linux/drivers/net/ethernet/sfc/farch.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/crc32.h>
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "sriov.h"
  24#include "siena_sriov.h"
  25#include "io.h"
  26#include "workarounds.h"
  27
  28/* Falcon-architecture (SFC9000-family) support */
  29
  30/**************************************************************************
  31 *
  32 * Configurable values
  33 *
  34 **************************************************************************
  35 */
  36
  37/* This is set to 16 for a good reason.  In summary, if larger than
  38 * 16, the descriptor cache holds more than a default socket
  39 * buffer's worth of packets (for UDP we can only have at most one
  40 * socket buffer's worth outstanding).  This combined with the fact
  41 * that we only get 1 TX event per descriptor cache means the NIC
  42 * goes idle.
  43 */
  44#define TX_DC_ENTRIES 16
  45#define TX_DC_ENTRIES_ORDER 1
  46
  47#define RX_DC_ENTRIES 64
  48#define RX_DC_ENTRIES_ORDER 3
  49
  50/* If EFX_MAX_INT_ERRORS internal errors occur within
  51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  52 * disable it.
  53 */
  54#define EFX_INT_ERROR_EXPIRE 3600
  55#define EFX_MAX_INT_ERRORS 5
  56
  57/* Depth of RX flush request fifo */
  58#define EFX_RX_FLUSH_COUNT 4
  59
  60/* Driver generated events */
  61#define _EFX_CHANNEL_MAGIC_TEST         0x000101
  62#define _EFX_CHANNEL_MAGIC_FILL         0x000102
  63#define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
  64#define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
  65
  66#define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
  67#define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
  68
  69#define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
  70        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  71#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
  72        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
  73                           efx_rx_queue_index(_rx_queue))
  74#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
  75        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
  76                           efx_rx_queue_index(_rx_queue))
  77#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
  78        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
  79                           (_tx_queue)->queue)
  80
  81static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  82
  83/**************************************************************************
  84 *
  85 * Hardware access
  86 *
  87 **************************************************************************/
  88
  89static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  90                                     unsigned int index)
  91{
  92        efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  93                        value, index);
  94}
  95
  96static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  97                                     const efx_oword_t *mask)
  98{
  99        return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 100                ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 101}
 102
 103int efx_farch_test_registers(struct efx_nic *efx,
 104                             const struct efx_farch_register_test *regs,
 105                             size_t n_regs)
 106{
 107        unsigned address = 0;
 108        int i, j;
 109        efx_oword_t mask, imask, original, reg, buf;
 110
 111        for (i = 0; i < n_regs; ++i) {
 112                address = regs[i].address;
 113                mask = imask = regs[i].mask;
 114                EFX_INVERT_OWORD(imask);
 115
 116                efx_reado(efx, &original, address);
 117
 118                /* bit sweep on and off */
 119                for (j = 0; j < 128; j++) {
 120                        if (!EFX_EXTRACT_OWORD32(mask, j, j))
 121                                continue;
 122
 123                        /* Test this testable bit can be set in isolation */
 124                        EFX_AND_OWORD(reg, original, mask);
 125                        EFX_SET_OWORD32(reg, j, j, 1);
 126
 127                        efx_writeo(efx, &reg, address);
 128                        efx_reado(efx, &buf, address);
 129
 130                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 131                                goto fail;
 132
 133                        /* Test this testable bit can be cleared in isolation */
 134                        EFX_OR_OWORD(reg, original, mask);
 135                        EFX_SET_OWORD32(reg, j, j, 0);
 136
 137                        efx_writeo(efx, &reg, address);
 138                        efx_reado(efx, &buf, address);
 139
 140                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 141                                goto fail;
 142                }
 143
 144                efx_writeo(efx, &original, address);
 145        }
 146
 147        return 0;
 148
 149fail:
 150        netif_err(efx, hw, efx->net_dev,
 151                  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 152                  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 153                  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 154        return -EIO;
 155}
 156
 157/**************************************************************************
 158 *
 159 * Special buffer handling
 160 * Special buffers are used for event queues and the TX and RX
 161 * descriptor rings.
 162 *
 163 *************************************************************************/
 164
 165/*
 166 * Initialise a special buffer
 167 *
 168 * This will define a buffer (previously allocated via
 169 * efx_alloc_special_buffer()) in the buffer table, allowing
 170 * it to be used for event queues, descriptor rings etc.
 171 */
 172static void
 173efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 174{
 175        efx_qword_t buf_desc;
 176        unsigned int index;
 177        dma_addr_t dma_addr;
 178        int i;
 179
 180        EFX_WARN_ON_PARANOID(!buffer->buf.addr);
 181
 182        /* Write buffer descriptors to NIC */
 183        for (i = 0; i < buffer->entries; i++) {
 184                index = buffer->index + i;
 185                dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 186                netif_dbg(efx, probe, efx->net_dev,
 187                          "mapping special buffer %d at %llx\n",
 188                          index, (unsigned long long)dma_addr);
 189                EFX_POPULATE_QWORD_3(buf_desc,
 190                                     FRF_AZ_BUF_ADR_REGION, 0,
 191                                     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 192                                     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 193                efx_write_buf_tbl(efx, &buf_desc, index);
 194        }
 195}
 196
 197/* Unmaps a buffer and clears the buffer table entries */
 198static void
 199efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 200{
 201        efx_oword_t buf_tbl_upd;
 202        unsigned int start = buffer->index;
 203        unsigned int end = (buffer->index + buffer->entries - 1);
 204
 205        if (!buffer->entries)
 206                return;
 207
 208        netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 209                  buffer->index, buffer->index + buffer->entries - 1);
 210
 211        EFX_POPULATE_OWORD_4(buf_tbl_upd,
 212                             FRF_AZ_BUF_UPD_CMD, 0,
 213                             FRF_AZ_BUF_CLR_CMD, 1,
 214                             FRF_AZ_BUF_CLR_END_ID, end,
 215                             FRF_AZ_BUF_CLR_START_ID, start);
 216        efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 217}
 218
 219/*
 220 * Allocate a new special buffer
 221 *
 222 * This allocates memory for a new buffer, clears it and allocates a
 223 * new buffer ID range.  It does not write into the buffer table.
 224 *
 225 * This call will allocate 4KB buffers, since 8KB buffers can't be
 226 * used for event queues and descriptor rings.
 227 */
 228static int efx_alloc_special_buffer(struct efx_nic *efx,
 229                                    struct efx_special_buffer *buffer,
 230                                    unsigned int len)
 231{
 232#ifdef CONFIG_SFC_SRIOV
 233        struct siena_nic_data *nic_data = efx->nic_data;
 234#endif
 235        len = ALIGN(len, EFX_BUF_SIZE);
 236
 237        if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 238                return -ENOMEM;
 239        buffer->entries = len / EFX_BUF_SIZE;
 240        BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 241
 242        /* Select new buffer ID */
 243        buffer->index = efx->next_buffer_table;
 244        efx->next_buffer_table += buffer->entries;
 245#ifdef CONFIG_SFC_SRIOV
 246        BUG_ON(efx_siena_sriov_enabled(efx) &&
 247               nic_data->vf_buftbl_base < efx->next_buffer_table);
 248#endif
 249
 250        netif_dbg(efx, probe, efx->net_dev,
 251                  "allocating special buffers %d-%d at %llx+%x "
 252                  "(virt %p phys %llx)\n", buffer->index,
 253                  buffer->index + buffer->entries - 1,
 254                  (u64)buffer->buf.dma_addr, len,
 255                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 256
 257        return 0;
 258}
 259
 260static void
 261efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 262{
 263        if (!buffer->buf.addr)
 264                return;
 265
 266        netif_dbg(efx, hw, efx->net_dev,
 267                  "deallocating special buffers %d-%d at %llx+%x "
 268                  "(virt %p phys %llx)\n", buffer->index,
 269                  buffer->index + buffer->entries - 1,
 270                  (u64)buffer->buf.dma_addr, buffer->buf.len,
 271                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 272
 273        efx_nic_free_buffer(efx, &buffer->buf);
 274        buffer->entries = 0;
 275}
 276
 277/**************************************************************************
 278 *
 279 * TX path
 280 *
 281 **************************************************************************/
 282
 283/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 284static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 285{
 286        unsigned write_ptr;
 287        efx_dword_t reg;
 288
 289        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 290        EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 291        efx_writed_page(tx_queue->efx, &reg,
 292                        FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 293}
 294
 295/* Write pointer and first descriptor for TX descriptor ring */
 296static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 297                                          const efx_qword_t *txd)
 298{
 299        unsigned write_ptr;
 300        efx_oword_t reg;
 301
 302        BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 303        BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 304
 305        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 306        EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 307                             FRF_AZ_TX_DESC_WPTR, write_ptr);
 308        reg.qword[0] = *txd;
 309        efx_writeo_page(tx_queue->efx, &reg,
 310                        FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 311}
 312
 313
 314/* For each entry inserted into the software descriptor ring, create a
 315 * descriptor in the hardware TX descriptor ring (in host memory), and
 316 * write a doorbell.
 317 */
 318void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 319{
 320        struct efx_tx_buffer *buffer;
 321        efx_qword_t *txd;
 322        unsigned write_ptr;
 323        unsigned old_write_count = tx_queue->write_count;
 324
 325        tx_queue->xmit_more_available = false;
 326        if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 327                return;
 328
 329        do {
 330                write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 331                buffer = &tx_queue->buffer[write_ptr];
 332                txd = efx_tx_desc(tx_queue, write_ptr);
 333                ++tx_queue->write_count;
 334
 335                EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 336
 337                /* Create TX descriptor ring entry */
 338                BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 339                EFX_POPULATE_QWORD_4(*txd,
 340                                     FSF_AZ_TX_KER_CONT,
 341                                     buffer->flags & EFX_TX_BUF_CONT,
 342                                     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 343                                     FSF_AZ_TX_KER_BUF_REGION, 0,
 344                                     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 345        } while (tx_queue->write_count != tx_queue->insert_count);
 346
 347        wmb(); /* Ensure descriptors are written before they are fetched */
 348
 349        if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 350                txd = efx_tx_desc(tx_queue,
 351                                  old_write_count & tx_queue->ptr_mask);
 352                efx_farch_push_tx_desc(tx_queue, txd);
 353                ++tx_queue->pushes;
 354        } else {
 355                efx_farch_notify_tx_desc(tx_queue);
 356        }
 357}
 358
 359unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 360                                    dma_addr_t dma_addr, unsigned int len)
 361{
 362        /* Don't cross 4K boundaries with descriptors. */
 363        unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
 364
 365        len = min(limit, len);
 366
 367        return len;
 368}
 369
 370
 371/* Allocate hardware resources for a TX queue */
 372int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 373{
 374        struct efx_nic *efx = tx_queue->efx;
 375        unsigned entries;
 376
 377        entries = tx_queue->ptr_mask + 1;
 378        return efx_alloc_special_buffer(efx, &tx_queue->txd,
 379                                        entries * sizeof(efx_qword_t));
 380}
 381
 382void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 383{
 384        int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 385        struct efx_nic *efx = tx_queue->efx;
 386        efx_oword_t reg;
 387
 388        /* Pin TX descriptor ring */
 389        efx_init_special_buffer(efx, &tx_queue->txd);
 390
 391        /* Push TX descriptor ring to card */
 392        EFX_POPULATE_OWORD_10(reg,
 393                              FRF_AZ_TX_DESCQ_EN, 1,
 394                              FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 395                              FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 396                              FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 397                              FRF_AZ_TX_DESCQ_EVQ_ID,
 398                              tx_queue->channel->channel,
 399                              FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 400                              FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 401                              FRF_AZ_TX_DESCQ_SIZE,
 402                              __ffs(tx_queue->txd.entries),
 403                              FRF_AZ_TX_DESCQ_TYPE, 0,
 404                              FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 405
 406        EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 407        EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
 408
 409        efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 410                         tx_queue->queue);
 411
 412        EFX_POPULATE_OWORD_1(reg,
 413                             FRF_BZ_TX_PACE,
 414                             (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 415                             FFE_BZ_TX_PACE_OFF :
 416                             FFE_BZ_TX_PACE_RESERVED);
 417        efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
 418}
 419
 420static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 421{
 422        struct efx_nic *efx = tx_queue->efx;
 423        efx_oword_t tx_flush_descq;
 424
 425        WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 426        atomic_set(&tx_queue->flush_outstanding, 1);
 427
 428        EFX_POPULATE_OWORD_2(tx_flush_descq,
 429                             FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 430                             FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 431        efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 432}
 433
 434void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 435{
 436        struct efx_nic *efx = tx_queue->efx;
 437        efx_oword_t tx_desc_ptr;
 438
 439        /* Remove TX descriptor ring from card */
 440        EFX_ZERO_OWORD(tx_desc_ptr);
 441        efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 442                         tx_queue->queue);
 443
 444        /* Unpin TX descriptor ring */
 445        efx_fini_special_buffer(efx, &tx_queue->txd);
 446}
 447
 448/* Free buffers backing TX queue */
 449void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 450{
 451        efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 452}
 453
 454/**************************************************************************
 455 *
 456 * RX path
 457 *
 458 **************************************************************************/
 459
 460/* This creates an entry in the RX descriptor queue */
 461static inline void
 462efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 463{
 464        struct efx_rx_buffer *rx_buf;
 465        efx_qword_t *rxd;
 466
 467        rxd = efx_rx_desc(rx_queue, index);
 468        rx_buf = efx_rx_buffer(rx_queue, index);
 469        EFX_POPULATE_QWORD_3(*rxd,
 470                             FSF_AZ_RX_KER_BUF_SIZE,
 471                             rx_buf->len -
 472                             rx_queue->efx->type->rx_buffer_padding,
 473                             FSF_AZ_RX_KER_BUF_REGION, 0,
 474                             FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 475}
 476
 477/* This writes to the RX_DESC_WPTR register for the specified receive
 478 * descriptor ring.
 479 */
 480void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 481{
 482        struct efx_nic *efx = rx_queue->efx;
 483        efx_dword_t reg;
 484        unsigned write_ptr;
 485
 486        while (rx_queue->notified_count != rx_queue->added_count) {
 487                efx_farch_build_rx_desc(
 488                        rx_queue,
 489                        rx_queue->notified_count & rx_queue->ptr_mask);
 490                ++rx_queue->notified_count;
 491        }
 492
 493        wmb();
 494        write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 495        EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 496        efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 497                        efx_rx_queue_index(rx_queue));
 498}
 499
 500int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 501{
 502        struct efx_nic *efx = rx_queue->efx;
 503        unsigned entries;
 504
 505        entries = rx_queue->ptr_mask + 1;
 506        return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 507                                        entries * sizeof(efx_qword_t));
 508}
 509
 510void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 511{
 512        efx_oword_t rx_desc_ptr;
 513        struct efx_nic *efx = rx_queue->efx;
 514        bool jumbo_en;
 515
 516        /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
 517        jumbo_en = efx->rx_scatter;
 518
 519        netif_dbg(efx, hw, efx->net_dev,
 520                  "RX queue %d ring in special buffers %d-%d\n",
 521                  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 522                  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 523
 524        rx_queue->scatter_n = 0;
 525
 526        /* Pin RX descriptor ring */
 527        efx_init_special_buffer(efx, &rx_queue->rxd);
 528
 529        /* Push RX descriptor ring to card */
 530        EFX_POPULATE_OWORD_10(rx_desc_ptr,
 531                              FRF_AZ_RX_ISCSI_DDIG_EN, true,
 532                              FRF_AZ_RX_ISCSI_HDIG_EN, true,
 533                              FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 534                              FRF_AZ_RX_DESCQ_EVQ_ID,
 535                              efx_rx_queue_channel(rx_queue)->channel,
 536                              FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 537                              FRF_AZ_RX_DESCQ_LABEL,
 538                              efx_rx_queue_index(rx_queue),
 539                              FRF_AZ_RX_DESCQ_SIZE,
 540                              __ffs(rx_queue->rxd.entries),
 541                              FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 542                              FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 543                              FRF_AZ_RX_DESCQ_EN, 1);
 544        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 545                         efx_rx_queue_index(rx_queue));
 546}
 547
 548static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 549{
 550        struct efx_nic *efx = rx_queue->efx;
 551        efx_oword_t rx_flush_descq;
 552
 553        EFX_POPULATE_OWORD_2(rx_flush_descq,
 554                             FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 555                             FRF_AZ_RX_FLUSH_DESCQ,
 556                             efx_rx_queue_index(rx_queue));
 557        efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 558}
 559
 560void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 561{
 562        efx_oword_t rx_desc_ptr;
 563        struct efx_nic *efx = rx_queue->efx;
 564
 565        /* Remove RX descriptor ring from card */
 566        EFX_ZERO_OWORD(rx_desc_ptr);
 567        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 568                         efx_rx_queue_index(rx_queue));
 569
 570        /* Unpin RX descriptor ring */
 571        efx_fini_special_buffer(efx, &rx_queue->rxd);
 572}
 573
 574/* Free buffers backing RX queue */
 575void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 576{
 577        efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 578}
 579
 580/**************************************************************************
 581 *
 582 * Flush handling
 583 *
 584 **************************************************************************/
 585
 586/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 587 * or more RX flushes can be kicked off.
 588 */
 589static bool efx_farch_flush_wake(struct efx_nic *efx)
 590{
 591        /* Ensure that all updates are visible to efx_farch_flush_queues() */
 592        smp_mb();
 593
 594        return (atomic_read(&efx->active_queues) == 0 ||
 595                (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 596                 && atomic_read(&efx->rxq_flush_pending) > 0));
 597}
 598
 599static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 600{
 601        bool i = true;
 602        efx_oword_t txd_ptr_tbl;
 603        struct efx_channel *channel;
 604        struct efx_tx_queue *tx_queue;
 605
 606        efx_for_each_channel(channel, efx) {
 607                efx_for_each_channel_tx_queue(tx_queue, channel) {
 608                        efx_reado_table(efx, &txd_ptr_tbl,
 609                                        FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 610                        if (EFX_OWORD_FIELD(txd_ptr_tbl,
 611                                            FRF_AZ_TX_DESCQ_FLUSH) ||
 612                            EFX_OWORD_FIELD(txd_ptr_tbl,
 613                                            FRF_AZ_TX_DESCQ_EN)) {
 614                                netif_dbg(efx, hw, efx->net_dev,
 615                                          "flush did not complete on TXQ %d\n",
 616                                          tx_queue->queue);
 617                                i = false;
 618                        } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 619                                                  1, 0)) {
 620                                /* The flush is complete, but we didn't
 621                                 * receive a flush completion event
 622                                 */
 623                                netif_dbg(efx, hw, efx->net_dev,
 624                                          "flush complete on TXQ %d, so drain "
 625                                          "the queue\n", tx_queue->queue);
 626                                /* Don't need to increment active_queues as it
 627                                 * has already been incremented for the queues
 628                                 * which did not drain
 629                                 */
 630                                efx_farch_magic_event(channel,
 631                                                      EFX_CHANNEL_MAGIC_TX_DRAIN(
 632                                                              tx_queue));
 633                        }
 634                }
 635        }
 636
 637        return i;
 638}
 639
 640/* Flush all the transmit queues, and continue flushing receive queues until
 641 * they're all flushed. Wait for the DRAIN events to be received so that there
 642 * are no more RX and TX events left on any channel. */
 643static int efx_farch_do_flush(struct efx_nic *efx)
 644{
 645        unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 646        struct efx_channel *channel;
 647        struct efx_rx_queue *rx_queue;
 648        struct efx_tx_queue *tx_queue;
 649        int rc = 0;
 650
 651        efx_for_each_channel(channel, efx) {
 652                efx_for_each_channel_tx_queue(tx_queue, channel) {
 653                        efx_farch_flush_tx_queue(tx_queue);
 654                }
 655                efx_for_each_channel_rx_queue(rx_queue, channel) {
 656                        rx_queue->flush_pending = true;
 657                        atomic_inc(&efx->rxq_flush_pending);
 658                }
 659        }
 660
 661        while (timeout && atomic_read(&efx->active_queues) > 0) {
 662                /* If SRIOV is enabled, then offload receive queue flushing to
 663                 * the firmware (though we will still have to poll for
 664                 * completion). If that fails, fall back to the old scheme.
 665                 */
 666                if (efx_siena_sriov_enabled(efx)) {
 667                        rc = efx_mcdi_flush_rxqs(efx);
 668                        if (!rc)
 669                                goto wait;
 670                }
 671
 672                /* The hardware supports four concurrent rx flushes, each of
 673                 * which may need to be retried if there is an outstanding
 674                 * descriptor fetch
 675                 */
 676                efx_for_each_channel(channel, efx) {
 677                        efx_for_each_channel_rx_queue(rx_queue, channel) {
 678                                if (atomic_read(&efx->rxq_flush_outstanding) >=
 679                                    EFX_RX_FLUSH_COUNT)
 680                                        break;
 681
 682                                if (rx_queue->flush_pending) {
 683                                        rx_queue->flush_pending = false;
 684                                        atomic_dec(&efx->rxq_flush_pending);
 685                                        atomic_inc(&efx->rxq_flush_outstanding);
 686                                        efx_farch_flush_rx_queue(rx_queue);
 687                                }
 688                        }
 689                }
 690
 691        wait:
 692                timeout = wait_event_timeout(efx->flush_wq,
 693                                             efx_farch_flush_wake(efx),
 694                                             timeout);
 695        }
 696
 697        if (atomic_read(&efx->active_queues) &&
 698            !efx_check_tx_flush_complete(efx)) {
 699                netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 700                          "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 701                          atomic_read(&efx->rxq_flush_outstanding),
 702                          atomic_read(&efx->rxq_flush_pending));
 703                rc = -ETIMEDOUT;
 704
 705                atomic_set(&efx->active_queues, 0);
 706                atomic_set(&efx->rxq_flush_pending, 0);
 707                atomic_set(&efx->rxq_flush_outstanding, 0);
 708        }
 709
 710        return rc;
 711}
 712
 713int efx_farch_fini_dmaq(struct efx_nic *efx)
 714{
 715        struct efx_channel *channel;
 716        struct efx_tx_queue *tx_queue;
 717        struct efx_rx_queue *rx_queue;
 718        int rc = 0;
 719
 720        /* Do not attempt to write to the NIC during EEH recovery */
 721        if (efx->state != STATE_RECOVERY) {
 722                /* Only perform flush if DMA is enabled */
 723                if (efx->pci_dev->is_busmaster) {
 724                        efx->type->prepare_flush(efx);
 725                        rc = efx_farch_do_flush(efx);
 726                        efx->type->finish_flush(efx);
 727                }
 728
 729                efx_for_each_channel(channel, efx) {
 730                        efx_for_each_channel_rx_queue(rx_queue, channel)
 731                                efx_farch_rx_fini(rx_queue);
 732                        efx_for_each_channel_tx_queue(tx_queue, channel)
 733                                efx_farch_tx_fini(tx_queue);
 734                }
 735        }
 736
 737        return rc;
 738}
 739
 740/* Reset queue and flush accounting after FLR
 741 *
 742 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 743 * mastering was disabled), in which case we don't receive (RXQ) flush
 744 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 745 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 746 * events were received, and we didn't go through efx_check_tx_flush_complete())
 747 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 748 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 749 * for batched flush requests; and the efx->active_queues gets messed up because
 750 * we keep incrementing for the newly initialised queues, but it never went to
 751 * zero previously.  Then we get a timeout every time we try to restart the
 752 * queues, as it doesn't go back to zero when we should be flushing the queues.
 753 */
 754void efx_farch_finish_flr(struct efx_nic *efx)
 755{
 756        atomic_set(&efx->rxq_flush_pending, 0);
 757        atomic_set(&efx->rxq_flush_outstanding, 0);
 758        atomic_set(&efx->active_queues, 0);
 759}
 760
 761
 762/**************************************************************************
 763 *
 764 * Event queue processing
 765 * Event queues are processed by per-channel tasklets.
 766 *
 767 **************************************************************************/
 768
 769/* Update a channel's event queue's read pointer (RPTR) register
 770 *
 771 * This writes the EVQ_RPTR_REG register for the specified channel's
 772 * event queue.
 773 */
 774void efx_farch_ev_read_ack(struct efx_channel *channel)
 775{
 776        efx_dword_t reg;
 777        struct efx_nic *efx = channel->efx;
 778
 779        EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 780                             channel->eventq_read_ptr & channel->eventq_mask);
 781
 782        /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 783         * of 4 bytes, but it is really 16 bytes just like later revisions.
 784         */
 785        efx_writed(efx, &reg,
 786                   efx->type->evq_rptr_tbl_base +
 787                   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 788}
 789
 790/* Use HW to insert a SW defined event */
 791void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 792                              efx_qword_t *event)
 793{
 794        efx_oword_t drv_ev_reg;
 795
 796        BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 797                     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 798        drv_ev_reg.u32[0] = event->u32[0];
 799        drv_ev_reg.u32[1] = event->u32[1];
 800        drv_ev_reg.u32[2] = 0;
 801        drv_ev_reg.u32[3] = 0;
 802        EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 803        efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 804}
 805
 806static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 807{
 808        efx_qword_t event;
 809
 810        EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 811                             FSE_AZ_EV_CODE_DRV_GEN_EV,
 812                             FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 813        efx_farch_generate_event(channel->efx, channel->channel, &event);
 814}
 815
 816/* Handle a transmit completion event
 817 *
 818 * The NIC batches TX completion events; the message we receive is of
 819 * the form "complete all TX events up to this index".
 820 */
 821static void
 822efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 823{
 824        unsigned int tx_ev_desc_ptr;
 825        unsigned int tx_ev_q_label;
 826        struct efx_tx_queue *tx_queue;
 827        struct efx_nic *efx = channel->efx;
 828
 829        if (unlikely(READ_ONCE(efx->reset_pending)))
 830                return;
 831
 832        if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 833                /* Transmit completion */
 834                tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 835                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 836                tx_queue = efx_channel_get_tx_queue(
 837                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 838                efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 839        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 840                /* Rewrite the FIFO write pointer */
 841                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 842                tx_queue = efx_channel_get_tx_queue(
 843                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 844
 845                netif_tx_lock(efx->net_dev);
 846                efx_farch_notify_tx_desc(tx_queue);
 847                netif_tx_unlock(efx->net_dev);
 848        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 849                efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 850        } else {
 851                netif_err(efx, tx_err, efx->net_dev,
 852                          "channel %d unexpected TX event "
 853                          EFX_QWORD_FMT"\n", channel->channel,
 854                          EFX_QWORD_VAL(*event));
 855        }
 856}
 857
 858/* Detect errors included in the rx_evt_pkt_ok bit. */
 859static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 860                                      const efx_qword_t *event)
 861{
 862        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 863        struct efx_nic *efx = rx_queue->efx;
 864        bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 865        bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 866        bool rx_ev_frm_trunc, rx_ev_tobe_disc;
 867        bool rx_ev_other_err, rx_ev_pause_frm;
 868        bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 869        unsigned rx_ev_pkt_type;
 870
 871        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 872        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 873        rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 874        rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 875        rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 876                                                 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 877        rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 878                                                  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 879        rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 880                                                   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 881        rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 882        rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 883        rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 884
 885        /* Every error apart from tobe_disc and pause_frm */
 886        rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
 887                           rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 888                           rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 889
 890        /* Count errors that are not in MAC stats.  Ignore expected
 891         * checksum errors during self-test. */
 892        if (rx_ev_frm_trunc)
 893                ++channel->n_rx_frm_trunc;
 894        else if (rx_ev_tobe_disc)
 895                ++channel->n_rx_tobe_disc;
 896        else if (!efx->loopback_selftest) {
 897                if (rx_ev_ip_hdr_chksum_err)
 898                        ++channel->n_rx_ip_hdr_chksum_err;
 899                else if (rx_ev_tcp_udp_chksum_err)
 900                        ++channel->n_rx_tcp_udp_chksum_err;
 901        }
 902
 903        /* TOBE_DISC is expected on unicast mismatches; don't print out an
 904         * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 905         * to a FIFO overflow.
 906         */
 907#ifdef DEBUG
 908        if (rx_ev_other_err && net_ratelimit()) {
 909                netif_dbg(efx, rx_err, efx->net_dev,
 910                          " RX queue %d unexpected RX event "
 911                          EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
 912                          efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 913                          rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 914                          rx_ev_ip_hdr_chksum_err ?
 915                          " [IP_HDR_CHKSUM_ERR]" : "",
 916                          rx_ev_tcp_udp_chksum_err ?
 917                          " [TCP_UDP_CHKSUM_ERR]" : "",
 918                          rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 919                          rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 920                          rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 921                          rx_ev_pause_frm ? " [PAUSE]" : "");
 922        }
 923#endif
 924
 925        if (efx->net_dev->features & NETIF_F_RXALL)
 926                /* don't discard frame for CRC error */
 927                rx_ev_eth_crc_err = false;
 928
 929        /* The frame must be discarded if any of these are true. */
 930        return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
 931                rx_ev_tobe_disc | rx_ev_pause_frm) ?
 932                EFX_RX_PKT_DISCARD : 0;
 933}
 934
 935/* Handle receive events that are not in-order. Return true if this
 936 * can be handled as a partial packet discard, false if it's more
 937 * serious.
 938 */
 939static bool
 940efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 941{
 942        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 943        struct efx_nic *efx = rx_queue->efx;
 944        unsigned expected, dropped;
 945
 946        if (rx_queue->scatter_n &&
 947            index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 948                      rx_queue->ptr_mask)) {
 949                ++channel->n_rx_nodesc_trunc;
 950                return true;
 951        }
 952
 953        expected = rx_queue->removed_count & rx_queue->ptr_mask;
 954        dropped = (index - expected) & rx_queue->ptr_mask;
 955        netif_info(efx, rx_err, efx->net_dev,
 956                   "dropped %d events (index=%d expected=%d)\n",
 957                   dropped, index, expected);
 958
 959        efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 960        return false;
 961}
 962
 963/* Handle a packet received event
 964 *
 965 * The NIC gives a "discard" flag if it's a unicast packet with the
 966 * wrong destination address
 967 * Also "is multicast" and "matches multicast filter" flags can be used to
 968 * discard non-matching multicast packets.
 969 */
 970static void
 971efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 972{
 973        unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 974        unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 975        unsigned expected_ptr;
 976        bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 977        u16 flags;
 978        struct efx_rx_queue *rx_queue;
 979        struct efx_nic *efx = channel->efx;
 980
 981        if (unlikely(READ_ONCE(efx->reset_pending)))
 982                return;
 983
 984        rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 985        rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 986        WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 987                channel->channel);
 988
 989        rx_queue = efx_channel_get_rx_queue(channel);
 990
 991        rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 992        expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 993                        rx_queue->ptr_mask);
 994
 995        /* Check for partial drops and other errors */
 996        if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 997            unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 998                if (rx_ev_desc_ptr != expected_ptr &&
 999                    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1000                        return;
1001
1002                /* Discard all pending fragments */
1003                if (rx_queue->scatter_n) {
1004                        efx_rx_packet(
1005                                rx_queue,
1006                                rx_queue->removed_count & rx_queue->ptr_mask,
1007                                rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1008                        rx_queue->removed_count += rx_queue->scatter_n;
1009                        rx_queue->scatter_n = 0;
1010                }
1011
1012                /* Return if there is no new fragment */
1013                if (rx_ev_desc_ptr != expected_ptr)
1014                        return;
1015
1016                /* Discard new fragment if not SOP */
1017                if (!rx_ev_sop) {
1018                        efx_rx_packet(
1019                                rx_queue,
1020                                rx_queue->removed_count & rx_queue->ptr_mask,
1021                                1, 0, EFX_RX_PKT_DISCARD);
1022                        ++rx_queue->removed_count;
1023                        return;
1024                }
1025        }
1026
1027        ++rx_queue->scatter_n;
1028        if (rx_ev_cont)
1029                return;
1030
1031        rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1032        rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1033        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1034
1035        if (likely(rx_ev_pkt_ok)) {
1036                /* If packet is marked as OK then we can rely on the
1037                 * hardware checksum and classification.
1038                 */
1039                flags = 0;
1040                switch (rx_ev_hdr_type) {
1041                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1042                        flags |= EFX_RX_PKT_TCP;
1043                        /* fall through */
1044                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1045                        flags |= EFX_RX_PKT_CSUMMED;
1046                        /* fall through */
1047                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1048                case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1049                        break;
1050                }
1051        } else {
1052                flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1053        }
1054
1055        /* Detect multicast packets that didn't match the filter */
1056        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1057        if (rx_ev_mcast_pkt) {
1058                unsigned int rx_ev_mcast_hash_match =
1059                        EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1060
1061                if (unlikely(!rx_ev_mcast_hash_match)) {
1062                        ++channel->n_rx_mcast_mismatch;
1063                        flags |= EFX_RX_PKT_DISCARD;
1064                }
1065        }
1066
1067        channel->irq_mod_score += 2;
1068
1069        /* Handle received packet */
1070        efx_rx_packet(rx_queue,
1071                      rx_queue->removed_count & rx_queue->ptr_mask,
1072                      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1073        rx_queue->removed_count += rx_queue->scatter_n;
1074        rx_queue->scatter_n = 0;
1075}
1076
1077/* If this flush done event corresponds to a &struct efx_tx_queue, then
1078 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1079 * of all transmit completions.
1080 */
1081static void
1082efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1083{
1084        struct efx_tx_queue *tx_queue;
1085        int qid;
1086
1087        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1088        if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1089                tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1090                                            qid % EFX_TXQ_TYPES);
1091                if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1092                        efx_farch_magic_event(tx_queue->channel,
1093                                              EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1094                }
1095        }
1096}
1097
1098/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1099 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1100 * the RX queue back to the mask of RX queues in need of flushing.
1101 */
1102static void
1103efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1104{
1105        struct efx_channel *channel;
1106        struct efx_rx_queue *rx_queue;
1107        int qid;
1108        bool failed;
1109
1110        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1111        failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1112        if (qid >= efx->n_channels)
1113                return;
1114        channel = efx_get_channel(efx, qid);
1115        if (!efx_channel_has_rx_queue(channel))
1116                return;
1117        rx_queue = efx_channel_get_rx_queue(channel);
1118
1119        if (failed) {
1120                netif_info(efx, hw, efx->net_dev,
1121                           "RXQ %d flush retry\n", qid);
1122                rx_queue->flush_pending = true;
1123                atomic_inc(&efx->rxq_flush_pending);
1124        } else {
1125                efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1126                                      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1127        }
1128        atomic_dec(&efx->rxq_flush_outstanding);
1129        if (efx_farch_flush_wake(efx))
1130                wake_up(&efx->flush_wq);
1131}
1132
1133static void
1134efx_farch_handle_drain_event(struct efx_channel *channel)
1135{
1136        struct efx_nic *efx = channel->efx;
1137
1138        WARN_ON(atomic_read(&efx->active_queues) == 0);
1139        atomic_dec(&efx->active_queues);
1140        if (efx_farch_flush_wake(efx))
1141                wake_up(&efx->flush_wq);
1142}
1143
1144static void efx_farch_handle_generated_event(struct efx_channel *channel,
1145                                             efx_qword_t *event)
1146{
1147        struct efx_nic *efx = channel->efx;
1148        struct efx_rx_queue *rx_queue =
1149                efx_channel_has_rx_queue(channel) ?
1150                efx_channel_get_rx_queue(channel) : NULL;
1151        unsigned magic, code;
1152
1153        magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1154        code = _EFX_CHANNEL_MAGIC_CODE(magic);
1155
1156        if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1157                channel->event_test_cpu = raw_smp_processor_id();
1158        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1159                /* The queue must be empty, so we won't receive any rx
1160                 * events, so efx_process_channel() won't refill the
1161                 * queue. Refill it here */
1162                efx_fast_push_rx_descriptors(rx_queue, true);
1163        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1164                efx_farch_handle_drain_event(channel);
1165        } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1166                efx_farch_handle_drain_event(channel);
1167        } else {
1168                netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1169                          "generated event "EFX_QWORD_FMT"\n",
1170                          channel->channel, EFX_QWORD_VAL(*event));
1171        }
1172}
1173
1174static void
1175efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1176{
1177        struct efx_nic *efx = channel->efx;
1178        unsigned int ev_sub_code;
1179        unsigned int ev_sub_data;
1180
1181        ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1182        ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1183
1184        switch (ev_sub_code) {
1185        case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1186                netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1187                           channel->channel, ev_sub_data);
1188                efx_farch_handle_tx_flush_done(efx, event);
1189#ifdef CONFIG_SFC_SRIOV
1190                efx_siena_sriov_tx_flush_done(efx, event);
1191#endif
1192                break;
1193        case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1194                netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1195                           channel->channel, ev_sub_data);
1196                efx_farch_handle_rx_flush_done(efx, event);
1197#ifdef CONFIG_SFC_SRIOV
1198                efx_siena_sriov_rx_flush_done(efx, event);
1199#endif
1200                break;
1201        case FSE_AZ_EVQ_INIT_DONE_EV:
1202                netif_dbg(efx, hw, efx->net_dev,
1203                          "channel %d EVQ %d initialised\n",
1204                          channel->channel, ev_sub_data);
1205                break;
1206        case FSE_AZ_SRM_UPD_DONE_EV:
1207                netif_vdbg(efx, hw, efx->net_dev,
1208                           "channel %d SRAM update done\n", channel->channel);
1209                break;
1210        case FSE_AZ_WAKE_UP_EV:
1211                netif_vdbg(efx, hw, efx->net_dev,
1212                           "channel %d RXQ %d wakeup event\n",
1213                           channel->channel, ev_sub_data);
1214                break;
1215        case FSE_AZ_TIMER_EV:
1216                netif_vdbg(efx, hw, efx->net_dev,
1217                           "channel %d RX queue %d timer expired\n",
1218                           channel->channel, ev_sub_data);
1219                break;
1220        case FSE_AA_RX_RECOVER_EV:
1221                netif_err(efx, rx_err, efx->net_dev,
1222                          "channel %d seen DRIVER RX_RESET event. "
1223                        "Resetting.\n", channel->channel);
1224                atomic_inc(&efx->rx_reset);
1225                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1226                break;
1227        case FSE_BZ_RX_DSC_ERROR_EV:
1228                if (ev_sub_data < EFX_VI_BASE) {
1229                        netif_err(efx, rx_err, efx->net_dev,
1230                                  "RX DMA Q %d reports descriptor fetch error."
1231                                  " RX Q %d is disabled.\n", ev_sub_data,
1232                                  ev_sub_data);
1233                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1234                }
1235#ifdef CONFIG_SFC_SRIOV
1236                else
1237                        efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1238#endif
1239                break;
1240        case FSE_BZ_TX_DSC_ERROR_EV:
1241                if (ev_sub_data < EFX_VI_BASE) {
1242                        netif_err(efx, tx_err, efx->net_dev,
1243                                  "TX DMA Q %d reports descriptor fetch error."
1244                                  " TX Q %d is disabled.\n", ev_sub_data,
1245                                  ev_sub_data);
1246                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1247                }
1248#ifdef CONFIG_SFC_SRIOV
1249                else
1250                        efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1251#endif
1252                break;
1253        default:
1254                netif_vdbg(efx, hw, efx->net_dev,
1255                           "channel %d unknown driver event code %d "
1256                           "data %04x\n", channel->channel, ev_sub_code,
1257                           ev_sub_data);
1258                break;
1259        }
1260}
1261
1262int efx_farch_ev_process(struct efx_channel *channel, int budget)
1263{
1264        struct efx_nic *efx = channel->efx;
1265        unsigned int read_ptr;
1266        efx_qword_t event, *p_event;
1267        int ev_code;
1268        int spent = 0;
1269
1270        if (budget <= 0)
1271                return spent;
1272
1273        read_ptr = channel->eventq_read_ptr;
1274
1275        for (;;) {
1276                p_event = efx_event(channel, read_ptr);
1277                event = *p_event;
1278
1279                if (!efx_event_present(&event))
1280                        /* End of events */
1281                        break;
1282
1283                netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1284                           "channel %d event is "EFX_QWORD_FMT"\n",
1285                           channel->channel, EFX_QWORD_VAL(event));
1286
1287                /* Clear this event by marking it all ones */
1288                EFX_SET_QWORD(*p_event);
1289
1290                ++read_ptr;
1291
1292                ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1293
1294                switch (ev_code) {
1295                case FSE_AZ_EV_CODE_RX_EV:
1296                        efx_farch_handle_rx_event(channel, &event);
1297                        if (++spent == budget)
1298                                goto out;
1299                        break;
1300                case FSE_AZ_EV_CODE_TX_EV:
1301                        efx_farch_handle_tx_event(channel, &event);
1302                        break;
1303                case FSE_AZ_EV_CODE_DRV_GEN_EV:
1304                        efx_farch_handle_generated_event(channel, &event);
1305                        break;
1306                case FSE_AZ_EV_CODE_DRIVER_EV:
1307                        efx_farch_handle_driver_event(channel, &event);
1308                        break;
1309#ifdef CONFIG_SFC_SRIOV
1310                case FSE_CZ_EV_CODE_USER_EV:
1311                        efx_siena_sriov_event(channel, &event);
1312                        break;
1313#endif
1314                case FSE_CZ_EV_CODE_MCDI_EV:
1315                        efx_mcdi_process_event(channel, &event);
1316                        break;
1317                case FSE_AZ_EV_CODE_GLOBAL_EV:
1318                        if (efx->type->handle_global_event &&
1319                            efx->type->handle_global_event(channel, &event))
1320                                break;
1321                        /* else fall through */
1322                default:
1323                        netif_err(channel->efx, hw, channel->efx->net_dev,
1324                                  "channel %d unknown event type %d (data "
1325                                  EFX_QWORD_FMT ")\n", channel->channel,
1326                                  ev_code, EFX_QWORD_VAL(event));
1327                }
1328        }
1329
1330out:
1331        channel->eventq_read_ptr = read_ptr;
1332        return spent;
1333}
1334
1335/* Allocate buffer table entries for event queue */
1336int efx_farch_ev_probe(struct efx_channel *channel)
1337{
1338        struct efx_nic *efx = channel->efx;
1339        unsigned entries;
1340
1341        entries = channel->eventq_mask + 1;
1342        return efx_alloc_special_buffer(efx, &channel->eventq,
1343                                        entries * sizeof(efx_qword_t));
1344}
1345
1346int efx_farch_ev_init(struct efx_channel *channel)
1347{
1348        efx_oword_t reg;
1349        struct efx_nic *efx = channel->efx;
1350
1351        netif_dbg(efx, hw, efx->net_dev,
1352                  "channel %d event queue in special buffers %d-%d\n",
1353                  channel->channel, channel->eventq.index,
1354                  channel->eventq.index + channel->eventq.entries - 1);
1355
1356        EFX_POPULATE_OWORD_3(reg,
1357                             FRF_CZ_TIMER_Q_EN, 1,
1358                             FRF_CZ_HOST_NOTIFY_MODE, 0,
1359                             FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1360        efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1361
1362        /* Pin event queue buffer */
1363        efx_init_special_buffer(efx, &channel->eventq);
1364
1365        /* Fill event queue with all ones (i.e. empty events) */
1366        memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1367
1368        /* Push event queue to card */
1369        EFX_POPULATE_OWORD_3(reg,
1370                             FRF_AZ_EVQ_EN, 1,
1371                             FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1372                             FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1373        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1374                         channel->channel);
1375
1376        return 0;
1377}
1378
1379void efx_farch_ev_fini(struct efx_channel *channel)
1380{
1381        efx_oword_t reg;
1382        struct efx_nic *efx = channel->efx;
1383
1384        /* Remove event queue from card */
1385        EFX_ZERO_OWORD(reg);
1386        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1387                         channel->channel);
1388        efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1389
1390        /* Unpin event queue */
1391        efx_fini_special_buffer(efx, &channel->eventq);
1392}
1393
1394/* Free buffers backing event queue */
1395void efx_farch_ev_remove(struct efx_channel *channel)
1396{
1397        efx_free_special_buffer(channel->efx, &channel->eventq);
1398}
1399
1400
1401void efx_farch_ev_test_generate(struct efx_channel *channel)
1402{
1403        efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1404}
1405
1406void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1407{
1408        efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1409                              EFX_CHANNEL_MAGIC_FILL(rx_queue));
1410}
1411
1412/**************************************************************************
1413 *
1414 * Hardware interrupts
1415 * The hardware interrupt handler does very little work; all the event
1416 * queue processing is carried out by per-channel tasklets.
1417 *
1418 **************************************************************************/
1419
1420/* Enable/disable/generate interrupts */
1421static inline void efx_farch_interrupts(struct efx_nic *efx,
1422                                      bool enabled, bool force)
1423{
1424        efx_oword_t int_en_reg_ker;
1425
1426        EFX_POPULATE_OWORD_3(int_en_reg_ker,
1427                             FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1428                             FRF_AZ_KER_INT_KER, force,
1429                             FRF_AZ_DRV_INT_EN_KER, enabled);
1430        efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1431}
1432
1433void efx_farch_irq_enable_master(struct efx_nic *efx)
1434{
1435        EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1436        wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1437
1438        efx_farch_interrupts(efx, true, false);
1439}
1440
1441void efx_farch_irq_disable_master(struct efx_nic *efx)
1442{
1443        /* Disable interrupts */
1444        efx_farch_interrupts(efx, false, false);
1445}
1446
1447/* Generate a test interrupt
1448 * Interrupt must already have been enabled, otherwise nasty things
1449 * may happen.
1450 */
1451int efx_farch_irq_test_generate(struct efx_nic *efx)
1452{
1453        efx_farch_interrupts(efx, true, true);
1454        return 0;
1455}
1456
1457/* Process a fatal interrupt
1458 * Disable bus mastering ASAP and schedule a reset
1459 */
1460irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1461{
1462        efx_oword_t *int_ker = efx->irq_status.addr;
1463        efx_oword_t fatal_intr;
1464        int error, mem_perr;
1465
1466        efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1467        error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1468
1469        netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1470                  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1471                  EFX_OWORD_VAL(fatal_intr),
1472                  error ? "disabling bus mastering" : "no recognised error");
1473
1474        /* If this is a memory parity error dump which blocks are offending */
1475        mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1476                    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1477        if (mem_perr) {
1478                efx_oword_t reg;
1479                efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1480                netif_err(efx, hw, efx->net_dev,
1481                          "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1482                          EFX_OWORD_VAL(reg));
1483        }
1484
1485        /* Disable both devices */
1486        pci_clear_master(efx->pci_dev);
1487        efx_farch_irq_disable_master(efx);
1488
1489        /* Count errors and reset or disable the NIC accordingly */
1490        if (efx->int_error_count == 0 ||
1491            time_after(jiffies, efx->int_error_expire)) {
1492                efx->int_error_count = 0;
1493                efx->int_error_expire =
1494                        jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1495        }
1496        if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1497                netif_err(efx, hw, efx->net_dev,
1498                          "SYSTEM ERROR - reset scheduled\n");
1499                efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1500        } else {
1501                netif_err(efx, hw, efx->net_dev,
1502                          "SYSTEM ERROR - max number of errors seen."
1503                          "NIC will be disabled\n");
1504                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1505        }
1506
1507        return IRQ_HANDLED;
1508}
1509
1510/* Handle a legacy interrupt
1511 * Acknowledges the interrupt and schedule event queue processing.
1512 */
1513irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1514{
1515        struct efx_nic *efx = dev_id;
1516        bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1517        efx_oword_t *int_ker = efx->irq_status.addr;
1518        irqreturn_t result = IRQ_NONE;
1519        struct efx_channel *channel;
1520        efx_dword_t reg;
1521        u32 queues;
1522        int syserr;
1523
1524        /* Read the ISR which also ACKs the interrupts */
1525        efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1526        queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1527
1528        /* Legacy interrupts are disabled too late by the EEH kernel
1529         * code. Disable them earlier.
1530         * If an EEH error occurred, the read will have returned all ones.
1531         */
1532        if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1533            !efx->eeh_disabled_legacy_irq) {
1534                disable_irq_nosync(efx->legacy_irq);
1535                efx->eeh_disabled_legacy_irq = true;
1536        }
1537
1538        /* Handle non-event-queue sources */
1539        if (queues & (1U << efx->irq_level) && soft_enabled) {
1540                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1541                if (unlikely(syserr))
1542                        return efx_farch_fatal_interrupt(efx);
1543                efx->last_irq_cpu = raw_smp_processor_id();
1544        }
1545
1546        if (queues != 0) {
1547                efx->irq_zero_count = 0;
1548
1549                /* Schedule processing of any interrupting queues */
1550                if (likely(soft_enabled)) {
1551                        efx_for_each_channel(channel, efx) {
1552                                if (queues & 1)
1553                                        efx_schedule_channel_irq(channel);
1554                                queues >>= 1;
1555                        }
1556                }
1557                result = IRQ_HANDLED;
1558
1559        } else {
1560                efx_qword_t *event;
1561
1562                /* Legacy ISR read can return zero once (SF bug 15783) */
1563
1564                /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1565                 * because this might be a shared interrupt. */
1566                if (efx->irq_zero_count++ == 0)
1567                        result = IRQ_HANDLED;
1568
1569                /* Ensure we schedule or rearm all event queues */
1570                if (likely(soft_enabled)) {
1571                        efx_for_each_channel(channel, efx) {
1572                                event = efx_event(channel,
1573                                                  channel->eventq_read_ptr);
1574                                if (efx_event_present(event))
1575                                        efx_schedule_channel_irq(channel);
1576                                else
1577                                        efx_farch_ev_read_ack(channel);
1578                        }
1579                }
1580        }
1581
1582        if (result == IRQ_HANDLED)
1583                netif_vdbg(efx, intr, efx->net_dev,
1584                           "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1585                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1586
1587        return result;
1588}
1589
1590/* Handle an MSI interrupt
1591 *
1592 * Handle an MSI hardware interrupt.  This routine schedules event
1593 * queue processing.  No interrupt acknowledgement cycle is necessary.
1594 * Also, we never need to check that the interrupt is for us, since
1595 * MSI interrupts cannot be shared.
1596 */
1597irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1598{
1599        struct efx_msi_context *context = dev_id;
1600        struct efx_nic *efx = context->efx;
1601        efx_oword_t *int_ker = efx->irq_status.addr;
1602        int syserr;
1603
1604        netif_vdbg(efx, intr, efx->net_dev,
1605                   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1606                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1607
1608        if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1609                return IRQ_HANDLED;
1610
1611        /* Handle non-event-queue sources */
1612        if (context->index == efx->irq_level) {
1613                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1614                if (unlikely(syserr))
1615                        return efx_farch_fatal_interrupt(efx);
1616                efx->last_irq_cpu = raw_smp_processor_id();
1617        }
1618
1619        /* Schedule processing of the channel */
1620        efx_schedule_channel_irq(efx->channel[context->index]);
1621
1622        return IRQ_HANDLED;
1623}
1624
1625/* Setup RSS indirection table.
1626 * This maps from the hash value of the packet to RXQ
1627 */
1628void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1629{
1630        size_t i = 0;
1631        efx_dword_t dword;
1632
1633        BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1634                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1635
1636        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1637                EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1638                                     efx->rss_context.rx_indir_table[i]);
1639                efx_writed(efx, &dword,
1640                           FR_BZ_RX_INDIRECTION_TBL +
1641                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1642        }
1643}
1644
1645void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1646{
1647        size_t i = 0;
1648        efx_dword_t dword;
1649
1650        BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1651                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1652
1653        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1654                efx_readd(efx, &dword,
1655                           FR_BZ_RX_INDIRECTION_TBL +
1656                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1657                efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1658        }
1659}
1660
1661/* Looks at available SRAM resources and works out how many queues we
1662 * can support, and where things like descriptor caches should live.
1663 *
1664 * SRAM is split up as follows:
1665 * 0                          buftbl entries for channels
1666 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1667 * efx->rx_dc_base            RX descriptor caches
1668 * efx->tx_dc_base            TX descriptor caches
1669 */
1670void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1671{
1672        unsigned vi_count, buftbl_min, total_tx_channels;
1673
1674#ifdef CONFIG_SFC_SRIOV
1675        struct siena_nic_data *nic_data = efx->nic_data;
1676#endif
1677
1678        total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1679        /* Account for the buffer table entries backing the datapath channels
1680         * and the descriptor caches for those channels.
1681         */
1682        buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1683                       total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1684                       efx->n_channels * EFX_MAX_EVQ_SIZE)
1685                      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1686        vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1687
1688#ifdef CONFIG_SFC_SRIOV
1689        if (efx->type->sriov_wanted) {
1690                if (efx->type->sriov_wanted(efx)) {
1691                        unsigned vi_dc_entries, buftbl_free;
1692                        unsigned entries_per_vf, vf_limit;
1693
1694                        nic_data->vf_buftbl_base = buftbl_min;
1695
1696                        vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1697                        vi_count = max(vi_count, EFX_VI_BASE);
1698                        buftbl_free = (sram_lim_qw - buftbl_min -
1699                                       vi_count * vi_dc_entries);
1700
1701                        entries_per_vf = ((vi_dc_entries +
1702                                           EFX_VF_BUFTBL_PER_VI) *
1703                                          efx_vf_size(efx));
1704                        vf_limit = min(buftbl_free / entries_per_vf,
1705                                       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1706
1707                        if (efx->vf_count > vf_limit) {
1708                                netif_err(efx, probe, efx->net_dev,
1709                                          "Reducing VF count from from %d to %d\n",
1710                                          efx->vf_count, vf_limit);
1711                                efx->vf_count = vf_limit;
1712                        }
1713                        vi_count += efx->vf_count * efx_vf_size(efx);
1714                }
1715        }
1716#endif
1717
1718        efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1719        efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1720}
1721
1722u32 efx_farch_fpga_ver(struct efx_nic *efx)
1723{
1724        efx_oword_t altera_build;
1725        efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1726        return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1727}
1728
1729void efx_farch_init_common(struct efx_nic *efx)
1730{
1731        efx_oword_t temp;
1732
1733        /* Set positions of descriptor caches in SRAM. */
1734        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1735        efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1736        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1737        efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1738
1739        /* Set TX descriptor cache size. */
1740        BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1741        EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1742        efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1743
1744        /* Set RX descriptor cache size.  Set low watermark to size-8, as
1745         * this allows most efficient prefetching.
1746         */
1747        BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1748        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1749        efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1750        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1751        efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1752
1753        /* Program INT_KER address */
1754        EFX_POPULATE_OWORD_2(temp,
1755                             FRF_AZ_NORM_INT_VEC_DIS_KER,
1756                             EFX_INT_MODE_USE_MSI(efx),
1757                             FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1758        efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1759
1760        if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1761                /* Use an interrupt level unused by event queues */
1762                efx->irq_level = 0x1f;
1763        else
1764                /* Use a valid MSI-X vector */
1765                efx->irq_level = 0;
1766
1767        /* Enable all the genuinely fatal interrupts.  (They are still
1768         * masked by the overall interrupt mask, controlled by
1769         * falcon_interrupts()).
1770         *
1771         * Note: All other fatal interrupts are enabled
1772         */
1773        EFX_POPULATE_OWORD_3(temp,
1774                             FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1775                             FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1776                             FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1777        EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1778        EFX_INVERT_OWORD(temp);
1779        efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1780
1781        /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1782         * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1783         */
1784        efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1785        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1786        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1787        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1788        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1789        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1790        /* Enable SW_EV to inherit in char driver - assume harmless here */
1791        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1792        /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1793        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1794        /* Disable hardware watchdog which can misfire */
1795        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1796        /* Squash TX of packets of 16 bytes or less */
1797        EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1798        efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1799
1800        EFX_POPULATE_OWORD_4(temp,
1801                             /* Default values */
1802                             FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1803                             FRF_BZ_TX_PACE_SB_AF, 0xb,
1804                             FRF_BZ_TX_PACE_FB_BASE, 0,
1805                             /* Allow large pace values in the fast bin. */
1806                             FRF_BZ_TX_PACE_BIN_TH,
1807                             FFE_BZ_TX_PACE_RESERVED);
1808        efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1809}
1810
1811/**************************************************************************
1812 *
1813 * Filter tables
1814 *
1815 **************************************************************************
1816 */
1817
1818/* "Fudge factors" - difference between programmed value and actual depth.
1819 * Due to pipelined implementation we need to program H/W with a value that
1820 * is larger than the hop limit we want.
1821 */
1822#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1823#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1824
1825/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1826 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1827 * table is full.
1828 */
1829#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1830
1831/* Don't try very hard to find space for performance hints, as this is
1832 * counter-productive. */
1833#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1834
1835enum efx_farch_filter_type {
1836        EFX_FARCH_FILTER_TCP_FULL = 0,
1837        EFX_FARCH_FILTER_TCP_WILD,
1838        EFX_FARCH_FILTER_UDP_FULL,
1839        EFX_FARCH_FILTER_UDP_WILD,
1840        EFX_FARCH_FILTER_MAC_FULL = 4,
1841        EFX_FARCH_FILTER_MAC_WILD,
1842        EFX_FARCH_FILTER_UC_DEF = 8,
1843        EFX_FARCH_FILTER_MC_DEF,
1844        EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1845};
1846
1847enum efx_farch_filter_table_id {
1848        EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1849        EFX_FARCH_FILTER_TABLE_RX_MAC,
1850        EFX_FARCH_FILTER_TABLE_RX_DEF,
1851        EFX_FARCH_FILTER_TABLE_TX_MAC,
1852        EFX_FARCH_FILTER_TABLE_COUNT,
1853};
1854
1855enum efx_farch_filter_index {
1856        EFX_FARCH_FILTER_INDEX_UC_DEF,
1857        EFX_FARCH_FILTER_INDEX_MC_DEF,
1858        EFX_FARCH_FILTER_SIZE_RX_DEF,
1859};
1860
1861struct efx_farch_filter_spec {
1862        u8      type:4;
1863        u8      priority:4;
1864        u8      flags;
1865        u16     dmaq_id;
1866        u32     data[3];
1867};
1868
1869struct efx_farch_filter_table {
1870        enum efx_farch_filter_table_id id;
1871        u32             offset;         /* address of table relative to BAR */
1872        unsigned        size;           /* number of entries */
1873        unsigned        step;           /* step between entries */
1874        unsigned        used;           /* number currently used */
1875        unsigned long   *used_bitmap;
1876        struct efx_farch_filter_spec *spec;
1877        unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1878};
1879
1880struct efx_farch_filter_state {
1881        struct rw_semaphore lock; /* Protects table contents */
1882        struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1883};
1884
1885static void
1886efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1887                                   struct efx_farch_filter_table *table,
1888                                   unsigned int filter_idx);
1889
1890/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1891 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1892static u16 efx_farch_filter_hash(u32 key)
1893{
1894        u16 tmp;
1895
1896        /* First 16 rounds */
1897        tmp = 0x1fff ^ key >> 16;
1898        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1899        tmp = tmp ^ tmp >> 9;
1900        /* Last 16 rounds */
1901        tmp = tmp ^ tmp << 13 ^ key;
1902        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1903        return tmp ^ tmp >> 9;
1904}
1905
1906/* To allow for hash collisions, filter search continues at these
1907 * increments from the first possible entry selected by the hash. */
1908static u16 efx_farch_filter_increment(u32 key)
1909{
1910        return key * 2 - 1;
1911}
1912
1913static enum efx_farch_filter_table_id
1914efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1915{
1916        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917                     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1918        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919                     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1920        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921                     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1922        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1923                     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1924        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1925                     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1926        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1927                     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1928        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1929                     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1930        return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1931}
1932
1933static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1934{
1935        struct efx_farch_filter_state *state = efx->filter_state;
1936        struct efx_farch_filter_table *table;
1937        efx_oword_t filter_ctl;
1938
1939        efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1940
1941        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1942        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1943                            table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1944                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1945        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1946                            table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1947                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1948        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1949                            table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1950                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1951        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1952                            table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1953                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1954
1955        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1956        if (table->size) {
1957                EFX_SET_OWORD_FIELD(
1958                        filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1959                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1960                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1961                EFX_SET_OWORD_FIELD(
1962                        filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1963                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1964                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965        }
1966
1967        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1968        if (table->size) {
1969                EFX_SET_OWORD_FIELD(
1970                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1971                        table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1972                EFX_SET_OWORD_FIELD(
1973                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1974                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1975                           EFX_FILTER_FLAG_RX_RSS));
1976                EFX_SET_OWORD_FIELD(
1977                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1978                        table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1979                EFX_SET_OWORD_FIELD(
1980                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1981                        !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1982                           EFX_FILTER_FLAG_RX_RSS));
1983
1984                /* There is a single bit to enable RX scatter for all
1985                 * unmatched packets.  Only set it if scatter is
1986                 * enabled in both filter specs.
1987                 */
1988                EFX_SET_OWORD_FIELD(
1989                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1990                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1991                           table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1992                           EFX_FILTER_FLAG_RX_SCATTER));
1993        } else {
1994                /* We don't expose 'default' filters because unmatched
1995                 * packets always go to the queue number found in the
1996                 * RSS table.  But we still need to set the RX scatter
1997                 * bit here.
1998                 */
1999                EFX_SET_OWORD_FIELD(
2000                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2001                        efx->rx_scatter);
2002        }
2003
2004        efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2005}
2006
2007static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2008{
2009        struct efx_farch_filter_state *state = efx->filter_state;
2010        struct efx_farch_filter_table *table;
2011        efx_oword_t tx_cfg;
2012
2013        efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2014
2015        table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2016        if (table->size) {
2017                EFX_SET_OWORD_FIELD(
2018                        tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2019                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2020                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2021                EFX_SET_OWORD_FIELD(
2022                        tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2023                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2024                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2025        }
2026
2027        efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2028}
2029
2030static int
2031efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2032                               const struct efx_filter_spec *gen_spec)
2033{
2034        bool is_full = false;
2035
2036        if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2037                return -EINVAL;
2038
2039        spec->priority = gen_spec->priority;
2040        spec->flags = gen_spec->flags;
2041        spec->dmaq_id = gen_spec->dmaq_id;
2042
2043        switch (gen_spec->match_flags) {
2044        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2045              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2046              EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2047                is_full = true;
2048                /* fall through */
2049        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2050              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2051                __be32 rhost, host1, host2;
2052                __be16 rport, port1, port2;
2053
2054                EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2055
2056                if (gen_spec->ether_type != htons(ETH_P_IP))
2057                        return -EPROTONOSUPPORT;
2058                if (gen_spec->loc_port == 0 ||
2059                    (is_full && gen_spec->rem_port == 0))
2060                        return -EADDRNOTAVAIL;
2061                switch (gen_spec->ip_proto) {
2062                case IPPROTO_TCP:
2063                        spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2064                                      EFX_FARCH_FILTER_TCP_WILD);
2065                        break;
2066                case IPPROTO_UDP:
2067                        spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2068                                      EFX_FARCH_FILTER_UDP_WILD);
2069                        break;
2070                default:
2071                        return -EPROTONOSUPPORT;
2072                }
2073
2074                /* Filter is constructed in terms of source and destination,
2075                 * with the odd wrinkle that the ports are swapped in a UDP
2076                 * wildcard filter.  We need to convert from local and remote
2077                 * (= zero for wildcard) addresses.
2078                 */
2079                rhost = is_full ? gen_spec->rem_host[0] : 0;
2080                rport = is_full ? gen_spec->rem_port : 0;
2081                host1 = rhost;
2082                host2 = gen_spec->loc_host[0];
2083                if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2084                        port1 = gen_spec->loc_port;
2085                        port2 = rport;
2086                } else {
2087                        port1 = rport;
2088                        port2 = gen_spec->loc_port;
2089                }
2090                spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2091                spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2092                spec->data[2] = ntohl(host2);
2093
2094                break;
2095        }
2096
2097        case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2098                is_full = true;
2099                /* fall through */
2100        case EFX_FILTER_MATCH_LOC_MAC:
2101                spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2102                              EFX_FARCH_FILTER_MAC_WILD);
2103                spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2104                spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2105                                 gen_spec->loc_mac[3] << 16 |
2106                                 gen_spec->loc_mac[4] << 8 |
2107                                 gen_spec->loc_mac[5]);
2108                spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2109                                 gen_spec->loc_mac[1]);
2110                break;
2111
2112        case EFX_FILTER_MATCH_LOC_MAC_IG:
2113                spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2114                              EFX_FARCH_FILTER_MC_DEF :
2115                              EFX_FARCH_FILTER_UC_DEF);
2116                memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2117                break;
2118
2119        default:
2120                return -EPROTONOSUPPORT;
2121        }
2122
2123        return 0;
2124}
2125
2126static void
2127efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2128                             const struct efx_farch_filter_spec *spec)
2129{
2130        bool is_full = false;
2131
2132        /* *gen_spec should be completely initialised, to be consistent
2133         * with efx_filter_init_{rx,tx}() and in case we want to copy
2134         * it back to userland.
2135         */
2136        memset(gen_spec, 0, sizeof(*gen_spec));
2137
2138        gen_spec->priority = spec->priority;
2139        gen_spec->flags = spec->flags;
2140        gen_spec->dmaq_id = spec->dmaq_id;
2141
2142        switch (spec->type) {
2143        case EFX_FARCH_FILTER_TCP_FULL:
2144        case EFX_FARCH_FILTER_UDP_FULL:
2145                is_full = true;
2146                /* fall through */
2147        case EFX_FARCH_FILTER_TCP_WILD:
2148        case EFX_FARCH_FILTER_UDP_WILD: {
2149                __be32 host1, host2;
2150                __be16 port1, port2;
2151
2152                gen_spec->match_flags =
2153                        EFX_FILTER_MATCH_ETHER_TYPE |
2154                        EFX_FILTER_MATCH_IP_PROTO |
2155                        EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2156                if (is_full)
2157                        gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2158                                                  EFX_FILTER_MATCH_REM_PORT);
2159                gen_spec->ether_type = htons(ETH_P_IP);
2160                gen_spec->ip_proto =
2161                        (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2162                         spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2163                        IPPROTO_TCP : IPPROTO_UDP;
2164
2165                host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2166                port1 = htons(spec->data[0]);
2167                host2 = htonl(spec->data[2]);
2168                port2 = htons(spec->data[1] >> 16);
2169                if (spec->flags & EFX_FILTER_FLAG_TX) {
2170                        gen_spec->loc_host[0] = host1;
2171                        gen_spec->rem_host[0] = host2;
2172                } else {
2173                        gen_spec->loc_host[0] = host2;
2174                        gen_spec->rem_host[0] = host1;
2175                }
2176                if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2177                    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2178                        gen_spec->loc_port = port1;
2179                        gen_spec->rem_port = port2;
2180                } else {
2181                        gen_spec->loc_port = port2;
2182                        gen_spec->rem_port = port1;
2183                }
2184
2185                break;
2186        }
2187
2188        case EFX_FARCH_FILTER_MAC_FULL:
2189                is_full = true;
2190                /* fall through */
2191        case EFX_FARCH_FILTER_MAC_WILD:
2192                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2193                if (is_full)
2194                        gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2195                gen_spec->loc_mac[0] = spec->data[2] >> 8;
2196                gen_spec->loc_mac[1] = spec->data[2];
2197                gen_spec->loc_mac[2] = spec->data[1] >> 24;
2198                gen_spec->loc_mac[3] = spec->data[1] >> 16;
2199                gen_spec->loc_mac[4] = spec->data[1] >> 8;
2200                gen_spec->loc_mac[5] = spec->data[1];
2201                gen_spec->outer_vid = htons(spec->data[0]);
2202                break;
2203
2204        case EFX_FARCH_FILTER_UC_DEF:
2205        case EFX_FARCH_FILTER_MC_DEF:
2206                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2207                gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2208                break;
2209
2210        default:
2211                WARN_ON(1);
2212                break;
2213        }
2214}
2215
2216static void
2217efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2218                              struct efx_farch_filter_spec *spec)
2219{
2220        /* If there's only one channel then disable RSS for non VF
2221         * traffic, thereby allowing VFs to use RSS when the PF can't.
2222         */
2223        spec->priority = EFX_FILTER_PRI_AUTO;
2224        spec->flags = (EFX_FILTER_FLAG_RX |
2225                       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2226                       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2227        spec->dmaq_id = 0;
2228}
2229
2230/* Build a filter entry and return its n-tuple key. */
2231static u32 efx_farch_filter_build(efx_oword_t *filter,
2232                                  struct efx_farch_filter_spec *spec)
2233{
2234        u32 data3;
2235
2236        switch (efx_farch_filter_spec_table_id(spec)) {
2237        case EFX_FARCH_FILTER_TABLE_RX_IP: {
2238                bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2239                               spec->type == EFX_FARCH_FILTER_UDP_WILD);
2240                EFX_POPULATE_OWORD_7(
2241                        *filter,
2242                        FRF_BZ_RSS_EN,
2243                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2244                        FRF_BZ_SCATTER_EN,
2245                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2246                        FRF_BZ_TCP_UDP, is_udp,
2247                        FRF_BZ_RXQ_ID, spec->dmaq_id,
2248                        EFX_DWORD_2, spec->data[2],
2249                        EFX_DWORD_1, spec->data[1],
2250                        EFX_DWORD_0, spec->data[0]);
2251                data3 = is_udp;
2252                break;
2253        }
2254
2255        case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2256                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2257                EFX_POPULATE_OWORD_7(
2258                        *filter,
2259                        FRF_CZ_RMFT_RSS_EN,
2260                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2261                        FRF_CZ_RMFT_SCATTER_EN,
2262                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2263                        FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2264                        FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2265                        FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2266                        FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2267                        FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2268                data3 = is_wild;
2269                break;
2270        }
2271
2272        case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2273                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2274                EFX_POPULATE_OWORD_5(*filter,
2275                                     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2276                                     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2277                                     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2278                                     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2279                                     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2280                data3 = is_wild | spec->dmaq_id << 1;
2281                break;
2282        }
2283
2284        default:
2285                BUG();
2286        }
2287
2288        return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2289}
2290
2291static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2292                                   const struct efx_farch_filter_spec *right)
2293{
2294        if (left->type != right->type ||
2295            memcmp(left->data, right->data, sizeof(left->data)))
2296                return false;
2297
2298        if (left->flags & EFX_FILTER_FLAG_TX &&
2299            left->dmaq_id != right->dmaq_id)
2300                return false;
2301
2302        return true;
2303}
2304
2305/*
2306 * Construct/deconstruct external filter IDs.  At least the RX filter
2307 * IDs must be ordered by matching priority, for RX NFC semantics.
2308 *
2309 * Deconstruction needs to be robust against invalid IDs so that
2310 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2311 * accept user-provided IDs.
2312 */
2313
2314#define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2315
2316static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2317        [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2318        [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2319        [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2320        [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2321        [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2322        [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2323        [EFX_FARCH_FILTER_UC_DEF]       = 4,
2324        [EFX_FARCH_FILTER_MC_DEF]       = 4,
2325};
2326
2327static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2328        EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2329        EFX_FARCH_FILTER_TABLE_RX_IP,
2330        EFX_FARCH_FILTER_TABLE_RX_MAC,
2331        EFX_FARCH_FILTER_TABLE_RX_MAC,
2332        EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2333        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2334        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2335};
2336
2337#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2338#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2339
2340static inline u32
2341efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2342                         unsigned int index)
2343{
2344        unsigned int range;
2345
2346        range = efx_farch_filter_type_match_pri[spec->type];
2347        if (!(spec->flags & EFX_FILTER_FLAG_RX))
2348                range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2349
2350        return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2351}
2352
2353static inline enum efx_farch_filter_table_id
2354efx_farch_filter_id_table_id(u32 id)
2355{
2356        unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2357
2358        if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2359                return efx_farch_filter_range_table[range];
2360        else
2361                return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2362}
2363
2364static inline unsigned int efx_farch_filter_id_index(u32 id)
2365{
2366        return id & EFX_FARCH_FILTER_INDEX_MASK;
2367}
2368
2369u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2370{
2371        struct efx_farch_filter_state *state = efx->filter_state;
2372        unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2373        enum efx_farch_filter_table_id table_id;
2374
2375        do {
2376                table_id = efx_farch_filter_range_table[range];
2377                if (state->table[table_id].size != 0)
2378                        return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2379                                state->table[table_id].size;
2380        } while (range--);
2381
2382        return 0;
2383}
2384
2385s32 efx_farch_filter_insert(struct efx_nic *efx,
2386                            struct efx_filter_spec *gen_spec,
2387                            bool replace_equal)
2388{
2389        struct efx_farch_filter_state *state = efx->filter_state;
2390        struct efx_farch_filter_table *table;
2391        struct efx_farch_filter_spec spec;
2392        efx_oword_t filter;
2393        int rep_index, ins_index;
2394        unsigned int depth = 0;
2395        int rc;
2396
2397        rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2398        if (rc)
2399                return rc;
2400
2401        down_write(&state->lock);
2402
2403        table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2404        if (table->size == 0) {
2405                rc = -EINVAL;
2406                goto out_unlock;
2407        }
2408
2409        netif_vdbg(efx, hw, efx->net_dev,
2410                   "%s: type %d search_limit=%d", __func__, spec.type,
2411                   table->search_limit[spec.type]);
2412
2413        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2414                /* One filter spec per type */
2415                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2416                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2417                             EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2418                rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2419                ins_index = rep_index;
2420        } else {
2421                /* Search concurrently for
2422                 * (1) a filter to be replaced (rep_index): any filter
2423                 *     with the same match values, up to the current
2424                 *     search depth for this type, and
2425                 * (2) the insertion point (ins_index): (1) or any
2426                 *     free slot before it or up to the maximum search
2427                 *     depth for this priority
2428                 * We fail if we cannot find (2).
2429                 *
2430                 * We can stop once either
2431                 * (a) we find (1), in which case we have definitely
2432                 *     found (2) as well; or
2433                 * (b) we have searched exhaustively for (1), and have
2434                 *     either found (2) or searched exhaustively for it
2435                 */
2436                u32 key = efx_farch_filter_build(&filter, &spec);
2437                unsigned int hash = efx_farch_filter_hash(key);
2438                unsigned int incr = efx_farch_filter_increment(key);
2439                unsigned int max_rep_depth = table->search_limit[spec.type];
2440                unsigned int max_ins_depth =
2441                        spec.priority <= EFX_FILTER_PRI_HINT ?
2442                        EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2443                        EFX_FARCH_FILTER_CTL_SRCH_MAX;
2444                unsigned int i = hash & (table->size - 1);
2445
2446                ins_index = -1;
2447                depth = 1;
2448
2449                for (;;) {
2450                        if (!test_bit(i, table->used_bitmap)) {
2451                                if (ins_index < 0)
2452                                        ins_index = i;
2453                        } else if (efx_farch_filter_equal(&spec,
2454                                                          &table->spec[i])) {
2455                                /* Case (a) */
2456                                if (ins_index < 0)
2457                                        ins_index = i;
2458                                rep_index = i;
2459                                break;
2460                        }
2461
2462                        if (depth >= max_rep_depth &&
2463                            (ins_index >= 0 || depth >= max_ins_depth)) {
2464                                /* Case (b) */
2465                                if (ins_index < 0) {
2466                                        rc = -EBUSY;
2467                                        goto out_unlock;
2468                                }
2469                                rep_index = -1;
2470                                break;
2471                        }
2472
2473                        i = (i + incr) & (table->size - 1);
2474                        ++depth;
2475                }
2476        }
2477
2478        /* If we found a filter to be replaced, check whether we
2479         * should do so
2480         */
2481        if (rep_index >= 0) {
2482                struct efx_farch_filter_spec *saved_spec =
2483                        &table->spec[rep_index];
2484
2485                if (spec.priority == saved_spec->priority && !replace_equal) {
2486                        rc = -EEXIST;
2487                        goto out_unlock;
2488                }
2489                if (spec.priority < saved_spec->priority) {
2490                        rc = -EPERM;
2491                        goto out_unlock;
2492                }
2493                if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2494                    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2495                        spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2496        }
2497
2498        /* Insert the filter */
2499        if (ins_index != rep_index) {
2500                __set_bit(ins_index, table->used_bitmap);
2501                ++table->used;
2502        }
2503        table->spec[ins_index] = spec;
2504
2505        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2506                efx_farch_filter_push_rx_config(efx);
2507        } else {
2508                if (table->search_limit[spec.type] < depth) {
2509                        table->search_limit[spec.type] = depth;
2510                        if (spec.flags & EFX_FILTER_FLAG_TX)
2511                                efx_farch_filter_push_tx_limits(efx);
2512                        else
2513                                efx_farch_filter_push_rx_config(efx);
2514                }
2515
2516                efx_writeo(efx, &filter,
2517                           table->offset + table->step * ins_index);
2518
2519                /* If we were able to replace a filter by inserting
2520                 * at a lower depth, clear the replaced filter
2521                 */
2522                if (ins_index != rep_index && rep_index >= 0)
2523                        efx_farch_filter_table_clear_entry(efx, table,
2524                                                           rep_index);
2525        }
2526
2527        netif_vdbg(efx, hw, efx->net_dev,
2528                   "%s: filter type %d index %d rxq %u set",
2529                   __func__, spec.type, ins_index, spec.dmaq_id);
2530        rc = efx_farch_filter_make_id(&spec, ins_index);
2531
2532out_unlock:
2533        up_write(&state->lock);
2534        return rc;
2535}
2536
2537static void
2538efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2539                                   struct efx_farch_filter_table *table,
2540                                   unsigned int filter_idx)
2541{
2542        static efx_oword_t filter;
2543
2544        EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2545        BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2546
2547        __clear_bit(filter_idx, table->used_bitmap);
2548        --table->used;
2549        memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2550
2551        efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2552
2553        /* If this filter required a greater search depth than
2554         * any other, the search limit for its type can now be
2555         * decreased.  However, it is hard to determine that
2556         * unless the table has become completely empty - in
2557         * which case, all its search limits can be set to 0.
2558         */
2559        if (unlikely(table->used == 0)) {
2560                memset(table->search_limit, 0, sizeof(table->search_limit));
2561                if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2562                        efx_farch_filter_push_tx_limits(efx);
2563                else
2564                        efx_farch_filter_push_rx_config(efx);
2565        }
2566}
2567
2568static int efx_farch_filter_remove(struct efx_nic *efx,
2569                                   struct efx_farch_filter_table *table,
2570                                   unsigned int filter_idx,
2571                                   enum efx_filter_priority priority)
2572{
2573        struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2574
2575        if (!test_bit(filter_idx, table->used_bitmap) ||
2576            spec->priority != priority)
2577                return -ENOENT;
2578
2579        if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2580                efx_farch_filter_init_rx_auto(efx, spec);
2581                efx_farch_filter_push_rx_config(efx);
2582        } else {
2583                efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2584        }
2585
2586        return 0;
2587}
2588
2589int efx_farch_filter_remove_safe(struct efx_nic *efx,
2590                                 enum efx_filter_priority priority,
2591                                 u32 filter_id)
2592{
2593        struct efx_farch_filter_state *state = efx->filter_state;
2594        enum efx_farch_filter_table_id table_id;
2595        struct efx_farch_filter_table *table;
2596        unsigned int filter_idx;
2597        struct efx_farch_filter_spec *spec;
2598        int rc;
2599
2600        table_id = efx_farch_filter_id_table_id(filter_id);
2601        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2602                return -ENOENT;
2603        table = &state->table[table_id];
2604
2605        filter_idx = efx_farch_filter_id_index(filter_id);
2606        if (filter_idx >= table->size)
2607                return -ENOENT;
2608        down_write(&state->lock);
2609        spec = &table->spec[filter_idx];
2610
2611        rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612        up_write(&state->lock);
2613
2614        return rc;
2615}
2616
2617int efx_farch_filter_get_safe(struct efx_nic *efx,
2618                              enum efx_filter_priority priority,
2619                              u32 filter_id, struct efx_filter_spec *spec_buf)
2620{
2621        struct efx_farch_filter_state *state = efx->filter_state;
2622        enum efx_farch_filter_table_id table_id;
2623        struct efx_farch_filter_table *table;
2624        struct efx_farch_filter_spec *spec;
2625        unsigned int filter_idx;
2626        int rc = -ENOENT;
2627
2628        down_read(&state->lock);
2629
2630        table_id = efx_farch_filter_id_table_id(filter_id);
2631        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632                goto out_unlock;
2633        table = &state->table[table_id];
2634
2635        filter_idx = efx_farch_filter_id_index(filter_id);
2636        if (filter_idx >= table->size)
2637                goto out_unlock;
2638        spec = &table->spec[filter_idx];
2639
2640        if (test_bit(filter_idx, table->used_bitmap) &&
2641            spec->priority == priority) {
2642                efx_farch_filter_to_gen_spec(spec_buf, spec);
2643                rc = 0;
2644        }
2645
2646out_unlock:
2647        up_read(&state->lock);
2648        return rc;
2649}
2650
2651static void
2652efx_farch_filter_table_clear(struct efx_nic *efx,
2653                             enum efx_farch_filter_table_id table_id,
2654                             enum efx_filter_priority priority)
2655{
2656        struct efx_farch_filter_state *state = efx->filter_state;
2657        struct efx_farch_filter_table *table = &state->table[table_id];
2658        unsigned int filter_idx;
2659
2660        down_write(&state->lock);
2661        for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2662                if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2663                        efx_farch_filter_remove(efx, table,
2664                                                filter_idx, priority);
2665        }
2666        up_write(&state->lock);
2667}
2668
2669int efx_farch_filter_clear_rx(struct efx_nic *efx,
2670                               enum efx_filter_priority priority)
2671{
2672        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2673                                     priority);
2674        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2675                                     priority);
2676        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2677                                     priority);
2678        return 0;
2679}
2680
2681u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2682                                   enum efx_filter_priority priority)
2683{
2684        struct efx_farch_filter_state *state = efx->filter_state;
2685        enum efx_farch_filter_table_id table_id;
2686        struct efx_farch_filter_table *table;
2687        unsigned int filter_idx;
2688        u32 count = 0;
2689
2690        down_read(&state->lock);
2691
2692        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2693             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2694             table_id++) {
2695                table = &state->table[table_id];
2696                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2697                        if (test_bit(filter_idx, table->used_bitmap) &&
2698                            table->spec[filter_idx].priority == priority)
2699                                ++count;
2700                }
2701        }
2702
2703        up_read(&state->lock);
2704
2705        return count;
2706}
2707
2708s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2709                                enum efx_filter_priority priority,
2710                                u32 *buf, u32 size)
2711{
2712        struct efx_farch_filter_state *state = efx->filter_state;
2713        enum efx_farch_filter_table_id table_id;
2714        struct efx_farch_filter_table *table;
2715        unsigned int filter_idx;
2716        s32 count = 0;
2717
2718        down_read(&state->lock);
2719
2720        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2721             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2722             table_id++) {
2723                table = &state->table[table_id];
2724                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2725                        if (test_bit(filter_idx, table->used_bitmap) &&
2726                            table->spec[filter_idx].priority == priority) {
2727                                if (count == size) {
2728                                        count = -EMSGSIZE;
2729                                        goto out;
2730                                }
2731                                buf[count++] = efx_farch_filter_make_id(
2732                                        &table->spec[filter_idx], filter_idx);
2733                        }
2734                }
2735        }
2736out:
2737        up_read(&state->lock);
2738
2739        return count;
2740}
2741
2742/* Restore filter stater after reset */
2743void efx_farch_filter_table_restore(struct efx_nic *efx)
2744{
2745        struct efx_farch_filter_state *state = efx->filter_state;
2746        enum efx_farch_filter_table_id table_id;
2747        struct efx_farch_filter_table *table;
2748        efx_oword_t filter;
2749        unsigned int filter_idx;
2750
2751        down_write(&state->lock);
2752
2753        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2754                table = &state->table[table_id];
2755
2756                /* Check whether this is a regular register table */
2757                if (table->step == 0)
2758                        continue;
2759
2760                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2761                        if (!test_bit(filter_idx, table->used_bitmap))
2762                                continue;
2763                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2764                        efx_writeo(efx, &filter,
2765                                   table->offset + table->step * filter_idx);
2766                }
2767        }
2768
2769        efx_farch_filter_push_rx_config(efx);
2770        efx_farch_filter_push_tx_limits(efx);
2771
2772        up_write(&state->lock);
2773}
2774
2775void efx_farch_filter_table_remove(struct efx_nic *efx)
2776{
2777        struct efx_farch_filter_state *state = efx->filter_state;
2778        enum efx_farch_filter_table_id table_id;
2779
2780        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2781                kfree(state->table[table_id].used_bitmap);
2782                vfree(state->table[table_id].spec);
2783        }
2784        kfree(state);
2785}
2786
2787int efx_farch_filter_table_probe(struct efx_nic *efx)
2788{
2789        struct efx_farch_filter_state *state;
2790        struct efx_farch_filter_table *table;
2791        unsigned table_id;
2792
2793        state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2794        if (!state)
2795                return -ENOMEM;
2796        efx->filter_state = state;
2797        init_rwsem(&state->lock);
2798
2799        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2800        table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2801        table->offset = FR_BZ_RX_FILTER_TBL0;
2802        table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2803        table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2804
2805        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2806        table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2807        table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2808        table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2809        table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2810
2811        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2812        table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2813        table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2814
2815        table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2816        table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2817        table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2818        table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2819        table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2820
2821        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2822                table = &state->table[table_id];
2823                if (table->size == 0)
2824                        continue;
2825                table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2826                                             sizeof(unsigned long),
2827                                             GFP_KERNEL);
2828                if (!table->used_bitmap)
2829                        goto fail;
2830                table->spec = vzalloc(array_size(sizeof(*table->spec),
2831                                                 table->size));
2832                if (!table->spec)
2833                        goto fail;
2834        }
2835
2836        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2837        if (table->size) {
2838                /* RX default filters must always exist */
2839                struct efx_farch_filter_spec *spec;
2840                unsigned i;
2841
2842                for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2843                        spec = &table->spec[i];
2844                        spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2845                        efx_farch_filter_init_rx_auto(efx, spec);
2846                        __set_bit(i, table->used_bitmap);
2847                }
2848        }
2849
2850        efx_farch_filter_push_rx_config(efx);
2851
2852        return 0;
2853
2854fail:
2855        efx_farch_filter_table_remove(efx);
2856        return -ENOMEM;
2857}
2858
2859/* Update scatter enable flags for filters pointing to our own RX queues */
2860void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2861{
2862        struct efx_farch_filter_state *state = efx->filter_state;
2863        enum efx_farch_filter_table_id table_id;
2864        struct efx_farch_filter_table *table;
2865        efx_oword_t filter;
2866        unsigned int filter_idx;
2867
2868        down_write(&state->lock);
2869
2870        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2871             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2872             table_id++) {
2873                table = &state->table[table_id];
2874
2875                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2876                        if (!test_bit(filter_idx, table->used_bitmap) ||
2877                            table->spec[filter_idx].dmaq_id >=
2878                            efx->n_rx_channels)
2879                                continue;
2880
2881                        if (efx->rx_scatter)
2882                                table->spec[filter_idx].flags |=
2883                                        EFX_FILTER_FLAG_RX_SCATTER;
2884                        else
2885                                table->spec[filter_idx].flags &=
2886                                        ~EFX_FILTER_FLAG_RX_SCATTER;
2887
2888                        if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2889                                /* Pushed by efx_farch_filter_push_rx_config() */
2890                                continue;
2891
2892                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2893                        efx_writeo(efx, &filter,
2894                                   table->offset + table->step * filter_idx);
2895                }
2896        }
2897
2898        efx_farch_filter_push_rx_config(efx);
2899
2900        up_write(&state->lock);
2901}
2902
2903#ifdef CONFIG_RFS_ACCEL
2904
2905bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2906                                     unsigned int index)
2907{
2908        struct efx_farch_filter_state *state = efx->filter_state;
2909        struct efx_farch_filter_table *table;
2910        bool ret = false, force = false;
2911        u16 arfs_id;
2912
2913        down_write(&state->lock);
2914        spin_lock_bh(&efx->rps_hash_lock);
2915        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2916        if (test_bit(index, table->used_bitmap) &&
2917            table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2918                struct efx_arfs_rule *rule = NULL;
2919                struct efx_filter_spec spec;
2920
2921                efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2922                if (!efx->rps_hash_table) {
2923                        /* In the absence of the table, we always returned 0 to
2924                         * ARFS, so use the same to query it.
2925                         */
2926                        arfs_id = 0;
2927                } else {
2928                        rule = efx_rps_hash_find(efx, &spec);
2929                        if (!rule) {
2930                                /* ARFS table doesn't know of this filter, remove it */
2931                                force = true;
2932                        } else {
2933                                arfs_id = rule->arfs_id;
2934                                if (!efx_rps_check_rule(rule, index, &force))
2935                                        goto out_unlock;
2936                        }
2937                }
2938                if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2939                                                 flow_id, arfs_id)) {
2940                        if (rule)
2941                                rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2942                        efx_rps_hash_del(efx, &spec);
2943                        efx_farch_filter_table_clear_entry(efx, table, index);
2944                        ret = true;
2945                }
2946        }
2947out_unlock:
2948        spin_unlock_bh(&efx->rps_hash_lock);
2949        up_write(&state->lock);
2950        return ret;
2951}
2952
2953#endif /* CONFIG_RFS_ACCEL */
2954
2955void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2956{
2957        struct net_device *net_dev = efx->net_dev;
2958        struct netdev_hw_addr *ha;
2959        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2960        u32 crc;
2961        int bit;
2962
2963        if (!efx_dev_registered(efx))
2964                return;
2965
2966        netif_addr_lock_bh(net_dev);
2967
2968        efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2969
2970        /* Build multicast hash table */
2971        if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2972                memset(mc_hash, 0xff, sizeof(*mc_hash));
2973        } else {
2974                memset(mc_hash, 0x00, sizeof(*mc_hash));
2975                netdev_for_each_mc_addr(ha, net_dev) {
2976                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2977                        bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2978                        __set_bit_le(bit, mc_hash);
2979                }
2980
2981                /* Broadcast packets go through the multicast hash filter.
2982                 * ether_crc_le() of the broadcast address is 0xbe2612ff
2983                 * so we always add bit 0xff to the mask.
2984                 */
2985                __set_bit_le(0xff, mc_hash);
2986        }
2987
2988        netif_addr_unlock_bh(net_dev);
2989}
2990