(void)
8456{
8457        int ret;
8458
8459        raid5_wq = alloc_workqueue("raid5wq",
8460                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8461        if (!raid5_wq)
8462                return -ENOMEM;
8463
8464        ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8465                                      "md/raid5:prepare",
8466                                      raid456_cpu_up_prepare,
8467                                      raid456_cpu_dead);
8468        if (ret) {
8469                destroy_workqueue(raid5_wq);
8470                return ret;
8471        }
8472        register_md_personality(&raid6_personality);
8473        register_md_personality(&raid5_personality);
8474        register_md_personality(&raid4_personality);
8475        return 0;
8476}
8477
8478static void raid5_exit(void)
8479{
8480        unregister_md_personality(&raid6_personality);
8481        unregister_md_personality(&raid5_personality);
8482        unregister_md_personality(&raid4_personality);
8483        cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8484        destroy_workqueue(raid5_wq);
8485}
8486
8487module_init(raid5_init);
8488module_exit(raid5_exit);
8489MODULE_LICENSE("GPL");
8490MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8491MODULE_ALIAS("md-personality-4"); /* RAID5 */
8492MODULE_ALIAS("md-raid5");
8493MODULE_ALIAS("md-raid4");
8494MODULE_ALIAS("md-level-5");
8495MODULE_ALIAS("md-level-4");
8496MODULE_ALIAS("md-personality-8"); /* RAID6 */
8497MODULE_ALIAS("md-raid6");
8498MODULE_ALIAS("md-level-6");
8499
8500/* This used to be two separate modules, they were: */
8501MODULE_ALIAS("raid5");
8502MODULE_ALIAS("raid6");
8503