linux/drivers/media/platform/vsp1/vsp1_rpf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
   4 *
   5 * Copyright (C) 2013-2014 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/device.h>
  11
  12#include <media/v4l2-subdev.h>
  13
  14#include "vsp1.h"
  15#include "vsp1_dl.h"
  16#include "vsp1_pipe.h"
  17#include "vsp1_rwpf.h"
  18#include "vsp1_video.h"
  19
  20#define RPF_MAX_WIDTH                           8190
  21#define RPF_MAX_HEIGHT                          8190
  22
  23/* Pre extended display list command data structure. */
  24struct vsp1_extcmd_auto_fld_body {
  25        u32 top_y0;
  26        u32 bottom_y0;
  27        u32 top_c0;
  28        u32 bottom_c0;
  29        u32 top_c1;
  30        u32 bottom_c1;
  31        u32 reserved0;
  32        u32 reserved1;
  33} __packed;
  34
  35/* -----------------------------------------------------------------------------
  36 * Device Access
  37 */
  38
  39static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
  40                                  struct vsp1_dl_body *dlb, u32 reg, u32 data)
  41{
  42        vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
  43                               data);
  44}
  45
  46/* -----------------------------------------------------------------------------
  47 * V4L2 Subdevice Operations
  48 */
  49
  50static const struct v4l2_subdev_ops rpf_ops = {
  51        .pad    = &vsp1_rwpf_pad_ops,
  52};
  53
  54/* -----------------------------------------------------------------------------
  55 * VSP1 Entity Operations
  56 */
  57
  58static void rpf_configure_stream(struct vsp1_entity *entity,
  59                                 struct vsp1_pipeline *pipe,
  60                                 struct vsp1_dl_body *dlb)
  61{
  62        struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
  63        const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
  64        const struct v4l2_pix_format_mplane *format = &rpf->format;
  65        const struct v4l2_mbus_framefmt *source_format;
  66        const struct v4l2_mbus_framefmt *sink_format;
  67        unsigned int left = 0;
  68        unsigned int top = 0;
  69        u32 pstride;
  70        u32 infmt;
  71
  72        /* Stride */
  73        pstride = format->plane_fmt[0].bytesperline
  74                << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
  75        if (format->num_planes > 1)
  76                pstride |= format->plane_fmt[1].bytesperline
  77                        << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
  78
  79        /*
  80         * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
  81         * of pstride by 2 is conveniently OK here as we are multiplying both
  82         * values.
  83         */
  84        if (pipe->interlaced)
  85                pstride *= 2;
  86
  87        vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
  88
  89        /* Format */
  90        sink_format = vsp1_entity_get_pad_format(&rpf->entity,
  91                                                 rpf->entity.config,
  92                                                 RWPF_PAD_SINK);
  93        source_format = vsp1_entity_get_pad_format(&rpf->entity,
  94                                                   rpf->entity.config,
  95                                                   RWPF_PAD_SOURCE);
  96
  97        infmt = VI6_RPF_INFMT_CIPM
  98              | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
  99
 100        if (fmtinfo->swap_yc)
 101                infmt |= VI6_RPF_INFMT_SPYCS;
 102        if (fmtinfo->swap_uv)
 103                infmt |= VI6_RPF_INFMT_SPUVS;
 104
 105        if (sink_format->code != source_format->code)
 106                infmt |= VI6_RPF_INFMT_CSC;
 107
 108        vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
 109        vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
 110
 111        /* Output location */
 112        if (pipe->brx) {
 113                const struct v4l2_rect *compose;
 114
 115                compose = vsp1_entity_get_pad_selection(pipe->brx,
 116                                                        pipe->brx->config,
 117                                                        rpf->brx_input,
 118                                                        V4L2_SEL_TGT_COMPOSE);
 119                left = compose->left;
 120                top = compose->top;
 121        }
 122
 123        if (pipe->interlaced)
 124                top /= 2;
 125
 126        vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
 127                       (left << VI6_RPF_LOC_HCOORD_SHIFT) |
 128                       (top << VI6_RPF_LOC_VCOORD_SHIFT));
 129
 130        /*
 131         * On Gen2 use the alpha channel (extended to 8 bits) when available or
 132         * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
 133         * otherwise.
 134         *
 135         * The Gen3 RPF has extended alpha capability and can both multiply the
 136         * alpha channel by a fixed global alpha value, and multiply the pixel
 137         * components to convert the input to premultiplied alpha.
 138         *
 139         * As alpha premultiplication is available in the BRx for both Gen2 and
 140         * Gen3 we handle it there and use the Gen3 alpha multiplier for global
 141         * alpha multiplication only. This however prevents conversion to
 142         * premultiplied alpha if no BRx is present in the pipeline. If that use
 143         * case turns out to be useful we will revisit the implementation (for
 144         * Gen3 only).
 145         *
 146         * We enable alpha multiplication on Gen3 using the fixed alpha value
 147         * set through the V4L2_CID_ALPHA_COMPONENT control when the input
 148         * contains an alpha channel. On Gen2 the global alpha is ignored in
 149         * that case.
 150         *
 151         * In all cases, disable color keying.
 152         */
 153        vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
 154                       (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
 155                                       : VI6_RPF_ALPH_SEL_ASEL_FIXED));
 156
 157        if (entity->vsp1->info->gen == 3) {
 158                u32 mult;
 159
 160                if (fmtinfo->alpha) {
 161                        /*
 162                         * When the input contains an alpha channel enable the
 163                         * alpha multiplier. If the input is premultiplied we
 164                         * need to multiply both the alpha channel and the pixel
 165                         * components by the global alpha value to keep them
 166                         * premultiplied. Otherwise multiply the alpha channel
 167                         * only.
 168                         */
 169                        bool premultiplied = format->flags
 170                                           & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
 171
 172                        mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
 173                             | (premultiplied ?
 174                                VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
 175                                VI6_RPF_MULT_ALPHA_P_MMD_NONE);
 176                } else {
 177                        /*
 178                         * When the input doesn't contain an alpha channel the
 179                         * global alpha value is applied in the unpacking unit,
 180                         * the alpha multiplier isn't needed and must be
 181                         * disabled.
 182                         */
 183                        mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
 184                             | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
 185                }
 186
 187                rpf->mult_alpha = mult;
 188        }
 189
 190        vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
 191        vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
 192
 193}
 194
 195static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
 196                                       struct vsp1_dl_list *dl)
 197{
 198        const struct v4l2_pix_format_mplane *format = &rpf->format;
 199        struct vsp1_dl_ext_cmd *cmd;
 200        struct vsp1_extcmd_auto_fld_body *auto_fld;
 201        u32 offset_y, offset_c;
 202
 203        cmd = vsp1_dl_get_pre_cmd(dl);
 204        if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
 205                return;
 206
 207        /* Re-index our auto_fld to match the current RPF. */
 208        auto_fld = cmd->data;
 209        auto_fld = &auto_fld[rpf->entity.index];
 210
 211        auto_fld->top_y0 = rpf->mem.addr[0];
 212        auto_fld->top_c0 = rpf->mem.addr[1];
 213        auto_fld->top_c1 = rpf->mem.addr[2];
 214
 215        offset_y = format->plane_fmt[0].bytesperline;
 216        offset_c = format->plane_fmt[1].bytesperline;
 217
 218        auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
 219        auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
 220        auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
 221
 222        cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
 223}
 224
 225static void rpf_configure_frame(struct vsp1_entity *entity,
 226                                struct vsp1_pipeline *pipe,
 227                                struct vsp1_dl_list *dl,
 228                                struct vsp1_dl_body *dlb)
 229{
 230        struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
 231
 232        vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
 233                       rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
 234        vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
 235                       (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
 236
 237        vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
 238}
 239
 240static void rpf_configure_partition(struct vsp1_entity *entity,
 241                                    struct vsp1_pipeline *pipe,
 242                                    struct vsp1_dl_list *dl,
 243                                    struct vsp1_dl_body *dlb)
 244{
 245        struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
 246        struct vsp1_rwpf_memory mem = rpf->mem;
 247        struct vsp1_device *vsp1 = rpf->entity.vsp1;
 248        const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
 249        const struct v4l2_pix_format_mplane *format = &rpf->format;
 250        struct v4l2_rect crop;
 251
 252        /*
 253         * Source size and crop offsets.
 254         *
 255         * The crop offsets correspond to the location of the crop
 256         * rectangle top left corner in the plane buffer. Only two
 257         * offsets are needed, as planes 2 and 3 always have identical
 258         * strides.
 259         */
 260        crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
 261
 262        /*
 263         * Partition Algorithm Control
 264         *
 265         * The partition algorithm can split this frame into multiple
 266         * slices. We must scale our partition window based on the pipe
 267         * configuration to match the destination partition window.
 268         * To achieve this, we adjust our crop to provide a 'sub-crop'
 269         * matching the expected partition window. Only 'left' and
 270         * 'width' need to be adjusted.
 271         */
 272        if (pipe->partitions > 1) {
 273                crop.width = pipe->partition->rpf.width;
 274                crop.left += pipe->partition->rpf.left;
 275        }
 276
 277        if (pipe->interlaced) {
 278                crop.height = round_down(crop.height / 2, fmtinfo->vsub);
 279                crop.top = round_down(crop.top / 2, fmtinfo->vsub);
 280        }
 281
 282        vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
 283                       (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
 284                       (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
 285        vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
 286                       (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
 287                       (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
 288
 289        mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
 290                     + crop.left * fmtinfo->bpp[0] / 8;
 291
 292        if (format->num_planes > 1) {
 293                unsigned int offset;
 294
 295                offset = crop.top * format->plane_fmt[1].bytesperline
 296                       + crop.left / fmtinfo->hsub
 297                       * fmtinfo->bpp[1] / 8;
 298                mem.addr[1] += offset;
 299                mem.addr[2] += offset;
 300        }
 301
 302        /*
 303         * On Gen3 hardware the SPUVS bit has no effect on 3-planar
 304         * formats. Swap the U and V planes manually in that case.
 305         */
 306        if (vsp1->info->gen == 3 && format->num_planes == 3 &&
 307            fmtinfo->swap_uv)
 308                swap(mem.addr[1], mem.addr[2]);
 309
 310        /*
 311         * Interlaced pipelines will use the extended pre-cmd to process
 312         * SRCM_ADDR_{Y,C0,C1}
 313         */
 314        if (pipe->interlaced) {
 315                vsp1_rpf_configure_autofld(rpf, dl);
 316        } else {
 317                vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
 318                vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
 319                vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
 320        }
 321}
 322
 323static void rpf_partition(struct vsp1_entity *entity,
 324                          struct vsp1_pipeline *pipe,
 325                          struct vsp1_partition *partition,
 326                          unsigned int partition_idx,
 327                          struct vsp1_partition_window *window)
 328{
 329        partition->rpf = *window;
 330}
 331
 332static const struct vsp1_entity_operations rpf_entity_ops = {
 333        .configure_stream = rpf_configure_stream,
 334        .configure_frame = rpf_configure_frame,
 335        .configure_partition = rpf_configure_partition,
 336        .partition = rpf_partition,
 337};
 338
 339/* -----------------------------------------------------------------------------
 340 * Initialization and Cleanup
 341 */
 342
 343struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
 344{
 345        struct vsp1_rwpf *rpf;
 346        char name[6];
 347        int ret;
 348
 349        rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
 350        if (rpf == NULL)
 351                return ERR_PTR(-ENOMEM);
 352
 353        rpf->max_width = RPF_MAX_WIDTH;
 354        rpf->max_height = RPF_MAX_HEIGHT;
 355
 356        rpf->entity.ops = &rpf_entity_ops;
 357        rpf->entity.type = VSP1_ENTITY_RPF;
 358        rpf->entity.index = index;
 359
 360        sprintf(name, "rpf.%u", index);
 361        ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
 362                               MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
 363        if (ret < 0)
 364                return ERR_PTR(ret);
 365
 366        /* Initialize the control handler. */
 367        ret = vsp1_rwpf_init_ctrls(rpf, 0);
 368        if (ret < 0) {
 369                dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
 370                        index);
 371                goto error;
 372        }
 373
 374        v4l2_ctrl_handler_setup(&rpf->ctrls);
 375
 376        return rpf;
 377
 378error:
 379        vsp1_entity_destroy(&rpf->entity);
 380        return ERR_PTR(ret);
 381}
 382