linux/drivers/mtd/nand/raw/fsl_ifc_nand.c
<<
>>
Prefs
   1/*
   2 * Freescale Integrated Flash Controller NAND driver
   3 *
   4 * Copyright 2011-2012 Freescale Semiconductor, Inc
   5 *
   6 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/of_address.h>
  27#include <linux/slab.h>
  28#include <linux/mtd/mtd.h>
  29#include <linux/mtd/rawnand.h>
  30#include <linux/mtd/partitions.h>
  31#include <linux/mtd/nand_ecc.h>
  32#include <linux/fsl_ifc.h>
  33
  34#define ERR_BYTE                0xFF /* Value returned for read
  35                                        bytes when read failed  */
  36#define IFC_TIMEOUT_MSECS       500  /* Maximum number of mSecs to wait
  37                                        for IFC NAND Machine    */
  38
  39struct fsl_ifc_ctrl;
  40
  41/* mtd information per set */
  42struct fsl_ifc_mtd {
  43        struct nand_chip chip;
  44        struct fsl_ifc_ctrl *ctrl;
  45
  46        struct device *dev;
  47        int bank;               /* Chip select bank number              */
  48        unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
  49        u8 __iomem *vbase;      /* Chip select base virtual address     */
  50};
  51
  52/* overview of the fsl ifc controller */
  53struct fsl_ifc_nand_ctrl {
  54        struct nand_controller controller;
  55        struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
  56
  57        void __iomem *addr;     /* Address of assigned IFC buffer       */
  58        unsigned int page;      /* Last page written to / read from     */
  59        unsigned int read_bytes;/* Number of bytes read during command  */
  60        unsigned int column;    /* Saved column from SEQIN              */
  61        unsigned int index;     /* Pointer to next byte to 'read'       */
  62        unsigned int oob;       /* Non zero if operating on OOB data    */
  63        unsigned int eccread;   /* Non zero for a full-page ECC read    */
  64        unsigned int counter;   /* counter for the initializations      */
  65        unsigned int max_bitflips;  /* Saved during READ0 cmd           */
  66};
  67
  68static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
  69
  70/*
  71 * Generic flash bbt descriptors
  72 */
  73static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  74static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  75
  76static struct nand_bbt_descr bbt_main_descr = {
  77        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  78                   NAND_BBT_2BIT | NAND_BBT_VERSION,
  79        .offs = 2, /* 0 on 8-bit small page */
  80        .len = 4,
  81        .veroffs = 6,
  82        .maxblocks = 4,
  83        .pattern = bbt_pattern,
  84};
  85
  86static struct nand_bbt_descr bbt_mirror_descr = {
  87        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  88                   NAND_BBT_2BIT | NAND_BBT_VERSION,
  89        .offs = 2, /* 0 on 8-bit small page */
  90        .len = 4,
  91        .veroffs = 6,
  92        .maxblocks = 4,
  93        .pattern = mirror_pattern,
  94};
  95
  96static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
  97                                 struct mtd_oob_region *oobregion)
  98{
  99        struct nand_chip *chip = mtd_to_nand(mtd);
 100
 101        if (section)
 102                return -ERANGE;
 103
 104        oobregion->offset = 8;
 105        oobregion->length = chip->ecc.total;
 106
 107        return 0;
 108}
 109
 110static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
 111                                  struct mtd_oob_region *oobregion)
 112{
 113        struct nand_chip *chip = mtd_to_nand(mtd);
 114
 115        if (section > 1)
 116                return -ERANGE;
 117
 118        if (mtd->writesize == 512 &&
 119            !(chip->options & NAND_BUSWIDTH_16)) {
 120                if (!section) {
 121                        oobregion->offset = 0;
 122                        oobregion->length = 5;
 123                } else {
 124                        oobregion->offset = 6;
 125                        oobregion->length = 2;
 126                }
 127
 128                return 0;
 129        }
 130
 131        if (!section) {
 132                oobregion->offset = 2;
 133                oobregion->length = 6;
 134        } else {
 135                oobregion->offset = chip->ecc.total + 8;
 136                oobregion->length = mtd->oobsize - oobregion->offset;
 137        }
 138
 139        return 0;
 140}
 141
 142static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
 143        .ecc = fsl_ifc_ooblayout_ecc,
 144        .free = fsl_ifc_ooblayout_free,
 145};
 146
 147/*
 148 * Set up the IFC hardware block and page address fields, and the ifc nand
 149 * structure addr field to point to the correct IFC buffer in memory
 150 */
 151static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 152{
 153        struct nand_chip *chip = mtd_to_nand(mtd);
 154        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 155        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 156        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 157        int buf_num;
 158
 159        ifc_nand_ctrl->page = page_addr;
 160        /* Program ROW0/COL0 */
 161        ifc_out32(page_addr, &ifc->ifc_nand.row0);
 162        ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
 163
 164        buf_num = page_addr & priv->bufnum_mask;
 165
 166        ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
 167        ifc_nand_ctrl->index = column;
 168
 169        /* for OOB data point to the second half of the buffer */
 170        if (oob)
 171                ifc_nand_ctrl->index += mtd->writesize;
 172}
 173
 174/* returns nonzero if entire page is blank */
 175static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
 176                          u32 eccstat, unsigned int bufnum)
 177{
 178        return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
 179}
 180
 181/*
 182 * execute IFC NAND command and wait for it to complete
 183 */
 184static void fsl_ifc_run_command(struct mtd_info *mtd)
 185{
 186        struct nand_chip *chip = mtd_to_nand(mtd);
 187        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 188        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 189        struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 190        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 191        u32 eccstat;
 192        int i;
 193
 194        /* set the chip select for NAND Transaction */
 195        ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
 196                  &ifc->ifc_nand.nand_csel);
 197
 198        dev_vdbg(priv->dev,
 199                        "%s: fir0=%08x fcr0=%08x\n",
 200                        __func__,
 201                        ifc_in32(&ifc->ifc_nand.nand_fir0),
 202                        ifc_in32(&ifc->ifc_nand.nand_fcr0));
 203
 204        ctrl->nand_stat = 0;
 205
 206        /* start read/write seq */
 207        ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
 208
 209        /* wait for command complete flag or timeout */
 210        wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 211                           msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 212
 213        /* ctrl->nand_stat will be updated from IRQ context */
 214        if (!ctrl->nand_stat)
 215                dev_err(priv->dev, "Controller is not responding\n");
 216        if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
 217                dev_err(priv->dev, "NAND Flash Timeout Error\n");
 218        if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
 219                dev_err(priv->dev, "NAND Flash Write Protect Error\n");
 220
 221        nctrl->max_bitflips = 0;
 222
 223        if (nctrl->eccread) {
 224                int errors;
 225                int bufnum = nctrl->page & priv->bufnum_mask;
 226                int sector_start = bufnum * chip->ecc.steps;
 227                int sector_end = sector_start + chip->ecc.steps - 1;
 228                __be32 __iomem *eccstat_regs;
 229
 230                eccstat_regs = ifc->ifc_nand.nand_eccstat;
 231                eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
 232
 233                for (i = sector_start; i <= sector_end; i++) {
 234                        if (i != sector_start && !(i % 4))
 235                                eccstat = ifc_in32(&eccstat_regs[i / 4]);
 236
 237                        errors = check_read_ecc(mtd, ctrl, eccstat, i);
 238
 239                        if (errors == 15) {
 240                                /*
 241                                 * Uncorrectable error.
 242                                 * We'll check for blank pages later.
 243                                 *
 244                                 * We disable ECCER reporting due to...
 245                                 * erratum IFC-A002770 -- so report it now if we
 246                                 * see an uncorrectable error in ECCSTAT.
 247                                 */
 248                                ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
 249                                continue;
 250                        }
 251
 252                        mtd->ecc_stats.corrected += errors;
 253                        nctrl->max_bitflips = max_t(unsigned int,
 254                                                    nctrl->max_bitflips,
 255                                                    errors);
 256                }
 257
 258                nctrl->eccread = 0;
 259        }
 260}
 261
 262static void fsl_ifc_do_read(struct nand_chip *chip,
 263                            int oob,
 264                            struct mtd_info *mtd)
 265{
 266        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 267        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 268        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 269
 270        /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
 271        if (mtd->writesize > 512) {
 272                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 273                          (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 274                          (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 275                          (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
 276                          (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
 277                          &ifc->ifc_nand.nand_fir0);
 278                ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
 279
 280                ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
 281                          (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
 282                          &ifc->ifc_nand.nand_fcr0);
 283        } else {
 284                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 285                          (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 286                          (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
 287                          (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
 288                          &ifc->ifc_nand.nand_fir0);
 289                ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
 290
 291                if (oob)
 292                        ifc_out32(NAND_CMD_READOOB <<
 293                                  IFC_NAND_FCR0_CMD0_SHIFT,
 294                                  &ifc->ifc_nand.nand_fcr0);
 295                else
 296                        ifc_out32(NAND_CMD_READ0 <<
 297                                  IFC_NAND_FCR0_CMD0_SHIFT,
 298                                  &ifc->ifc_nand.nand_fcr0);
 299        }
 300}
 301
 302/* cmdfunc send commands to the IFC NAND Machine */
 303static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 304                             int column, int page_addr) {
 305        struct nand_chip *chip = mtd_to_nand(mtd);
 306        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 307        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 308        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 309
 310        /* clear the read buffer */
 311        ifc_nand_ctrl->read_bytes = 0;
 312        if (command != NAND_CMD_PAGEPROG)
 313                ifc_nand_ctrl->index = 0;
 314
 315        switch (command) {
 316        /* READ0 read the entire buffer to use hardware ECC. */
 317        case NAND_CMD_READ0:
 318                ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 319                set_addr(mtd, 0, page_addr, 0);
 320
 321                ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 322                ifc_nand_ctrl->index += column;
 323
 324                if (chip->ecc.mode == NAND_ECC_HW)
 325                        ifc_nand_ctrl->eccread = 1;
 326
 327                fsl_ifc_do_read(chip, 0, mtd);
 328                fsl_ifc_run_command(mtd);
 329                return;
 330
 331        /* READOOB reads only the OOB because no ECC is performed. */
 332        case NAND_CMD_READOOB:
 333                ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
 334                set_addr(mtd, column, page_addr, 1);
 335
 336                ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 337
 338                fsl_ifc_do_read(chip, 1, mtd);
 339                fsl_ifc_run_command(mtd);
 340
 341                return;
 342
 343        case NAND_CMD_READID:
 344        case NAND_CMD_PARAM: {
 345                /*
 346                 * For READID, read 8 bytes that are currently used.
 347                 * For PARAM, read all 3 copies of 256-bytes pages.
 348                 */
 349                int len = 8;
 350                int timing = IFC_FIR_OP_RB;
 351                if (command == NAND_CMD_PARAM) {
 352                        timing = IFC_FIR_OP_RBCD;
 353                        len = 256 * 3;
 354                }
 355
 356                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 357                          (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
 358                          (timing << IFC_NAND_FIR0_OP2_SHIFT),
 359                          &ifc->ifc_nand.nand_fir0);
 360                ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
 361                          &ifc->ifc_nand.nand_fcr0);
 362                ifc_out32(column, &ifc->ifc_nand.row3);
 363
 364                ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
 365                ifc_nand_ctrl->read_bytes = len;
 366
 367                set_addr(mtd, 0, 0, 0);
 368                fsl_ifc_run_command(mtd);
 369                return;
 370        }
 371
 372        /* ERASE1 stores the block and page address */
 373        case NAND_CMD_ERASE1:
 374                set_addr(mtd, 0, page_addr, 0);
 375                return;
 376
 377        /* ERASE2 uses the block and page address from ERASE1 */
 378        case NAND_CMD_ERASE2:
 379                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 380                          (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 381                          (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
 382                          &ifc->ifc_nand.nand_fir0);
 383
 384                ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
 385                          (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
 386                          &ifc->ifc_nand.nand_fcr0);
 387
 388                ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 389                ifc_nand_ctrl->read_bytes = 0;
 390                fsl_ifc_run_command(mtd);
 391                return;
 392
 393        /* SEQIN sets up the addr buffer and all registers except the length */
 394        case NAND_CMD_SEQIN: {
 395                u32 nand_fcr0;
 396                ifc_nand_ctrl->column = column;
 397                ifc_nand_ctrl->oob = 0;
 398
 399                if (mtd->writesize > 512) {
 400                        nand_fcr0 =
 401                                (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
 402                                (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
 403                                (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
 404
 405                        ifc_out32(
 406                                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 407                                (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 408                                (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 409                                (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
 410                                (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
 411                                &ifc->ifc_nand.nand_fir0);
 412                        ifc_out32(
 413                                (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
 414                                (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
 415                                (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
 416                                &ifc->ifc_nand.nand_fir1);
 417                } else {
 418                        nand_fcr0 = ((NAND_CMD_PAGEPROG <<
 419                                        IFC_NAND_FCR0_CMD1_SHIFT) |
 420                                    (NAND_CMD_SEQIN <<
 421                                        IFC_NAND_FCR0_CMD2_SHIFT) |
 422                                    (NAND_CMD_STATUS <<
 423                                        IFC_NAND_FCR0_CMD3_SHIFT));
 424
 425                        ifc_out32(
 426                                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 427                                (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
 428                                (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 429                                (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
 430                                (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
 431                                &ifc->ifc_nand.nand_fir0);
 432                        ifc_out32(
 433                                (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
 434                                (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
 435                                (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
 436                                (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
 437                                &ifc->ifc_nand.nand_fir1);
 438
 439                        if (column >= mtd->writesize)
 440                                nand_fcr0 |=
 441                                NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
 442                        else
 443                                nand_fcr0 |=
 444                                NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
 445                }
 446
 447                if (column >= mtd->writesize) {
 448                        /* OOB area --> READOOB */
 449                        column -= mtd->writesize;
 450                        ifc_nand_ctrl->oob = 1;
 451                }
 452                ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
 453                set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
 454                return;
 455        }
 456
 457        /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 458        case NAND_CMD_PAGEPROG: {
 459                if (ifc_nand_ctrl->oob) {
 460                        ifc_out32(ifc_nand_ctrl->index -
 461                                  ifc_nand_ctrl->column,
 462                                  &ifc->ifc_nand.nand_fbcr);
 463                } else {
 464                        ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 465                }
 466
 467                fsl_ifc_run_command(mtd);
 468                return;
 469        }
 470
 471        case NAND_CMD_STATUS: {
 472                void __iomem *addr;
 473
 474                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 475                          (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
 476                          &ifc->ifc_nand.nand_fir0);
 477                ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
 478                          &ifc->ifc_nand.nand_fcr0);
 479                ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
 480                set_addr(mtd, 0, 0, 0);
 481                ifc_nand_ctrl->read_bytes = 1;
 482
 483                fsl_ifc_run_command(mtd);
 484
 485                /*
 486                 * The chip always seems to report that it is
 487                 * write-protected, even when it is not.
 488                 */
 489                addr = ifc_nand_ctrl->addr;
 490                if (chip->options & NAND_BUSWIDTH_16)
 491                        ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
 492                else
 493                        ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
 494                return;
 495        }
 496
 497        case NAND_CMD_RESET:
 498                ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
 499                          &ifc->ifc_nand.nand_fir0);
 500                ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
 501                          &ifc->ifc_nand.nand_fcr0);
 502                fsl_ifc_run_command(mtd);
 503                return;
 504
 505        default:
 506                dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
 507                                        __func__, command);
 508        }
 509}
 510
 511static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
 512{
 513        /* The hardware does not seem to support multiple
 514         * chips per bank.
 515         */
 516}
 517
 518/*
 519 * Write buf to the IFC NAND Controller Data Buffer
 520 */
 521static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 522{
 523        struct nand_chip *chip = mtd_to_nand(mtd);
 524        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 525        unsigned int bufsize = mtd->writesize + mtd->oobsize;
 526
 527        if (len <= 0) {
 528                dev_err(priv->dev, "%s: len %d bytes", __func__, len);
 529                return;
 530        }
 531
 532        if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
 533                dev_err(priv->dev,
 534                        "%s: beyond end of buffer (%d requested, %u available)\n",
 535                        __func__, len, bufsize - ifc_nand_ctrl->index);
 536                len = bufsize - ifc_nand_ctrl->index;
 537        }
 538
 539        memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
 540        ifc_nand_ctrl->index += len;
 541}
 542
 543/*
 544 * Read a byte from either the IFC hardware buffer
 545 * read function for 8-bit buswidth
 546 */
 547static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
 548{
 549        struct nand_chip *chip = mtd_to_nand(mtd);
 550        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 551        unsigned int offset;
 552
 553        /*
 554         * If there are still bytes in the IFC buffer, then use the
 555         * next byte.
 556         */
 557        if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
 558                offset = ifc_nand_ctrl->index++;
 559                return ifc_in8(ifc_nand_ctrl->addr + offset);
 560        }
 561
 562        dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
 563        return ERR_BYTE;
 564}
 565
 566/*
 567 * Read two bytes from the IFC hardware buffer
 568 * read function for 16-bit buswith
 569 */
 570static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
 571{
 572        struct nand_chip *chip = mtd_to_nand(mtd);
 573        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 574        uint16_t data;
 575
 576        /*
 577         * If there are still bytes in the IFC buffer, then use the
 578         * next byte.
 579         */
 580        if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
 581                data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
 582                ifc_nand_ctrl->index += 2;
 583                return (uint8_t) data;
 584        }
 585
 586        dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
 587        return ERR_BYTE;
 588}
 589
 590/*
 591 * Read from the IFC Controller Data Buffer
 592 */
 593static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 594{
 595        struct nand_chip *chip = mtd_to_nand(mtd);
 596        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 597        int avail;
 598
 599        if (len < 0) {
 600                dev_err(priv->dev, "%s: len %d bytes", __func__, len);
 601                return;
 602        }
 603
 604        avail = min((unsigned int)len,
 605                        ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
 606        memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
 607        ifc_nand_ctrl->index += avail;
 608
 609        if (len > avail)
 610                dev_err(priv->dev,
 611                        "%s: beyond end of buffer (%d requested, %d available)\n",
 612                        __func__, len, avail);
 613}
 614
 615/*
 616 * This function is called after Program and Erase Operations to
 617 * check for success or failure.
 618 */
 619static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 620{
 621        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 622        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 623        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 624        u32 nand_fsr;
 625        int status;
 626
 627        /* Use READ_STATUS command, but wait for the device to be ready */
 628        ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 629                  (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
 630                  &ifc->ifc_nand.nand_fir0);
 631        ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
 632                  &ifc->ifc_nand.nand_fcr0);
 633        ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
 634        set_addr(mtd, 0, 0, 0);
 635        ifc_nand_ctrl->read_bytes = 1;
 636
 637        fsl_ifc_run_command(mtd);
 638
 639        nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
 640        status = nand_fsr >> 24;
 641        /*
 642         * The chip always seems to report that it is
 643         * write-protected, even when it is not.
 644         */
 645        return status | NAND_STATUS_WP;
 646}
 647
 648/*
 649 * The controller does not check for bitflips in erased pages,
 650 * therefore software must check instead.
 651 */
 652static int check_erased_page(struct nand_chip *chip, u8 *buf)
 653{
 654        struct mtd_info *mtd = nand_to_mtd(chip);
 655        u8 *ecc = chip->oob_poi;
 656        const int ecc_size = chip->ecc.bytes;
 657        const int pkt_size = chip->ecc.size;
 658        int i, res, bitflips = 0;
 659        struct mtd_oob_region oobregion = { };
 660
 661        mtd_ooblayout_ecc(mtd, 0, &oobregion);
 662        ecc += oobregion.offset;
 663
 664        for (i = 0; i < chip->ecc.steps; ++i) {
 665                res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
 666                                                  NULL, 0,
 667                                                  chip->ecc.strength);
 668                if (res < 0)
 669                        mtd->ecc_stats.failed++;
 670                else
 671                        mtd->ecc_stats.corrected += res;
 672
 673                bitflips = max(res, bitflips);
 674                buf += pkt_size;
 675                ecc += ecc_size;
 676        }
 677
 678        return bitflips;
 679}
 680
 681static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 682                             uint8_t *buf, int oob_required, int page)
 683{
 684        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 685        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 686        struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 687
 688        nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 689        if (oob_required)
 690                fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 691
 692        if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
 693                if (!oob_required)
 694                        fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 695
 696                return check_erased_page(chip, buf);
 697        }
 698
 699        if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
 700                mtd->ecc_stats.failed++;
 701
 702        return nctrl->max_bitflips;
 703}
 704
 705/* ECC will be calculated automatically, and errors will be detected in
 706 * waitfunc.
 707 */
 708static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 709                               const uint8_t *buf, int oob_required, int page)
 710{
 711        nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 712        fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 713
 714        return nand_prog_page_end_op(chip);
 715}
 716
 717static int fsl_ifc_attach_chip(struct nand_chip *chip)
 718{
 719        struct mtd_info *mtd = nand_to_mtd(chip);
 720        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 721
 722        dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
 723                                                        chip->numchips);
 724        dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
 725                                                        chip->chipsize);
 726        dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
 727                                                        chip->pagemask);
 728        dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
 729                                                        chip->chip_delay);
 730        dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
 731                                                        chip->badblockpos);
 732        dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
 733                                                        chip->chip_shift);
 734        dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
 735                                                        chip->page_shift);
 736        dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
 737                                                        chip->phys_erase_shift);
 738        dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
 739                                                        chip->ecc.mode);
 740        dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
 741                                                        chip->ecc.steps);
 742        dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
 743                                                        chip->ecc.bytes);
 744        dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
 745                                                        chip->ecc.total);
 746        dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
 747                                                        mtd->ooblayout);
 748        dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
 749        dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
 750        dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
 751                                                        mtd->erasesize);
 752        dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
 753                                                        mtd->writesize);
 754        dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
 755                                                        mtd->oobsize);
 756
 757        return 0;
 758}
 759
 760static const struct nand_controller_ops fsl_ifc_controller_ops = {
 761        .attach_chip = fsl_ifc_attach_chip,
 762};
 763
 764static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
 765{
 766        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 767        struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
 768        struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
 769        uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
 770        uint32_t cs = priv->bank;
 771
 772        /* Save CSOR and CSOR_ext */
 773        csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
 774        csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
 775
 776        /* chage PageSize 8K and SpareSize 1K*/
 777        csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
 778        ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
 779        ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
 780
 781        /* READID */
 782        ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 783                    (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
 784                    (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
 785                    &ifc_runtime->ifc_nand.nand_fir0);
 786        ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
 787                    &ifc_runtime->ifc_nand.nand_fcr0);
 788        ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
 789
 790        ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
 791
 792        /* Program ROW0/COL0 */
 793        ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
 794        ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
 795
 796        /* set the chip select for NAND Transaction */
 797        ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
 798                &ifc_runtime->ifc_nand.nand_csel);
 799
 800        /* start read seq */
 801        ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
 802                &ifc_runtime->ifc_nand.nandseq_strt);
 803
 804        /* wait for command complete flag or timeout */
 805        wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 806                           msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 807
 808        if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
 809                pr_err("fsl-ifc: Failed to Initialise SRAM\n");
 810
 811        /* Restore CSOR and CSOR_ext */
 812        ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
 813        ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
 814}
 815
 816static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
 817{
 818        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 819        struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
 820        struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
 821        struct nand_chip *chip = &priv->chip;
 822        struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 823        u32 csor;
 824
 825        /* Fill in fsl_ifc_mtd structure */
 826        mtd->dev.parent = priv->dev;
 827        nand_set_flash_node(chip, priv->dev->of_node);
 828
 829        /* fill in nand_chip structure */
 830        /* set up function call table */
 831        if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
 832                & CSPR_PORT_SIZE_16)
 833                chip->read_byte = fsl_ifc_read_byte16;
 834        else
 835                chip->read_byte = fsl_ifc_read_byte;
 836
 837        chip->write_buf = fsl_ifc_write_buf;
 838        chip->read_buf = fsl_ifc_read_buf;
 839        chip->select_chip = fsl_ifc_select_chip;
 840        chip->cmdfunc = fsl_ifc_cmdfunc;
 841        chip->waitfunc = fsl_ifc_wait;
 842        chip->set_features = nand_get_set_features_notsupp;
 843        chip->get_features = nand_get_set_features_notsupp;
 844
 845        chip->bbt_td = &bbt_main_descr;
 846        chip->bbt_md = &bbt_mirror_descr;
 847
 848        ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
 849
 850        /* set up nand options */
 851        chip->bbt_options = NAND_BBT_USE_FLASH;
 852        chip->options = NAND_NO_SUBPAGE_WRITE;
 853
 854        if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
 855                & CSPR_PORT_SIZE_16) {
 856                chip->read_byte = fsl_ifc_read_byte16;
 857                chip->options |= NAND_BUSWIDTH_16;
 858        } else {
 859                chip->read_byte = fsl_ifc_read_byte;
 860        }
 861
 862        chip->controller = &ifc_nand_ctrl->controller;
 863        nand_set_controller_data(chip, priv);
 864
 865        chip->ecc.read_page = fsl_ifc_read_page;
 866        chip->ecc.write_page = fsl_ifc_write_page;
 867
 868        csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
 869
 870        switch (csor & CSOR_NAND_PGS_MASK) {
 871        case CSOR_NAND_PGS_512:
 872                if (!(chip->options & NAND_BUSWIDTH_16)) {
 873                        /* Avoid conflict with bad block marker */
 874                        bbt_main_descr.offs = 0;
 875                        bbt_mirror_descr.offs = 0;
 876                }
 877
 878                priv->bufnum_mask = 15;
 879                break;
 880
 881        case CSOR_NAND_PGS_2K:
 882                priv->bufnum_mask = 3;
 883                break;
 884
 885        case CSOR_NAND_PGS_4K:
 886                priv->bufnum_mask = 1;
 887                break;
 888
 889        case CSOR_NAND_PGS_8K:
 890                priv->bufnum_mask = 0;
 891                break;
 892
 893        default:
 894                dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
 895                return -ENODEV;
 896        }
 897
 898        /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
 899        if (csor & CSOR_NAND_ECC_DEC_EN) {
 900                chip->ecc.mode = NAND_ECC_HW;
 901                mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
 902
 903                /* Hardware generates ECC per 512 Bytes */
 904                chip->ecc.size = 512;
 905                if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
 906                        chip->ecc.bytes = 8;
 907                        chip->ecc.strength = 4;
 908                } else {
 909                        chip->ecc.bytes = 16;
 910                        chip->ecc.strength = 8;
 911                }
 912        } else {
 913                chip->ecc.mode = NAND_ECC_SOFT;
 914                chip->ecc.algo = NAND_ECC_HAMMING;
 915        }
 916
 917        if (ctrl->version >= FSL_IFC_VERSION_1_1_0)
 918                fsl_ifc_sram_init(priv);
 919
 920        /*
 921         * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
 922         * versions which had 8KB. Hence bufnum mask needs to be updated.
 923         */
 924        if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
 925                priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
 926
 927        return 0;
 928}
 929
 930static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
 931{
 932        struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 933
 934        kfree(mtd->name);
 935
 936        if (priv->vbase)
 937                iounmap(priv->vbase);
 938
 939        ifc_nand_ctrl->chips[priv->bank] = NULL;
 940
 941        return 0;
 942}
 943
 944static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
 945                      phys_addr_t addr)
 946{
 947        u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
 948
 949        if (!(cspr & CSPR_V))
 950                return 0;
 951        if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
 952                return 0;
 953
 954        return (cspr & CSPR_BA) == convert_ifc_address(addr);
 955}
 956
 957static DEFINE_MUTEX(fsl_ifc_nand_mutex);
 958
 959static int fsl_ifc_nand_probe(struct platform_device *dev)
 960{
 961        struct fsl_ifc_runtime __iomem *ifc;
 962        struct fsl_ifc_mtd *priv;
 963        struct resource res;
 964        static const char *part_probe_types[]
 965                = { "cmdlinepart", "RedBoot", "ofpart", NULL };
 966        int ret;
 967        int bank;
 968        struct device_node *node = dev->dev.of_node;
 969        struct mtd_info *mtd;
 970
 971        if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
 972                return -ENODEV;
 973        ifc = fsl_ifc_ctrl_dev->rregs;
 974
 975        /* get, allocate and map the memory resource */
 976        ret = of_address_to_resource(node, 0, &res);
 977        if (ret) {
 978                dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
 979                return ret;
 980        }
 981
 982        /* find which chip select it is connected to */
 983        for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
 984                if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
 985                        break;
 986        }
 987
 988        if (bank >= fsl_ifc_ctrl_dev->banks) {
 989                dev_err(&dev->dev, "%s: address did not match any chip selects\n",
 990                        __func__);
 991                return -ENODEV;
 992        }
 993
 994        priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
 995        if (!priv)
 996                return -ENOMEM;
 997
 998        mutex_lock(&fsl_ifc_nand_mutex);
 999        if (!fsl_ifc_ctrl_dev->nand) {
1000                ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
1001                if (!ifc_nand_ctrl) {
1002                        mutex_unlock(&fsl_ifc_nand_mutex);
1003                        return -ENOMEM;
1004                }
1005
1006                ifc_nand_ctrl->read_bytes = 0;
1007                ifc_nand_ctrl->index = 0;
1008                ifc_nand_ctrl->addr = NULL;
1009                fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
1010
1011                nand_controller_init(&ifc_nand_ctrl->controller);
1012        } else {
1013                ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
1014        }
1015        mutex_unlock(&fsl_ifc_nand_mutex);
1016
1017        ifc_nand_ctrl->chips[bank] = priv;
1018        priv->bank = bank;
1019        priv->ctrl = fsl_ifc_ctrl_dev;
1020        priv->dev = &dev->dev;
1021
1022        priv->vbase = ioremap(res.start, resource_size(&res));
1023        if (!priv->vbase) {
1024                dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1025                ret = -ENOMEM;
1026                goto err;
1027        }
1028
1029        dev_set_drvdata(priv->dev, priv);
1030
1031        ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1032                  IFC_NAND_EVTER_EN_FTOER_EN |
1033                  IFC_NAND_EVTER_EN_WPER_EN,
1034                  &ifc->ifc_nand.nand_evter_en);
1035
1036        /* enable NAND Machine Interrupts */
1037        ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1038                  IFC_NAND_EVTER_INTR_FTOERIR_EN |
1039                  IFC_NAND_EVTER_INTR_WPERIR_EN,
1040                  &ifc->ifc_nand.nand_evter_intr_en);
1041
1042        mtd = nand_to_mtd(&priv->chip);
1043        mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1044        if (!mtd->name) {
1045                ret = -ENOMEM;
1046                goto err;
1047        }
1048
1049        ret = fsl_ifc_chip_init(priv);
1050        if (ret)
1051                goto err;
1052
1053        priv->chip.controller->ops = &fsl_ifc_controller_ops;
1054        ret = nand_scan(mtd, 1);
1055        if (ret)
1056                goto err;
1057
1058        /* First look for RedBoot table or partitions on the command
1059         * line, these take precedence over device tree information */
1060        ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1061        if (ret)
1062                goto cleanup_nand;
1063
1064        dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1065                 (unsigned long long)res.start, priv->bank);
1066
1067        return 0;
1068
1069cleanup_nand:
1070        nand_cleanup(&priv->chip);
1071err:
1072        fsl_ifc_chip_remove(priv);
1073
1074        return ret;
1075}
1076
1077static int fsl_ifc_nand_remove(struct platform_device *dev)
1078{
1079        struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1080        struct mtd_info *mtd = nand_to_mtd(&priv->chip);
1081
1082        nand_release(mtd);
1083        fsl_ifc_chip_remove(priv);
1084
1085        mutex_lock(&fsl_ifc_nand_mutex);
1086        ifc_nand_ctrl->counter--;
1087        if (!ifc_nand_ctrl->counter) {
1088                fsl_ifc_ctrl_dev->nand = NULL;
1089                kfree(ifc_nand_ctrl);
1090        }
1091        mutex_unlock(&fsl_ifc_nand_mutex);
1092
1093        return 0;
1094}
1095
1096static const struct of_device_id fsl_ifc_nand_match[] = {
1097        {
1098                .compatible = "fsl,ifc-nand",
1099        },
1100        {}
1101};
1102MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1103
1104static struct platform_driver fsl_ifc_nand_driver = {
1105        .driver = {
1106                .name   = "fsl,ifc-nand",
1107                .of_match_table = fsl_ifc_nand_match,
1108        },
1109        .probe       = fsl_ifc_nand_probe,
1110        .remove      = fsl_ifc_nand_remove,
1111};
1112
1113module_platform_driver(fsl_ifc_nand_driver);
1114
1115MODULE_LICENSE("GPL");
1116MODULE_AUTHOR("Freescale");
1117MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");
1118