linux/drivers/net/ethernet/micrel/ks8851.c
<<
>>
Prefs
   1/* drivers/net/ethernet/micrel/ks8851.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *      http://www.simtec.co.uk/
   5 *      Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#define DEBUG
  15
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/netdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/ethtool.h>
  22#include <linux/cache.h>
  23#include <linux/crc32.h>
  24#include <linux/mii.h>
  25#include <linux/eeprom_93cx6.h>
  26#include <linux/regulator/consumer.h>
  27
  28#include <linux/spi/spi.h>
  29#include <linux/gpio.h>
  30#include <linux/of_gpio.h>
  31#include <linux/of_net.h>
  32
  33#include "ks8851.h"
  34
  35/**
  36 * struct ks8851_rxctrl - KS8851 driver rx control
  37 * @mchash: Multicast hash-table data.
  38 * @rxcr1: KS_RXCR1 register setting
  39 * @rxcr2: KS_RXCR2 register setting
  40 *
  41 * Representation of the settings needs to control the receive filtering
  42 * such as the multicast hash-filter and the receive register settings. This
  43 * is used to make the job of working out if the receive settings change and
  44 * then issuing the new settings to the worker that will send the necessary
  45 * commands.
  46 */
  47struct ks8851_rxctrl {
  48        u16     mchash[4];
  49        u16     rxcr1;
  50        u16     rxcr2;
  51};
  52
  53/**
  54 * union ks8851_tx_hdr - tx header data
  55 * @txb: The header as bytes
  56 * @txw: The header as 16bit, little-endian words
  57 *
  58 * A dual representation of the tx header data to allow
  59 * access to individual bytes, and to allow 16bit accesses
  60 * with 16bit alignment.
  61 */
  62union ks8851_tx_hdr {
  63        u8      txb[6];
  64        __le16  txw[3];
  65};
  66
  67/**
  68 * struct ks8851_net - KS8851 driver private data
  69 * @netdev: The network device we're bound to
  70 * @spidev: The spi device we're bound to.
  71 * @lock: Lock to ensure that the device is not accessed when busy.
  72 * @statelock: Lock on this structure for tx list.
  73 * @mii: The MII state information for the mii calls.
  74 * @rxctrl: RX settings for @rxctrl_work.
  75 * @tx_work: Work queue for tx packets
  76 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  77 * @txq: Queue of packets for transmission.
  78 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  79 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  80 * @txh: Space for generating packet TX header in DMA-able data
  81 * @rxd: Space for receiving SPI data, in DMA-able space.
  82 * @txd: Space for transmitting SPI data, in DMA-able space.
  83 * @msg_enable: The message flags controlling driver output (see ethtool).
  84 * @fid: Incrementing frame id tag.
  85 * @rc_ier: Cached copy of KS_IER.
  86 * @rc_ccr: Cached copy of KS_CCR.
  87 * @rc_rxqcr: Cached copy of KS_RXQCR.
  88 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
  89 * @vdd_reg:    Optional regulator supplying the chip
  90 * @vdd_io: Optional digital power supply for IO
  91 * @gpio: Optional reset_n gpio
  92 *
  93 * The @lock ensures that the chip is protected when certain operations are
  94 * in progress. When the read or write packet transfer is in progress, most
  95 * of the chip registers are not ccessible until the transfer is finished and
  96 * the DMA has been de-asserted.
  97 *
  98 * The @statelock is used to protect information in the structure which may
  99 * need to be accessed via several sources, such as the network driver layer
 100 * or one of the work queues.
 101 *
 102 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
 103 * wants to DMA map them, it will not have any problems with data the driver
 104 * modifies.
 105 */
 106struct ks8851_net {
 107        struct net_device       *netdev;
 108        struct spi_device       *spidev;
 109        struct mutex            lock;
 110        spinlock_t              statelock;
 111
 112        union ks8851_tx_hdr     txh ____cacheline_aligned;
 113        u8                      rxd[8];
 114        u8                      txd[8];
 115
 116        u32                     msg_enable ____cacheline_aligned;
 117        u16                     tx_space;
 118        u8                      fid;
 119
 120        u16                     rc_ier;
 121        u16                     rc_rxqcr;
 122        u16                     rc_ccr;
 123
 124        struct mii_if_info      mii;
 125        struct ks8851_rxctrl    rxctrl;
 126
 127        struct work_struct      tx_work;
 128        struct work_struct      rxctrl_work;
 129
 130        struct sk_buff_head     txq;
 131
 132        struct spi_message      spi_msg1;
 133        struct spi_message      spi_msg2;
 134        struct spi_transfer     spi_xfer1;
 135        struct spi_transfer     spi_xfer2[2];
 136
 137        struct eeprom_93cx6     eeprom;
 138        struct regulator        *vdd_reg;
 139        struct regulator        *vdd_io;
 140        int                     gpio;
 141};
 142
 143static int msg_enable;
 144
 145/* shift for byte-enable data */
 146#define BYTE_EN(_x)     ((_x) << 2)
 147
 148/* turn register number and byte-enable mask into data for start of packet */
 149#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 150
 151/* SPI register read/write calls.
 152 *
 153 * All these calls issue SPI transactions to access the chip's registers. They
 154 * all require that the necessary lock is held to prevent accesses when the
 155 * chip is busy transferring packet data (RX/TX FIFO accesses).
 156 */
 157
 158/**
 159 * ks8851_wrreg16 - write 16bit register value to chip
 160 * @ks: The chip state
 161 * @reg: The register address
 162 * @val: The value to write
 163 *
 164 * Issue a write to put the value @val into the register specified in @reg.
 165 */
 166static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 167{
 168        struct spi_transfer *xfer = &ks->spi_xfer1;
 169        struct spi_message *msg = &ks->spi_msg1;
 170        __le16 txb[2];
 171        int ret;
 172
 173        txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 174        txb[1] = cpu_to_le16(val);
 175
 176        xfer->tx_buf = txb;
 177        xfer->rx_buf = NULL;
 178        xfer->len = 4;
 179
 180        ret = spi_sync(ks->spidev, msg);
 181        if (ret < 0)
 182                netdev_err(ks->netdev, "spi_sync() failed\n");
 183}
 184
 185/**
 186 * ks8851_wrreg8 - write 8bit register value to chip
 187 * @ks: The chip state
 188 * @reg: The register address
 189 * @val: The value to write
 190 *
 191 * Issue a write to put the value @val into the register specified in @reg.
 192 */
 193static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 194{
 195        struct spi_transfer *xfer = &ks->spi_xfer1;
 196        struct spi_message *msg = &ks->spi_msg1;
 197        __le16 txb[2];
 198        int ret;
 199        int bit;
 200
 201        bit = 1 << (reg & 3);
 202
 203        txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 204        txb[1] = val;
 205
 206        xfer->tx_buf = txb;
 207        xfer->rx_buf = NULL;
 208        xfer->len = 3;
 209
 210        ret = spi_sync(ks->spidev, msg);
 211        if (ret < 0)
 212                netdev_err(ks->netdev, "spi_sync() failed\n");
 213}
 214
 215/**
 216 * ks8851_rdreg - issue read register command and return the data
 217 * @ks: The device state
 218 * @op: The register address and byte enables in message format.
 219 * @rxb: The RX buffer to return the result into
 220 * @rxl: The length of data expected.
 221 *
 222 * This is the low level read call that issues the necessary spi message(s)
 223 * to read data from the register specified in @op.
 224 */
 225static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 226                         u8 *rxb, unsigned rxl)
 227{
 228        struct spi_transfer *xfer;
 229        struct spi_message *msg;
 230        __le16 *txb = (__le16 *)ks->txd;
 231        u8 *trx = ks->rxd;
 232        int ret;
 233
 234        txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 235
 236        if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
 237                msg = &ks->spi_msg2;
 238                xfer = ks->spi_xfer2;
 239
 240                xfer->tx_buf = txb;
 241                xfer->rx_buf = NULL;
 242                xfer->len = 2;
 243
 244                xfer++;
 245                xfer->tx_buf = NULL;
 246                xfer->rx_buf = trx;
 247                xfer->len = rxl;
 248        } else {
 249                msg = &ks->spi_msg1;
 250                xfer = &ks->spi_xfer1;
 251
 252                xfer->tx_buf = txb;
 253                xfer->rx_buf = trx;
 254                xfer->len = rxl + 2;
 255        }
 256
 257        ret = spi_sync(ks->spidev, msg);
 258        if (ret < 0)
 259                netdev_err(ks->netdev, "read: spi_sync() failed\n");
 260        else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
 261                memcpy(rxb, trx, rxl);
 262        else
 263                memcpy(rxb, trx + 2, rxl);
 264}
 265
 266/**
 267 * ks8851_rdreg8 - read 8 bit register from device
 268 * @ks: The chip information
 269 * @reg: The register address
 270 *
 271 * Read a 8bit register from the chip, returning the result
 272*/
 273static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 274{
 275        u8 rxb[1];
 276
 277        ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 278        return rxb[0];
 279}
 280
 281/**
 282 * ks8851_rdreg16 - read 16 bit register from device
 283 * @ks: The chip information
 284 * @reg: The register address
 285 *
 286 * Read a 16bit register from the chip, returning the result
 287*/
 288static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 289{
 290        __le16 rx = 0;
 291
 292        ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 293        return le16_to_cpu(rx);
 294}
 295
 296/**
 297 * ks8851_rdreg32 - read 32 bit register from device
 298 * @ks: The chip information
 299 * @reg: The register address
 300 *
 301 * Read a 32bit register from the chip.
 302 *
 303 * Note, this read requires the address be aligned to 4 bytes.
 304*/
 305static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 306{
 307        __le32 rx = 0;
 308
 309        WARN_ON(reg & 3);
 310
 311        ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 312        return le32_to_cpu(rx);
 313}
 314
 315/**
 316 * ks8851_soft_reset - issue one of the soft reset to the device
 317 * @ks: The device state.
 318 * @op: The bit(s) to set in the GRR
 319 *
 320 * Issue the relevant soft-reset command to the device's GRR register
 321 * specified by @op.
 322 *
 323 * Note, the delays are in there as a caution to ensure that the reset
 324 * has time to take effect and then complete. Since the datasheet does
 325 * not currently specify the exact sequence, we have chosen something
 326 * that seems to work with our device.
 327 */
 328static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 329{
 330        ks8851_wrreg16(ks, KS_GRR, op);
 331        mdelay(1);      /* wait a short time to effect reset */
 332        ks8851_wrreg16(ks, KS_GRR, 0);
 333        mdelay(1);      /* wait for condition to clear */
 334}
 335
 336/**
 337 * ks8851_set_powermode - set power mode of the device
 338 * @ks: The device state
 339 * @pwrmode: The power mode value to write to KS_PMECR.
 340 *
 341 * Change the power mode of the chip.
 342 */
 343static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 344{
 345        unsigned pmecr;
 346
 347        netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 348
 349        pmecr = ks8851_rdreg16(ks, KS_PMECR);
 350        pmecr &= ~PMECR_PM_MASK;
 351        pmecr |= pwrmode;
 352
 353        ks8851_wrreg16(ks, KS_PMECR, pmecr);
 354}
 355
 356/**
 357 * ks8851_write_mac_addr - write mac address to device registers
 358 * @dev: The network device
 359 *
 360 * Update the KS8851 MAC address registers from the address in @dev.
 361 *
 362 * This call assumes that the chip is not running, so there is no need to
 363 * shutdown the RXQ process whilst setting this.
 364*/
 365static int ks8851_write_mac_addr(struct net_device *dev)
 366{
 367        struct ks8851_net *ks = netdev_priv(dev);
 368        int i;
 369
 370        mutex_lock(&ks->lock);
 371
 372        /*
 373         * Wake up chip in case it was powered off when stopped; otherwise,
 374         * the first write to the MAC address does not take effect.
 375         */
 376        ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 377        for (i = 0; i < ETH_ALEN; i++)
 378                ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 379        if (!netif_running(dev))
 380                ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 381
 382        mutex_unlock(&ks->lock);
 383
 384        return 0;
 385}
 386
 387/**
 388 * ks8851_read_mac_addr - read mac address from device registers
 389 * @dev: The network device
 390 *
 391 * Update our copy of the KS8851 MAC address from the registers of @dev.
 392*/
 393static void ks8851_read_mac_addr(struct net_device *dev)
 394{
 395        struct ks8851_net *ks = netdev_priv(dev);
 396        int i;
 397
 398        mutex_lock(&ks->lock);
 399
 400        for (i = 0; i < ETH_ALEN; i++)
 401                dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
 402
 403        mutex_unlock(&ks->lock);
 404}
 405
 406/**
 407 * ks8851_init_mac - initialise the mac address
 408 * @ks: The device structure
 409 *
 410 * Get or create the initial mac address for the device and then set that
 411 * into the station address register. A mac address supplied in the device
 412 * tree takes precedence. Otherwise, if there is an EEPROM present, then
 413 * we try that. If no valid mac address is found we use eth_random_addr()
 414 * to create a new one.
 415 */
 416static void ks8851_init_mac(struct ks8851_net *ks)
 417{
 418        struct net_device *dev = ks->netdev;
 419        const u8 *mac_addr;
 420
 421        mac_addr = of_get_mac_address(ks->spidev->dev.of_node);
 422        if (mac_addr) {
 423                memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 424                ks8851_write_mac_addr(dev);
 425                return;
 426        }
 427
 428        if (ks->rc_ccr & CCR_EEPROM) {
 429                ks8851_read_mac_addr(dev);
 430                if (is_valid_ether_addr(dev->dev_addr))
 431                        return;
 432
 433                netdev_err(ks->netdev, "invalid mac address read %pM\n",
 434                                dev->dev_addr);
 435        }
 436
 437        eth_hw_addr_random(dev);
 438        ks8851_write_mac_addr(dev);
 439}
 440
 441/**
 442 * ks8851_rdfifo - read data from the receive fifo
 443 * @ks: The device state.
 444 * @buff: The buffer address
 445 * @len: The length of the data to read
 446 *
 447 * Issue an RXQ FIFO read command and read the @len amount of data from
 448 * the FIFO into the buffer specified by @buff.
 449 */
 450static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 451{
 452        struct spi_transfer *xfer = ks->spi_xfer2;
 453        struct spi_message *msg = &ks->spi_msg2;
 454        u8 txb[1];
 455        int ret;
 456
 457        netif_dbg(ks, rx_status, ks->netdev,
 458                  "%s: %d@%p\n", __func__, len, buff);
 459
 460        /* set the operation we're issuing */
 461        txb[0] = KS_SPIOP_RXFIFO;
 462
 463        xfer->tx_buf = txb;
 464        xfer->rx_buf = NULL;
 465        xfer->len = 1;
 466
 467        xfer++;
 468        xfer->rx_buf = buff;
 469        xfer->tx_buf = NULL;
 470        xfer->len = len;
 471
 472        ret = spi_sync(ks->spidev, msg);
 473        if (ret < 0)
 474                netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 475}
 476
 477/**
 478 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 479 * @ks: The device state
 480 * @rxpkt: The data for the received packet
 481 *
 482 * Dump the initial data from the packet to dev_dbg().
 483*/
 484static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 485{
 486        netdev_dbg(ks->netdev,
 487                   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 488                   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 489                   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 490                   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 491}
 492
 493/**
 494 * ks8851_rx_pkts - receive packets from the host
 495 * @ks: The device information.
 496 *
 497 * This is called from the IRQ work queue when the system detects that there
 498 * are packets in the receive queue. Find out how many packets there are and
 499 * read them from the FIFO.
 500 */
 501static void ks8851_rx_pkts(struct ks8851_net *ks)
 502{
 503        struct sk_buff *skb;
 504        unsigned rxfc;
 505        unsigned rxlen;
 506        unsigned rxstat;
 507        u32 rxh;
 508        u8 *rxpkt;
 509
 510        rxfc = ks8851_rdreg8(ks, KS_RXFC);
 511
 512        netif_dbg(ks, rx_status, ks->netdev,
 513                  "%s: %d packets\n", __func__, rxfc);
 514
 515        /* Currently we're issuing a read per packet, but we could possibly
 516         * improve the code by issuing a single read, getting the receive
 517         * header, allocating the packet and then reading the packet data
 518         * out in one go.
 519         *
 520         * This form of operation would require us to hold the SPI bus'
 521         * chipselect low during the entie transaction to avoid any
 522         * reset to the data stream coming from the chip.
 523         */
 524
 525        for (; rxfc != 0; rxfc--) {
 526                rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 527                rxstat = rxh & 0xffff;
 528                rxlen = (rxh >> 16) & 0xfff;
 529
 530                netif_dbg(ks, rx_status, ks->netdev,
 531                          "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 532
 533                /* the length of the packet includes the 32bit CRC */
 534
 535                /* set dma read address */
 536                ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 537
 538                /* start the packet dma process, and set auto-dequeue rx */
 539                ks8851_wrreg16(ks, KS_RXQCR,
 540                               ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 541
 542                if (rxlen > 4) {
 543                        unsigned int rxalign;
 544
 545                        rxlen -= 4;
 546                        rxalign = ALIGN(rxlen, 4);
 547                        skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 548                        if (skb) {
 549
 550                                /* 4 bytes of status header + 4 bytes of
 551                                 * garbage: we put them before ethernet
 552                                 * header, so that they are copied,
 553                                 * but ignored.
 554                                 */
 555
 556                                rxpkt = skb_put(skb, rxlen) - 8;
 557
 558                                ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 559
 560                                if (netif_msg_pktdata(ks))
 561                                        ks8851_dbg_dumpkkt(ks, rxpkt);
 562
 563                                skb->protocol = eth_type_trans(skb, ks->netdev);
 564                                netif_rx_ni(skb);
 565
 566                                ks->netdev->stats.rx_packets++;
 567                                ks->netdev->stats.rx_bytes += rxlen;
 568                        }
 569                }
 570
 571                ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 572        }
 573}
 574
 575/**
 576 * ks8851_irq - IRQ handler for dealing with interrupt requests
 577 * @irq: IRQ number
 578 * @_ks: cookie
 579 *
 580 * This handler is invoked when the IRQ line asserts to find out what happened.
 581 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 582 * in thread context.
 583 *
 584 * Read the interrupt status, work out what needs to be done and then clear
 585 * any of the interrupts that are not needed.
 586 */
 587static irqreturn_t ks8851_irq(int irq, void *_ks)
 588{
 589        struct ks8851_net *ks = _ks;
 590        unsigned status;
 591        unsigned handled = 0;
 592
 593        mutex_lock(&ks->lock);
 594
 595        status = ks8851_rdreg16(ks, KS_ISR);
 596
 597        netif_dbg(ks, intr, ks->netdev,
 598                  "%s: status 0x%04x\n", __func__, status);
 599
 600        if (status & IRQ_LCI)
 601                handled |= IRQ_LCI;
 602
 603        if (status & IRQ_LDI) {
 604                u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 605                pmecr &= ~PMECR_WKEVT_MASK;
 606                ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 607
 608                handled |= IRQ_LDI;
 609        }
 610
 611        if (status & IRQ_RXPSI)
 612                handled |= IRQ_RXPSI;
 613
 614        if (status & IRQ_TXI) {
 615                handled |= IRQ_TXI;
 616
 617                /* no lock here, tx queue should have been stopped */
 618
 619                /* update our idea of how much tx space is available to the
 620                 * system */
 621                ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 622
 623                netif_dbg(ks, intr, ks->netdev,
 624                          "%s: txspace %d\n", __func__, ks->tx_space);
 625        }
 626
 627        if (status & IRQ_RXI)
 628                handled |= IRQ_RXI;
 629
 630        if (status & IRQ_SPIBEI) {
 631                dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 632                handled |= IRQ_SPIBEI;
 633        }
 634
 635        ks8851_wrreg16(ks, KS_ISR, handled);
 636
 637        if (status & IRQ_RXI) {
 638                /* the datasheet says to disable the rx interrupt during
 639                 * packet read-out, however we're masking the interrupt
 640                 * from the device so do not bother masking just the RX
 641                 * from the device. */
 642
 643                ks8851_rx_pkts(ks);
 644        }
 645
 646        /* if something stopped the rx process, probably due to wanting
 647         * to change the rx settings, then do something about restarting
 648         * it. */
 649        if (status & IRQ_RXPSI) {
 650                struct ks8851_rxctrl *rxc = &ks->rxctrl;
 651
 652                /* update the multicast hash table */
 653                ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 654                ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 655                ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 656                ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 657
 658                ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 659                ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 660        }
 661
 662        mutex_unlock(&ks->lock);
 663
 664        if (status & IRQ_LCI)
 665                mii_check_link(&ks->mii);
 666
 667        if (status & IRQ_TXI)
 668                netif_wake_queue(ks->netdev);
 669
 670        return IRQ_HANDLED;
 671}
 672
 673/**
 674 * calc_txlen - calculate size of message to send packet
 675 * @len: Length of data
 676 *
 677 * Returns the size of the TXFIFO message needed to send
 678 * this packet.
 679 */
 680static inline unsigned calc_txlen(unsigned len)
 681{
 682        return ALIGN(len + 4, 4);
 683}
 684
 685/**
 686 * ks8851_wrpkt - write packet to TX FIFO
 687 * @ks: The device state.
 688 * @txp: The sk_buff to transmit.
 689 * @irq: IRQ on completion of the packet.
 690 *
 691 * Send the @txp to the chip. This means creating the relevant packet header
 692 * specifying the length of the packet and the other information the chip
 693 * needs, such as IRQ on completion. Send the header and the packet data to
 694 * the device.
 695 */
 696static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 697{
 698        struct spi_transfer *xfer = ks->spi_xfer2;
 699        struct spi_message *msg = &ks->spi_msg2;
 700        unsigned fid = 0;
 701        int ret;
 702
 703        netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 704                  __func__, txp, txp->len, txp->data, irq);
 705
 706        fid = ks->fid++;
 707        fid &= TXFR_TXFID_MASK;
 708
 709        if (irq)
 710                fid |= TXFR_TXIC;       /* irq on completion */
 711
 712        /* start header at txb[1] to align txw entries */
 713        ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 714        ks->txh.txw[1] = cpu_to_le16(fid);
 715        ks->txh.txw[2] = cpu_to_le16(txp->len);
 716
 717        xfer->tx_buf = &ks->txh.txb[1];
 718        xfer->rx_buf = NULL;
 719        xfer->len = 5;
 720
 721        xfer++;
 722        xfer->tx_buf = txp->data;
 723        xfer->rx_buf = NULL;
 724        xfer->len = ALIGN(txp->len, 4);
 725
 726        ret = spi_sync(ks->spidev, msg);
 727        if (ret < 0)
 728                netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 729}
 730
 731/**
 732 * ks8851_done_tx - update and then free skbuff after transmitting
 733 * @ks: The device state
 734 * @txb: The buffer transmitted
 735 */
 736static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 737{
 738        struct net_device *dev = ks->netdev;
 739
 740        dev->stats.tx_bytes += txb->len;
 741        dev->stats.tx_packets++;
 742
 743        dev_kfree_skb(txb);
 744}
 745
 746/**
 747 * ks8851_tx_work - process tx packet(s)
 748 * @work: The work strucutre what was scheduled.
 749 *
 750 * This is called when a number of packets have been scheduled for
 751 * transmission and need to be sent to the device.
 752 */
 753static void ks8851_tx_work(struct work_struct *work)
 754{
 755        struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 756        struct sk_buff *txb;
 757        bool last = skb_queue_empty(&ks->txq);
 758
 759        mutex_lock(&ks->lock);
 760
 761        while (!last) {
 762                txb = skb_dequeue(&ks->txq);
 763                last = skb_queue_empty(&ks->txq);
 764
 765                if (txb != NULL) {
 766                        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 767                        ks8851_wrpkt(ks, txb, last);
 768                        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 769                        ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 770
 771                        ks8851_done_tx(ks, txb);
 772                }
 773        }
 774
 775        mutex_unlock(&ks->lock);
 776}
 777
 778/**
 779 * ks8851_net_open - open network device
 780 * @dev: The network device being opened.
 781 *
 782 * Called when the network device is marked active, such as a user executing
 783 * 'ifconfig up' on the device.
 784 */
 785static int ks8851_net_open(struct net_device *dev)
 786{
 787        struct ks8851_net *ks = netdev_priv(dev);
 788
 789        /* lock the card, even if we may not actually be doing anything
 790         * else at the moment */
 791        mutex_lock(&ks->lock);
 792
 793        netif_dbg(ks, ifup, ks->netdev, "opening\n");
 794
 795        /* bring chip out of any power saving mode it was in */
 796        ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 797
 798        /* issue a soft reset to the RX/TX QMU to put it into a known
 799         * state. */
 800        ks8851_soft_reset(ks, GRR_QMU);
 801
 802        /* setup transmission parameters */
 803
 804        ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 805                                     TXCR_TXPE | /* pad to min length */
 806                                     TXCR_TXCRC | /* add CRC */
 807                                     TXCR_TXFCE)); /* enable flow control */
 808
 809        /* auto-increment tx data, reset tx pointer */
 810        ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 811
 812        /* setup receiver control */
 813
 814        ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 815                                      RXCR1_RXFCE | /* enable flow control */
 816                                      RXCR1_RXBE | /* broadcast enable */
 817                                      RXCR1_RXUE | /* unicast enable */
 818                                      RXCR1_RXE)); /* enable rx block */
 819
 820        /* transfer entire frames out in one go */
 821        ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 822
 823        /* set receive counter timeouts */
 824        ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 825        ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 826        ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 827
 828        ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 829                        RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 830                        RXQCR_RXDTTE);  /* IRQ on time exceeded */
 831
 832        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 833
 834        /* clear then enable interrupts */
 835
 836#define STD_IRQ (IRQ_LCI |      /* Link Change */       \
 837                 IRQ_TXI |      /* TX done */           \
 838                 IRQ_RXI |      /* RX done */           \
 839                 IRQ_SPIBEI |   /* SPI bus error */     \
 840                 IRQ_TXPSI |    /* TX process stop */   \
 841                 IRQ_RXPSI)     /* RX process stop */
 842
 843        ks->rc_ier = STD_IRQ;
 844        ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 845        ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 846
 847        netif_start_queue(ks->netdev);
 848
 849        netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 850
 851        mutex_unlock(&ks->lock);
 852        return 0;
 853}
 854
 855/**
 856 * ks8851_net_stop - close network device
 857 * @dev: The device being closed.
 858 *
 859 * Called to close down a network device which has been active. Cancell any
 860 * work, shutdown the RX and TX process and then place the chip into a low
 861 * power state whilst it is not being used.
 862 */
 863static int ks8851_net_stop(struct net_device *dev)
 864{
 865        struct ks8851_net *ks = netdev_priv(dev);
 866
 867        netif_info(ks, ifdown, dev, "shutting down\n");
 868
 869        netif_stop_queue(dev);
 870
 871        mutex_lock(&ks->lock);
 872        /* turn off the IRQs and ack any outstanding */
 873        ks8851_wrreg16(ks, KS_IER, 0x0000);
 874        ks8851_wrreg16(ks, KS_ISR, 0xffff);
 875        mutex_unlock(&ks->lock);
 876
 877        /* stop any outstanding work */
 878        flush_work(&ks->tx_work);
 879        flush_work(&ks->rxctrl_work);
 880
 881        mutex_lock(&ks->lock);
 882        /* shutdown RX process */
 883        ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 884
 885        /* shutdown TX process */
 886        ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 887
 888        /* set powermode to soft power down to save power */
 889        ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 890        mutex_unlock(&ks->lock);
 891
 892        /* ensure any queued tx buffers are dumped */
 893        while (!skb_queue_empty(&ks->txq)) {
 894                struct sk_buff *txb = skb_dequeue(&ks->txq);
 895
 896                netif_dbg(ks, ifdown, ks->netdev,
 897                          "%s: freeing txb %p\n", __func__, txb);
 898
 899                dev_kfree_skb(txb);
 900        }
 901
 902        return 0;
 903}
 904
 905/**
 906 * ks8851_start_xmit - transmit packet
 907 * @skb: The buffer to transmit
 908 * @dev: The device used to transmit the packet.
 909 *
 910 * Called by the network layer to transmit the @skb. Queue the packet for
 911 * the device and schedule the necessary work to transmit the packet when
 912 * it is free.
 913 *
 914 * We do this to firstly avoid sleeping with the network device locked,
 915 * and secondly so we can round up more than one packet to transmit which
 916 * means we can try and avoid generating too many transmit done interrupts.
 917 */
 918static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 919                                     struct net_device *dev)
 920{
 921        struct ks8851_net *ks = netdev_priv(dev);
 922        unsigned needed = calc_txlen(skb->len);
 923        netdev_tx_t ret = NETDEV_TX_OK;
 924
 925        netif_dbg(ks, tx_queued, ks->netdev,
 926                  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 927
 928        spin_lock(&ks->statelock);
 929
 930        if (needed > ks->tx_space) {
 931                netif_stop_queue(dev);
 932                ret = NETDEV_TX_BUSY;
 933        } else {
 934                ks->tx_space -= needed;
 935                skb_queue_tail(&ks->txq, skb);
 936        }
 937
 938        spin_unlock(&ks->statelock);
 939        schedule_work(&ks->tx_work);
 940
 941        return ret;
 942}
 943
 944/**
 945 * ks8851_rxctrl_work - work handler to change rx mode
 946 * @work: The work structure this belongs to.
 947 *
 948 * Lock the device and issue the necessary changes to the receive mode from
 949 * the network device layer. This is done so that we can do this without
 950 * having to sleep whilst holding the network device lock.
 951 *
 952 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 953 * receive parameters are programmed, we issue a write to disable the RXQ and
 954 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 955 * complete. The interrupt handler then writes the new values into the chip.
 956 */
 957static void ks8851_rxctrl_work(struct work_struct *work)
 958{
 959        struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 960
 961        mutex_lock(&ks->lock);
 962
 963        /* need to shutdown RXQ before modifying filter parameters */
 964        ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 965
 966        mutex_unlock(&ks->lock);
 967}
 968
 969static void ks8851_set_rx_mode(struct net_device *dev)
 970{
 971        struct ks8851_net *ks = netdev_priv(dev);
 972        struct ks8851_rxctrl rxctrl;
 973
 974        memset(&rxctrl, 0, sizeof(rxctrl));
 975
 976        if (dev->flags & IFF_PROMISC) {
 977                /* interface to receive everything */
 978
 979                rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 980        } else if (dev->flags & IFF_ALLMULTI) {
 981                /* accept all multicast packets */
 982
 983                rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 984                                RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 985        } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 986                struct netdev_hw_addr *ha;
 987                u32 crc;
 988
 989                /* accept some multicast */
 990
 991                netdev_for_each_mc_addr(ha, dev) {
 992                        crc = ether_crc(ETH_ALEN, ha->addr);
 993                        crc >>= (32 - 6);  /* get top six bits */
 994
 995                        rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 996                }
 997
 998                rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 999        } else {
1000                /* just accept broadcast / unicast */
1001                rxctrl.rxcr1 = RXCR1_RXPAFMA;
1002        }
1003
1004        rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1005                         RXCR1_RXBE | /* broadcast enable */
1006                         RXCR1_RXE | /* RX process enable */
1007                         RXCR1_RXFCE); /* enable flow control */
1008
1009        rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1010
1011        /* schedule work to do the actual set of the data if needed */
1012
1013        spin_lock(&ks->statelock);
1014
1015        if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1016                memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1017                schedule_work(&ks->rxctrl_work);
1018        }
1019
1020        spin_unlock(&ks->statelock);
1021}
1022
1023static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1024{
1025        struct sockaddr *sa = addr;
1026
1027        if (netif_running(dev))
1028                return -EBUSY;
1029
1030        if (!is_valid_ether_addr(sa->sa_data))
1031                return -EADDRNOTAVAIL;
1032
1033        memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1034        return ks8851_write_mac_addr(dev);
1035}
1036
1037static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1038{
1039        struct ks8851_net *ks = netdev_priv(dev);
1040
1041        if (!netif_running(dev))
1042                return -EINVAL;
1043
1044        return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1045}
1046
1047static const struct net_device_ops ks8851_netdev_ops = {
1048        .ndo_open               = ks8851_net_open,
1049        .ndo_stop               = ks8851_net_stop,
1050        .ndo_do_ioctl           = ks8851_net_ioctl,
1051        .ndo_start_xmit         = ks8851_start_xmit,
1052        .ndo_set_mac_address    = ks8851_set_mac_address,
1053        .ndo_set_rx_mode        = ks8851_set_rx_mode,
1054        .ndo_validate_addr      = eth_validate_addr,
1055};
1056
1057/* ethtool support */
1058
1059static void ks8851_get_drvinfo(struct net_device *dev,
1060                               struct ethtool_drvinfo *di)
1061{
1062        strlcpy(di->driver, "KS8851", sizeof(di->driver));
1063        strlcpy(di->version, "1.00", sizeof(di->version));
1064        strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1065}
1066
1067static u32 ks8851_get_msglevel(struct net_device *dev)
1068{
1069        struct ks8851_net *ks = netdev_priv(dev);
1070        return ks->msg_enable;
1071}
1072
1073static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1074{
1075        struct ks8851_net *ks = netdev_priv(dev);
1076        ks->msg_enable = to;
1077}
1078
1079static int ks8851_get_link_ksettings(struct net_device *dev,
1080                                     struct ethtool_link_ksettings *cmd)
1081{
1082        struct ks8851_net *ks = netdev_priv(dev);
1083
1084        mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1085
1086        return 0;
1087}
1088
1089static int ks8851_set_link_ksettings(struct net_device *dev,
1090                                     const struct ethtool_link_ksettings *cmd)
1091{
1092        struct ks8851_net *ks = netdev_priv(dev);
1093        return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1094}
1095
1096static u32 ks8851_get_link(struct net_device *dev)
1097{
1098        struct ks8851_net *ks = netdev_priv(dev);
1099        return mii_link_ok(&ks->mii);
1100}
1101
1102static int ks8851_nway_reset(struct net_device *dev)
1103{
1104        struct ks8851_net *ks = netdev_priv(dev);
1105        return mii_nway_restart(&ks->mii);
1106}
1107
1108/* EEPROM support */
1109
1110static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1111{
1112        struct ks8851_net *ks = ee->data;
1113        unsigned val;
1114
1115        val = ks8851_rdreg16(ks, KS_EEPCR);
1116
1117        ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1118        ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1119        ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1120}
1121
1122static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1123{
1124        struct ks8851_net *ks = ee->data;
1125        unsigned val = EEPCR_EESA;      /* default - eeprom access on */
1126
1127        if (ee->drive_data)
1128                val |= EEPCR_EESRWA;
1129        if (ee->reg_data_in)
1130                val |= EEPCR_EEDO;
1131        if (ee->reg_data_clock)
1132                val |= EEPCR_EESCK;
1133        if (ee->reg_chip_select)
1134                val |= EEPCR_EECS;
1135
1136        ks8851_wrreg16(ks, KS_EEPCR, val);
1137}
1138
1139/**
1140 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1141 * @ks: The network device state.
1142 *
1143 * Check for the presence of an EEPROM, and then activate software access
1144 * to the device.
1145 */
1146static int ks8851_eeprom_claim(struct ks8851_net *ks)
1147{
1148        if (!(ks->rc_ccr & CCR_EEPROM))
1149                return -ENOENT;
1150
1151        mutex_lock(&ks->lock);
1152
1153        /* start with clock low, cs high */
1154        ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1155        return 0;
1156}
1157
1158/**
1159 * ks8851_eeprom_release - release the EEPROM interface
1160 * @ks: The device state
1161 *
1162 * Release the software access to the device EEPROM
1163 */
1164static void ks8851_eeprom_release(struct ks8851_net *ks)
1165{
1166        unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1167
1168        ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1169        mutex_unlock(&ks->lock);
1170}
1171
1172#define KS_EEPROM_MAGIC (0x00008851)
1173
1174static int ks8851_set_eeprom(struct net_device *dev,
1175                             struct ethtool_eeprom *ee, u8 *data)
1176{
1177        struct ks8851_net *ks = netdev_priv(dev);
1178        int offset = ee->offset;
1179        int len = ee->len;
1180        u16 tmp;
1181
1182        /* currently only support byte writing */
1183        if (len != 1)
1184                return -EINVAL;
1185
1186        if (ee->magic != KS_EEPROM_MAGIC)
1187                return -EINVAL;
1188
1189        if (ks8851_eeprom_claim(ks))
1190                return -ENOENT;
1191
1192        eeprom_93cx6_wren(&ks->eeprom, true);
1193
1194        /* ethtool currently only supports writing bytes, which means
1195         * we have to read/modify/write our 16bit EEPROMs */
1196
1197        eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1198
1199        if (offset & 1) {
1200                tmp &= 0xff;
1201                tmp |= *data << 8;
1202        } else {
1203                tmp &= 0xff00;
1204                tmp |= *data;
1205        }
1206
1207        eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1208        eeprom_93cx6_wren(&ks->eeprom, false);
1209
1210        ks8851_eeprom_release(ks);
1211
1212        return 0;
1213}
1214
1215static int ks8851_get_eeprom(struct net_device *dev,
1216                             struct ethtool_eeprom *ee, u8 *data)
1217{
1218        struct ks8851_net *ks = netdev_priv(dev);
1219        int offset = ee->offset;
1220        int len = ee->len;
1221
1222        /* must be 2 byte aligned */
1223        if (len & 1 || offset & 1)
1224                return -EINVAL;
1225
1226        if (ks8851_eeprom_claim(ks))
1227                return -ENOENT;
1228
1229        ee->magic = KS_EEPROM_MAGIC;
1230
1231        eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1232        ks8851_eeprom_release(ks);
1233
1234        return 0;
1235}
1236
1237static int ks8851_get_eeprom_len(struct net_device *dev)
1238{
1239        struct ks8851_net *ks = netdev_priv(dev);
1240
1241        /* currently, we assume it is an 93C46 attached, so return 128 */
1242        return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1243}
1244
1245static const struct ethtool_ops ks8851_ethtool_ops = {
1246        .get_drvinfo    = ks8851_get_drvinfo,
1247        .get_msglevel   = ks8851_get_msglevel,
1248        .set_msglevel   = ks8851_set_msglevel,
1249        .get_link       = ks8851_get_link,
1250        .nway_reset     = ks8851_nway_reset,
1251        .get_eeprom_len = ks8851_get_eeprom_len,
1252        .get_eeprom     = ks8851_get_eeprom,
1253        .set_eeprom     = ks8851_set_eeprom,
1254        .get_link_ksettings = ks8851_get_link_ksettings,
1255        .set_link_ksettings = ks8851_set_link_ksettings,
1256};
1257
1258/* MII interface controls */
1259
1260/**
1261 * ks8851_phy_reg - convert MII register into a KS8851 register
1262 * @reg: MII register number.
1263 *
1264 * Return the KS8851 register number for the corresponding MII PHY register
1265 * if possible. Return zero if the MII register has no direct mapping to the
1266 * KS8851 register set.
1267 */
1268static int ks8851_phy_reg(int reg)
1269{
1270        switch (reg) {
1271        case MII_BMCR:
1272                return KS_P1MBCR;
1273        case MII_BMSR:
1274                return KS_P1MBSR;
1275        case MII_PHYSID1:
1276                return KS_PHY1ILR;
1277        case MII_PHYSID2:
1278                return KS_PHY1IHR;
1279        case MII_ADVERTISE:
1280                return KS_P1ANAR;
1281        case MII_LPA:
1282                return KS_P1ANLPR;
1283        }
1284
1285        return 0x0;
1286}
1287
1288/**
1289 * ks8851_phy_read - MII interface PHY register read.
1290 * @dev: The network device the PHY is on.
1291 * @phy_addr: Address of PHY (ignored as we only have one)
1292 * @reg: The register to read.
1293 *
1294 * This call reads data from the PHY register specified in @reg. Since the
1295 * device does not support all the MII registers, the non-existent values
1296 * are always returned as zero.
1297 *
1298 * We return zero for unsupported registers as the MII code does not check
1299 * the value returned for any error status, and simply returns it to the
1300 * caller. The mii-tool that the driver was tested with takes any -ve error
1301 * as real PHY capabilities, thus displaying incorrect data to the user.
1302 */
1303static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1304{
1305        struct ks8851_net *ks = netdev_priv(dev);
1306        int ksreg;
1307        int result;
1308
1309        ksreg = ks8851_phy_reg(reg);
1310        if (!ksreg)
1311                return 0x0;     /* no error return allowed, so use zero */
1312
1313        mutex_lock(&ks->lock);
1314        result = ks8851_rdreg16(ks, ksreg);
1315        mutex_unlock(&ks->lock);
1316
1317        return result;
1318}
1319
1320static void ks8851_phy_write(struct net_device *dev,
1321                             int phy, int reg, int value)
1322{
1323        struct ks8851_net *ks = netdev_priv(dev);
1324        int ksreg;
1325
1326        ksreg = ks8851_phy_reg(reg);
1327        if (ksreg) {
1328                mutex_lock(&ks->lock);
1329                ks8851_wrreg16(ks, ksreg, value);
1330                mutex_unlock(&ks->lock);
1331        }
1332}
1333
1334/**
1335 * ks8851_read_selftest - read the selftest memory info.
1336 * @ks: The device state
1337 *
1338 * Read and check the TX/RX memory selftest information.
1339 */
1340static int ks8851_read_selftest(struct ks8851_net *ks)
1341{
1342        unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1343        int ret = 0;
1344        unsigned rd;
1345
1346        rd = ks8851_rdreg16(ks, KS_MBIR);
1347
1348        if ((rd & both_done) != both_done) {
1349                netdev_warn(ks->netdev, "Memory selftest not finished\n");
1350                return 0;
1351        }
1352
1353        if (rd & MBIR_TXMBFA) {
1354                netdev_err(ks->netdev, "TX memory selftest fail\n");
1355                ret |= 1;
1356        }
1357
1358        if (rd & MBIR_RXMBFA) {
1359                netdev_err(ks->netdev, "RX memory selftest fail\n");
1360                ret |= 2;
1361        }
1362
1363        return 0;
1364}
1365
1366/* driver bus management functions */
1367
1368#ifdef CONFIG_PM_SLEEP
1369
1370static int ks8851_suspend(struct device *dev)
1371{
1372        struct ks8851_net *ks = dev_get_drvdata(dev);
1373        struct net_device *netdev = ks->netdev;
1374
1375        if (netif_running(netdev)) {
1376                netif_device_detach(netdev);
1377                ks8851_net_stop(netdev);
1378        }
1379
1380        return 0;
1381}
1382
1383static int ks8851_resume(struct device *dev)
1384{
1385        struct ks8851_net *ks = dev_get_drvdata(dev);
1386        struct net_device *netdev = ks->netdev;
1387
1388        if (netif_running(netdev)) {
1389                ks8851_net_open(netdev);
1390                netif_device_attach(netdev);
1391        }
1392
1393        return 0;
1394}
1395#endif
1396
1397static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1398
1399static int ks8851_probe(struct spi_device *spi)
1400{
1401        struct net_device *ndev;
1402        struct ks8851_net *ks;
1403        int ret;
1404        unsigned cider;
1405        int gpio;
1406
1407        ndev = alloc_etherdev(sizeof(struct ks8851_net));
1408        if (!ndev)
1409                return -ENOMEM;
1410
1411        spi->bits_per_word = 8;
1412
1413        ks = netdev_priv(ndev);
1414
1415        ks->netdev = ndev;
1416        ks->spidev = spi;
1417        ks->tx_space = 6144;
1418
1419        gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1420                                       0, NULL);
1421        if (gpio == -EPROBE_DEFER) {
1422                ret = gpio;
1423                goto err_gpio;
1424        }
1425
1426        ks->gpio = gpio;
1427        if (gpio_is_valid(gpio)) {
1428                ret = devm_gpio_request_one(&spi->dev, gpio,
1429                                            GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1430                if (ret) {
1431                        dev_err(&spi->dev, "reset gpio request failed\n");
1432                        goto err_gpio;
1433                }
1434        }
1435
1436        ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1437        if (IS_ERR(ks->vdd_io)) {
1438                ret = PTR_ERR(ks->vdd_io);
1439                goto err_reg_io;
1440        }
1441
1442        ret = regulator_enable(ks->vdd_io);
1443        if (ret) {
1444                dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1445                        ret);
1446                goto err_reg_io;
1447        }
1448
1449        ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1450        if (IS_ERR(ks->vdd_reg)) {
1451                ret = PTR_ERR(ks->vdd_reg);
1452                goto err_reg;
1453        }
1454
1455        ret = regulator_enable(ks->vdd_reg);
1456        if (ret) {
1457                dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1458                        ret);
1459                goto err_reg;
1460        }
1461
1462        if (gpio_is_valid(gpio)) {
1463                usleep_range(10000, 11000);
1464                gpio_set_value(gpio, 1);
1465        }
1466
1467        mutex_init(&ks->lock);
1468        spin_lock_init(&ks->statelock);
1469
1470        INIT_WORK(&ks->tx_work, ks8851_tx_work);
1471        INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1472
1473        /* initialise pre-made spi transfer messages */
1474
1475        spi_message_init(&ks->spi_msg1);
1476        spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1477
1478        spi_message_init(&ks->spi_msg2);
1479        spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1480        spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1481
1482        /* setup EEPROM state */
1483
1484        ks->eeprom.data = ks;
1485        ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1486        ks->eeprom.register_read = ks8851_eeprom_regread;
1487        ks->eeprom.register_write = ks8851_eeprom_regwrite;
1488
1489        /* setup mii state */
1490        ks->mii.dev             = ndev;
1491        ks->mii.phy_id          = 1,
1492        ks->mii.phy_id_mask     = 1;
1493        ks->mii.reg_num_mask    = 0xf;
1494        ks->mii.mdio_read       = ks8851_phy_read;
1495        ks->mii.mdio_write      = ks8851_phy_write;
1496
1497        dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1498
1499        /* set the default message enable */
1500        ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1501                                                     NETIF_MSG_PROBE |
1502                                                     NETIF_MSG_LINK));
1503
1504        skb_queue_head_init(&ks->txq);
1505
1506        ndev->ethtool_ops = &ks8851_ethtool_ops;
1507        SET_NETDEV_DEV(ndev, &spi->dev);
1508
1509        spi_set_drvdata(spi, ks);
1510
1511        ndev->if_port = IF_PORT_100BASET;
1512        ndev->netdev_ops = &ks8851_netdev_ops;
1513        ndev->irq = spi->irq;
1514
1515        /* issue a global soft reset to reset the device. */
1516        ks8851_soft_reset(ks, GRR_GSR);
1517
1518        /* simple check for a valid chip being connected to the bus */
1519        cider = ks8851_rdreg16(ks, KS_CIDER);
1520        if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1521                dev_err(&spi->dev, "failed to read device ID\n");
1522                ret = -ENODEV;
1523                goto err_id;
1524        }
1525
1526        /* cache the contents of the CCR register for EEPROM, etc. */
1527        ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1528
1529        ks8851_read_selftest(ks);
1530        ks8851_init_mac(ks);
1531
1532        ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1533                                   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1534                                   ndev->name, ks);
1535        if (ret < 0) {
1536                dev_err(&spi->dev, "failed to get irq\n");
1537                goto err_irq;
1538        }
1539
1540        ret = register_netdev(ndev);
1541        if (ret) {
1542                dev_err(&spi->dev, "failed to register network device\n");
1543                goto err_netdev;
1544        }
1545
1546        netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1547                    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1548                    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1549
1550        return 0;
1551
1552
1553err_netdev:
1554        free_irq(ndev->irq, ks);
1555
1556err_irq:
1557        if (gpio_is_valid(gpio))
1558                gpio_set_value(gpio, 0);
1559err_id:
1560        regulator_disable(ks->vdd_reg);
1561err_reg:
1562        regulator_disable(ks->vdd_io);
1563err_reg_io:
1564err_gpio:
1565        free_netdev(ndev);
1566        return ret;
1567}
1568
1569static int ks8851_remove(struct spi_device *spi)
1570{
1571        struct ks8851_net *priv = spi_get_drvdata(spi);
1572
1573        if (netif_msg_drv(priv))
1574                dev_info(&spi->dev, "remove\n");
1575
1576        unregister_netdev(priv->netdev);
1577        free_irq(spi->irq, priv);
1578        if (gpio_is_valid(priv->gpio))
1579                gpio_set_value(priv->gpio, 0);
1580        regulator_disable(priv->vdd_reg);
1581        regulator_disable(priv->vdd_io);
1582        free_netdev(priv->netdev);
1583
1584        return 0;
1585}
1586
1587static const struct of_device_id ks8851_match_table[] = {
1588        { .compatible = "micrel,ks8851" },
1589        { }
1590};
1591MODULE_DEVICE_TABLE(of, ks8851_match_table);
1592
1593static struct spi_driver ks8851_driver = {
1594        .driver = {
1595                .name = "ks8851",
1596                .of_match_table = ks8851_match_table,
1597                .pm = &ks8851_pm_ops,
1598        },
1599        .probe = ks8851_probe,
1600        .remove = ks8851_remove,
1601};
1602module_spi_driver(ks8851_driver);
1603
1604MODULE_DESCRIPTION("KS8851 Network driver");
1605MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1606MODULE_LICENSE("GPL");
1607
1608module_param_named(message, msg_enable, int, 0);
1609MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1610MODULE_ALIAS("spi:ks8851");
1611