linux/drivers/mtd/nand/raw/docg4.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
   3 *
   4 * mtd nand driver for M-Systems DiskOnChip G4
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
  12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
  13 * Should work on these as well.  Let me know!
  14 *
  15 * TODO:
  16 *
  17 *  Mechanism for management of password-protected areas
  18 *
  19 *  Hamming ecc when reading oob only
  20 *
  21 *  According to the M-Sys documentation, this device is also available in a
  22 *  "dual-die" configuration having a 256MB capacity, but no mechanism for
  23 *  detecting this variant is documented.  Currently this driver assumes 128MB
  24 *  capacity.
  25 *
  26 *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
  27 *  contain multiple G4s in a cascaded configuration, if any.
  28 *
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/init.h>
  34#include <linux/string.h>
  35#include <linux/sched.h>
  36#include <linux/delay.h>
  37#include <linux/module.h>
  38#include <linux/export.h>
  39#include <linux/platform_device.h>
  40#include <linux/io.h>
  41#include <linux/bitops.h>
  42#include <linux/mtd/partitions.h>
  43#include <linux/mtd/mtd.h>
  44#include <linux/mtd/rawnand.h>
  45#include <linux/bch.h>
  46#include <linux/bitrev.h>
  47#include <linux/jiffies.h>
  48
  49/*
  50 * In "reliable mode" consecutive 2k pages are used in parallel (in some
  51 * fashion) to store the same data.  The data can be read back from the
  52 * even-numbered pages in the normal manner; odd-numbered pages will appear to
  53 * contain junk.  Systems that boot from the docg4 typically write the secondary
  54 * program loader (SPL) code in this mode.  The SPL is loaded by the initial
  55 * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
  56 * to the reset vector address).  This module parameter enables you to use this
  57 * driver to write the SPL.  When in this mode, no more than 2k of data can be
  58 * written at a time, because the addresses do not increment in the normal
  59 * manner, and the starting offset must be within an even-numbered 2k region;
  60 * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
  61 * 0x1a00, ...  Reliable mode is a special case and should not be used unless
  62 * you know what you're doing.
  63 */
  64static bool reliable_mode;
  65module_param(reliable_mode, bool, 0);
  66MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
  67
  68/*
  69 * You'll want to ignore badblocks if you're reading a partition that contains
  70 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
  71 * it does not use mtd nand's method for marking bad blocks (using oob area).
  72 * This will also skip the check of the "page written" flag.
  73 */
  74static bool ignore_badblocks;
  75module_param(ignore_badblocks, bool, 0);
  76MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
  77
  78struct docg4_priv {
  79        struct mtd_info *mtd;
  80        struct device *dev;
  81        void __iomem *virtadr;
  82        int status;
  83        struct {
  84                unsigned int command;
  85                int column;
  86                int page;
  87        } last_command;
  88        uint8_t oob_buf[16];
  89        uint8_t ecc_buf[7];
  90        int oob_page;
  91        struct bch_control *bch;
  92};
  93
  94/*
  95 * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
  96 * shared with other diskonchip devices (P3, G3 at least).
  97 *
  98 * Functions with names prefixed with docg4_ are mtd / nand interface functions
  99 * (though they may also be called internally).  All others are internal.
 100 */
 101
 102#define DOC_IOSPACE_DATA                0x0800
 103
 104/* register offsets */
 105#define DOC_CHIPID                      0x1000
 106#define DOC_DEVICESELECT                0x100a
 107#define DOC_ASICMODE                    0x100c
 108#define DOC_DATAEND                     0x101e
 109#define DOC_NOP                         0x103e
 110
 111#define DOC_FLASHSEQUENCE               0x1032
 112#define DOC_FLASHCOMMAND                0x1034
 113#define DOC_FLASHADDRESS                0x1036
 114#define DOC_FLASHCONTROL                0x1038
 115#define DOC_ECCCONF0                    0x1040
 116#define DOC_ECCCONF1                    0x1042
 117#define DOC_HAMMINGPARITY               0x1046
 118#define DOC_BCH_SYNDROM(idx)            (0x1048 + idx)
 119
 120#define DOC_ASICMODECONFIRM             0x1072
 121#define DOC_CHIPID_INV                  0x1074
 122#define DOC_POWERMODE                   0x107c
 123
 124#define DOCG4_MYSTERY_REG               0x1050
 125
 126/* apparently used only to write oob bytes 6 and 7 */
 127#define DOCG4_OOB_6_7                   0x1052
 128
 129/* DOC_FLASHSEQUENCE register commands */
 130#define DOC_SEQ_RESET                   0x00
 131#define DOCG4_SEQ_PAGE_READ             0x03
 132#define DOCG4_SEQ_FLUSH                 0x29
 133#define DOCG4_SEQ_PAGEWRITE             0x16
 134#define DOCG4_SEQ_PAGEPROG              0x1e
 135#define DOCG4_SEQ_BLOCKERASE            0x24
 136#define DOCG4_SEQ_SETMODE               0x45
 137
 138/* DOC_FLASHCOMMAND register commands */
 139#define DOCG4_CMD_PAGE_READ             0x00
 140#define DOC_CMD_ERASECYCLE2             0xd0
 141#define DOCG4_CMD_FLUSH                 0x70
 142#define DOCG4_CMD_READ2                 0x30
 143#define DOC_CMD_PROG_BLOCK_ADDR         0x60
 144#define DOCG4_CMD_PAGEWRITE             0x80
 145#define DOC_CMD_PROG_CYCLE2             0x10
 146#define DOCG4_CMD_FAST_MODE             0xa3 /* functionality guessed */
 147#define DOC_CMD_RELIABLE_MODE           0x22
 148#define DOC_CMD_RESET                   0xff
 149
 150/* DOC_POWERMODE register bits */
 151#define DOC_POWERDOWN_READY             0x80
 152
 153/* DOC_FLASHCONTROL register bits */
 154#define DOC_CTRL_CE                     0x10
 155#define DOC_CTRL_UNKNOWN                0x40
 156#define DOC_CTRL_FLASHREADY             0x01
 157
 158/* DOC_ECCCONF0 register bits */
 159#define DOC_ECCCONF0_READ_MODE          0x8000
 160#define DOC_ECCCONF0_UNKNOWN            0x2000
 161#define DOC_ECCCONF0_ECC_ENABLE         0x1000
 162#define DOC_ECCCONF0_DATA_BYTES_MASK    0x07ff
 163
 164/* DOC_ECCCONF1 register bits */
 165#define DOC_ECCCONF1_BCH_SYNDROM_ERR    0x80
 166#define DOC_ECCCONF1_ECC_ENABLE         0x07
 167#define DOC_ECCCONF1_PAGE_IS_WRITTEN    0x20
 168
 169/* DOC_ASICMODE register bits */
 170#define DOC_ASICMODE_RESET              0x00
 171#define DOC_ASICMODE_NORMAL             0x01
 172#define DOC_ASICMODE_POWERDOWN          0x02
 173#define DOC_ASICMODE_MDWREN             0x04
 174#define DOC_ASICMODE_BDETCT_RESET       0x08
 175#define DOC_ASICMODE_RSTIN_RESET        0x10
 176#define DOC_ASICMODE_RAM_WE             0x20
 177
 178/* good status values read after read/write/erase operations */
 179#define DOCG4_PROGSTATUS_GOOD          0x51
 180#define DOCG4_PROGSTATUS_GOOD_2        0xe0
 181
 182/*
 183 * On read operations (page and oob-only), the first byte read from I/O reg is a
 184 * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
 185 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
 186 */
 187#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
 188
 189/* anatomy of the device */
 190#define DOCG4_CHIP_SIZE        0x8000000
 191#define DOCG4_PAGE_SIZE        0x200
 192#define DOCG4_PAGES_PER_BLOCK  0x200
 193#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
 194#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
 195#define DOCG4_OOB_SIZE         0x10
 196#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
 197#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
 198#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
 199
 200/* all but the last byte is included in ecc calculation */
 201#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
 202
 203#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
 204
 205/* expected values from the ID registers */
 206#define DOCG4_IDREG1_VALUE     0x0400
 207#define DOCG4_IDREG2_VALUE     0xfbff
 208
 209/* primitive polynomial used to build the Galois field used by hw ecc gen */
 210#define DOCG4_PRIMITIVE_POLY   0x4443
 211
 212#define DOCG4_M                14  /* Galois field is of order 2^14 */
 213#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
 214
 215#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
 216#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
 217
 218/*
 219 * Bytes 0, 1 are used as badblock marker.
 220 * Bytes 2 - 6 are available to the user.
 221 * Byte 7 is hamming ecc for first 7 oob bytes only.
 222 * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
 223 * Byte 15 (the last) is used by the driver as a "page written" flag.
 224 */
 225static int docg4_ooblayout_ecc(struct mtd_info *mtd, int section,
 226                               struct mtd_oob_region *oobregion)
 227{
 228        if (section)
 229                return -ERANGE;
 230
 231        oobregion->offset = 7;
 232        oobregion->length = 9;
 233
 234        return 0;
 235}
 236
 237static int docg4_ooblayout_free(struct mtd_info *mtd, int section,
 238                                struct mtd_oob_region *oobregion)
 239{
 240        if (section)
 241                return -ERANGE;
 242
 243        oobregion->offset = 2;
 244        oobregion->length = 5;
 245
 246        return 0;
 247}
 248
 249static const struct mtd_ooblayout_ops docg4_ooblayout_ops = {
 250        .ecc = docg4_ooblayout_ecc,
 251        .free = docg4_ooblayout_free,
 252};
 253
 254/*
 255 * The device has a nop register which M-Sys claims is for the purpose of
 256 * inserting precise delays.  But beware; at least some operations fail if the
 257 * nop writes are replaced with a generic delay!
 258 */
 259static inline void write_nop(void __iomem *docptr)
 260{
 261        writew(0, docptr + DOC_NOP);
 262}
 263
 264static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 265{
 266        int i;
 267        struct nand_chip *nand = mtd_to_nand(mtd);
 268        uint16_t *p = (uint16_t *) buf;
 269        len >>= 1;
 270
 271        for (i = 0; i < len; i++)
 272                p[i] = readw(nand->IO_ADDR_R);
 273}
 274
 275static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 276{
 277        int i;
 278        struct nand_chip *nand = mtd_to_nand(mtd);
 279        uint16_t *p = (uint16_t *) buf;
 280        len >>= 1;
 281
 282        for (i = 0; i < len; i++)
 283                writew(p[i], nand->IO_ADDR_W);
 284}
 285
 286static int poll_status(struct docg4_priv *doc)
 287{
 288        /*
 289         * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
 290         * register.  Operations known to take a long time (e.g., block erase)
 291         * should sleep for a while before calling this.
 292         */
 293
 294        uint16_t flash_status;
 295        unsigned long timeo;
 296        void __iomem *docptr = doc->virtadr;
 297
 298        dev_dbg(doc->dev, "%s...\n", __func__);
 299
 300        /* hardware quirk requires reading twice initially */
 301        flash_status = readw(docptr + DOC_FLASHCONTROL);
 302
 303        timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
 304        do {
 305                cpu_relax();
 306                flash_status = readb(docptr + DOC_FLASHCONTROL);
 307        } while (!(flash_status & DOC_CTRL_FLASHREADY) &&
 308                 time_before(jiffies, timeo));
 309
 310        if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
 311                dev_err(doc->dev, "%s: timed out!\n", __func__);
 312                return NAND_STATUS_FAIL;
 313        }
 314
 315        return 0;
 316}
 317
 318
 319static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
 320{
 321
 322        struct docg4_priv *doc = nand_get_controller_data(nand);
 323        int status = NAND_STATUS_WP;       /* inverse logic?? */
 324        dev_dbg(doc->dev, "%s...\n", __func__);
 325
 326        /* report any previously unreported error */
 327        if (doc->status) {
 328                status |= doc->status;
 329                doc->status = 0;
 330                return status;
 331        }
 332
 333        status |= poll_status(doc);
 334        return status;
 335}
 336
 337static void docg4_select_chip(struct mtd_info *mtd, int chip)
 338{
 339        /*
 340         * Select among multiple cascaded chips ("floors").  Multiple floors are
 341         * not yet supported, so the only valid non-negative value is 0.
 342         */
 343        struct nand_chip *nand = mtd_to_nand(mtd);
 344        struct docg4_priv *doc = nand_get_controller_data(nand);
 345        void __iomem *docptr = doc->virtadr;
 346
 347        dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
 348
 349        if (chip < 0)
 350                return;         /* deselected */
 351
 352        if (chip > 0)
 353                dev_warn(doc->dev, "multiple floors currently unsupported\n");
 354
 355        writew(0, docptr + DOC_DEVICESELECT);
 356}
 357
 358static void reset(struct mtd_info *mtd)
 359{
 360        /* full device reset */
 361
 362        struct nand_chip *nand = mtd_to_nand(mtd);
 363        struct docg4_priv *doc = nand_get_controller_data(nand);
 364        void __iomem *docptr = doc->virtadr;
 365
 366        writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
 367               docptr + DOC_ASICMODE);
 368        writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
 369               docptr + DOC_ASICMODECONFIRM);
 370        write_nop(docptr);
 371
 372        writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
 373               docptr + DOC_ASICMODE);
 374        writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
 375               docptr + DOC_ASICMODECONFIRM);
 376
 377        writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
 378
 379        poll_status(doc);
 380}
 381
 382static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
 383{
 384        /* read the 7 hw-generated ecc bytes */
 385
 386        int i;
 387        for (i = 0; i < 7; i++) { /* hw quirk; read twice */
 388                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 389                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 390        }
 391}
 392
 393static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
 394{
 395        /*
 396         * Called after a page read when hardware reports bitflips.
 397         * Up to four bitflips can be corrected.
 398         */
 399
 400        struct nand_chip *nand = mtd_to_nand(mtd);
 401        struct docg4_priv *doc = nand_get_controller_data(nand);
 402        void __iomem *docptr = doc->virtadr;
 403        int i, numerrs, errpos[4];
 404        const uint8_t blank_read_hwecc[8] = {
 405                0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
 406
 407        read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
 408
 409        /* check if read error is due to a blank page */
 410        if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
 411                return 0;       /* yes */
 412
 413        /* skip additional check of "written flag" if ignore_badblocks */
 414        if (ignore_badblocks == false) {
 415
 416                /*
 417                 * If the hw ecc bytes are not those of a blank page, there's
 418                 * still a chance that the page is blank, but was read with
 419                 * errors.  Check the "written flag" in last oob byte, which
 420                 * is set to zero when a page is written.  If more than half
 421                 * the bits are set, assume a blank page.  Unfortunately, the
 422                 * bit flips(s) are not reported in stats.
 423                 */
 424
 425                if (nand->oob_poi[15]) {
 426                        int bit, numsetbits = 0;
 427                        unsigned long written_flag = nand->oob_poi[15];
 428                        for_each_set_bit(bit, &written_flag, 8)
 429                                numsetbits++;
 430                        if (numsetbits > 4) { /* assume blank */
 431                                dev_warn(doc->dev,
 432                                         "error(s) in blank page "
 433                                         "at offset %08x\n",
 434                                         page * DOCG4_PAGE_SIZE);
 435                                return 0;
 436                        }
 437                }
 438        }
 439
 440        /*
 441         * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 442         * algorithm is used to decode this.  However the hw operates on page
 443         * data in a bit order that is the reverse of that of the bch alg,
 444         * requiring that the bits be reversed on the result.  Thanks to Ivan
 445         * Djelic for his analysis!
 446         */
 447        for (i = 0; i < 7; i++)
 448                doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
 449
 450        numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
 451                             doc->ecc_buf, NULL, errpos);
 452
 453        if (numerrs == -EBADMSG) {
 454                dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
 455                         page * DOCG4_PAGE_SIZE);
 456                return -EBADMSG;
 457        }
 458
 459        BUG_ON(numerrs < 0);    /* -EINVAL, or anything other than -EBADMSG */
 460
 461        /* undo last step in BCH alg (modulo mirroring not needed) */
 462        for (i = 0; i < numerrs; i++)
 463                errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
 464
 465        /* fix the errors */
 466        for (i = 0; i < numerrs; i++) {
 467
 468                /* ignore if error within oob ecc bytes */
 469                if (errpos[i] > DOCG4_USERDATA_LEN * 8)
 470                        continue;
 471
 472                /* if error within oob area preceeding ecc bytes... */
 473                if (errpos[i] > DOCG4_PAGE_SIZE * 8)
 474                        change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
 475                                   (unsigned long *)nand->oob_poi);
 476
 477                else    /* error in page data */
 478                        change_bit(errpos[i], (unsigned long *)buf);
 479        }
 480
 481        dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
 482                   numerrs, page * DOCG4_PAGE_SIZE);
 483
 484        return numerrs;
 485}
 486
 487static uint8_t docg4_read_byte(struct mtd_info *mtd)
 488{
 489        struct nand_chip *nand = mtd_to_nand(mtd);
 490        struct docg4_priv *doc = nand_get_controller_data(nand);
 491
 492        dev_dbg(doc->dev, "%s\n", __func__);
 493
 494        if (doc->last_command.command == NAND_CMD_STATUS) {
 495                int status;
 496
 497                /*
 498                 * Previous nand command was status request, so nand
 499                 * infrastructure code expects to read the status here.  If an
 500                 * error occurred in a previous operation, report it.
 501                 */
 502                doc->last_command.command = 0;
 503
 504                if (doc->status) {
 505                        status = doc->status;
 506                        doc->status = 0;
 507                }
 508
 509                /* why is NAND_STATUS_WP inverse logic?? */
 510                else
 511                        status = NAND_STATUS_WP | NAND_STATUS_READY;
 512
 513                return status;
 514        }
 515
 516        dev_warn(doc->dev, "unexpected call to read_byte()\n");
 517
 518        return 0;
 519}
 520
 521static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
 522{
 523        /* write the four address bytes packed in docg4_addr to the device */
 524
 525        void __iomem *docptr = doc->virtadr;
 526        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 527        docg4_addr >>= 8;
 528        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 529        docg4_addr >>= 8;
 530        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 531        docg4_addr >>= 8;
 532        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 533}
 534
 535static int read_progstatus(struct docg4_priv *doc)
 536{
 537        /*
 538         * This apparently checks the status of programming.  Done after an
 539         * erasure, and after page data is written.  On error, the status is
 540         * saved, to be later retrieved by the nand infrastructure code.
 541         */
 542        void __iomem *docptr = doc->virtadr;
 543
 544        /* status is read from the I/O reg */
 545        uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
 546        uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
 547        uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
 548
 549        dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
 550              __func__, status1, status2, status3);
 551
 552        if (status1 != DOCG4_PROGSTATUS_GOOD
 553            || status2 != DOCG4_PROGSTATUS_GOOD_2
 554            || status3 != DOCG4_PROGSTATUS_GOOD_2) {
 555                doc->status = NAND_STATUS_FAIL;
 556                dev_warn(doc->dev, "read_progstatus failed: "
 557                         "%02x, %02x, %02x\n", status1, status2, status3);
 558                return -EIO;
 559        }
 560        return 0;
 561}
 562
 563static int pageprog(struct mtd_info *mtd)
 564{
 565        /*
 566         * Final step in writing a page.  Writes the contents of its
 567         * internal buffer out to the flash array, or some such.
 568         */
 569
 570        struct nand_chip *nand = mtd_to_nand(mtd);
 571        struct docg4_priv *doc = nand_get_controller_data(nand);
 572        void __iomem *docptr = doc->virtadr;
 573        int retval = 0;
 574
 575        dev_dbg(doc->dev, "docg4: %s\n", __func__);
 576
 577        writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
 578        writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
 579        write_nop(docptr);
 580        write_nop(docptr);
 581
 582        /* Just busy-wait; usleep_range() slows things down noticeably. */
 583        poll_status(doc);
 584
 585        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 586        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 587        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 588        write_nop(docptr);
 589        write_nop(docptr);
 590        write_nop(docptr);
 591        write_nop(docptr);
 592        write_nop(docptr);
 593
 594        retval = read_progstatus(doc);
 595        writew(0, docptr + DOC_DATAEND);
 596        write_nop(docptr);
 597        poll_status(doc);
 598        write_nop(docptr);
 599
 600        return retval;
 601}
 602
 603static void sequence_reset(struct mtd_info *mtd)
 604{
 605        /* common starting sequence for all operations */
 606
 607        struct nand_chip *nand = mtd_to_nand(mtd);
 608        struct docg4_priv *doc = nand_get_controller_data(nand);
 609        void __iomem *docptr = doc->virtadr;
 610
 611        writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
 612        writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
 613        writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
 614        write_nop(docptr);
 615        write_nop(docptr);
 616        poll_status(doc);
 617        write_nop(docptr);
 618}
 619
 620static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 621{
 622        /* first step in reading a page */
 623
 624        struct nand_chip *nand = mtd_to_nand(mtd);
 625        struct docg4_priv *doc = nand_get_controller_data(nand);
 626        void __iomem *docptr = doc->virtadr;
 627
 628        dev_dbg(doc->dev,
 629              "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
 630
 631        sequence_reset(mtd);
 632
 633        writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
 634        writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
 635        write_nop(docptr);
 636
 637        write_addr(doc, docg4_addr);
 638
 639        write_nop(docptr);
 640        writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
 641        write_nop(docptr);
 642        write_nop(docptr);
 643
 644        poll_status(doc);
 645}
 646
 647static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 648{
 649        /* first step in writing a page */
 650
 651        struct nand_chip *nand = mtd_to_nand(mtd);
 652        struct docg4_priv *doc = nand_get_controller_data(nand);
 653        void __iomem *docptr = doc->virtadr;
 654
 655        dev_dbg(doc->dev,
 656              "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
 657        sequence_reset(mtd);
 658
 659        if (unlikely(reliable_mode)) {
 660                writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
 661                writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
 662                writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
 663                write_nop(docptr);
 664        }
 665
 666        writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
 667        writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
 668        write_nop(docptr);
 669        write_addr(doc, docg4_addr);
 670        write_nop(docptr);
 671        write_nop(docptr);
 672        poll_status(doc);
 673}
 674
 675static uint32_t mtd_to_docg4_address(int page, int column)
 676{
 677        /*
 678         * Convert mtd address to format used by the device, 32 bit packed.
 679         *
 680         * Some notes on G4 addressing... The M-Sys documentation on this device
 681         * claims that pages are 2K in length, and indeed, the format of the
 682         * address used by the device reflects that.  But within each page are
 683         * four 512 byte "sub-pages", each with its own oob data that is
 684         * read/written immediately after the 512 bytes of page data.  This oob
 685         * data contains the ecc bytes for the preceeding 512 bytes.
 686         *
 687         * Rather than tell the mtd nand infrastructure that page size is 2k,
 688         * with four sub-pages each, we engage in a little subterfuge and tell
 689         * the infrastructure code that pages are 512 bytes in size.  This is
 690         * done because during the course of reverse-engineering the device, I
 691         * never observed an instance where an entire 2K "page" was read or
 692         * written as a unit.  Each "sub-page" is always addressed individually,
 693         * its data read/written, and ecc handled before the next "sub-page" is
 694         * addressed.
 695         *
 696         * This requires us to convert addresses passed by the mtd nand
 697         * infrastructure code to those used by the device.
 698         *
 699         * The address that is written to the device consists of four bytes: the
 700         * first two are the 2k page number, and the second is the index into
 701         * the page.  The index is in terms of 16-bit half-words and includes
 702         * the preceeding oob data, so e.g., the index into the second
 703         * "sub-page" is 0x108, and the full device address of the start of mtd
 704         * page 0x201 is 0x00800108.
 705         */
 706        int g4_page = page / 4;                       /* device's 2K page */
 707        int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
 708        return (g4_page << 16) | g4_index;            /* pack */
 709}
 710
 711static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
 712                          int page_addr)
 713{
 714        /* handle standard nand commands */
 715
 716        struct nand_chip *nand = mtd_to_nand(mtd);
 717        struct docg4_priv *doc = nand_get_controller_data(nand);
 718        uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
 719
 720        dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
 721              __func__, command, page_addr, column);
 722
 723        /*
 724         * Save the command and its arguments.  This enables emulation of
 725         * standard flash devices, and also some optimizations.
 726         */
 727        doc->last_command.command = command;
 728        doc->last_command.column = column;
 729        doc->last_command.page = page_addr;
 730
 731        switch (command) {
 732
 733        case NAND_CMD_RESET:
 734                reset(mtd);
 735                break;
 736
 737        case NAND_CMD_READ0:
 738                read_page_prologue(mtd, g4_addr);
 739                break;
 740
 741        case NAND_CMD_STATUS:
 742                /* next call to read_byte() will expect a status */
 743                break;
 744
 745        case NAND_CMD_SEQIN:
 746                if (unlikely(reliable_mode)) {
 747                        uint16_t g4_page = g4_addr >> 16;
 748
 749                        /* writes to odd-numbered 2k pages are invalid */
 750                        if (g4_page & 0x01)
 751                                dev_warn(doc->dev,
 752                                         "invalid reliable mode address\n");
 753                }
 754
 755                write_page_prologue(mtd, g4_addr);
 756
 757                /* hack for deferred write of oob bytes */
 758                if (doc->oob_page == page_addr)
 759                        memcpy(nand->oob_poi, doc->oob_buf, 16);
 760                break;
 761
 762        case NAND_CMD_PAGEPROG:
 763                pageprog(mtd);
 764                break;
 765
 766        /* we don't expect these, based on review of nand_base.c */
 767        case NAND_CMD_READOOB:
 768        case NAND_CMD_READID:
 769        case NAND_CMD_ERASE1:
 770        case NAND_CMD_ERASE2:
 771                dev_warn(doc->dev, "docg4_command: "
 772                         "unexpected nand command 0x%x\n", command);
 773                break;
 774
 775        }
 776}
 777
 778static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
 779                     uint8_t *buf, int page, bool use_ecc)
 780{
 781        struct docg4_priv *doc = nand_get_controller_data(nand);
 782        void __iomem *docptr = doc->virtadr;
 783        uint16_t status, edc_err, *buf16;
 784        int bits_corrected = 0;
 785
 786        dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
 787
 788        nand_read_page_op(nand, page, 0, NULL, 0);
 789
 790        writew(DOC_ECCCONF0_READ_MODE |
 791               DOC_ECCCONF0_ECC_ENABLE |
 792               DOC_ECCCONF0_UNKNOWN |
 793               DOCG4_BCH_SIZE,
 794               docptr + DOC_ECCCONF0);
 795        write_nop(docptr);
 796        write_nop(docptr);
 797        write_nop(docptr);
 798        write_nop(docptr);
 799        write_nop(docptr);
 800
 801        /* the 1st byte from the I/O reg is a status; the rest is page data */
 802        status = readw(docptr + DOC_IOSPACE_DATA);
 803        if (status & DOCG4_READ_ERROR) {
 804                dev_err(doc->dev,
 805                        "docg4_read_page: bad status: 0x%02x\n", status);
 806                writew(0, docptr + DOC_DATAEND);
 807                return -EIO;
 808        }
 809
 810        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 811
 812        docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
 813
 814        /* this device always reads oob after page data */
 815        /* first 14 oob bytes read from I/O reg */
 816        docg4_read_buf(mtd, nand->oob_poi, 14);
 817
 818        /* last 2 read from another reg */
 819        buf16 = (uint16_t *)(nand->oob_poi + 14);
 820        *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
 821
 822        write_nop(docptr);
 823
 824        if (likely(use_ecc == true)) {
 825
 826                /* read the register that tells us if bitflip(s) detected  */
 827                edc_err = readw(docptr + DOC_ECCCONF1);
 828                edc_err = readw(docptr + DOC_ECCCONF1);
 829                dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
 830
 831                /* If bitflips are reported, attempt to correct with ecc */
 832                if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
 833                        bits_corrected = correct_data(mtd, buf, page);
 834                        if (bits_corrected == -EBADMSG)
 835                                mtd->ecc_stats.failed++;
 836                        else
 837                                mtd->ecc_stats.corrected += bits_corrected;
 838                }
 839        }
 840
 841        writew(0, docptr + DOC_DATAEND);
 842        if (bits_corrected == -EBADMSG)   /* uncorrectable errors */
 843                return 0;
 844        return bits_corrected;
 845}
 846
 847
 848static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 849                               uint8_t *buf, int oob_required, int page)
 850{
 851        return read_page(mtd, nand, buf, page, false);
 852}
 853
 854static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 855                           uint8_t *buf, int oob_required, int page)
 856{
 857        return read_page(mtd, nand, buf, page, true);
 858}
 859
 860static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 861                          int page)
 862{
 863        struct docg4_priv *doc = nand_get_controller_data(nand);
 864        void __iomem *docptr = doc->virtadr;
 865        uint16_t status;
 866
 867        dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
 868
 869        nand_read_page_op(nand, page, nand->ecc.size, NULL, 0);
 870
 871        writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
 872        write_nop(docptr);
 873        write_nop(docptr);
 874        write_nop(docptr);
 875        write_nop(docptr);
 876        write_nop(docptr);
 877
 878        /* the 1st byte from the I/O reg is a status; the rest is oob data */
 879        status = readw(docptr + DOC_IOSPACE_DATA);
 880        if (status & DOCG4_READ_ERROR) {
 881                dev_warn(doc->dev,
 882                         "docg4_read_oob failed: status = 0x%02x\n", status);
 883                return -EIO;
 884        }
 885
 886        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 887
 888        docg4_read_buf(mtd, nand->oob_poi, 16);
 889
 890        write_nop(docptr);
 891        write_nop(docptr);
 892        write_nop(docptr);
 893        writew(0, docptr + DOC_DATAEND);
 894        write_nop(docptr);
 895
 896        return 0;
 897}
 898
 899static int docg4_erase_block(struct mtd_info *mtd, int page)
 900{
 901        struct nand_chip *nand = mtd_to_nand(mtd);
 902        struct docg4_priv *doc = nand_get_controller_data(nand);
 903        void __iomem *docptr = doc->virtadr;
 904        uint16_t g4_page;
 905        int status;
 906
 907        dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
 908
 909        sequence_reset(mtd);
 910
 911        writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
 912        writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
 913        write_nop(docptr);
 914
 915        /* only 2 bytes of address are written to specify erase block */
 916        g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
 917        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 918        g4_page >>= 8;
 919        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 920        write_nop(docptr);
 921
 922        /* start the erasure */
 923        writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
 924        write_nop(docptr);
 925        write_nop(docptr);
 926
 927        usleep_range(500, 1000); /* erasure is long; take a snooze */
 928        poll_status(doc);
 929        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 930        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 931        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 932        write_nop(docptr);
 933        write_nop(docptr);
 934        write_nop(docptr);
 935        write_nop(docptr);
 936        write_nop(docptr);
 937
 938        read_progstatus(doc);
 939
 940        writew(0, docptr + DOC_DATAEND);
 941        write_nop(docptr);
 942        poll_status(doc);
 943        write_nop(docptr);
 944
 945        status = nand->waitfunc(mtd, nand);
 946        if (status < 0)
 947                return status;
 948
 949        return status & NAND_STATUS_FAIL ? -EIO : 0;
 950}
 951
 952static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
 953                      const uint8_t *buf, int page, bool use_ecc)
 954{
 955        struct docg4_priv *doc = nand_get_controller_data(nand);
 956        void __iomem *docptr = doc->virtadr;
 957        uint8_t ecc_buf[8];
 958
 959        dev_dbg(doc->dev, "%s...\n", __func__);
 960
 961        nand_prog_page_begin_op(nand, page, 0, NULL, 0);
 962
 963        writew(DOC_ECCCONF0_ECC_ENABLE |
 964               DOC_ECCCONF0_UNKNOWN |
 965               DOCG4_BCH_SIZE,
 966               docptr + DOC_ECCCONF0);
 967        write_nop(docptr);
 968
 969        /* write the page data */
 970        docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
 971
 972        /* oob bytes 0 through 5 are written to I/O reg */
 973        docg4_write_buf16(mtd, nand->oob_poi, 6);
 974
 975        /* oob byte 6 written to a separate reg */
 976        writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
 977
 978        write_nop(docptr);
 979        write_nop(docptr);
 980
 981        /* write hw-generated ecc bytes to oob */
 982        if (likely(use_ecc == true)) {
 983                /* oob byte 7 is hamming code */
 984                uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
 985                hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
 986                writew(hamming, docptr + DOCG4_OOB_6_7);
 987                write_nop(docptr);
 988
 989                /* read the 7 bch bytes from ecc regs */
 990                read_hw_ecc(docptr, ecc_buf);
 991                ecc_buf[7] = 0;         /* clear the "page written" flag */
 992        }
 993
 994        /* write user-supplied bytes to oob */
 995        else {
 996                writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
 997                write_nop(docptr);
 998                memcpy(ecc_buf, &nand->oob_poi[8], 8);
 999        }
1000
1001        docg4_write_buf16(mtd, ecc_buf, 8);
1002        write_nop(docptr);
1003        write_nop(docptr);
1004        writew(0, docptr + DOC_DATAEND);
1005        write_nop(docptr);
1006
1007        return nand_prog_page_end_op(nand);
1008}
1009
1010static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
1011                                const uint8_t *buf, int oob_required, int page)
1012{
1013        return write_page(mtd, nand, buf, page, false);
1014}
1015
1016static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
1017                             const uint8_t *buf, int oob_required, int page)
1018{
1019        return write_page(mtd, nand, buf, page, true);
1020}
1021
1022static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
1023                           int page)
1024{
1025        /*
1026         * Writing oob-only is not really supported, because MLC nand must write
1027         * oob bytes at the same time as page data.  Nonetheless, we save the
1028         * oob buffer contents here, and then write it along with the page data
1029         * if the same page is subsequently written.  This allows user space
1030         * utilities that write the oob data prior to the page data to work
1031         * (e.g., nandwrite).  The disdvantage is that, if the intention was to
1032         * write oob only, the operation is quietly ignored.  Also, oob can get
1033         * corrupted if two concurrent processes are running nandwrite.
1034         */
1035
1036        /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1037        struct docg4_priv *doc = nand_get_controller_data(nand);
1038        doc->oob_page = page;
1039        memcpy(doc->oob_buf, nand->oob_poi, 16);
1040        return 0;
1041}
1042
1043static int __init read_factory_bbt(struct mtd_info *mtd)
1044{
1045        /*
1046         * The device contains a read-only factory bad block table.  Read it and
1047         * update the memory-based bbt accordingly.
1048         */
1049
1050        struct nand_chip *nand = mtd_to_nand(mtd);
1051        struct docg4_priv *doc = nand_get_controller_data(nand);
1052        uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1053        uint8_t *buf;
1054        int i, block;
1055        __u32 eccfailed_stats = mtd->ecc_stats.failed;
1056
1057        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1058        if (buf == NULL)
1059                return -ENOMEM;
1060
1061        read_page_prologue(mtd, g4_addr);
1062        docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1063
1064        /*
1065         * If no memory-based bbt was created, exit.  This will happen if module
1066         * parameter ignore_badblocks is set.  Then why even call this function?
1067         * For an unknown reason, block erase always fails if it's the first
1068         * operation after device power-up.  The above read ensures it never is.
1069         * Ugly, I know.
1070         */
1071        if (nand->bbt == NULL)  /* no memory-based bbt */
1072                goto exit;
1073
1074        if (mtd->ecc_stats.failed > eccfailed_stats) {
1075                /*
1076                 * Whoops, an ecc failure ocurred reading the factory bbt.
1077                 * It is stored redundantly, so we get another chance.
1078                 */
1079                eccfailed_stats = mtd->ecc_stats.failed;
1080                docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1081                if (mtd->ecc_stats.failed > eccfailed_stats) {
1082                        dev_warn(doc->dev,
1083                                 "The factory bbt could not be read!\n");
1084                        goto exit;
1085                }
1086        }
1087
1088        /*
1089         * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1090         * simple: one bit per block, block numbers increase left to right (msb
1091         * to lsb).  Bit clear means bad block.
1092         */
1093        for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1094                int bitnum;
1095                unsigned long bits = ~buf[i];
1096                for_each_set_bit(bitnum, &bits, 8) {
1097                        int badblock = block + 7 - bitnum;
1098                        nand->bbt[badblock / 4] |=
1099                                0x03 << ((badblock % 4) * 2);
1100                        mtd->ecc_stats.badblocks++;
1101                        dev_notice(doc->dev, "factory-marked bad block: %d\n",
1102                                   badblock);
1103                }
1104        }
1105 exit:
1106        kfree(buf);
1107        return 0;
1108}
1109
1110static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1111{
1112        /*
1113         * Mark a block as bad.  Bad blocks are marked in the oob area of the
1114         * first page of the block.  The default scan_bbt() in the nand
1115         * infrastructure code works fine for building the memory-based bbt
1116         * during initialization, as does the nand infrastructure function that
1117         * checks if a block is bad by reading the bbt.  This function replaces
1118         * the nand default because writes to oob-only are not supported.
1119         */
1120
1121        int ret, i;
1122        uint8_t *buf;
1123        struct nand_chip *nand = mtd_to_nand(mtd);
1124        struct docg4_priv *doc = nand_get_controller_data(nand);
1125        struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1126        int page = (int)(ofs >> nand->page_shift);
1127        uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1128
1129        dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1130
1131        if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1132                dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1133                         __func__, ofs);
1134
1135        /* allocate blank buffer for page data */
1136        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1137        if (buf == NULL)
1138                return -ENOMEM;
1139
1140        /* write bit-wise negation of pattern to oob buffer */
1141        memset(nand->oob_poi, 0xff, mtd->oobsize);
1142        for (i = 0; i < bbtd->len; i++)
1143                nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1144
1145        /* write first page of block */
1146        write_page_prologue(mtd, g4_addr);
1147        docg4_write_page(mtd, nand, buf, 1, page);
1148        ret = pageprog(mtd);
1149
1150        kfree(buf);
1151
1152        return ret;
1153}
1154
1155static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs)
1156{
1157        /* only called when module_param ignore_badblocks is set */
1158        return 0;
1159}
1160
1161static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1162{
1163        /*
1164         * Put the device into "deep power-down" mode.  Note that CE# must be
1165         * deasserted for this to take effect.  The xscale, e.g., can be
1166         * configured to float this signal when the processor enters power-down,
1167         * and a suitable pull-up ensures its deassertion.
1168         */
1169
1170        int i;
1171        uint8_t pwr_down;
1172        struct docg4_priv *doc = platform_get_drvdata(pdev);
1173        void __iomem *docptr = doc->virtadr;
1174
1175        dev_dbg(doc->dev, "%s...\n", __func__);
1176
1177        /* poll the register that tells us we're ready to go to sleep */
1178        for (i = 0; i < 10; i++) {
1179                pwr_down = readb(docptr + DOC_POWERMODE);
1180                if (pwr_down & DOC_POWERDOWN_READY)
1181                        break;
1182                usleep_range(1000, 4000);
1183        }
1184
1185        if (pwr_down & DOC_POWERDOWN_READY) {
1186                dev_err(doc->dev, "suspend failed; "
1187                        "timeout polling DOC_POWERDOWN_READY\n");
1188                return -EIO;
1189        }
1190
1191        writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1192               docptr + DOC_ASICMODE);
1193        writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1194               docptr + DOC_ASICMODECONFIRM);
1195
1196        write_nop(docptr);
1197
1198        return 0;
1199}
1200
1201static int docg4_resume(struct platform_device *pdev)
1202{
1203
1204        /*
1205         * Exit power-down.  Twelve consecutive reads of the address below
1206         * accomplishes this, assuming CE# has been asserted.
1207         */
1208
1209        struct docg4_priv *doc = platform_get_drvdata(pdev);
1210        void __iomem *docptr = doc->virtadr;
1211        int i;
1212
1213        dev_dbg(doc->dev, "%s...\n", __func__);
1214
1215        for (i = 0; i < 12; i++)
1216                readb(docptr + 0x1fff);
1217
1218        return 0;
1219}
1220
1221static void init_mtd_structs(struct mtd_info *mtd)
1222{
1223        /* initialize mtd and nand data structures */
1224
1225        /*
1226         * Note that some of the following initializations are not usually
1227         * required within a nand driver because they are performed by the nand
1228         * infrastructure code as part of nand_scan().  In this case they need
1229         * to be initialized here because we skip call to nand_scan_ident() (the
1230         * first half of nand_scan()).  The call to nand_scan_ident() could be
1231         * skipped because for this device the chip id is not read in the manner
1232         * of a standard nand device.
1233         */
1234
1235        struct nand_chip *nand = mtd_to_nand(mtd);
1236        struct docg4_priv *doc = nand_get_controller_data(nand);
1237
1238        mtd->size = DOCG4_CHIP_SIZE;
1239        mtd->name = "Msys_Diskonchip_G4";
1240        mtd->writesize = DOCG4_PAGE_SIZE;
1241        mtd->erasesize = DOCG4_BLOCK_SIZE;
1242        mtd->oobsize = DOCG4_OOB_SIZE;
1243        mtd_set_ooblayout(mtd, &docg4_ooblayout_ops);
1244        nand->chipsize = DOCG4_CHIP_SIZE;
1245        nand->chip_shift = DOCG4_CHIP_SHIFT;
1246        nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1247        nand->chip_delay = 20;
1248        nand->page_shift = DOCG4_PAGE_SHIFT;
1249        nand->pagemask = 0x3ffff;
1250        nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1251        nand->badblockbits = 8;
1252        nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1253        nand->ecc.size = DOCG4_PAGE_SIZE;
1254        nand->ecc.prepad = 8;
1255        nand->ecc.bytes = 8;
1256        nand->ecc.strength = DOCG4_T;
1257        nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1258        nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1259        nand->controller = &nand->dummy_controller;
1260        nand_controller_init(nand->controller);
1261
1262        /* methods */
1263        nand->cmdfunc = docg4_command;
1264        nand->waitfunc = docg4_wait;
1265        nand->select_chip = docg4_select_chip;
1266        nand->read_byte = docg4_read_byte;
1267        nand->block_markbad = docg4_block_markbad;
1268        nand->read_buf = docg4_read_buf;
1269        nand->write_buf = docg4_write_buf16;
1270        nand->erase = docg4_erase_block;
1271        nand->set_features = nand_get_set_features_notsupp;
1272        nand->get_features = nand_get_set_features_notsupp;
1273        nand->ecc.read_page = docg4_read_page;
1274        nand->ecc.write_page = docg4_write_page;
1275        nand->ecc.read_page_raw = docg4_read_page_raw;
1276        nand->ecc.write_page_raw = docg4_write_page_raw;
1277        nand->ecc.read_oob = docg4_read_oob;
1278        nand->ecc.write_oob = docg4_write_oob;
1279
1280        /*
1281         * The way the nand infrastructure code is written, a memory-based bbt
1282         * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1283         * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1284         * scan and define a dummy block_bad() which always returns 0.
1285         */
1286        if (ignore_badblocks) {
1287                nand->options |= NAND_SKIP_BBTSCAN;
1288                nand->block_bad = docg4_block_neverbad;
1289        }
1290
1291}
1292
1293static int read_id_reg(struct mtd_info *mtd)
1294{
1295        struct nand_chip *nand = mtd_to_nand(mtd);
1296        struct docg4_priv *doc = nand_get_controller_data(nand);
1297        void __iomem *docptr = doc->virtadr;
1298        uint16_t id1, id2;
1299
1300        /* check for presence of g4 chip by reading id registers */
1301        id1 = readw(docptr + DOC_CHIPID);
1302        id1 = readw(docptr + DOCG4_MYSTERY_REG);
1303        id2 = readw(docptr + DOC_CHIPID_INV);
1304        id2 = readw(docptr + DOCG4_MYSTERY_REG);
1305
1306        if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1307                dev_info(doc->dev,
1308                         "NAND device: 128MiB Diskonchip G4 detected\n");
1309                return 0;
1310        }
1311
1312        return -ENODEV;
1313}
1314
1315static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1316
1317static int docg4_attach_chip(struct nand_chip *chip)
1318{
1319        struct mtd_info *mtd = nand_to_mtd(chip);
1320        struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
1321        int ret;
1322
1323        init_mtd_structs(mtd);
1324
1325        /* Initialize kernel BCH algorithm */
1326        doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1327        if (!doc->bch)
1328                return -EINVAL;
1329
1330        reset(mtd);
1331
1332        ret = read_id_reg(mtd);
1333        if (ret)
1334                free_bch(doc->bch);
1335
1336        return ret;
1337}
1338
1339static void docg4_detach_chip(struct nand_chip *chip)
1340{
1341        struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
1342
1343        free_bch(doc->bch);
1344}
1345
1346static const struct nand_controller_ops docg4_controller_ops = {
1347        .attach_chip = docg4_attach_chip,
1348        .detach_chip = docg4_detach_chip,
1349};
1350
1351static int __init probe_docg4(struct platform_device *pdev)
1352{
1353        struct mtd_info *mtd;
1354        struct nand_chip *nand;
1355        void __iomem *virtadr;
1356        struct docg4_priv *doc;
1357        int len, retval;
1358        struct resource *r;
1359        struct device *dev = &pdev->dev;
1360
1361        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1362        if (r == NULL) {
1363                dev_err(dev, "no io memory resource defined!\n");
1364                return -ENODEV;
1365        }
1366
1367        virtadr = ioremap(r->start, resource_size(r));
1368        if (!virtadr) {
1369                dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1370                return -EIO;
1371        }
1372
1373        len = sizeof(struct nand_chip) + sizeof(struct docg4_priv);
1374        nand = kzalloc(len, GFP_KERNEL);
1375        if (nand == NULL) {
1376                retval = -ENOMEM;
1377                goto unmap;
1378        }
1379
1380        mtd = nand_to_mtd(nand);
1381        doc = (struct docg4_priv *) (nand + 1);
1382        nand_set_controller_data(nand, doc);
1383        mtd->dev.parent = &pdev->dev;
1384        doc->virtadr = virtadr;
1385        doc->dev = dev;
1386        platform_set_drvdata(pdev, doc);
1387
1388        /*
1389         * Running nand_scan() with maxchips == 0 will skip nand_scan_ident(),
1390         * which is a specific operation with this driver and done in the
1391         * ->attach_chip callback.
1392         */
1393        nand->dummy_controller.ops = &docg4_controller_ops;
1394        retval = nand_scan(mtd, 0);
1395        if (retval)
1396                goto free_nand;
1397
1398        retval = read_factory_bbt(mtd);
1399        if (retval)
1400                goto cleanup_nand;
1401
1402        retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1403        if (retval)
1404                goto cleanup_nand;
1405
1406        doc->mtd = mtd;
1407
1408        return 0;
1409
1410cleanup_nand:
1411        nand_cleanup(nand);
1412free_nand:
1413        kfree(nand);
1414unmap:
1415        iounmap(virtadr);
1416
1417        return retval;
1418}
1419
1420static int __exit cleanup_docg4(struct platform_device *pdev)
1421{
1422        struct docg4_priv *doc = platform_get_drvdata(pdev);
1423        nand_release(doc->mtd);
1424        kfree(mtd_to_nand(doc->mtd));
1425        iounmap(doc->virtadr);
1426        return 0;
1427}
1428
1429static struct platform_driver docg4_driver = {
1430        .driver         = {
1431                .name   = "docg4",
1432        },
1433        .suspend        = docg4_suspend,
1434        .resume         = docg4_resume,
1435        .remove         = __exit_p(cleanup_docg4),
1436};
1437
1438module_platform_driver_probe(docg4_driver, probe_docg4);
1439
1440MODULE_LICENSE("GPL");
1441MODULE_AUTHOR("Mike Dunn");
1442MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1443