linux/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/pci.h>
  37
  38#include "t4vf_common.h"
  39#include "t4vf_defs.h"
  40
  41#include "../cxgb4/t4_regs.h"
  42#include "../cxgb4/t4_values.h"
  43#include "../cxgb4/t4fw_api.h"
  44
  45/*
  46 * Wait for the device to become ready (signified by our "who am I" register
  47 * returning a value other than all 1's).  Return an error if it doesn't
  48 * become ready ...
  49 */
  50int t4vf_wait_dev_ready(struct adapter *adapter)
  51{
  52        const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
  53        const u32 notready1 = 0xffffffff;
  54        const u32 notready2 = 0xeeeeeeee;
  55        u32 val;
  56
  57        val = t4_read_reg(adapter, whoami);
  58        if (val != notready1 && val != notready2)
  59                return 0;
  60        msleep(500);
  61        val = t4_read_reg(adapter, whoami);
  62        if (val != notready1 && val != notready2)
  63                return 0;
  64        else
  65                return -EIO;
  66}
  67
  68/*
  69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
  70 * (since the firmware data structures are specified in a big-endian layout).
  71 */
  72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
  73                         u32 mbox_data)
  74{
  75        for ( ; size; size -= 8, mbox_data += 8)
  76                *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
  77}
  78
  79/**
  80 *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
  81 *      @adapter: the adapter
  82 *      @cmd: the Firmware Mailbox Command or Reply
  83 *      @size: command length in bytes
  84 *      @access: the time (ms) needed to access the Firmware Mailbox
  85 *      @execute: the time (ms) the command spent being executed
  86 */
  87static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
  88                             int size, int access, int execute)
  89{
  90        struct mbox_cmd_log *log = adapter->mbox_log;
  91        struct mbox_cmd *entry;
  92        int i;
  93
  94        entry = mbox_cmd_log_entry(log, log->cursor++);
  95        if (log->cursor == log->size)
  96                log->cursor = 0;
  97
  98        for (i = 0; i < size / 8; i++)
  99                entry->cmd[i] = be64_to_cpu(cmd[i]);
 100        while (i < MBOX_LEN / 8)
 101                entry->cmd[i++] = 0;
 102        entry->timestamp = jiffies;
 103        entry->seqno = log->seqno++;
 104        entry->access = access;
 105        entry->execute = execute;
 106}
 107
 108/**
 109 *      t4vf_wr_mbox_core - send a command to FW through the mailbox
 110 *      @adapter: the adapter
 111 *      @cmd: the command to write
 112 *      @size: command length in bytes
 113 *      @rpl: where to optionally store the reply
 114 *      @sleep_ok: if true we may sleep while awaiting command completion
 115 *
 116 *      Sends the given command to FW through the mailbox and waits for the
 117 *      FW to execute the command.  If @rpl is not %NULL it is used to store
 118 *      the FW's reply to the command.  The command and its optional reply
 119 *      are of the same length.  FW can take up to 500 ms to respond.
 120 *      @sleep_ok determines whether we may sleep while awaiting the response.
 121 *      If sleeping is allowed we use progressive backoff otherwise we spin.
 122 *
 123 *      The return value is 0 on success or a negative errno on failure.  A
 124 *      failure can happen either because we are not able to execute the
 125 *      command or FW executes it but signals an error.  In the latter case
 126 *      the return value is the error code indicated by FW (negated).
 127 */
 128int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
 129                      void *rpl, bool sleep_ok)
 130{
 131        static const int delay[] = {
 132                1, 1, 3, 5, 10, 10, 20, 50, 100
 133        };
 134
 135        u16 access = 0, execute = 0;
 136        u32 v, mbox_data;
 137        int i, ms, delay_idx, ret;
 138        const __be64 *p;
 139        u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
 140        u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
 141        __be64 cmd_rpl[MBOX_LEN / 8];
 142        struct mbox_list entry;
 143
 144        /* In T6, mailbox size is changed to 128 bytes to avoid
 145         * invalidating the entire prefetch buffer.
 146         */
 147        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 148                mbox_data = T4VF_MBDATA_BASE_ADDR;
 149        else
 150                mbox_data = T6VF_MBDATA_BASE_ADDR;
 151
 152        /*
 153         * Commands must be multiples of 16 bytes in length and may not be
 154         * larger than the size of the Mailbox Data register array.
 155         */
 156        if ((size % 16) != 0 ||
 157            size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
 158                return -EINVAL;
 159
 160        /* Queue ourselves onto the mailbox access list.  When our entry is at
 161         * the front of the list, we have rights to access the mailbox.  So we
 162         * wait [for a while] till we're at the front [or bail out with an
 163         * EBUSY] ...
 164         */
 165        spin_lock(&adapter->mbox_lock);
 166        list_add_tail(&entry.list, &adapter->mlist.list);
 167        spin_unlock(&adapter->mbox_lock);
 168
 169        delay_idx = 0;
 170        ms = delay[0];
 171
 172        for (i = 0; ; i += ms) {
 173                /* If we've waited too long, return a busy indication.  This
 174                 * really ought to be based on our initial position in the
 175                 * mailbox access list but this is a start.  We very rearely
 176                 * contend on access to the mailbox ...
 177                 */
 178                if (i > FW_CMD_MAX_TIMEOUT) {
 179                        spin_lock(&adapter->mbox_lock);
 180                        list_del(&entry.list);
 181                        spin_unlock(&adapter->mbox_lock);
 182                        ret = -EBUSY;
 183                        t4vf_record_mbox(adapter, cmd, size, access, ret);
 184                        return ret;
 185                }
 186
 187                /* If we're at the head, break out and start the mailbox
 188                 * protocol.
 189                 */
 190                if (list_first_entry(&adapter->mlist.list, struct mbox_list,
 191                                     list) == &entry)
 192                        break;
 193
 194                /* Delay for a bit before checking again ... */
 195                if (sleep_ok) {
 196                        ms = delay[delay_idx];  /* last element may repeat */
 197                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 198                                delay_idx++;
 199                        msleep(ms);
 200                } else {
 201                        mdelay(ms);
 202                }
 203        }
 204
 205        /*
 206         * Loop trying to get ownership of the mailbox.  Return an error
 207         * if we can't gain ownership.
 208         */
 209        v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 210        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 211                v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 212        if (v != MBOX_OWNER_DRV) {
 213                spin_lock(&adapter->mbox_lock);
 214                list_del(&entry.list);
 215                spin_unlock(&adapter->mbox_lock);
 216                ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
 217                t4vf_record_mbox(adapter, cmd, size, access, ret);
 218                return ret;
 219        }
 220
 221        /*
 222         * Write the command array into the Mailbox Data register array and
 223         * transfer ownership of the mailbox to the firmware.
 224         *
 225         * For the VFs, the Mailbox Data "registers" are actually backed by
 226         * T4's "MA" interface rather than PL Registers (as is the case for
 227         * the PFs).  Because these are in different coherency domains, the
 228         * write to the VF's PL-register-backed Mailbox Control can race in
 229         * front of the writes to the MA-backed VF Mailbox Data "registers".
 230         * So we need to do a read-back on at least one byte of the VF Mailbox
 231         * Data registers before doing the write to the VF Mailbox Control
 232         * register.
 233         */
 234        if (cmd_op != FW_VI_STATS_CMD)
 235                t4vf_record_mbox(adapter, cmd, size, access, 0);
 236        for (i = 0, p = cmd; i < size; i += 8)
 237                t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
 238        t4_read_reg(adapter, mbox_data);         /* flush write */
 239
 240        t4_write_reg(adapter, mbox_ctl,
 241                     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 242        t4_read_reg(adapter, mbox_ctl);          /* flush write */
 243
 244        /*
 245         * Spin waiting for firmware to acknowledge processing our command.
 246         */
 247        delay_idx = 0;
 248        ms = delay[0];
 249
 250        for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
 251                if (sleep_ok) {
 252                        ms = delay[delay_idx];
 253                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 254                                delay_idx++;
 255                        msleep(ms);
 256                } else
 257                        mdelay(ms);
 258
 259                /*
 260                 * If we're the owner, see if this is the reply we wanted.
 261                 */
 262                v = t4_read_reg(adapter, mbox_ctl);
 263                if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 264                        /*
 265                         * If the Message Valid bit isn't on, revoke ownership
 266                         * of the mailbox and continue waiting for our reply.
 267                         */
 268                        if ((v & MBMSGVALID_F) == 0) {
 269                                t4_write_reg(adapter, mbox_ctl,
 270                                             MBOWNER_V(MBOX_OWNER_NONE));
 271                                continue;
 272                        }
 273
 274                        /*
 275                         * We now have our reply.  Extract the command return
 276                         * value, copy the reply back to our caller's buffer
 277                         * (if specified) and revoke ownership of the mailbox.
 278                         * We return the (negated) firmware command return
 279                         * code (this depends on FW_SUCCESS == 0).
 280                         */
 281                        get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
 282
 283                        /* return value in low-order little-endian word */
 284                        v = be64_to_cpu(cmd_rpl[0]);
 285
 286                        if (rpl) {
 287                                /* request bit in high-order BE word */
 288                                WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
 289                                         & FW_CMD_REQUEST_F) == 0);
 290                                memcpy(rpl, cmd_rpl, size);
 291                                WARN_ON((be32_to_cpu(*(__be32 *)rpl)
 292                                         & FW_CMD_REQUEST_F) != 0);
 293                        }
 294                        t4_write_reg(adapter, mbox_ctl,
 295                                     MBOWNER_V(MBOX_OWNER_NONE));
 296                        execute = i + ms;
 297                        if (cmd_op != FW_VI_STATS_CMD)
 298                                t4vf_record_mbox(adapter, cmd_rpl, size, access,
 299                                                 execute);
 300                        spin_lock(&adapter->mbox_lock);
 301                        list_del(&entry.list);
 302                        spin_unlock(&adapter->mbox_lock);
 303                        return -FW_CMD_RETVAL_G(v);
 304                }
 305        }
 306
 307        /* We timed out.  Return the error ... */
 308        ret = -ETIMEDOUT;
 309        t4vf_record_mbox(adapter, cmd, size, access, ret);
 310        spin_lock(&adapter->mbox_lock);
 311        list_del(&entry.list);
 312        spin_unlock(&adapter->mbox_lock);
 313        return ret;
 314}
 315
 316#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
 317                     FW_PORT_CAP32_ANEG)
 318
 319/**
 320 *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
 321 *      @caps16: a 16-bit Port Capabilities value
 322 *
 323 *      Returns the equivalent 32-bit Port Capabilities value.
 324 */
 325static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
 326{
 327        fw_port_cap32_t caps32 = 0;
 328
 329        #define CAP16_TO_CAP32(__cap) \
 330                do { \
 331                        if (caps16 & FW_PORT_CAP_##__cap) \
 332                                caps32 |= FW_PORT_CAP32_##__cap; \
 333                } while (0)
 334
 335        CAP16_TO_CAP32(SPEED_100M);
 336        CAP16_TO_CAP32(SPEED_1G);
 337        CAP16_TO_CAP32(SPEED_25G);
 338        CAP16_TO_CAP32(SPEED_10G);
 339        CAP16_TO_CAP32(SPEED_40G);
 340        CAP16_TO_CAP32(SPEED_100G);
 341        CAP16_TO_CAP32(FC_RX);
 342        CAP16_TO_CAP32(FC_TX);
 343        CAP16_TO_CAP32(ANEG);
 344        CAP16_TO_CAP32(MDIAUTO);
 345        CAP16_TO_CAP32(MDISTRAIGHT);
 346        CAP16_TO_CAP32(FEC_RS);
 347        CAP16_TO_CAP32(FEC_BASER_RS);
 348        CAP16_TO_CAP32(802_3_PAUSE);
 349        CAP16_TO_CAP32(802_3_ASM_DIR);
 350
 351        #undef CAP16_TO_CAP32
 352
 353        return caps32;
 354}
 355
 356/* Translate Firmware Pause specification to Common Code */
 357static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
 358{
 359        enum cc_pause cc_pause = 0;
 360
 361        if (fw_pause & FW_PORT_CAP32_FC_RX)
 362                cc_pause |= PAUSE_RX;
 363        if (fw_pause & FW_PORT_CAP32_FC_TX)
 364                cc_pause |= PAUSE_TX;
 365
 366        return cc_pause;
 367}
 368
 369/* Translate Firmware Forward Error Correction specification to Common Code */
 370static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
 371{
 372        enum cc_fec cc_fec = 0;
 373
 374        if (fw_fec & FW_PORT_CAP32_FEC_RS)
 375                cc_fec |= FEC_RS;
 376        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
 377                cc_fec |= FEC_BASER_RS;
 378
 379        return cc_fec;
 380}
 381
 382/**
 383 * Return the highest speed set in the port capabilities, in Mb/s.
 384 */
 385static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
 386{
 387        #define TEST_SPEED_RETURN(__caps_speed, __speed) \
 388                do { \
 389                        if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
 390                                return __speed; \
 391                } while (0)
 392
 393        TEST_SPEED_RETURN(400G, 400000);
 394        TEST_SPEED_RETURN(200G, 200000);
 395        TEST_SPEED_RETURN(100G, 100000);
 396        TEST_SPEED_RETURN(50G,   50000);
 397        TEST_SPEED_RETURN(40G,   40000);
 398        TEST_SPEED_RETURN(25G,   25000);
 399        TEST_SPEED_RETURN(10G,   10000);
 400        TEST_SPEED_RETURN(1G,     1000);
 401        TEST_SPEED_RETURN(100M,    100);
 402
 403        #undef TEST_SPEED_RETURN
 404
 405        return 0;
 406}
 407
 408/**
 409 *      fwcap_to_fwspeed - return highest speed in Port Capabilities
 410 *      @acaps: advertised Port Capabilities
 411 *
 412 *      Get the highest speed for the port from the advertised Port
 413 *      Capabilities.  It will be either the highest speed from the list of
 414 *      speeds or whatever user has set using ethtool.
 415 */
 416static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
 417{
 418        #define TEST_SPEED_RETURN(__caps_speed) \
 419                do { \
 420                        if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
 421                                return FW_PORT_CAP32_SPEED_##__caps_speed; \
 422                } while (0)
 423
 424        TEST_SPEED_RETURN(400G);
 425        TEST_SPEED_RETURN(200G);
 426        TEST_SPEED_RETURN(100G);
 427        TEST_SPEED_RETURN(50G);
 428        TEST_SPEED_RETURN(40G);
 429        TEST_SPEED_RETURN(25G);
 430        TEST_SPEED_RETURN(10G);
 431        TEST_SPEED_RETURN(1G);
 432        TEST_SPEED_RETURN(100M);
 433
 434        #undef TEST_SPEED_RETURN
 435        return 0;
 436}
 437
 438/*
 439 *      init_link_config - initialize a link's SW state
 440 *      @lc: structure holding the link state
 441 *      @pcaps: link Port Capabilities
 442 *      @acaps: link current Advertised Port Capabilities
 443 *
 444 *      Initializes the SW state maintained for each link, including the link's
 445 *      capabilities and default speed/flow-control/autonegotiation settings.
 446 */
 447static void init_link_config(struct link_config *lc,
 448                             fw_port_cap32_t pcaps,
 449                             fw_port_cap32_t acaps)
 450{
 451        lc->pcaps = pcaps;
 452        lc->lpacaps = 0;
 453        lc->speed_caps = 0;
 454        lc->speed = 0;
 455        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
 456
 457        /* For Forward Error Control, we default to whatever the Firmware
 458         * tells us the Link is currently advertising.
 459         */
 460        lc->auto_fec = fwcap_to_cc_fec(acaps);
 461        lc->requested_fec = FEC_AUTO;
 462        lc->fec = lc->auto_fec;
 463
 464        /* If the Port is capable of Auto-Negtotiation, initialize it as
 465         * "enabled" and copy over all of the Physical Port Capabilities
 466         * to the Advertised Port Capabilities.  Otherwise mark it as
 467         * Auto-Negotiate disabled and select the highest supported speed
 468         * for the link.  Note parallel structure in t4_link_l1cfg_core()
 469         * and t4_handle_get_port_info().
 470         */
 471        if (lc->pcaps & FW_PORT_CAP32_ANEG) {
 472                lc->acaps = acaps & ADVERT_MASK;
 473                lc->autoneg = AUTONEG_ENABLE;
 474                lc->requested_fc |= PAUSE_AUTONEG;
 475        } else {
 476                lc->acaps = 0;
 477                lc->autoneg = AUTONEG_DISABLE;
 478                lc->speed_caps = fwcap_to_fwspeed(acaps);
 479        }
 480}
 481
 482/**
 483 *      t4vf_port_init - initialize port hardware/software state
 484 *      @adapter: the adapter
 485 *      @pidx: the adapter port index
 486 */
 487int t4vf_port_init(struct adapter *adapter, int pidx)
 488{
 489        struct port_info *pi = adap2pinfo(adapter, pidx);
 490        unsigned int fw_caps = adapter->params.fw_caps_support;
 491        struct fw_vi_cmd vi_cmd, vi_rpl;
 492        struct fw_port_cmd port_cmd, port_rpl;
 493        enum fw_port_type port_type;
 494        int mdio_addr;
 495        fw_port_cap32_t pcaps, acaps;
 496        int ret;
 497
 498        /* If we haven't yet determined whether we're talking to Firmware
 499         * which knows the new 32-bit Port Capabilities, it's time to find
 500         * out now.  This will also tell new Firmware to send us Port Status
 501         * Updates using the new 32-bit Port Capabilities version of the
 502         * Port Information message.
 503         */
 504        if (fw_caps == FW_CAPS_UNKNOWN) {
 505                u32 param, val;
 506
 507                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
 508                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
 509                val = 1;
 510                ret = t4vf_set_params(adapter, 1, &param, &val);
 511                fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
 512                adapter->params.fw_caps_support = fw_caps;
 513        }
 514
 515        /*
 516         * Execute a VI Read command to get our Virtual Interface information
 517         * like MAC address, etc.
 518         */
 519        memset(&vi_cmd, 0, sizeof(vi_cmd));
 520        vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
 521                                       FW_CMD_REQUEST_F |
 522                                       FW_CMD_READ_F);
 523        vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
 524        vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
 525        ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
 526        if (ret != FW_SUCCESS)
 527                return ret;
 528
 529        BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
 530        pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
 531        t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
 532
 533        /*
 534         * If we don't have read access to our port information, we're done
 535         * now.  Otherwise, execute a PORT Read command to get it ...
 536         */
 537        if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
 538                return 0;
 539
 540        memset(&port_cmd, 0, sizeof(port_cmd));
 541        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
 542                                            FW_CMD_REQUEST_F |
 543                                            FW_CMD_READ_F |
 544                                            FW_PORT_CMD_PORTID_V(pi->port_id));
 545        port_cmd.action_to_len16 = cpu_to_be32(
 546                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
 547                                     ? FW_PORT_ACTION_GET_PORT_INFO
 548                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
 549                FW_LEN16(port_cmd));
 550        ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
 551        if (ret != FW_SUCCESS)
 552                return ret;
 553
 554        /* Extract the various fields from the Port Information message. */
 555        if (fw_caps == FW_CAPS16) {
 556                u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
 557
 558                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
 559                mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
 560                             ? FW_PORT_CMD_MDIOADDR_G(lstatus)
 561                             : -1);
 562                pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
 563                acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
 564        } else {
 565                u32 lstatus32 =
 566                           be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
 567
 568                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
 569                mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
 570                             ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
 571                             : -1);
 572                pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
 573                acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
 574        }
 575
 576        pi->port_type = port_type;
 577        pi->mdio_addr = mdio_addr;
 578        pi->mod_type = FW_PORT_MOD_TYPE_NA;
 579
 580        init_link_config(&pi->link_cfg, pcaps, acaps);
 581        return 0;
 582}
 583
 584/**
 585 *      t4vf_fw_reset - issue a reset to FW
 586 *      @adapter: the adapter
 587 *
 588 *      Issues a reset command to FW.  For a Physical Function this would
 589 *      result in the Firmware resetting all of its state.  For a Virtual
 590 *      Function this just resets the state associated with the VF.
 591 */
 592int t4vf_fw_reset(struct adapter *adapter)
 593{
 594        struct fw_reset_cmd cmd;
 595
 596        memset(&cmd, 0, sizeof(cmd));
 597        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
 598                                      FW_CMD_WRITE_F);
 599        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 600        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 601}
 602
 603/**
 604 *      t4vf_query_params - query FW or device parameters
 605 *      @adapter: the adapter
 606 *      @nparams: the number of parameters
 607 *      @params: the parameter names
 608 *      @vals: the parameter values
 609 *
 610 *      Reads the values of firmware or device parameters.  Up to 7 parameters
 611 *      can be queried at once.
 612 */
 613static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
 614                             const u32 *params, u32 *vals)
 615{
 616        int i, ret;
 617        struct fw_params_cmd cmd, rpl;
 618        struct fw_params_param *p;
 619        size_t len16;
 620
 621        if (nparams > 7)
 622                return -EINVAL;
 623
 624        memset(&cmd, 0, sizeof(cmd));
 625        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 626                                    FW_CMD_REQUEST_F |
 627                                    FW_CMD_READ_F);
 628        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 629                                      param[nparams].mnem), 16);
 630        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 631        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
 632                p->mnem = htonl(*params++);
 633
 634        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 635        if (ret == 0)
 636                for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
 637                        *vals++ = be32_to_cpu(p->val);
 638        return ret;
 639}
 640
 641/**
 642 *      t4vf_set_params - sets FW or device parameters
 643 *      @adapter: the adapter
 644 *      @nparams: the number of parameters
 645 *      @params: the parameter names
 646 *      @vals: the parameter values
 647 *
 648 *      Sets the values of firmware or device parameters.  Up to 7 parameters
 649 *      can be specified at once.
 650 */
 651int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
 652                    const u32 *params, const u32 *vals)
 653{
 654        int i;
 655        struct fw_params_cmd cmd;
 656        struct fw_params_param *p;
 657        size_t len16;
 658
 659        if (nparams > 7)
 660                return -EINVAL;
 661
 662        memset(&cmd, 0, sizeof(cmd));
 663        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 664                                    FW_CMD_REQUEST_F |
 665                                    FW_CMD_WRITE_F);
 666        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 667                                      param[nparams]), 16);
 668        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 669        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
 670                p->mnem = cpu_to_be32(*params++);
 671                p->val = cpu_to_be32(*vals++);
 672        }
 673
 674        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 675}
 676
 677/**
 678 *      t4vf_fl_pkt_align - return the fl packet alignment
 679 *      @adapter: the adapter
 680 *
 681 *      T4 has a single field to specify the packing and padding boundary.
 682 *      T5 onwards has separate fields for this and hence the alignment for
 683 *      next packet offset is maximum of these two.  And T6 changes the
 684 *      Ingress Padding Boundary Shift, so it's all a mess and it's best
 685 *      if we put this in low-level Common Code ...
 686 *
 687 */
 688int t4vf_fl_pkt_align(struct adapter *adapter)
 689{
 690        u32 sge_control, sge_control2;
 691        unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
 692
 693        sge_control = adapter->params.sge.sge_control;
 694
 695        /* T4 uses a single control field to specify both the PCIe Padding and
 696         * Packing Boundary.  T5 introduced the ability to specify these
 697         * separately.  The actual Ingress Packet Data alignment boundary
 698         * within Packed Buffer Mode is the maximum of these two
 699         * specifications.  (Note that it makes no real practical sense to
 700         * have the Pading Boudary be larger than the Packing Boundary but you
 701         * could set the chip up that way and, in fact, legacy T4 code would
 702         * end doing this because it would initialize the Padding Boundary and
 703         * leave the Packing Boundary initialized to 0 (16 bytes).)
 704         * Padding Boundary values in T6 starts from 8B,
 705         * where as it is 32B for T4 and T5.
 706         */
 707        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 708                ingpad_shift = INGPADBOUNDARY_SHIFT_X;
 709        else
 710                ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
 711
 712        ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
 713
 714        fl_align = ingpadboundary;
 715        if (!is_t4(adapter->params.chip)) {
 716                /* T5 has a different interpretation of one of the PCIe Packing
 717                 * Boundary values.
 718                 */
 719                sge_control2 = adapter->params.sge.sge_control2;
 720                ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
 721                if (ingpackboundary == INGPACKBOUNDARY_16B_X)
 722                        ingpackboundary = 16;
 723                else
 724                        ingpackboundary = 1 << (ingpackboundary +
 725                                                INGPACKBOUNDARY_SHIFT_X);
 726
 727                fl_align = max(ingpadboundary, ingpackboundary);
 728        }
 729        return fl_align;
 730}
 731
 732/**
 733 *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
 734 *      @adapter: the adapter
 735 *      @qid: the Queue ID
 736 *      @qtype: the Ingress or Egress type for @qid
 737 *      @pbar2_qoffset: BAR2 Queue Offset
 738 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 739 *
 740 *      Returns the BAR2 SGE Queue Registers information associated with the
 741 *      indicated Absolute Queue ID.  These are passed back in return value
 742 *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 743 *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 744 *
 745 *      This may return an error which indicates that BAR2 SGE Queue
 746 *      registers aren't available.  If an error is not returned, then the
 747 *      following values are returned:
 748 *
 749 *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 750 *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 751 *
 752 *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 753 *      require the "Inferred Queue ID" ability may be used.  E.g. the
 754 *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 755 *      then these "Inferred Queue ID" register may not be used.
 756 */
 757int t4vf_bar2_sge_qregs(struct adapter *adapter,
 758                        unsigned int qid,
 759                        enum t4_bar2_qtype qtype,
 760                        u64 *pbar2_qoffset,
 761                        unsigned int *pbar2_qid)
 762{
 763        unsigned int page_shift, page_size, qpp_shift, qpp_mask;
 764        u64 bar2_page_offset, bar2_qoffset;
 765        unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
 766
 767        /* T4 doesn't support BAR2 SGE Queue registers.
 768         */
 769        if (is_t4(adapter->params.chip))
 770                return -EINVAL;
 771
 772        /* Get our SGE Page Size parameters.
 773         */
 774        page_shift = adapter->params.sge.sge_vf_hps + 10;
 775        page_size = 1 << page_shift;
 776
 777        /* Get the right Queues per Page parameters for our Queue.
 778         */
 779        qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
 780                     ? adapter->params.sge.sge_vf_eq_qpp
 781                     : adapter->params.sge.sge_vf_iq_qpp);
 782        qpp_mask = (1 << qpp_shift) - 1;
 783
 784        /* Calculate the basics of the BAR2 SGE Queue register area:
 785         *  o The BAR2 page the Queue registers will be in.
 786         *  o The BAR2 Queue ID.
 787         *  o The BAR2 Queue ID Offset into the BAR2 page.
 788         */
 789        bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
 790        bar2_qid = qid & qpp_mask;
 791        bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
 792
 793        /* If the BAR2 Queue ID Offset is less than the Page Size, then the
 794         * hardware will infer the Absolute Queue ID simply from the writes to
 795         * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
 796         * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
 797         * write to the first BAR2 SGE Queue Area within the BAR2 Page with
 798         * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
 799         * from the BAR2 Page and BAR2 Queue ID.
 800         *
 801         * One important censequence of this is that some BAR2 SGE registers
 802         * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
 803         * there.  But other registers synthesize the SGE Queue ID purely
 804         * from the writes to the registers -- the Write Combined Doorbell
 805         * Buffer is a good example.  These BAR2 SGE Registers are only
 806         * available for those BAR2 SGE Register areas where the SGE Absolute
 807         * Queue ID can be inferred from simple writes.
 808         */
 809        bar2_qoffset = bar2_page_offset;
 810        bar2_qinferred = (bar2_qid_offset < page_size);
 811        if (bar2_qinferred) {
 812                bar2_qoffset += bar2_qid_offset;
 813                bar2_qid = 0;
 814        }
 815
 816        *pbar2_qoffset = bar2_qoffset;
 817        *pbar2_qid = bar2_qid;
 818        return 0;
 819}
 820
 821unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
 822{
 823        u32 whoami;
 824
 825        whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
 826        return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
 827                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
 828}
 829
 830/**
 831 *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 832 *      @adapter: the adapter
 833 *
 834 *      Retrieves various core SGE parameters in the form of hardware SGE
 835 *      register values.  The caller is responsible for decoding these as
 836 *      needed.  The SGE parameters are stored in @adapter->params.sge.
 837 */
 838int t4vf_get_sge_params(struct adapter *adapter)
 839{
 840        struct sge_params *sge_params = &adapter->params.sge;
 841        u32 params[7], vals[7];
 842        int v;
 843
 844        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 845                     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
 846        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 847                     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
 848        params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 849                     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
 850        params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 851                     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
 852        params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 853                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
 854        params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 855                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
 856        params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 857                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
 858        v = t4vf_query_params(adapter, 7, params, vals);
 859        if (v)
 860                return v;
 861        sge_params->sge_control = vals[0];
 862        sge_params->sge_host_page_size = vals[1];
 863        sge_params->sge_fl_buffer_size[0] = vals[2];
 864        sge_params->sge_fl_buffer_size[1] = vals[3];
 865        sge_params->sge_timer_value_0_and_1 = vals[4];
 866        sge_params->sge_timer_value_2_and_3 = vals[5];
 867        sge_params->sge_timer_value_4_and_5 = vals[6];
 868
 869        /* T4 uses a single control field to specify both the PCIe Padding and
 870         * Packing Boundary.  T5 introduced the ability to specify these
 871         * separately with the Padding Boundary in SGE_CONTROL and and Packing
 872         * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
 873         * SGE_CONTROL in order to determine how ingress packet data will be
 874         * laid out in Packed Buffer Mode.  Unfortunately, older versions of
 875         * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
 876         * failure grabbing it we throw an error since we can't figure out the
 877         * right value.
 878         */
 879        if (!is_t4(adapter->params.chip)) {
 880                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 881                             FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
 882                v = t4vf_query_params(adapter, 1, params, vals);
 883                if (v != FW_SUCCESS) {
 884                        dev_err(adapter->pdev_dev,
 885                                "Unable to get SGE Control2; "
 886                                "probably old firmware.\n");
 887                        return v;
 888                }
 889                sge_params->sge_control2 = vals[0];
 890        }
 891
 892        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 893                     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
 894        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 895                     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
 896        v = t4vf_query_params(adapter, 2, params, vals);
 897        if (v)
 898                return v;
 899        sge_params->sge_ingress_rx_threshold = vals[0];
 900        sge_params->sge_congestion_control = vals[1];
 901
 902        /* For T5 and later we want to use the new BAR2 Doorbells.
 903         * Unfortunately, older firmware didn't allow the this register to be
 904         * read.
 905         */
 906        if (!is_t4(adapter->params.chip)) {
 907                unsigned int pf, s_hps, s_qpp;
 908
 909                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 910                             FW_PARAMS_PARAM_XYZ_V(
 911                                     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
 912                params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 913                             FW_PARAMS_PARAM_XYZ_V(
 914                                     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
 915                v = t4vf_query_params(adapter, 2, params, vals);
 916                if (v != FW_SUCCESS) {
 917                        dev_warn(adapter->pdev_dev,
 918                                 "Unable to get VF SGE Queues/Page; "
 919                                 "probably old firmware.\n");
 920                        return v;
 921                }
 922                sge_params->sge_egress_queues_per_page = vals[0];
 923                sge_params->sge_ingress_queues_per_page = vals[1];
 924
 925                /* We need the Queues/Page for our VF.  This is based on the
 926                 * PF from which we're instantiated and is indexed in the
 927                 * register we just read. Do it once here so other code in
 928                 * the driver can just use it.
 929                 */
 930                pf = t4vf_get_pf_from_vf(adapter);
 931                s_hps = (HOSTPAGESIZEPF0_S +
 932                         (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
 933                sge_params->sge_vf_hps =
 934                        ((sge_params->sge_host_page_size >> s_hps)
 935                         & HOSTPAGESIZEPF0_M);
 936
 937                s_qpp = (QUEUESPERPAGEPF0_S +
 938                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
 939                sge_params->sge_vf_eq_qpp =
 940                        ((sge_params->sge_egress_queues_per_page >> s_qpp)
 941                         & QUEUESPERPAGEPF0_M);
 942                sge_params->sge_vf_iq_qpp =
 943                        ((sge_params->sge_ingress_queues_per_page >> s_qpp)
 944                         & QUEUESPERPAGEPF0_M);
 945        }
 946
 947        return 0;
 948}
 949
 950/**
 951 *      t4vf_get_vpd_params - retrieve device VPD paremeters
 952 *      @adapter: the adapter
 953 *
 954 *      Retrives various device Vital Product Data parameters.  The parameters
 955 *      are stored in @adapter->params.vpd.
 956 */
 957int t4vf_get_vpd_params(struct adapter *adapter)
 958{
 959        struct vpd_params *vpd_params = &adapter->params.vpd;
 960        u32 params[7], vals[7];
 961        int v;
 962
 963        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 964                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
 965        v = t4vf_query_params(adapter, 1, params, vals);
 966        if (v)
 967                return v;
 968        vpd_params->cclk = vals[0];
 969
 970        return 0;
 971}
 972
 973/**
 974 *      t4vf_get_dev_params - retrieve device paremeters
 975 *      @adapter: the adapter
 976 *
 977 *      Retrives various device parameters.  The parameters are stored in
 978 *      @adapter->params.dev.
 979 */
 980int t4vf_get_dev_params(struct adapter *adapter)
 981{
 982        struct dev_params *dev_params = &adapter->params.dev;
 983        u32 params[7], vals[7];
 984        int v;
 985
 986        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 987                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
 988        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 989                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
 990        v = t4vf_query_params(adapter, 2, params, vals);
 991        if (v)
 992                return v;
 993        dev_params->fwrev = vals[0];
 994        dev_params->tprev = vals[1];
 995
 996        return 0;
 997}
 998
 999/**
1000 *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1001 *      @adapter: the adapter
1002 *
1003 *      Retrieves global RSS mode and parameters with which we have to live
1004 *      and stores them in the @adapter's RSS parameters.
1005 */
1006int t4vf_get_rss_glb_config(struct adapter *adapter)
1007{
1008        struct rss_params *rss = &adapter->params.rss;
1009        struct fw_rss_glb_config_cmd cmd, rpl;
1010        int v;
1011
1012        /*
1013         * Execute an RSS Global Configuration read command to retrieve
1014         * our RSS configuration.
1015         */
1016        memset(&cmd, 0, sizeof(cmd));
1017        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1018                                      FW_CMD_REQUEST_F |
1019                                      FW_CMD_READ_F);
1020        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1021        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1022        if (v)
1023                return v;
1024
1025        /*
1026         * Transate the big-endian RSS Global Configuration into our
1027         * cpu-endian format based on the RSS mode.  We also do first level
1028         * filtering at this point to weed out modes which don't support
1029         * VF Drivers ...
1030         */
1031        rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1032                        be32_to_cpu(rpl.u.manual.mode_pkd));
1033        switch (rss->mode) {
1034        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1035                u32 word = be32_to_cpu(
1036                                rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1037
1038                rss->u.basicvirtual.synmapen =
1039                        ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1040                rss->u.basicvirtual.syn4tupenipv6 =
1041                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1042                rss->u.basicvirtual.syn2tupenipv6 =
1043                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1044                rss->u.basicvirtual.syn4tupenipv4 =
1045                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1046                rss->u.basicvirtual.syn2tupenipv4 =
1047                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1048
1049                rss->u.basicvirtual.ofdmapen =
1050                        ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1051
1052                rss->u.basicvirtual.tnlmapen =
1053                        ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1054                rss->u.basicvirtual.tnlalllookup =
1055                        ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1056
1057                rss->u.basicvirtual.hashtoeplitz =
1058                        ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1059
1060                /* we need at least Tunnel Map Enable to be set */
1061                if (!rss->u.basicvirtual.tnlmapen)
1062                        return -EINVAL;
1063                break;
1064        }
1065
1066        default:
1067                /* all unknown/unsupported RSS modes result in an error */
1068                return -EINVAL;
1069        }
1070
1071        return 0;
1072}
1073
1074/**
1075 *      t4vf_get_vfres - retrieve VF resource limits
1076 *      @adapter: the adapter
1077 *
1078 *      Retrieves configured resource limits and capabilities for a virtual
1079 *      function.  The results are stored in @adapter->vfres.
1080 */
1081int t4vf_get_vfres(struct adapter *adapter)
1082{
1083        struct vf_resources *vfres = &adapter->params.vfres;
1084        struct fw_pfvf_cmd cmd, rpl;
1085        int v;
1086        u32 word;
1087
1088        /*
1089         * Execute PFVF Read command to get VF resource limits; bail out early
1090         * with error on command failure.
1091         */
1092        memset(&cmd, 0, sizeof(cmd));
1093        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1094                                    FW_CMD_REQUEST_F |
1095                                    FW_CMD_READ_F);
1096        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1097        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1098        if (v)
1099                return v;
1100
1101        /*
1102         * Extract VF resource limits and return success.
1103         */
1104        word = be32_to_cpu(rpl.niqflint_niq);
1105        vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1106        vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1107
1108        word = be32_to_cpu(rpl.type_to_neq);
1109        vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1110        vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1111
1112        word = be32_to_cpu(rpl.tc_to_nexactf);
1113        vfres->tc = FW_PFVF_CMD_TC_G(word);
1114        vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1115        vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1116
1117        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1118        vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1119        vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1120        vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1121
1122        return 0;
1123}
1124
1125/**
1126 *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1127 *      @adapter: the adapter
1128 *      @viid: Virtual Interface ID
1129 *      @config: pointer to host-native VI RSS Configuration buffer
1130 *
1131 *      Reads the Virtual Interface's RSS configuration information and
1132 *      translates it into CPU-native format.
1133 */
1134int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1135                            union rss_vi_config *config)
1136{
1137        struct fw_rss_vi_config_cmd cmd, rpl;
1138        int v;
1139
1140        memset(&cmd, 0, sizeof(cmd));
1141        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1142                                     FW_CMD_REQUEST_F |
1143                                     FW_CMD_READ_F |
1144                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1145        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1146        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1147        if (v)
1148                return v;
1149
1150        switch (adapter->params.rss.mode) {
1151        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1152                u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1153
1154                config->basicvirtual.ip6fourtupen =
1155                        ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1156                config->basicvirtual.ip6twotupen =
1157                        ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1158                config->basicvirtual.ip4fourtupen =
1159                        ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1160                config->basicvirtual.ip4twotupen =
1161                        ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1162                config->basicvirtual.udpen =
1163                        ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1164                config->basicvirtual.defaultq =
1165                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1166                break;
1167        }
1168
1169        default:
1170                return -EINVAL;
1171        }
1172
1173        return 0;
1174}
1175
1176/**
1177 *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1178 *      @adapter: the adapter
1179 *      @viid: Virtual Interface ID
1180 *      @config: pointer to host-native VI RSS Configuration buffer
1181 *
1182 *      Write the Virtual Interface's RSS configuration information
1183 *      (translating it into firmware-native format before writing).
1184 */
1185int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1186                             union rss_vi_config *config)
1187{
1188        struct fw_rss_vi_config_cmd cmd, rpl;
1189
1190        memset(&cmd, 0, sizeof(cmd));
1191        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1192                                     FW_CMD_REQUEST_F |
1193                                     FW_CMD_WRITE_F |
1194                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1195        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1196        switch (adapter->params.rss.mode) {
1197        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1198                u32 word = 0;
1199
1200                if (config->basicvirtual.ip6fourtupen)
1201                        word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1202                if (config->basicvirtual.ip6twotupen)
1203                        word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1204                if (config->basicvirtual.ip4fourtupen)
1205                        word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1206                if (config->basicvirtual.ip4twotupen)
1207                        word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1208                if (config->basicvirtual.udpen)
1209                        word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1210                word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1211                                config->basicvirtual.defaultq);
1212                cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1213                break;
1214        }
1215
1216        default:
1217                return -EINVAL;
1218        }
1219
1220        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1221}
1222
1223/**
1224 *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1225 *      @adapter: the adapter
1226 *      @viid: Virtual Interface of RSS Table Slice
1227 *      @start: starting entry in the table to write
1228 *      @n: how many table entries to write
1229 *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1230 *      @nrspq: number of values in @rspq
1231 *
1232 *      Programs the selected part of the VI's RSS mapping table with the
1233 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1234 *      until the full table range is populated.
1235 *
1236 *      The caller must ensure the values in @rspq are in the range 0..1023.
1237 */
1238int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1239                          int start, int n, const u16 *rspq, int nrspq)
1240{
1241        const u16 *rsp = rspq;
1242        const u16 *rsp_end = rspq+nrspq;
1243        struct fw_rss_ind_tbl_cmd cmd;
1244
1245        /*
1246         * Initialize firmware command template to write the RSS table.
1247         */
1248        memset(&cmd, 0, sizeof(cmd));
1249        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1250                                     FW_CMD_REQUEST_F |
1251                                     FW_CMD_WRITE_F |
1252                                     FW_RSS_IND_TBL_CMD_VIID_V(viid));
1253        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1254
1255        /*
1256         * Each firmware RSS command can accommodate up to 32 RSS Ingress
1257         * Queue Identifiers.  These Ingress Queue IDs are packed three to
1258         * a 32-bit word as 10-bit values with the upper remaining 2 bits
1259         * reserved.
1260         */
1261        while (n > 0) {
1262                __be32 *qp = &cmd.iq0_to_iq2;
1263                int nq = min(n, 32);
1264                int ret;
1265
1266                /*
1267                 * Set up the firmware RSS command header to send the next
1268                 * "nq" Ingress Queue IDs to the firmware.
1269                 */
1270                cmd.niqid = cpu_to_be16(nq);
1271                cmd.startidx = cpu_to_be16(start);
1272
1273                /*
1274                 * "nq" more done for the start of the next loop.
1275                 */
1276                start += nq;
1277                n -= nq;
1278
1279                /*
1280                 * While there are still Ingress Queue IDs to stuff into the
1281                 * current firmware RSS command, retrieve them from the
1282                 * Ingress Queue ID array and insert them into the command.
1283                 */
1284                while (nq > 0) {
1285                        /*
1286                         * Grab up to the next 3 Ingress Queue IDs (wrapping
1287                         * around the Ingress Queue ID array if necessary) and
1288                         * insert them into the firmware RSS command at the
1289                         * current 3-tuple position within the commad.
1290                         */
1291                        u16 qbuf[3];
1292                        u16 *qbp = qbuf;
1293                        int nqbuf = min(3, nq);
1294
1295                        nq -= nqbuf;
1296                        qbuf[0] = qbuf[1] = qbuf[2] = 0;
1297                        while (nqbuf) {
1298                                nqbuf--;
1299                                *qbp++ = *rsp++;
1300                                if (rsp >= rsp_end)
1301                                        rsp = rspq;
1302                        }
1303                        *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1304                                            FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1305                                            FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1306                }
1307
1308                /*
1309                 * Send this portion of the RRS table update to the firmware;
1310                 * bail out on any errors.
1311                 */
1312                ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1313                if (ret)
1314                        return ret;
1315        }
1316        return 0;
1317}
1318
1319/**
1320 *      t4vf_alloc_vi - allocate a virtual interface on a port
1321 *      @adapter: the adapter
1322 *      @port_id: physical port associated with the VI
1323 *
1324 *      Allocate a new Virtual Interface and bind it to the indicated
1325 *      physical port.  Return the new Virtual Interface Identifier on
1326 *      success, or a [negative] error number on failure.
1327 */
1328int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1329{
1330        struct fw_vi_cmd cmd, rpl;
1331        int v;
1332
1333        /*
1334         * Execute a VI command to allocate Virtual Interface and return its
1335         * VIID.
1336         */
1337        memset(&cmd, 0, sizeof(cmd));
1338        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1339                                    FW_CMD_REQUEST_F |
1340                                    FW_CMD_WRITE_F |
1341                                    FW_CMD_EXEC_F);
1342        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1343                                         FW_VI_CMD_ALLOC_F);
1344        cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1345        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1346        if (v)
1347                return v;
1348
1349        return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1350}
1351
1352/**
1353 *      t4vf_free_vi -- free a virtual interface
1354 *      @adapter: the adapter
1355 *      @viid: the virtual interface identifier
1356 *
1357 *      Free a previously allocated Virtual Interface.  Return an error on
1358 *      failure.
1359 */
1360int t4vf_free_vi(struct adapter *adapter, int viid)
1361{
1362        struct fw_vi_cmd cmd;
1363
1364        /*
1365         * Execute a VI command to free the Virtual Interface.
1366         */
1367        memset(&cmd, 0, sizeof(cmd));
1368        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1369                                    FW_CMD_REQUEST_F |
1370                                    FW_CMD_EXEC_F);
1371        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1372                                         FW_VI_CMD_FREE_F);
1373        cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1374        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1375}
1376
1377/**
1378 *      t4vf_enable_vi - enable/disable a virtual interface
1379 *      @adapter: the adapter
1380 *      @viid: the Virtual Interface ID
1381 *      @rx_en: 1=enable Rx, 0=disable Rx
1382 *      @tx_en: 1=enable Tx, 0=disable Tx
1383 *
1384 *      Enables/disables a virtual interface.
1385 */
1386int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1387                   bool rx_en, bool tx_en)
1388{
1389        struct fw_vi_enable_cmd cmd;
1390
1391        memset(&cmd, 0, sizeof(cmd));
1392        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1393                                     FW_CMD_REQUEST_F |
1394                                     FW_CMD_EXEC_F |
1395                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1396        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1397                                       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1398                                       FW_LEN16(cmd));
1399        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1400}
1401
1402/**
1403 *      t4vf_enable_pi - enable/disable a Port's virtual interface
1404 *      @adapter: the adapter
1405 *      @pi: the Port Information structure
1406 *      @rx_en: 1=enable Rx, 0=disable Rx
1407 *      @tx_en: 1=enable Tx, 0=disable Tx
1408 *
1409 *      Enables/disables a Port's virtual interface.  If the Virtual
1410 *      Interface enable/disable operation is successful, we notify the
1411 *      OS-specific code of a potential Link Status change via the OS Contract
1412 *      API t4vf_os_link_changed().
1413 */
1414int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1415                   bool rx_en, bool tx_en)
1416{
1417        int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1418
1419        if (ret)
1420                return ret;
1421        t4vf_os_link_changed(adapter, pi->pidx,
1422                             rx_en && tx_en && pi->link_cfg.link_ok);
1423        return 0;
1424}
1425
1426/**
1427 *      t4vf_identify_port - identify a VI's port by blinking its LED
1428 *      @adapter: the adapter
1429 *      @viid: the Virtual Interface ID
1430 *      @nblinks: how many times to blink LED at 2.5 Hz
1431 *
1432 *      Identifies a VI's port by blinking its LED.
1433 */
1434int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1435                       unsigned int nblinks)
1436{
1437        struct fw_vi_enable_cmd cmd;
1438
1439        memset(&cmd, 0, sizeof(cmd));
1440        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1441                                     FW_CMD_REQUEST_F |
1442                                     FW_CMD_EXEC_F |
1443                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1444        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1445                                       FW_LEN16(cmd));
1446        cmd.blinkdur = cpu_to_be16(nblinks);
1447        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1448}
1449
1450/**
1451 *      t4vf_set_rxmode - set Rx properties of a virtual interface
1452 *      @adapter: the adapter
1453 *      @viid: the VI id
1454 *      @mtu: the new MTU or -1 for no change
1455 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1456 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1457 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1458 *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1459 *              -1 no change
1460 *
1461 *      Sets Rx properties of a virtual interface.
1462 */
1463int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1464                    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1465                    bool sleep_ok)
1466{
1467        struct fw_vi_rxmode_cmd cmd;
1468
1469        /* convert to FW values */
1470        if (mtu < 0)
1471                mtu = FW_VI_RXMODE_CMD_MTU_M;
1472        if (promisc < 0)
1473                promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1474        if (all_multi < 0)
1475                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1476        if (bcast < 0)
1477                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1478        if (vlanex < 0)
1479                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1480
1481        memset(&cmd, 0, sizeof(cmd));
1482        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1483                                     FW_CMD_REQUEST_F |
1484                                     FW_CMD_WRITE_F |
1485                                     FW_VI_RXMODE_CMD_VIID_V(viid));
1486        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1487        cmd.mtu_to_vlanexen =
1488                cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1489                            FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1490                            FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1491                            FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1492                            FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1493        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1494}
1495
1496/**
1497 *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1498 *      @adapter: the adapter
1499 *      @viid: the Virtual Interface Identifier
1500 *      @free: if true any existing filters for this VI id are first removed
1501 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1502 *      @addr: the MAC address(es)
1503 *      @idx: where to store the index of each allocated filter
1504 *      @hash: pointer to hash address filter bitmap
1505 *      @sleep_ok: call is allowed to sleep
1506 *
1507 *      Allocates an exact-match filter for each of the supplied addresses and
1508 *      sets it to the corresponding address.  If @idx is not %NULL it should
1509 *      have at least @naddr entries, each of which will be set to the index of
1510 *      the filter allocated for the corresponding MAC address.  If a filter
1511 *      could not be allocated for an address its index is set to 0xffff.
1512 *      If @hash is not %NULL addresses that fail to allocate an exact filter
1513 *      are hashed and update the hash filter bitmap pointed at by @hash.
1514 *
1515 *      Returns a negative error number or the number of filters allocated.
1516 */
1517int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1518                        unsigned int naddr, const u8 **addr, u16 *idx,
1519                        u64 *hash, bool sleep_ok)
1520{
1521        int offset, ret = 0;
1522        unsigned nfilters = 0;
1523        unsigned int rem = naddr;
1524        struct fw_vi_mac_cmd cmd, rpl;
1525        unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1526
1527        if (naddr > max_naddr)
1528                return -EINVAL;
1529
1530        for (offset = 0; offset < naddr; /**/) {
1531                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1532                                         ? rem
1533                                         : ARRAY_SIZE(cmd.u.exact));
1534                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1535                                                     u.exact[fw_naddr]), 16);
1536                struct fw_vi_mac_exact *p;
1537                int i;
1538
1539                memset(&cmd, 0, sizeof(cmd));
1540                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1541                                             FW_CMD_REQUEST_F |
1542                                             FW_CMD_WRITE_F |
1543                                             (free ? FW_CMD_EXEC_F : 0) |
1544                                             FW_VI_MAC_CMD_VIID_V(viid));
1545                cmd.freemacs_to_len16 =
1546                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1547                                    FW_CMD_LEN16_V(len16));
1548
1549                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1550                        p->valid_to_idx = cpu_to_be16(
1551                                FW_VI_MAC_CMD_VALID_F |
1552                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1553                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1554                }
1555
1556
1557                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1558                                        sleep_ok);
1559                if (ret && ret != -ENOMEM)
1560                        break;
1561
1562                for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1563                        u16 index = FW_VI_MAC_CMD_IDX_G(
1564                                be16_to_cpu(p->valid_to_idx));
1565
1566                        if (idx)
1567                                idx[offset+i] =
1568                                        (index >= max_naddr
1569                                         ? 0xffff
1570                                         : index);
1571                        if (index < max_naddr)
1572                                nfilters++;
1573                        else if (hash)
1574                                *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1575                }
1576
1577                free = false;
1578                offset += fw_naddr;
1579                rem -= fw_naddr;
1580        }
1581
1582        /*
1583         * If there were no errors or we merely ran out of room in our MAC
1584         * address arena, return the number of filters actually written.
1585         */
1586        if (ret == 0 || ret == -ENOMEM)
1587                ret = nfilters;
1588        return ret;
1589}
1590
1591/**
1592 *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1593 *      @adapter: the adapter
1594 *      @viid: the VI id
1595 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1596 *      @addr: the MAC address(es)
1597 *      @sleep_ok: call is allowed to sleep
1598 *
1599 *      Frees the exact-match filter for each of the supplied addresses
1600 *
1601 *      Returns a negative error number or the number of filters freed.
1602 */
1603int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1604                       unsigned int naddr, const u8 **addr, bool sleep_ok)
1605{
1606        int offset, ret = 0;
1607        struct fw_vi_mac_cmd cmd;
1608        unsigned int nfilters = 0;
1609        unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1610        unsigned int rem = naddr;
1611
1612        if (naddr > max_naddr)
1613                return -EINVAL;
1614
1615        for (offset = 0; offset < (int)naddr ; /**/) {
1616                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1617                                         rem : ARRAY_SIZE(cmd.u.exact));
1618                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1619                                                     u.exact[fw_naddr]), 16);
1620                struct fw_vi_mac_exact *p;
1621                int i;
1622
1623                memset(&cmd, 0, sizeof(cmd));
1624                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1625                                     FW_CMD_REQUEST_F |
1626                                     FW_CMD_WRITE_F |
1627                                     FW_CMD_EXEC_V(0) |
1628                                     FW_VI_MAC_CMD_VIID_V(viid));
1629                cmd.freemacs_to_len16 =
1630                                cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1631                                            FW_CMD_LEN16_V(len16));
1632
1633                for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1634                        p->valid_to_idx = cpu_to_be16(
1635                                FW_VI_MAC_CMD_VALID_F |
1636                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1637                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1638                }
1639
1640                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1641                                        sleep_ok);
1642                if (ret)
1643                        break;
1644
1645                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1646                        u16 index = FW_VI_MAC_CMD_IDX_G(
1647                                                be16_to_cpu(p->valid_to_idx));
1648
1649                        if (index < max_naddr)
1650                                nfilters++;
1651                }
1652
1653                offset += fw_naddr;
1654                rem -= fw_naddr;
1655        }
1656
1657        if (ret == 0)
1658                ret = nfilters;
1659        return ret;
1660}
1661
1662/**
1663 *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1664 *      @adapter: the adapter
1665 *      @viid: the Virtual Interface ID
1666 *      @idx: index of existing filter for old value of MAC address, or -1
1667 *      @addr: the new MAC address value
1668 *      @persist: if idx < 0, the new MAC allocation should be persistent
1669 *
1670 *      Modifies an exact-match filter and sets it to the new MAC address.
1671 *      Note that in general it is not possible to modify the value of a given
1672 *      filter so the generic way to modify an address filter is to free the
1673 *      one being used by the old address value and allocate a new filter for
1674 *      the new address value.  @idx can be -1 if the address is a new
1675 *      addition.
1676 *
1677 *      Returns a negative error number or the index of the filter with the new
1678 *      MAC value.
1679 */
1680int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1681                    int idx, const u8 *addr, bool persist)
1682{
1683        int ret;
1684        struct fw_vi_mac_cmd cmd, rpl;
1685        struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1686        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1687                                             u.exact[1]), 16);
1688        unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1689
1690        /*
1691         * If this is a new allocation, determine whether it should be
1692         * persistent (across a "freemacs" operation) or not.
1693         */
1694        if (idx < 0)
1695                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1696
1697        memset(&cmd, 0, sizeof(cmd));
1698        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1699                                     FW_CMD_REQUEST_F |
1700                                     FW_CMD_WRITE_F |
1701                                     FW_VI_MAC_CMD_VIID_V(viid));
1702        cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1703        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1704                                      FW_VI_MAC_CMD_IDX_V(idx));
1705        memcpy(p->macaddr, addr, sizeof(p->macaddr));
1706
1707        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1708        if (ret == 0) {
1709                p = &rpl.u.exact[0];
1710                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1711                if (ret >= max_mac_addr)
1712                        ret = -ENOMEM;
1713        }
1714        return ret;
1715}
1716
1717/**
1718 *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1719 *      @adapter: the adapter
1720 *      @viid: the Virtual Interface Identifier
1721 *      @ucast: whether the hash filter should also match unicast addresses
1722 *      @vec: the value to be written to the hash filter
1723 *      @sleep_ok: call is allowed to sleep
1724 *
1725 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1726 */
1727int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1728                       bool ucast, u64 vec, bool sleep_ok)
1729{
1730        struct fw_vi_mac_cmd cmd;
1731        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1732                                             u.exact[0]), 16);
1733
1734        memset(&cmd, 0, sizeof(cmd));
1735        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1736                                     FW_CMD_REQUEST_F |
1737                                     FW_CMD_WRITE_F |
1738                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1739        cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1740                                            FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1741                                            FW_CMD_LEN16_V(len16));
1742        cmd.u.hash.hashvec = cpu_to_be64(vec);
1743        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1744}
1745
1746/**
1747 *      t4vf_get_port_stats - collect "port" statistics
1748 *      @adapter: the adapter
1749 *      @pidx: the port index
1750 *      @s: the stats structure to fill
1751 *
1752 *      Collect statistics for the "port"'s Virtual Interface.
1753 */
1754int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1755                        struct t4vf_port_stats *s)
1756{
1757        struct port_info *pi = adap2pinfo(adapter, pidx);
1758        struct fw_vi_stats_vf fwstats;
1759        unsigned int rem = VI_VF_NUM_STATS;
1760        __be64 *fwsp = (__be64 *)&fwstats;
1761
1762        /*
1763         * Grab the Virtual Interface statistics a chunk at a time via mailbox
1764         * commands.  We could use a Work Request and get all of them at once
1765         * but that's an asynchronous interface which is awkward to use.
1766         */
1767        while (rem) {
1768                unsigned int ix = VI_VF_NUM_STATS - rem;
1769                unsigned int nstats = min(6U, rem);
1770                struct fw_vi_stats_cmd cmd, rpl;
1771                size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1772                              sizeof(struct fw_vi_stats_ctl));
1773                size_t len16 = DIV_ROUND_UP(len, 16);
1774                int ret;
1775
1776                memset(&cmd, 0, sizeof(cmd));
1777                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1778                                             FW_VI_STATS_CMD_VIID_V(pi->viid) |
1779                                             FW_CMD_REQUEST_F |
1780                                             FW_CMD_READ_F);
1781                cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1782                cmd.u.ctl.nstats_ix =
1783                        cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1784                                    FW_VI_STATS_CMD_NSTATS_V(nstats));
1785                ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1786                if (ret)
1787                        return ret;
1788
1789                memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1790
1791                rem -= nstats;
1792                fwsp += nstats;
1793        }
1794
1795        /*
1796         * Translate firmware statistics into host native statistics.
1797         */
1798        s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1799        s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1800        s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1801        s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1802        s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1803        s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1804        s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1805        s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1806        s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1807
1808        s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1809        s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1810        s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1811        s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1812        s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1813        s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1814
1815        s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1816
1817        return 0;
1818}
1819
1820/**
1821 *      t4vf_iq_free - free an ingress queue and its free lists
1822 *      @adapter: the adapter
1823 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1824 *      @iqid: ingress queue ID
1825 *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1826 *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1827 *
1828 *      Frees an ingress queue and its associated free lists, if any.
1829 */
1830int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1831                 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1832{
1833        struct fw_iq_cmd cmd;
1834
1835        memset(&cmd, 0, sizeof(cmd));
1836        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1837                                    FW_CMD_REQUEST_F |
1838                                    FW_CMD_EXEC_F);
1839        cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1840                                         FW_LEN16(cmd));
1841        cmd.type_to_iqandstindex =
1842                cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1843
1844        cmd.iqid = cpu_to_be16(iqid);
1845        cmd.fl0id = cpu_to_be16(fl0id);
1846        cmd.fl1id = cpu_to_be16(fl1id);
1847        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1848}
1849
1850/**
1851 *      t4vf_eth_eq_free - free an Ethernet egress queue
1852 *      @adapter: the adapter
1853 *      @eqid: egress queue ID
1854 *
1855 *      Frees an Ethernet egress queue.
1856 */
1857int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1858{
1859        struct fw_eq_eth_cmd cmd;
1860
1861        memset(&cmd, 0, sizeof(cmd));
1862        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1863                                    FW_CMD_REQUEST_F |
1864                                    FW_CMD_EXEC_F);
1865        cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1866                                         FW_LEN16(cmd));
1867        cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1868        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1869}
1870
1871/**
1872 *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1873 *      @link_down_rc: Link Down Reason Code
1874 *
1875 *      Returns a string representation of the Link Down Reason Code.
1876 */
1877static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1878{
1879        static const char * const reason[] = {
1880                "Link Down",
1881                "Remote Fault",
1882                "Auto-negotiation Failure",
1883                "Reserved",
1884                "Insufficient Airflow",
1885                "Unable To Determine Reason",
1886                "No RX Signal Detected",
1887                "Reserved",
1888        };
1889
1890        if (link_down_rc >= ARRAY_SIZE(reason))
1891                return "Bad Reason Code";
1892
1893        return reason[link_down_rc];
1894}
1895
1896/**
1897 *      t4vf_handle_get_port_info - process a FW reply message
1898 *      @pi: the port info
1899 *      @rpl: start of the FW message
1900 *
1901 *      Processes a GET_PORT_INFO FW reply message.
1902 */
1903static void t4vf_handle_get_port_info(struct port_info *pi,
1904                                      const struct fw_port_cmd *cmd)
1905{
1906        int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1907        struct adapter *adapter = pi->adapter;
1908        struct link_config *lc = &pi->link_cfg;
1909        int link_ok, linkdnrc;
1910        enum fw_port_type port_type;
1911        enum fw_port_module_type mod_type;
1912        unsigned int speed, fc, fec;
1913        fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1914
1915        /* Extract the various fields from the Port Information message. */
1916        switch (action) {
1917        case FW_PORT_ACTION_GET_PORT_INFO: {
1918                u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1919
1920                link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1921                linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1922                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1923                mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1924                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1925                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1926                lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1927
1928                /* Unfortunately the format of the Link Status in the old
1929                 * 16-bit Port Information message isn't the same as the
1930                 * 16-bit Port Capabilities bitfield used everywhere else ...
1931                 */
1932                linkattr = 0;
1933                if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1934                        linkattr |= FW_PORT_CAP32_FC_RX;
1935                if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1936                        linkattr |= FW_PORT_CAP32_FC_TX;
1937                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1938                        linkattr |= FW_PORT_CAP32_SPEED_100M;
1939                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1940                        linkattr |= FW_PORT_CAP32_SPEED_1G;
1941                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1942                        linkattr |= FW_PORT_CAP32_SPEED_10G;
1943                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1944                        linkattr |= FW_PORT_CAP32_SPEED_25G;
1945                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1946                        linkattr |= FW_PORT_CAP32_SPEED_40G;
1947                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1948                        linkattr |= FW_PORT_CAP32_SPEED_100G;
1949
1950                break;
1951        }
1952
1953        case FW_PORT_ACTION_GET_PORT_INFO32: {
1954                u32 lstatus32;
1955
1956                lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1957                link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1958                linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1959                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1960                mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1961                pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1962                acaps = be32_to_cpu(cmd->u.info32.acaps32);
1963                lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1964                linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1965                break;
1966        }
1967
1968        default:
1969                dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1970                        be32_to_cpu(cmd->action_to_len16));
1971                return;
1972        }
1973
1974        fec = fwcap_to_cc_fec(acaps);
1975        fc = fwcap_to_cc_pause(linkattr);
1976        speed = fwcap_to_speed(linkattr);
1977
1978        if (mod_type != pi->mod_type) {
1979                /* When a new Transceiver Module is inserted, the Firmware
1980                 * will examine any Forward Error Correction parameters
1981                 * present in the Transceiver Module i2c EPROM and determine
1982                 * the supported and recommended FEC settings from those
1983                 * based on IEEE 802.3 standards.  We always record the
1984                 * IEEE 802.3 recommended "automatic" settings.
1985                 */
1986                lc->auto_fec = fec;
1987
1988                /* Some versions of the early T6 Firmware "cheated" when
1989                 * handling different Transceiver Modules by changing the
1990                 * underlaying Port Type reported to the Host Drivers.  As
1991                 * such we need to capture whatever Port Type the Firmware
1992                 * sends us and record it in case it's different from what we
1993                 * were told earlier.  Unfortunately, since Firmware is
1994                 * forever, we'll need to keep this code here forever, but in
1995                 * later T6 Firmware it should just be an assignment of the
1996                 * same value already recorded.
1997                 */
1998                pi->port_type = port_type;
1999
2000                pi->mod_type = mod_type;
2001                t4vf_os_portmod_changed(adapter, pi->pidx);
2002        }
2003
2004        if (link_ok != lc->link_ok || speed != lc->speed ||
2005            fc != lc->fc || fec != lc->fec) {   /* something changed */
2006                if (!link_ok && lc->link_ok) {
2007                        lc->link_down_rc = linkdnrc;
2008                        dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
2009                                 pi->port_id, t4vf_link_down_rc_str(linkdnrc));
2010                }
2011                lc->link_ok = link_ok;
2012                lc->speed = speed;
2013                lc->fc = fc;
2014                lc->fec = fec;
2015
2016                lc->pcaps = pcaps;
2017                lc->lpacaps = lpacaps;
2018                lc->acaps = acaps & ADVERT_MASK;
2019
2020                /* If we're not physically capable of Auto-Negotiation, note
2021                 * this as Auto-Negotiation disabled.  Otherwise, we track
2022                 * what Auto-Negotiation settings we have.  Note parallel
2023                 * structure in init_link_config().
2024                 */
2025                if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2026                        lc->autoneg = AUTONEG_DISABLE;
2027                } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2028                        lc->autoneg = AUTONEG_ENABLE;
2029                } else {
2030                        /* When Autoneg is disabled, user needs to set
2031                         * single speed.
2032                         * Similar to cxgb4_ethtool.c: set_link_ksettings
2033                         */
2034                        lc->acaps = 0;
2035                        lc->speed_caps = fwcap_to_speed(acaps);
2036                        lc->autoneg = AUTONEG_DISABLE;
2037                }
2038
2039                t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2040        }
2041}
2042
2043/**
2044 *      t4vf_update_port_info - retrieve and update port information if changed
2045 *      @pi: the port_info
2046 *
2047 *      We issue a Get Port Information Command to the Firmware and, if
2048 *      successful, we check to see if anything is different from what we
2049 *      last recorded and update things accordingly.
2050 */
2051int t4vf_update_port_info(struct port_info *pi)
2052{
2053        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2054        struct fw_port_cmd port_cmd;
2055        int ret;
2056
2057        memset(&port_cmd, 0, sizeof(port_cmd));
2058        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2059                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
2060                                            FW_PORT_CMD_PORTID_V(pi->port_id));
2061        port_cmd.action_to_len16 = cpu_to_be32(
2062                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2063                                     ? FW_PORT_ACTION_GET_PORT_INFO
2064                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
2065                FW_LEN16(port_cmd));
2066        ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2067                           &port_cmd);
2068        if (ret)
2069                return ret;
2070        t4vf_handle_get_port_info(pi, &port_cmd);
2071        return 0;
2072}
2073
2074/**
2075 *      t4vf_handle_fw_rpl - process a firmware reply message
2076 *      @adapter: the adapter
2077 *      @rpl: start of the firmware message
2078 *
2079 *      Processes a firmware message, such as link state change messages.
2080 */
2081int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2082{
2083        const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2084        u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2085
2086        switch (opcode) {
2087        case FW_PORT_CMD: {
2088                /*
2089                 * Link/module state change message.
2090                 */
2091                const struct fw_port_cmd *port_cmd =
2092                        (const struct fw_port_cmd *)rpl;
2093                int action = FW_PORT_CMD_ACTION_G(
2094                        be32_to_cpu(port_cmd->action_to_len16));
2095                int port_id, pidx;
2096
2097                if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2098                    action != FW_PORT_ACTION_GET_PORT_INFO32) {
2099                        dev_err(adapter->pdev_dev,
2100                                "Unknown firmware PORT reply action %x\n",
2101                                action);
2102                        break;
2103                }
2104
2105                port_id = FW_PORT_CMD_PORTID_G(
2106                        be32_to_cpu(port_cmd->op_to_portid));
2107                for_each_port(adapter, pidx) {
2108                        struct port_info *pi = adap2pinfo(adapter, pidx);
2109
2110                        if (pi->port_id != port_id)
2111                                continue;
2112                        t4vf_handle_get_port_info(pi, port_cmd);
2113                }
2114                break;
2115        }
2116
2117        default:
2118                dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2119                        opcode);
2120        }
2121        return 0;
2122}
2123
2124/**
2125 */
2126int t4vf_prep_adapter(struct adapter *adapter)
2127{
2128        int err;
2129        unsigned int chipid;
2130
2131        /* Wait for the device to become ready before proceeding ...
2132         */
2133        err = t4vf_wait_dev_ready(adapter);
2134        if (err)
2135                return err;
2136
2137        /* Default port and clock for debugging in case we can't reach
2138         * firmware.
2139         */
2140        adapter->params.nports = 1;
2141        adapter->params.vfres.pmask = 1;
2142        adapter->params.vpd.cclk = 50000;
2143
2144        adapter->params.chip = 0;
2145        switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2146        case CHELSIO_T4:
2147                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2148                adapter->params.arch.sge_fl_db = DBPRIO_F;
2149                adapter->params.arch.mps_tcam_size =
2150                                NUM_MPS_CLS_SRAM_L_INSTANCES;
2151                break;
2152
2153        case CHELSIO_T5:
2154                chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2155                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2156                adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2157                adapter->params.arch.mps_tcam_size =
2158                                NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2159                break;
2160
2161        case CHELSIO_T6:
2162                chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2163                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2164                adapter->params.arch.sge_fl_db = 0;
2165                adapter->params.arch.mps_tcam_size =
2166                                NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2167                break;
2168        }
2169
2170        return 0;
2171}
2172
2173/**
2174 *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2175 *                            the VI of this VF.
2176 *      @adapter: The adapter
2177 *      @pf: The pf associated with vf
2178 *      @naddr: the number of ACL MAC addresses returned in addr
2179 *      @addr: Placeholder for MAC addresses
2180 *
2181 *      Find the MAC address to be set to the VF's VI. The requested MAC address
2182 *      is from the host OS via callback in the PF driver.
2183 */
2184int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2185                        unsigned int *naddr, u8 *addr)
2186{
2187        struct fw_acl_mac_cmd cmd;
2188        int ret;
2189
2190        memset(&cmd, 0, sizeof(cmd));
2191        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2192                                    FW_CMD_REQUEST_F |
2193                                    FW_CMD_READ_F);
2194        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2195        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2196        if (ret)
2197                return ret;
2198
2199        if (cmd.nmac < *naddr)
2200                *naddr = cmd.nmac;
2201
2202        switch (pf) {
2203        case 3:
2204                memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2205                break;
2206        case 2:
2207                memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2208                break;
2209        case 1:
2210                memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2211                break;
2212        case 0:
2213                memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2214                break;
2215        }
2216
2217        return ret;
2218}
2219
2220/**
2221 *      t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2222 *                             the VI of this VF.
2223 *      @adapter: The adapter
2224 *
2225 *      Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2226 *      is from the host OS via callback in the PF driver.
2227 */
2228int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2229{
2230        struct fw_acl_vlan_cmd cmd;
2231        int vlan = 0;
2232        int ret = 0;
2233
2234        cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2235                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
2236
2237        /* Note: Do not enable the ACL */
2238        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2239
2240        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2241
2242        if (!ret)
2243                vlan = be16_to_cpu(cmd.vlanid[0]);
2244
2245        return vlan;
2246}
2247